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Number Theory

Number theory is the branch of mathematics
related to the study of positive numbers (called
the Natural Numbers).

Specifically the set:

N={1,234,5,..}

Natural numbers are sometimes used to refer to
both positive integers >= 1, or non-negative
integers >=0.

The set of natural numbers is said to be
countably infinite.
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Countablility

* Used to describe the size of a set.

* A set Sis said to be countable if we have a surjective (onto)
function:

f:N->S
(we can map all natural numbers to elements of S)
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Countably Infinite

» A set is countably infinite if, apart from:
f: N->S being surjective,
- fis bijective too (one-to-one and onto). l.e.:
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Origins of Zero

* Natural numbers have been historically used for
counting (“three pencils”) and ordering (“the 2nd
smallest”).

« Zero was usually omitted from the natural
numbers, but...

* A set-theoretical definition of natural numbers
was developed and it was convenient to include
zero (corresponding to the empty set).

* To be unambiguous if N includes zero, it can be
written as N,.
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The Peano Axioms

» The Peano Axioms provide the precise definition
of what is a natural number.
— 0 is a natural number.

— Every natural number n has a natural number
successor denoted S(n).

— No natural number n has S(n) =0. l.e. Ois not a
successor of any natural number.

— If n. and m are natural numbers and n != m then S(n)
I=S(m).

— If a set of numbers contains 0 and S(n), then n is in
the set too. l.e. if a set contains 0 and also the
successor to every number in the set than every
number is in the set. (Induction).

Kristian Guillaumier 04, 05




Mathematical Induction

 Induction is a proof technique usually applied to
natural numbers.

* In its simplest form induction behaves as follows:
— Showing that a statement is true for n = 0,

— Showing that if a statement is true for n=m, then it
holds for n=m+1.

« An analogy is useful to understand this concept:
— The first domino will fall.
— Whenever a domino falls, the next one falls too.
— This helps us conclude that ALL dominos will fall.
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Example (1)

» Suppose we want to prove that:

0+14+2+..+4n = n(n+1)
2
* Proof:

— Check forn =0.

— Clearly this is true. The sum of the first 0
natural numbers is 0 and 0.(0+1)/2 is 0 too.
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Example (2)
 Assume the statement is true for n = m:

0+14+2+..4m = m(m+1)
2
« Adding (m+1) to both sides yields:

0+1+2+..4m+ (m+1l) = m(m+1l) + (m+1)
2
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Example (3)

» Lets apply some algebraic juggling to the
RHS:

m(m+l) + (m+l) = m(m+l) + 2(m+1l)

2 2 2

= (m+2) (m+1l) = ((m+l) + 1) (m+l)

2 2
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Example (4)

 We have shown that:
— Statement is true for m=0.

— If statement is true for m then truth follows for
m+1.
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Properties of Natural Numbers

* The arithmetic addition and multiplication
operators are closed for natural numbers.

— Adding or multiplying any two natural
numbers will yield another natural number.

* Arithmetic subtraction and division are not.
2 - 5= -3
1/ 2=0.5
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Preliminary (Monoid)

« A Monoid is a structure consisting of a set
and a single binary operation
+ (5,5):SxS>S
 Such that:
— It is associative: for all a, b, cin S:
(a*b)*c = a*(b*c)
— The identity element: there exists an element
e such that:
a*e=e*a=a
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Definition of Addition

 Addition is defined as:
—n+0=n
—n + S(m) = S(n+m) for all n, m
 This definition makes (N, +) a commutative
monoid with identity element 0.
— Commutative: a+b = b+a
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Explanation

* We know S(0) = 1.
» Consider 3 + 2:
— We know that 3 = S(2) and 2 = S(1)...
—So03+2is 3+ S(1) and also 3+S(S(0)).
— From our rule:
*+ 3+3(5(0))
+ =8(3+5(0))
+ =8(S5(3+0))
— From the other rule, 3+0 = 0, so:
+ =8(S(3))
« =5(4)
=5
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Further Explanation

« Another way to look at the example is:

S(S( S(S(S(0)) ))

\
Adds 2
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Notes on Relations

* Let P and Q be sets.

