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What is Logic?

• Informally, Logic is a tool that allows us to derive 
a legitimate conclusion(s) from a set of given 
premises.

• Logic is described in a language called First 
Order Logic (FOL).

• We need to use such notation because:
– English is ambiguous.
– Convention and Clarity are crucial.
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Atomic Sentences

• You can think of Atomic Sentences as the most 
basic of English sentences consisting of names 
connected by predicates:
– Andrew ran.
– Andrew saw Mark.

• Individual Constants:
– These are symbols used to refer to some fixed 

individual object e.g. Andrew. 
– The FOL equivalent of names.
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Individual Constants

• Individual Constants:
– However in FOL these names are required to refer to 

exactly one object. In English it may be possible 
state that Andrew saw Andrew, where the two 
Andrews are different people. In FOL this is 
unacceptable.

– An object may have more than one name. For 
example Andrew and Andy may refer to the same 
person (think of a unique nickname).
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Predicate Symbols (1)

• Predicate symbols are used to denote:
– A property of an object.
– A relation between one or more objects.

• In Andrew saw Mark, 
– saw is the predicate.
– Andrew, and Mark become the arguments of the 

predicate.
– In this case the predicate saw is used as a binary 

predicate, since it takes two arguments.
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Predicate Symbols (2)
• In English some predicates may be optional:

– Andrew saw
– Andrew saw Mark

• In FOL however, each predicate has a fixed 
number of arguments. This number is called the 
arity (from unary, binary, etc…).

• Examples:
– AtHome(Andrew)
– Taller(Andrew,Mark)
– Between(6,5,7)
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Predicates Symbols (3)

• In English, predicates are sometimes vague. For 
example, Claire (who is six years old) is young. 
She will not be young when she’s 96 but there is 
no definite point where she stops being so. In 
contrast, in FOL predicates are interpreted by a 
determinate property or relation. (A definite 
fact).
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Atomic Sentences

• If we wish to say that a is equal to be, we write 
a = b. The ‘=‘ predicate is written in infix
notation (i.e. it lies between the arguments).

• The predicate Taller in Taller(Andrew,Mark) is 
written in prefix because it precedes the 
arguments.

• The order of arguments is important 
Taller(Andrew,Mark) is not the same as 
Taller(Mark,Andrew).
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Propositions and Arguments (1)

• In FOL and Atomic Sentence are used to 
express propositions (claims about something).

• These claims are either TRUE or FALSE.
• Central in Logic, is the notion of a argument

(not the same ‘argument’ seen previously).
• An argument is also called an inference.
• This is a sequence of propositions (premises) 

used to derive a conclusion.

Kristian Guillaumier, 2002 - 2003 10

Propositions and Arguments (2)

If I’m outside and it’s raining then I’ll get wet

Premises:

Conclusion:

I’m outside
It is raining

_______________

Therefore, I get wet
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Validity of Arguments (1)

1. All men are mortal. Socrates is a man. 
Therefore, Socrates is mortal.

2. Larry is mortal and all men are mortal. So Larry 
is a man.

• The first is logically valid since its conclusion 
is a logical consequence of its premises. It is 
impossible for this conclusion to be false if the 
premises are true.

• What if Larry is a goldfish???
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Validity of Arguments (2)
• Informally, we can say that:

An argument is valid if and only if the 
conclusion must be true on the assumption 
that the premises are true.

• Note: this does not necessarily mean that the 
arguments must be true for the argument to be 
valid (e.g. if Socrates is a robot). In this case the 
conclusion is not guaranteed to be true.

• So… IF the premises are true AND the 
argument is valid THEN the conclusion is true.
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Validity of Arguments (3)

• Even though, the premises may be true, the 
argument may still be invalid if Hamlet was 
acting.

Hamlet is red in the face
Hamlet is holding an empty bottle

Hamlet is swearing
Hamlet just fell over
_______________

Therefore, Hamlet is drunk

Kristian Guillaumier, 2002 - 2003 14

Validity of Arguments (4)

• This is a good argument. If we accept the 
premises then we also accept the conclusion.

The SLT is in University
The University is in Malta

__________________________

Therefore, the SLT is in Malta
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Compound Statements (1)

• Remember, sentences like “Andrew saw Mark” 
are atomic because they cannot be decomposed 
into smaller ones.

