
UNIVERSITY OF MALTA

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE & A. I.
B.Sc. (Hons.) YEAR I

January 2001 Assessment Session

CSI 107 Introduction to Logic and Logic Programming 27th January

2001

09:15 – 11:45

This paper contains six questions. You are to attempt questions ONE and FOUR and any other two
questions.

Section A

1. Explain what a Horn sentence is, giving suitable examples of Horn and non-Horn sentences.
[5 marks]

Give a detailed overview of the resolution method. Make sure to include an explanation of
what resolvents are and give a definition of R*.

[10 marks]

Explain what NNF, DNF and CNF sentences are, giving suitable examples.

[4 marks]

Explain the underlying concepts behind satisfiability on a single sentence and a set of
sentences. Why are efficient methods of determining satisfiability needed?

[6 marks]

Assuming that p, q, r are atomic statements, T0 a tautology and F0 a contradiction, give
definitions of:

(a) De Morgan’s Law and its quantified equivalent.

(b) Identity, inverse and double negation laws.

[5 marks]

2. Explain the difference between bound and unbound variables, giving a suitable example.
[5 marks]

Define logical equivalence. Give a chain of equivalences showing that the negation of
(¬∃x (P(x) ∧ Q(x))) is equivalent to (∀x (P(x) → ¬Q(x))).

[7 marks]
(Continues on next page)
Using truth tables show whether the sentences ¬((A ∨ B) ∧ ¬C) and (¬A ∧ ¬B) ∨ C are
equivalent or not.

[3 marks]

Define what a Formal Deductive System (FDS) is. Make sure to explain the architecture and
the three sub-components of FD architecture S. Give two examples of FDS.

[10 marks]

3. Explain the difference between a proof and a theorem. Additionally give a definition of what a
deduction is.

[5 marks]

Valid inference steps are used in proofs. Give a definition of Double Negation, Conjunction
Introduction, Disjunction Introduction, and Conjunction Elimination. Give a brief
explanation of the basic steps involved in producing a proof by
contradiction.

[10 marks]

Assume the following names and predicates.

Translate the following into FOL.

(a) Max is a student, not a pet.
(b) Charles is Abigail’s father.
(c) Charles is taller than Abigail.
(d) Max is the same height as Abigail.

Translate the following into English.

(e) ∀x Student(x) → ¬Pet(x).
(f) ∀x ∃y Father(x, y) ∧ Taller(y, x).

(Hint: You do not need to introduce any new names or predicates).

[10 marks]

 English FOL
Names Charles charles
 Abigail abigail
 Max max

Predicates X is a student Student(x)
 X is a pet Pet(x)
 X is Y’s father Father(x, y)
 X is taller than Y Taller(x, y)
 X is shorter than Y Shorter(x, y)

Section B

4. Consider the program below:

Determine what output is produced by the following goals.

(a) run(1)
[7 marks]

(b) run(2)
[8 marks]

(c) run(3)
[10 marks]

5. The Cartesian Product of two sets is the set containing all the tuples produced from one

element of one set and second element from the other set. Consider the sets A = {a, b, c} and
B = {1, 2, 3}
The cartesian product of A and B = A × B

 = { (a,1), (a,2), (a,3), (b,1), (b,2), (b,3), (c,1), (c,2), (c,3) }

Write a Prolog program in which it is possible to issue goals to display all the tuples
produced from the Cartesian Product of any two sets, including the empty
set.

e.g. cartesian_product ([a,b,c],[1,2,3]) would display:

[25 marks]

6. Write recursive clauses for the following predicates:

(a) deduct(List_of_Integers, Number, Result) which binds Result to the value of the
Number after that each element within the List_of_Integers are deducted from it.

e.g. deduct([3,2,5], 20, Ans) binds Ans to 10.
[9 marks]

(Continues on next page)

(b) display_items(List_of_Items) which displays a sequence of the items within the
List_of_Items from left to right.

e.g. display_items([max, $, 2, lca648]) displays max $ 2 lca648

a 1 a 2 a 3
b 1 b 2 b 3
c 1 c 2 c 3

goal1(alf). run(1):- goal1(A), run(X) :- X > 2,
goal1(bert). goal2(B), goal1(A),
goal1(bob). A=/=B, write(A),
nl,
goal1(dick). write(A), Y is X+1,
goal2(ann). write(B), nl, Y < 5,
goal2(dick). fail. run(Y).
goal2(cliff).
goal2(doris). run(2) :- goal1(A), run(_) :- write
(‘end’),
 !, nl.
 goal2(B),
 write(A),
 write(B), nl,

[8 marks]

(c) push(Item, List, Stack) which binds Stack to List with the Item entered at its head.
e.g. push(a, [b,c], NewStack) binds NewStack to [a,b,c].

[8 marks]

