CSA1017 – Data Structures and Algorithms

The ADT and the Container

· Abstract Data Type.
· An abstract data type is the definition of:

· The set of data it stores.

· The operations on that set (called the Interface).

· Consider the container – a container of items:

· The set is a collection of items.

· Operations that may be defined are:

· A function to create a new container.

· A function to give us the number of items in the container.

· A function to remove all items from a container.

· Etc…

· An example of a container is an array.

Stacks

· Concept of a stack of plates.

· Put plates on top of each other.

· Only can see the topmost plate.

· To see the second plate we must first remove the first.

· Based on the last in first out principle.

· The stack ADT is defined as:

· The set is a container.

· The operations are push and pop.

· Possible other operations:

· Peek or Top.

· IsEmpty?

· Size or Length.

· Runtime errors: calling Pop or Peek on an empty stack.

· Uses:

· Undo operations in a word processor.

· A stack oriented machine like the JVM.

· Document versions.

· Possible implementations:

· Array based:

· Fixed size array of elements.

· Keep the index of the last item in the array. Initially index = -1 (i.e. empty).

· Limitations:

· Stack has a maximum size.

· Waste of space for small stacks.

· Space complexity O(maxSize). Of pointer?

· Push and Pop complexity O(1).

· Fast and easy.

· Resizing Array Based:

· Grow by constant and copy.

· Grow by double and copy.

· Linked list based.

Queues
· Based on the first in first out principle.
· Uses:

· Print spooler.

· Log writing.

· Web servers.

· Queue ADT defined as:

· The set is a container.

· Operations are enqueue and dequeue.

· Possible other operations:

· IsEmpty?

· Peek or Front.

· Size or Length.

· Runtime errors: calling dequeue on an empty queue.

· Possible implementations:

· Array based:

· Fixed size array of elements.

· Keep the index of the FRONT element.

· Keep the index of the END element.

· Starting value of FRONT = 0.

· Starting value of END = 0.
· If FRONT == END then queue is empty.

· Enqueue:

· If (END == Size) Queue is full.
· Array[END] = ITEM.

· END++.

· Dequeue:

· If (FRONT == END) Queue is empty.

· ITEM = Array[FRONT].

· FRONT++.

· The available capacity shrinks after each dequeue!!!

· Solution is to use a circular array:

· Fixed size array of elements.

· Keep the index of the FRONT element.

· Keep the index of the END element.

· Starting value of FRONT = 0.

· Starting value of END = 0.

· Enqueue (notice that one element will be lost):

· If:

· FRONT == END+1

· -OR-

· (END == SIZE-1) AND (FRONT == 0)

· Then:
· Queue is full.

· Array[END] = ITEM.

· If (END = Size-1) then END = 0 else END++.
· Enqueue (Rewritten using MOD operator):

· If:

· FRONT == (END+1) % Size

· Then:

· Queue is full.

· Array[END] = ITEM.

· END = (END+1) % Size.

· Dequeue:

· If (FRONT == END) Queue is empty.
· ITEM = Array[FRONT].

· FRONT = (FRONT+1) % Size.

Linked Lists

· Like an array but grows. Like ArrayList, List<> in C# or Vector in Java.

· List ADT is defined as:
· A container set.

· Operations are Append, Remove.

· Possible other operations are:

· Insert.

· Remove.

· RemoveAt.

· Clear.

· IsEmpty…

· Runtime errors may include an index out of range or remove from an empty list.

· Simplest implementation is with an array whose size is determined at run time or compile time but we lose the dynamic growth functionality.

· Wasted space or space is not enough.

· Inserting ‘in between’ is expensive – need to shift.

· Fast due to direct access.

· Alternative implementation:

· Each element we add has a pointer to the next element.

· Record of (1) values to store (2) pointer to next record.

· The list has a pointer to HEAD (the first element in the list).

· Initially the HEAD is null.

· An item whose next pointer is null is the last item – known as the TAIL.

· GetTail:

· Next = HEAD.

· Current = null.

· WHILE (Next != null)

· Current = Next.

· Next = Next.Next

· Return Current.

· Append:

· TAIL = GetTail.

· NewItem.Next = Null.

· TAIL = NewItem.

· Problems with remove (except head) and insert in the middle.
· Looping through the list:

· Current = HEAD.
· WHILE (Current != null)

· Print Current

· Current = Current.Next.

· Variations.
· Store TAIL pointer to avoid finding the tail for most operations.

· Circular linked list – TAIL.Next == HEAD.

· Examples: generate a sine wave from sampled points.

· Doubly linked lists – store next and previous pointers.

· Inserts and deletes require more operations but all operations are generally simplified.

Arrays vs. Linked Lists

· Arrays:

· Access is very fast (contiguous memory) O(1).

· Inserting/Deleting at end O(1).

· Looping through items is fast due to contiguous memory.

· Size is fixed.

· Inserting and deleting at head is slow – we need to shift.

· If array is full, we need to recreate and copy.

· Linked Lists:

· Access/search is sequential O(n).

· Inserting/Deleting at end O(1).

· Inserting/Deleting at head O(1).

· Inserting and deleting at middle O(n).
· Can grow.

Linked List Based Stack (Same applies for the Queue)

· Removes fixed stack size limitation
· HEAD of list will be the TOP of stack.