• Longer sentences are built by combining atomic 
sentences into compound ones:
Andrew saw Mark and Mark was Swimming

• Atomic Sentences:
– saw(Andrew,Mark)
– was(Mark,Swimming)
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Compound Statements (2)

• Compound sentence:
– saw(Andrew,Mark) AND was(Mark,Swimming)

This is the SLT (atomic)
This is not the SLT (compound)
• Atomic Sentence:

– is(This,SLT)
• Compound Statement:

– NOT is(This,SLT)
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Connectives
• The connectives AND, NOT, OR, etc… are described 

in FOL as follows:

↔Biconditional…is equivalent to…
…if and only if…
(Andrew is alive iff his heart is beating)

→ImplicationIf… Then…

wDisjunctionOr

vConjunctionAnd

5NegationNot

SymbolFOL NameEnglish Version
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Negation (NOT)
• Consider, strong(Peter) and ¬strong(Peter).
• Negation is a unary operator – it takes one argument.
• Truth table:

TF
FT
5pp



10

Kristian Guillaumier, 2002 - 2003 19

Conjunction (AND)
• strong(Peter) v tall(Peter).
• Conjunction is a binary, infix operator – it takes two 

arguments.
• If p and q are propositions, the statement p v q is true iff

both p and q are true.

FFF
FTF
FFT
TTT

p v qqp
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Disjunction (OR)
• strong(Peter) w tall(Peter).
• Disjunction is a binary, infix operator – it takes two 

arguments.
• If p and q are propositions, the statement p w q is true iff

either p or q are true.

FFF
TTF
TFT
TTT

p w qqp
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Implication (If… Then…)
• strong(Peter) → tall(Peter).
• Implication is a binary, infix operator – it takes two 

arguments.
• If p and q are propositions, the statement p → q is true iff

either p if false or q is true (or both).

TFF
TTF
FFT
TTT

p → qqp

• p is called the antecedent of 
the implication whilst q is 
called the consequent.

• An implication is sometimes 
called a conditional.

Tip: → is only false when the 
antecedent is true but the consequent 
is not.
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Biconditional (iff)
• ‘An implication that works both ways’.
• If p and q are propositions, the statement p ↔ q is true iff p

and q share the same truth value.

TFF
FTF
FFT
TTT

p ↔ qqp
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More on Truth Tables
• Truth tables help when determining the truth or 

falsity of compound statements. For example:
(p w q v r) → 5p w r

TTTFFFFF
TTTFFTFF
TTTFFFTF
TTTTTTTF
FFFTFFFT
TTFTFTFT
FFFTFFTT
TTFTTTTT

(p  w q v r) → 5p w r5p w r5pp  w q v rq v rrqp
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Logical Equivalence

• Two statements P and Q are logically 
equivalent, if they are true in excactly the same 
circumstances.

• Logical equivalence is written P ≡ Q
• So...

– P ≡ 55P
– P v (Q v R) ≡ (P v Q) v R ≡ P v Q v R
– 5(P v Q) ≡ (5P w 5Q)   (DeMorgan)
– 5(P w Q) ≡ (5P v 5Q)   (DeMorgan)
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Logical Equivalence Example

• Show that, 
P v (Q w R) ≡ (P v Q) w (P v R)

FFFFFFFF
FFFFTTFF
FFFFTFTF
FFFFTTTF
FFFFFFFT
TTFTTTFT
TFTTTFTT
TTTTTTTT

(P v Q) w (P v R)P v RP v QP v (Q w R)Q w RRQP
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Tautologies

• Statements like ‘Andrew plays football or he 
does not ’ are evidently true whatsoever.

• Tautologies are statements that are always true 
irrespective of the truth values of their atomic 
statements.

• Again, a truth table may be used to determine 
whether a statement is a tautology.

• Check if p w 5p is a tautology.
• A tautology is logically equivalent to TRUE.



14

Kristian Guillaumier, 2002 - 2003 27

Contradictions

• A contradiction is the opposite of a tautology.
• Irrespective of the truth values of the atomic 

sentences, the statement is always false.
• Andrew plays football and he does not play 

football (P v 5P).
• A contradiction is logically equivalent to FALSE.
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Duality
• Let X be a statement involving 5, w and v.
• Let X* be the statement X with:

– w replaced by v
– v replaced by w
– TRUE replaced by FALSE
– FALSE replaced by TRUE

• X* is the dual of X
• Notes: 

P ≡ Q then P* ≡ Q*
(P v Q) w R is the dual of (P w Q) v R
(P*)* ≡ P
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Laws of Logic (1)
• Notation:

– P, Q and R are atomic statements.
– T0 is a tautology.
– F0 is a contradiction.

