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Processes (1)
• Sometimes defined as an 

instance of a running 
program.

• You can check the 
processes running on 
your machine in Task 
Manager:
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Processes (2)
• In Win32 each process owns a 4-GB address 

space.
• IMPORTANT: a process on its own does not 

execute anything. For execution a process 
requires at least on thread.

• A process without threads is automatically 
destroyed.

• When a Win32 process is created, a Primary 
Thread is automatically created for you.

• The primary thread can then create others.
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Running Multiple Threads
1. Windows will allocate 

timeslices (quantums) of 
CPU time for each 
thread to execute.

2. Round-Robin scheduling 
is used (note that 
threads can have 
different and changing 
priorities).

3. This gives the illusion 
that things are executing 
concurrently.
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Environment Variables (1)
• Each process is assigned an Environment Block.
• An environment block is simply a portion of allocated 

memory (owned by the process), containing strings like:

VarName1=VarValue1\0
VarName2=VarValue2\0
...
VarNameN=VarValueN\0
\0
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Environment Variables (2)
• In special cases, environment variables may be 

used to pass special global parameters to an 
application.

• In Windows 9X, these variables are set in a 
special file called autoexec.bat which is parsed 
when Windows is started. In Windows 
NT/2000/XP these values can be set from My 
Computer Properties.

• Values may be read and written using:
– GetEnvironmentVariable
– SetEnvironmentVariable
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Current Drive and Directory
• The Current Drive of the Current Directory is the 

default path where Windows looks for files when you try 
to access them without supplying a fully qualified 
filename.

• For example if you call the CreateFile API call to create 
a file, if you do not specify the full path, the file will be 
created in the current directory.

• The current drive/directory is maintained on a per 
process basis. So all threads in the process will use the 
same values.

• You can obtain or change the current directories using 
the following API calls:
– GetCurrentDirectory
– SetCurrentDirectory
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Creating Processes (1)
• A process is created when your application is started. 
• Note that WinMain isn’t really called by the operating 

system. Instead, it is “expanded” by the compiler.
• Processes are created using the CreateProcess API call 

(see msdn.microsoft.com for details regarding the 
function parameters)

• Then the function is called, a process is not actually 
created. Instead,
– A small data structure is initialised containing statistical info 

regarding the process.
– 4-GB of virtual address space is created.
– The code and data for the process and associated DLLs are 

loaded in the address space.
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Creating Processes (2)

• Next, a thread is created for the process. This 
will be the primary thread.

• This thread will eventually run your WinMain
function.

• A process can terminate in the following ways:
– A thread calls the ExitProcess API call.
– A thread in another process calles

TerminateProcess (not very nice).
– All threads in the process complete.
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Process Termination (1)
• A process will terminate when a thread in the process 

calls ExitProcess.
• ExitProcess is usually automatically called by the 

primary thread immediately after your WinMain function 
has completed.

• A separate process can terminate another one by calling 
TerminateProcess. 

• Except in special cases this is discouraged because:
– When a process terminates properly, all attached DLLs are 

notified.
– Using TerminateProcess, this does not happen.
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Threads
• Threads must “live” within the context of a process.
• A thread is basically a unit of execution within a 

process.
• Example: Background printing in Word for Windows.
• On a single processor, threads give the illusion that 

things are happening concurrently.
• Although threads are “cool” and very useful, there 

are a number of problems associated with them.



6

Kristian Guillaumier, 2003 29

Thread Issues (1)

• Consider the following scenario:
– A user clicks the print button on a Word Processor.
– The print thread started executing – repaginating, 

rendering the page, sending to printer, etc…
– The user can start editing the document when the 

above is happening.
– Global Variables:
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Thread Issues (2)
Global Counter As Long

Function Calc

... {b is 16, x is 1}

Counter = Sqrt(b)

Counter = Counter + x*2

Return Counter

End Function

Function Calc

... {b is 4, x is 3}

Counter = Sqrt(b)

Counter = Counter + x*2

Return Counter

End Function
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Thread Properties
• Each thread has it’s own stack for local variables, etc…
• This stack is allocated from the address space of the 

main process.
• Static and global variables are shared by all threads in 

the process.
• Each thread has it’s set of CPU registers. A special 

Context structure holds the state of these registers 
when the thread was last executing.

• This structure is probably the only CPU-specific structure 
in the API.
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Thread Termination

• A thread can terminate in 3 ways:
– The thread calls the ExitThread API call to terminate 

itself.
– Another thread within the same process calls 

TerminateThread (passing the handle to the thread to 
terminate) – Webserver monitor thread example.

– The process “owning” all the threads exits.
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Thread Scheduling (1)
• A preemptive operating system must have some defined 

algorithm for determining when a thread runs and for how 
long.

• Each thread has a priority ranging from 0 to 31. A thread with 
priority zero is a special thread used for “memory cleanup”. 
One system thread has this priority level and no other thread 
can be assigned this priority.

• The scheduler assigns each priority 31 thread to a CPU to 
execute.

• Once all priority 31 threads are given a timeslice, another 
timeslice to each of the priority 31 threads is given. 

• This continues until there are no remaining priority 31 threads.
Then all priority 30 threads are processed in the same way… 
and so on.
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Thread Scheduling (2)

• Using this technique low priority threads may 
suffer from a condition known as Starvation.

• Also, if a priority 5 thread is running and there is 
a thread with a higher priority waiting to be 
serviced, the priority 5 thread is immediately
suspended for the system to service the higher 
priority one (even if it is in the middle of a 
timeslice).
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Assigning Priorities (1)
• When a process is created, it is assigned one of 4 

priority levels:
– Idle: Level 4
– Normal: Level 8
– High: Level 13
– Real time: Level 24

• Any thread created in the process will be given that 
priority as a default.

• The Normal priority level is the one most commonly 
used.

• The normal priority class is special – it can be “boosted” 
depending on whether it is a foreground window or not.
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Assigning Priorities (2)
• In Windows NT a “boosted” priority is given a bigger 

timeslice.
• In Windows 9X a “boosted” priority increases the thread 

priority value by 1 – A “boosted” normal thread has a 
priority of 8+1=9.

• Real time priority should almost never be used. Even the 
processes/threads handling the CTRL+ALT+DEL 
buttons, background disk flushing, mouse and keyboard 
get a lower priority. This may cause system instability.

• Process “base” priorities can be changed at runtime 
using the (Get/Set)PriorityClass API functions.
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Assigning Priorities (3)
• When a thread is created, it is given the priority of the 

process (base priority).
• You can change the thread’s priority relative to the base 

priority using the SetThreadPriority API call.
– Lowest = Base - 2
– Below Normal = Base - 1
– Normal = Base
– Above Normal = Base + 1
– Highest = Base + 2
– Critical = 15, except if the process is real time. Then the priority 

becomes 31.