» A relation between P and Q is a collection of
ordered pairs (p,q) such thatp e Pand g € Q.

* In other words, we are relating elements of the
set P to those in set Q.

» Note that not necessarily all elements in P must
be related to elements in Q.

* A relation between two sets is normally written
P~Q.
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Notes on Functions

* Let P and Q be sets.
e A function f from P to Q is a relation such
that:

— For each peP there is one and only one
associated qeQ.

— The set P is called the Domain.
— The set Q is called the Range.
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Notes on Equivalence Relations

 Let S be a set and r a relation between S
and itself (S~S).
* ris an equivalence relation iff:

— Every element in S is related to itself
(reflexive: for example the >= or = functions
but not >).

— If the element a is related to b then b is
related to a (Symetric: is_married_to).

— If the element a is related to b and b is related
to c, then a is related to c (transitive).
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Notes on Partitions

A partition of a set S is a number of non-
empty subsets such that:
— S is the union of all subsets.

— The subsets are disjoint. l.e. if P and Q are
sets, then PnQ = .

e Each subset is called the Part of the
partition.
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Notes on Equivalence Classes

» The concept of relations, equivalence relations
and partitions help us define the notion of
Equivalence Classes.

» Consider:

— The set C being the sets of all clothes.

— The equivalence relation ~ defining ‘having the same
colour’.

— With the help of the equivalence relation we can
partition the set C into parts having clothes of the
same colour.

— Now we have the equivalence class that is the part
that contains red clothes.
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Integers

Set of integers is denoted by Z.
Consider the set NxN.
Define a relation r saying that (a, b) is related to (c,d) if a+d = b+c.
An integer n, -n or 0 is defined by considering the difference
between the natural numbers a and b in (a, b) and all its
equivalences. l.e.:
- n:ifa>b,
— O:ifa=bh,
— -nifa<b.
* For example:
- 0=(0,00=(1,1)=(2,2)...
- 1=(1,00=(2,1) = (3,2)...
- -3=(0,3)=(1,4)=(2,5)...
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Properties of Integers

» Closed under the operations of Addition,
Multiplication and Subtraction (Unlike Natural
Numbers).

» Associative: a + (b+c) = (a+b) + ¢

« Commutative:a+b=b+a

» Existence of Identity:a+0=0+a=a

» (Existence of) Inverse Elements: a + (-a) =0
— Note that there is no multiplicative inverse though.
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Properties of Order

* Integers for a Totally Ordered Set:

— A total order on a set S is a binary relation
that is:
* Antisymmetric: if a <= b and b <= a, then a = b.
* Transitive: ifa<=band b <=c, thena <=c.
» Total: eithera<=b orb <= a.

* ...but has no lower or upper bound.
* Orderingis: ...-2<-1<0<1<2...
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Rational Numbers

* Rational numbers are the ratio between two
integers.

+ Rational numbers are demoted by Q.

« Can be written in an infinite number of forms: 1/2
=2/4=3/6=...

« Rational numbers are periodic:
— 1/3 =0.33333333...
— 1/2 = 0.50000000...

* Note that irrational numbers cannot be
expressed as a ratio between two integers.
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Formal Construction of Q

» Defined as an ordered pair of integers (a,b) such
that b 1= 0.
* Addition and multiplication between such pairs is
defined as:
— Addition: (a,b) + (c,d) = (ad + bc, bd).
— Multiplication: (a,b) * (c,d) = (ac, bd).
« Remember that a rational can be written in an
infinite number of ways (1/2 = 2/4...).
— We need an equivalence relation to do this:
* (a,b) ~(c,d)iffad = bc
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Prime Numbers

* Natural numbers:
— Greater than 1.
— Whose divisors are one and itself.

2 is the only even prime numbers.

Kristian Guillaumier 04, 05 27

Composite Numbers

* Is a positive integer not prime and not equal to 1.

* So, nis a composite number if n = a x b, where
a, b are natural numbers not equal to 1.

* Examples:
— 1 (not prime/not composite, by defn).
— 2 (prime/not composite).
— 3 (prime/not composite).
— 4 (not prime/composite, 4 = 2 x 2).
— 15 (not prime/composite, 15 = 3 x 5).
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Fundamental Theorem of Arithmetic

+ Also known as the Unique Factorisation Theorem.