• Commutative Law:
P v Q ≡ Q v P P w Q ≡ Q w P

• Associative Law:
(P v Q) v R ≡ P v (Q v R) (P w Q) w R ≡ P w (Q w R)

Kristian Guillaumier, 2002 - 2003 30

Laws of Logic (2)

• Distributive Law:
P v (Q w R) ≡ (P v Q) w (P v R)
P w (Q v R) ≡ (P w Q) v (P w R)

• Identity Law:
P v T0 ≡ P P w F0 ≡ P

• Inverse Law:
P v 5 P ≡ F0 P w 5 P ≡ T0
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Laws of Logic (3)

• Double Negation Law:
5(5P) ≡ P

• Idempotent Law:
P v P ≡ P P w P ≡ P

• DeMorgan’s Laws:
5(P v Q) ≡ 5P w 5Q 5(P w Q) ≡ 5P v 5Q
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Laws of Logic (4)

• Domination Law:
P w T0 ≡ T0 P v F0 ≡ F0

• Absorption Law:
P v (P w Q) ≡ P P w (P v Q) ≡ P

• Negation Law:
5 T0 ≡ F0 5 F0 ≡ T0
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Satisfiability (1)

• Intuitively a sentence is satisfiable if it could be 
true, at least on logical grounds.

• It is irrelevant whether it is physically impossible. 
For example: RunsFasterThanLight(Andrew) is 
satisfiable.

• A contradiction can never be satisfied.
• A set of sentences is satisfiable if there is a 

circumstance under which all sentences are 
simultaneously true.

Kristian Guillaumier, 2002 - 2003 34

Satisfiability (2)
Happy(Mark) w Happy(Andrew)

5Happy(Mark)
5Happy(Andrew)

• In this example, all sentences are satisfiable.
• Any two are satisfiable.
• But all three can never be true simultaneously 

(i.e. the set of sentences is not satisfiable).
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Logical Truth

• A sentence is logically true regardless of the 
circumstances.

• For example:
Home(Andrew) w 5Home(Andrew)
5(Happy(Andrew) v 5Happy(Andrew))

• All tautologies are logically true, but not all 
logically true sentences are tautologies.
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Logical Truth vs. Satifiability vs. 
Tautologies (1)
• Consider the sentence:

[Box(a) v Box(b)] w 5 Box(c)

TTFFTF
FFFTFF
TTFFTF
FFFTTF
TTFFFT
FFFTFT
TTTFTT
TFTTTT

(A v B) w 5C5CA v BCBA
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Logical Truth vs. Satifiability vs. 
Tautologies (2)
• Now, suppose the abbreviation A is Circle(C).

[Circle(c) v Box(b)] w 5 Box(c)

TTFFTF
FFFTFF
TTFFTF
FFFTTF
TTFFFT
FFFTFT
TTTFTT
TFTTTT

(A v B) w 5C5CA v BCBA

Rows are 
SPURIOUS since 
A and C can never 
be true together (c 
can never be a 
box and circle at 
the same time)
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Logical Truth vs. Satifiability vs. 
Tautologies (3)
• To determine if a sentence S is satisfiable, 

logically true or a tautology:

1. Construct the true table for S.
2. S is a tautology IFF it is TRUE in every row.
3. Eliminate any spurious rows.
4. S is satisfiable IFF there is at least one row TRUE.
5. S is logically true IFF all the remaining rows are 

TRUE.
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Variables
• So far we have discussed the use of constants in relation 

to a predicate. For example, we wrote:
IsHome(John)
IsTaller(John,Mark)

• Now we introduce the notion of a variable.
• Consider the following expression using a variable:

IsTaller(John,y)
• In FOL there can be infinitely many variables.
• By convention the letters u, v, w, x, y, and z are used.
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Atomic Well-Formed Formulas

• Atomic WFFs are like the normal sentences we 
have seen, but make use of one or more 
variables in place of constants. 