· Initially HEAD/TOP is null.

· Push:

· NewTop.Next = TOP
· TOP = NewTop

· Pop:

· If (TOP != null)

· Temp = TOP

· TOP = TOP.Next

· Return Temp

· Otherwise Error

· IsEmpty:

· TOP == null?
Regular Expressions

· Are a pattern used to match strings.
· For example:

· ^”Hello” finds hello at the beginning of a line.
· [hc]at finds hat or cat.

· Other examples:

· All binary numbers starting with 1 and ending in 0:

· 1 (1 | 0)* 0

· All odd numbers:

· [0-9]* (“1”, “3”, “5”, “7”, “9”)

· Identifiers in a programming language:

· (_ | [A-Z] | [a-z]) . (_ | [A-Z] | [a-z] | [0-9])*

· Note that regular expressions are a compact form to represent an infinite set (of strings).

· Alternation |. E.g. Optimi(s|z)e.
· Grouping ().

· Zero or one ?. e.g. Loo?se.
· Zero or more *. Purrr* = Purr, Purrr, Purrrr…
· One or more +. Purr+ = Purr, Purrr, Purrrr…
· Note that + can be defined in terms of *. i.e a+ = aa*.

· Algebraic properties:
· Commutativity of alternation A|B = B|A.

· Associativity of alternation A|(B|C) = (A|B)|C.

· Absorption of alternation A|A = A.

· Associativity of concatenation A.(B.C) = (A.B).C.

· Left distributivity A . (B|C) = AB | BC.

· Right distributivity (A|B).C = AC | BC.

· Absorption of closure A*A* = A*.

The Table ADT

· Used to store records that can be identified by a key.

· E.g. Employee record with ID card number as a key.

· Keys are assumed to be unique.

· Interface:

· IsEmpty.

· IsFull.

· Insert(Key, Record).

· Retrieve(Key) -> Record.

· Update(Key, Record).

· Delete(Key).

· Traverse().

· Possible implementations:

· Sorted array:

· IsEmpty/IsFull computed in constant time if we store a variable holding the count.

· Insert takes as much time as a binary search O(Log2N) then the time to shift - linear.

· Delete has similar properties to Insert.

· Update just requires the search part.

· Traverse is linear.

· Binary Search Trees:
· Note that in the worst case, this would become a linked list.

· Hash tables.
The Hash Table

· List of keys and values.

· Used to efficiently look up a value by its key (e.g. a name by ID card number).

· A hashing function is used to transform the key into a number that would correspond to the index of an array.

· Consider case when key is known to be an integer and the range is known too (e.g. 0 to P).

· We could simply use the index of the array.

· Easy, very fast… but…

· We waste a lot of space.

· Traversing the whole list takes O(P) time.

· Now, consider if we had to store keys (known integers, 0 to P) in an array of size Q, where Q < P.

· This is more space efficient, but…

· We need a function to convert Q into a value P (hashing function).

· We might get collisions.

· Examples of Hashing functions:

· Index = P MOD Q.

· Index = SumOfDigitsIn(P) MOD Q.

· So if we want to store the key/value, pair (12345M,Kris) the key 12345M would be transformed to an integer, say, 6 by the hashing function and that value (Kris), stored at location 6 in a predefined array.

· To hash strings, first we need a way to convert S into an integer:

· Sum of ASCII.

· Polynomial. Where k is the ASCII value of a character in the string at a position, choose a = small prime number, l = length of string -1, then…

· K0 a0 + K1 a1 + … + Kl al.
· PHL
ORY
GCM
HKG
GLA
AKL
FRA
LAX
DCA

· 4
8
6
4
8
7
5
1
1

· Considerations when choosing a hashing function:

· Minimise the probability that multiple keys map to the same integer (a collision)

· The performance of computing the hash value from the key.
· It should be noted that it is impossible to design a hash function that can guarantee zero collisions.
· Buckets:

· Use 2 Dimensional arrays where the second dimension is the bucket size.

· Wastes a lot of space.

· Very fast.
· Chaining:

· When two keys (records) hash to the same location, we get a collision. The record cannot be stored in the same location, so the subsequent records that collide are appended (like in a linked list) following the record at the same index.

· For this reason an index of an array does not necessarily denote only one record but a ‘bucket’.

· Open addressing:

· In open addressing, when a hashing collision is detected, the table is probed until:

· For inserts, a free slot is found.

· For searches, the record with the right key is found.

· An example of a probing mechanism: Linear probing: step size = 1.
· Linear probing causes the problem of primary clustering – a lot of items next to each other.

· [][NTR][][][KYT][JIP][KKJ][][] and we want to insert OUY which will hash to the same position as KYT.

· Double hashing:

· Use a secondary hash function to define an offset (in linear probing the offset was 1).

· Consider the first hashing function H1 to be V MOD N where N is the size of the hash table and V is the integer representation of the key.

· We’ll make H2 = (V / N) MOD N. Careful: this can yield an offset of 0 which should never happen, so if the result is 0, we just set it to 1.
· See http://www.cs.bham.ac.uk/~mhe/foundations2/node1.html.
Bubble Sort

Optimising Bubble Sort

Selection Sort
Insertion Sort

Shell Sort

Kristian Guillaumier, 2007