» Every positive integer greater than one can be written as
a product of two prime numbers.

» Using this theorem we can view Primes are being the
building blocks of positive integers.

—2=21

- 3=31

— 4 =22

— 5=51

— =232

~ 10=2x5

— 60=22x3x5
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Proof (1)

*  We need two prove two parts:
— Every number can be written as a product of primes.
— Any two representations for the same number are the same.

» Suppose a number CANNOT be written as a product of primes.

* Take the smallest such number and call it n.

* Clearly n cannot be prime because a prime is a product of itself.

* This means that n = a x b (i.e. n is composite).

» Therefore there must be a number D such that 1 <D < n and D divides n.

+ Out of all the numbers that D can be, pick the smallest and call it D.

* Now, if D, is composite, then it must have its own divisor F such that 1 < F <

o

» This causes a problem because if F divides D_, then it divides D also (which

in turn divides n). This contradicts the minimaﬁty of D,.

* In other words F must be prime.
* (Continued...)
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Proof (2)

* Now we can write:n =P x n,.

« If n, is prime, then we are ready (n is written as a product of primes.
If it is not,

« The same reasoning we applied for n above applies to n, here.
* This would make:
- n=PxP xn,
- Nn=PxP xP"xn,
— Etc...
» The ever decreasing sequence n > n,>n, > ... > 1 cannot decrease
for ever. At some point K must be a prime.
* So we get out prime representation:

n=P x P’ x PH x Pm % Pun « Pmu «
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Proof (3)

» To prove the second part (uniqueness) assume a number has two prime
factorisations:

* n=P,P,P; P.=Q,Q,Q;... Q

+ Assume r <=s and the primes P, P,P, P.and Q,Q,Q,... Q, are written in
order.

+ Since the P sequence and the Q sequence yield n, then P, divides one of
Q, Q, Q;... Q,which are primes, so P, is equal to some Q,. Also is is clear
the Fﬁ >= Q.

+ If we apply this reasoning starting from Q we get Q, >= P,. So Q, must be
equal to P,.

* We can eliminate the common P and Q factors to get:

* n=P,P; P.=Q,Q,... Q..

» If we go on eliminating all P’s and Q’s we get:

° 1= Qr+1 QI’+2 QI’+3"' QS'

» Clearly all the remaining Q’s must be 1 meaning that r = s and all P’s and
Q’s are identical (i.e. a unique factorisation).
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Greatest Common Divisor

» Once the prime factorisations for a number
are known, finding their greatest common
divisor is trivial:

* 6936 = 23 x3 x 172

« 1200 = 24 x 3 x 52

« GCD=28x3=24
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Euclid’s Algorithm

+ The algorithm is concerned with finding the Greatest
Common Divisor between two numbers a and b.

» Written gcd(a,b).

* Pseudocode:

gcd(a,b)
{
if (b == 0)
return a;
else
return gcd(b, a mod b);
}
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Coprimes (Relatively Prime)

» Two integers a, b are coprime (also called
relatively prime) iff their GCD is 1.

« Examples:
— 6 and 35 (coprime).
— 6 and 27 (not coprime, divisible by 3).
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Additive and Multiplicative Functions (1)

« An additive function is one such that when a and
b are coprime (e.g. 6 and 35),
f(ab) = f(a) + f(b)

« A function of completely additive if f(ab) = f(a) +
f(b) even when a and b are not coprime.

« An multiplicative function is one such that when
a and b are coprime,

f(ab) = f(a) x f(b)
A function of completely multiplicative if f(1) = 1

and f(ab) = f(a) x f(b) even when a and b are not
coprime.
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Additive and Multiplicative Functions (2)

« Remember the fundamental theorem says
that any number can be represented by a
product of (powers of) primes.

« Multiplicative fuctions have very interesting
advantages because of this since:

« If, say, n = P2 x QP, so f(n) = f(P2) x f(QY).
 This can yield so significant computational

efficiencies because the f(P2) x f(QP) parts
can be easier to compute then the f(n).

Kristian Guillaumier 04, 05 37

19