• So the following are Atomic WFFs:
– IsHome(x)
– IsTaller(John,z)
– IsTaller(x,y)
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Quantifiers

• An atomic WFF is not regarded as a sentence.
• However they can be converted into sentences 

by applying quantifiers.
• The quantifiers considered here are:

› Existential Quantifier “There exists”
œ Universal Quantifier “For all”

• These allow us to specify that all objects or at 
least one object satisfies a condition.

• “There does not exist” may be written as 5› or ò
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Universal Quantifier

• The universal quantifier is used to express 
claims like:

œx (Lecturer(x)→Cool(x))Every lecturer is cool
œx AtHome(x)Everyone is at home
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Existential Quantifier

• The existential quantifier is used to express 
claims like:

›x (Lecturer(x) v Cool(x))At least a lecturer is cool
›x AtHome(x)Someone is at home
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Why do we need Quantifiers?
• One way of expressing the universal quantification œx 

P(x) as:
P(n1) v P(n2) v P(n3) v …

• Similarly we can express the existential quantification of 
›x P(x) as:
P(n1) w P(n2) w P(n3) w …

• This becomes impractical. Say we are considering x to 
be:
– Grains of sand (this is impractical)
– The real numbers (this is impossible)

• Informally the universe of discourse is the “set of 
individual objects we are discussing now”.
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DeMorgan’s Laws for Quantifiers

• 5œx P(x) ≡ ›x 5P(x)
To see why:

5P(n1) w 5P(n2) w 5P(n3) w …

• 5›x P(x) ≡ œx 5P(x)
To see why:

5P(n1) v 5P(n2) v 5P(n3) v …
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Free and Bound Variables
• If P is a WFF (well-formed-formula) and v is a variable 

then œv P and ›v P are WFF too is v is bound to P.

• A sentence is a WFF of it has no unbound (free) 
variables.

œx (Pet(x) → Noisy(x))

All occurences of x are bound within the scope of œ

›x (Pet(x) v Noisy(y))

y is not bound within the scope of ›
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Notes on Quantification
• œ is often used when we wish to say things like 

‘every P is a Q’
– œx (P(x) → Q(x))

• › is often used when we wish to say things like 
‘There is a P which also has the property Q’
– ›x (P(x) v Q(x))

• Sometimes the latter sentence is incorrectly 
translated to ›x (P(x) → Q(x))

• The meaning is different – compare the truth 
tables for v and →.

Kristian Guillaumier, 2002 - 2003 48

Vacuously True Sentences
• Consider the expression œx (Pet(x) → Noisy(x)) in a 

world where pets do not exist. 
• Clearly nothing can possibly satisfy the first part of the 

implication – Pet(x) = True, so from the truth table of →, 
all the sentence will always be true.

TFF
TTF
FFT
TTT

p → qqp • We conclude that a 
universal statement is 
Vacuously true in a world 
where the first part does 
not hold.
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Complex Translations (1)

• Every small dog that is at home is happy:

œx (((Small(x) v Dog(x) v AtHome(x)) → Happy(x))

• A small dog at home is happy:

›x (Small(x) v Dog(x) v AtHome(x) v Happy(x))
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Complex Translations (2)

• Some boys sits on the left of some girl:

›x ›y (Boy(x) v Girl(y) v LeftOf(x,y))

• Every boy sits on the left of every girl:

œx œy ((Boy(x) v Girl(y)) → LeftOf(x,y))
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Complex Translations (3)

• In the previous example, we had more than one 
quantifier on the ‘outside’. This is called Prenex
form.

• However, Prenex is not necessarily required. 
The previous 2 examples could have been 
expressed as:
›x (Boy(x) → ›y (Girl(y) v LeftOf(x,y))
œx (Boy(x) → œy (Girl(y) → LeftOf(x,y))
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Complex Translations (4)

• Using multiple quantifiers sometimes makes 
things slightly tricky. Consider:
œxœy ((Boy(x) v Boy(y)) → (LeftOf(x,y) w RightOf(x,y)))

• This sentence may be read as “if x and y are 
boys, then either x is on the left of y or x is on 
the right of y”.

• This makes the wrong assumption that x and y 
are distinct.
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Complex Translations (5)
• To see why, consider:

œy ((Boy(Mark) v Boy(y)) →
(LeftOf(Mark,y) w RightOf(Mark,y)))

• But œy includes Mark, so we can have:
œy ((Boy(Mark) v Boy(Mark)) →

(LeftOf(Mark,Mark) w RightOf(Mark,Mark)))

• It is clear that Mark cannot be left or right of 
himself.
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Complex Translations (6)
• The wrong way was:

œxœy ((Boy(x) v Boy(y)) → (LeftOf(x,y) w RightOf(x,y)))

• The correct way of making that statement is:

œxœy ((Boy(x) v Boy(y) v x … y) → (LeftOf(x,y) w RightOf(x,y)))
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Complex Translations (7)

• Universal and existential quantifiers may be 
mixed. Consider “every boy is on the left of a 
girl”:
œx (Boy(x) → ›y (Girl(y) v LeftOf(x,y)))

• This can be expressed in Prenex form as:
œx›y (Boy(x) → (Girl(y) v LeftOf(x,y)))
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Complex Translations (8)
• When mixing quantifiers, their order is important. 

Consider the following two sentences:

œx›y Likes(x,y)
›yœx Likes(x,y)

• The first states that “everyone (œx) likes someone (›y)”.
• The second states that “there is someone (›y) who 

everyone (œx) likes”.
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Disjunctions and Conjunctions

• A Literal is an atomic sentence or its negation 
(e.g. P, ¬P)

• A disjunction is a sequence of literals 
connected by w’s 
P w Q w R

• A conjunction is a sequence of literals 
connected by v’s
P v Q v R
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Normal Forms
• A sentence is in Negative Normal Form (NNF) if it is 

built from literals using only w’s and v’s.
P v ( ¬Q w R)

• A sentence is in Disjunctive Normal Form (DNF) if it is 
a disjunction of one or more conjunctions (of literals)
(P v Q) w (R v S)

• A sentence is in Conjunction Normal Form (CNF) if it is 
a conjunction of one or more disjunctions (of literals)
(P w Q) v (R w S)
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Conversion between Normal Forms (1)

• Recall that in algebra it is useful to use  
distributive laws to convert expressions (no 
matter how complex) involving +’s and ×’s into 
ones that are sums of products. E.g.:

(a+b)(c+d) = (a + b)c + (a+b)d
= ac + bc + (a+b)d
= ac + bc + ad + bd
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Conversion between Normal Forms (2)

• In exactly the same way, the distributive laws of 
logic (see previous slides) allow us to convert a 
sentence in NNF to DNF. E.g.:

(awb)v(cwd)= (a w b)vc w (a w b)vd
= avc w bvc w (a w b)vd
= avc w bvc w avd w bvd
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Conversion between Normal Forms (3)

• Likewise we can use distribution to convert NNF 
to CNF. E.g.

(avb)w(cvd)= ((avb)wc)v((avb)wd)
= (awc)v(bwc)v((avb)wd)
= 
(awc)v(bwc)v(awd)v(bwd)
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Conversion between Normal Forms (4)

• Sometimes DeMorgan’s laws should be used to 
convert basic formulae (WFF) into NNF. E.g.
¬(PvQ) ≡ (¬ P w ¬ Q)

• Some sentences are WFF, NNF, DNF and CNF 
simultaneously:
(PvQvR)
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Proof Systems

• The technique we used so far for establishing 
the validity of arguments was based on the 
evaluation of their corresponding truth tables.

• The a problem starts appearing when the 
number of variables grows large – the truth table 
starts becoming too complex to work out.

• We will consider the use of Formal deductive 
Systems to establish the validity of a sentence 
or argument.
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Formal Deductive Systems

• In formal systems we use an algebraic 
technique.

• A Formal Deductive System (FDS) requires:
– A formal language.
– A set of axioms. These are basic formulae from which 

theorems are derived. Axioms don’t need to be 
proven. They are fundamental stated facts. 
(e.g. b×1 = b)

– Inference rules. These are rules that allow us to 
derive new sentences from existing ones.
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More on Inference Rules
• Using Inference Rules we can derive new rules 

from existing ones.
• A common rule is called Modus Ponens:

– If we know a fact P, and also know P→Q, then we 
know that Q is provable too.

• Another one is Modus Tollens:
– If we know Q is false, and P→Q, then we know that P

must be false as well.
– If there is fire here, then there is oxygen here.

There is no oxygen here. 
Therefore, there is no fire here.
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Proofs vs. Theorems

• A proof is a sequence of formulae such that:
– It is an axiom.
– It is derivable from earlier formulae in the sequence 

using inference rules.
• A proof whose last element is the formulae F, is 

called the Proof of F.
• A formula F is a theorem in a system if there is a 

Proof of F in the system, denoted by σF. 
• σ is the system.



34

Kristian Guillaumier, 2002 - 2003 67

Deduction

• A proof is derived from axioms.
• A deduction allows the possibility of a number of 

assumptions.
• So, a deduction is a sequence of formulae such 

that:
– It is an axiom.
– A number of assumptions/hypothesis.
– It is derivable from earlier formulae in the sequence 

using inference rules.
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System L (1)

• System L is a FDS.
• It requires the following objects:

– An alphabet.
– A set of WFFs.
– A set of axioms (possibly empty).
– A set of inference rules.

• The alphabet consists of: the set of 
propositional variables, punctuation symbols, 
and logical operators.
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System L (2)
• If P is a WFF, it must conform to the following rules 

(Note that WFFs are written in uppercase):
– P is a propositional variable, or
– P is of the form ¬Q, where Q is a WFF, or
– P is of the form (Q→R) where Q and R are WFFs.

• In System L, we have only one rule – Modus Ponens.
• Axiom Schemes:

– A1) (U→(V→U)
– A2) ((U→(V→W))→((U→V)→(U→W))
– A3) (¬U→¬V)→(V→U)
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Deductions in L
• Given the hypothesis:
(1) (p→(q→r))→(~~p→~(q→r))
(2) p→(q→r)
(3) q→r
• Show that: ¬p

Deduction:
(a) ~~p→~(q→r)

by MP on (1) (2)

(b) (~~p→~(q→r))→((q→r)→~p)

by A3 ~p/U, (q→r)/V

(c) (q→r)→~p

by MP on (a) (b)

(d) ~p

by MP on (3) (c)
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Horn Sentences (1)

• In previous slides, we have seen how to convert 
any sentence without quantifiers into CNF.

• A literal can be positive or negative depending 
on whether it is an atomic sentence or the 
negation of it (P, ¬P).

• A Horn Sentence (names after Alfred Horn) is a 
sentence in CNF where every disjunction of 
literals contains at most one positive literal.
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Horn Sentences (2)

• None of the following sentences is a Horn 
sentence:
– ¬Home(Claire) v (Home(Max) w Happy(Carl))
– (Home(Claire) w Home(Max) w ¬Happy(Claire)) v
¬Happy(Carl)

• The first is not a Horn sentence because the 
second disjunction contains two positive literals.

• The second is not because the first disjunction 
contains two positive literals too.
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Horn Sentences (3)

• All of the following are Horn sentences:
– ¬Home(Claire) v (¬Home(Max) w Happy(Carl))
– Home(Claire) v Home(Max) v ¬Home(Carl))
– Home(Claire) w ¬Home(Max) w ¬Home(Carl))

• All conjunctions have at most one positive literal 
in the constituent disjunctions.
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Horn Sentences (4)

• We have considered the truth table method to 
determine whether a sentence is satisfiable or 
not. The problem is that this technique is 
completely mechanical, prone to error and 
consumes a lot of resources (consider the truth 
table for 50 atomic sentences).

• For Horn sentences we can check for satifiability
in one row. This method is known as the 
satisfaction algorithm for Horn sentences.
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Satisfaction Algorithm (1)

• Consider the sentence S:
Home(Claire) v ¬Home(Max) v

(Home(Max) w ¬(Home(Claire))

• Let’s abbreviate Home(Claire) to C and to 
Home(Max) M.

• Write the table:

C v ¬M v (M w ¬C)MC
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Satisfaction Algorithm (2)

• Find  is some atomic sentences are 
themselves conjuncts in S and write True 
beneath it. C is atomic and a conjunct.

• Fill as much as possible in the RHS.
T

C v ¬M v (M w ¬C)MC

T              F  T

C v ¬M v (M w ¬C)MC
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Satisfaction Algorithm (3)

• If we look at the last conjunct we see that if this 
must resolve to T then M must be T.

• But this will make the second conjunct becomes 
false, rendering the whole sentence 
unsatisfiable.

T         T    F TT

C v ¬M v (M w ¬C)MC

T    F    T    F TT

C v ¬M v (M w ¬C)MC
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Satisfaction Algorithm in General

1. S is a Horn sentence.
2. Start out as if building a truth table but just write the 

header.
3. See is any atomic sentences are themselves conjuncts 

of S. Write T beneath them in the reference column.
4. Is some are true, fill in as much as possible of the RHS. 

For example if you wrote T under an atomic sentence 
A, you would write F under any ¬A.

5. Continue until there is no other way to proceed.
6. If you are forced to assign F to one of the conjuncts 

then the sentence is not satisfiable.
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Resolution - Preliminaries (1)
• Using many different inference rules such as modus 

ponens and modus tollens can be overwhelming.
• Instead we can use a general purpose inference rule 

called resolution.
• This makes automatic theorem provers such as 

PROLOG practical to develop.
• Before resolution can be applied, the sentence must be 

in normal form (i.e. uses only v, w, and possibly ¬).
• Note that P → Q ≡ ¬P w Q
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Resolution - Preliminaries (2)
• A literal is an atomic formula or its negation.
• A clause is a set of literals, e.g. {A, B, ¬C}
• The symbol denotes the empty clause {}.
• A clause C is satisfied by a truth assignment h if at least 

on literal in the clause is true.
• For example consider the truth assignment {T,F} on the 

clause {Plays(Kris), Sleeps(Kris)}.
• The first item in the truth assignment says that 

Plays(Kris) is T, so the clause is satisfied.
• In other words for a Clause C … , h satisfies C iff the 

disjunction of C is true.
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Resolution - Preliminaries (3)

• Consider the CNF statement:
(Play(Kris) w Study(Kris)) v (¬Study(Kris) w Sleep(Kris))

• We have two clauses:
– {Play(Kris), Study(Kris)}
– {¬Study(Kris), Sleep(Kris)}

• Clearly all the clauses must be satisfiable for the 
whole statement to be.

• CNF statements can be written down in set form:
{{Play(Kris), Study(Kris)}, {¬Study(Kris), Sleep(Kris)}}
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The Resolution Inference Rule
A w B        ¬B w C

A w C

Play(Kris) w Study(Kris)      ¬Study(Kris) w Sleep(Kris)
Play(Kris) w Sleep(Kris)

• This is simple enough to understand:
– It is obvious that either Study(Kris) or ¬Study(Kris), 

must be false.
– So either Play(Kris) or Sleep(Kris) must be true.
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Resolvents

• Let C1 and C2 be two clauses. 
• D is a resolvent of C1 and C2 iff

– A literal L exists in C1
– ¬L exists in C2
– D is the merging of {C1-L} and {C2-¬L}

• For example:
– C1={A,¬B}, C2={A,B}, D = {A}
– C1={A,B}, C2={¬A,¬B}, D={A,¬A} and {B,¬B}
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Resolution Proof by Refutation

• Suppose that the current knowledge base (KB) 
is converted into clause form and we are trying 
to prove a theorem:
1) Add the negation of the theorem we are trying 
to prove in the set of clauses of the KB.
2) Search for two resolvable clauses in the KB

• If not found: THEOREM TO BE PROVEN IS FALSE
• If found: resolve and add the result to the KB

3) If a contradiction is reached then the theorem 
is true else goto (2)
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Proving Modus Ponens
• In Modus Ponens we have:

P

P → Q
Q

1. P is a unit clause {P}
2. Convert P → Q to ¬P w Q to get {¬P,Q}.
3. Add the negation of the theorem {¬Q}
4. Resolvent of (1), (2) is {Q}
5. We have a contradiction {Q} and {¬Q}
6. Proven.
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Resolution Example (1)
Socrates is a man.
All men are mortal.
Socrates is a frog.

• Man(Socrates)
• Man(x) → Mortal(x)
• Frog(Socrates)
• Abbreviate:

– M
– M → T
– F
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Resolution Example (2)

• Clauses:
– {M}

– {¬M, T} remember that (M → T) ≡ (¬M w T)

– Add the negation of the conclusion: {¬F}

• Apply resolution:
– {M} + {¬M, T} = {T}

• Nothing left to resolve and there is no 
contradiction in the conclusion – The theorem is 
false.


