
1

Kristian Guillaumier, 2003 19

Processes (1)
• Sometimes defined as an 

instance of a running 
program.

• You can check the 
processes running on 
your machine in Task 
Manager:

Kristian Guillaumier, 2003 20

Processes (2)
• In Win32 each process owns a 4-GB address 

space.
• IMPORTANT: a process on its own does not 

execute anything. For execution a process 
requires at least on thread.

• A process without threads is automatically 
destroyed.

• When a Win32 process is created, a Primary 
Thread is automatically created for you.

• The primary thread can then create others.



2

Kristian Guillaumier, 2003 21

Running Multiple Threads
1. Windows will allocate 

timeslices (quantums) of 
CPU time for each 
thread to execute.

2. Round-Robin scheduling 
is used (note that 
threads can have 
different and changing 
priorities).

3. This gives the illusion 
that things are executing 
concurrently.

CPU

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Kristian Guillaumier, 2003 22

Environment Variables (1)
• Each process is assigned an Environment Block.
• An environment block is simply a portion of allocated 

memory (owned by the process), containing strings like:

VarName1=VarValue1\0
VarName2=VarValue2\0
...
VarNameN=VarValueN\0
\0



3

Kristian Guillaumier, 2003 23

Environment Variables (2)
• In special cases, environment variables may be 

used to pass special global parameters to an 
application.

• In Windows 9X, these variables are set in a 
special file called autoexec.bat which is parsed 
when Windows is started. In Windows 
NT/2000/XP these values can be set from My 
Computer Properties.

• Values may be read and written using:
– GetEnvironmentVariable
– SetEnvironmentVariable

Kristian Guillaumier, 2003 24

Current Drive and Directory
• The Current Drive of the Current Directory is the 

default path where Windows looks for files when you try 
to access them without supplying a fully qualified 
filename.

• For example if you call the CreateFile API call to create 
a file, if you do not specify the full path, the file will be 
created in the current directory.

• The current drive/directory is maintained on a per 
process basis. So all threads in the process will use the 
same values.

• You can obtain or change the current directories using 
the following API calls:
– GetCurrentDirectory
– SetCurrentDirectory



4

Kristian Guillaumier, 2003 25

Creating Processes (1)
• A process is created when your application is started. 
• Note that WinMain isn’t really called by the operating 

system. Instead, it is “expanded” by the compiler.
• Processes are created using the CreateProcess API call 

(see msdn.microsoft.com for details regarding the 
function parameters)

• Then the function is called, a process is not actually 
created. Instead,
– A small data structure is initialised containing statistical info 

regarding the process.
– 4-GB of virtual address space is created.
– The code and data for the process and associated DLLs are 

loaded in the address space.

Kristian Guillaumier, 2003 26

Creating Processes (2)

• Next, a thread is created for the process. This 
will be the primary thread.

• This thread will eventually run your WinMain
function.

• A process can terminate in the following ways:
– A thread calls the ExitProcess API call.
– A thread in another process calles

TerminateProcess (not very nice).
– All threads in the process complete.



5

Kristian Guillaumier, 2003 27

Process Termination (1)
• A process will terminate when a thread in the process 

calls ExitProcess.
• ExitProcess is usually automatically called by the 

primary thread immediately after your WinMain function 
has completed.

• A separate process can terminate another one by calling 
TerminateProcess. 

• Except in special cases this is discouraged because:
– When a process terminates properly, all attached DLLs are 

notified.
– Using TerminateProcess, this does not happen.

Kristian Guillaumier, 2003 28

Threads
• Threads must “live” within the context of a process.
• A thread is basically a unit of execution within a 

process.
• Example: Background printing in Word for Windows.
• On a single processor, threads give the illusion that 

things are happening concurrently.
• Although threads are “cool” and very useful, there 

are a number of problems associated with them.



6

Kristian Guillaumier, 2003 29

Thread Issues (1)

• Consider the following scenario:
– A user clicks the print button on a Word Processor.
– The print thread started executing – repaginating, 

rendering the page, sending to printer, etc…
– The user can start editing the document when the 

above is happening.
– Global Variables:

Kristian Guillaumier, 2003 30

Thread Issues (2)
Global Counter As Long

Function Calc

... {b is 16, x is 1}

Counter = Sqrt(b)

Counter = Counter + x*2

Return Counter

End Function

Function Calc

... {b is 4, x is 3}

Counter = Sqrt(b)

Counter = Counter + x*2

Return Counter

End Function

Co
nt

ex
t S

wi
tch



7

Kristian Guillaumier, 2003 31

Thread Properties
• Each thread has it’s own stack for local variables, etc…
• This stack is allocated from the address space of the 

main process.
• Static and global variables are shared by all threads in 

the process.
• Each thread has it’s set of CPU registers. A special 

Context structure holds the state of these registers 
when the thread was last executing.

• This structure is probably the only CPU-specific structure 
in the API.

Kristian Guillaumier, 2003 32

Thread Termination

• A thread can terminate in 3 ways:
– The thread calls the ExitThread API call to terminate 

itself.
– Another thread within the same process calls 

TerminateThread (passing the handle to the thread to 
terminate) – Webserver monitor thread example.

– The process “owning” all the threads exits.



8

Kristian Guillaumier, 2003 33

Thread Scheduling (1)
• A preemptive operating system must have some defined 

algorithm for determining when a thread runs and for how 
long.

• Each thread has a priority ranging from 0 to 31. A thread with 
priority zero is a special thread used for “memory cleanup”. 
One system thread has this priority level and no other thread 
can be assigned this priority.

• The scheduler assigns each priority 31 thread to a CPU to 
execute.

• Once all priority 31 threads are given a timeslice, another 
timeslice to each of the priority 31 threads is given. 

• This continues until there are no remaining priority 31 threads.
Then all priority 30 threads are processed in the same way… 
and so on.

Kristian Guillaumier, 2003 34

Thread Scheduling (2)

• Using this technique low priority threads may 
suffer from a condition known as Starvation.

• Also, if a priority 5 thread is running and there is 
a thread with a higher priority waiting to be 
serviced, the priority 5 thread is immediately
suspended for the system to service the higher 
priority one (even if it is in the middle of a 
timeslice).



9

Kristian Guillaumier, 2003 35

Assigning Priorities (1)
• When a process is created, it is assigned one of 4 

priority levels:
– Idle: Level 4
– Normal: Level 8
– High: Level 13
– Real time: Level 24

• Any thread created in the process will be given that 
priority as a default.

• The Normal priority level is the one most commonly 
used.

• The normal priority class is special – it can be “boosted” 
depending on whether it is a foreground window or not.

Kristian Guillaumier, 2003 36

Assigning Priorities (2)
• In Windows NT a “boosted” priority is given a bigger 

timeslice.
• In Windows 9X a “boosted” priority increases the thread 

priority value by 1 – A “boosted” normal thread has a 
priority of 8+1=9.

• Real time priority should almost never be used. Even the 
processes/threads handling the CTRL+ALT+DEL 
buttons, background disk flushing, mouse and keyboard 
get a lower priority. This may cause system instability.

• Process “base” priorities can be changed at runtime 
using the (Get/Set)PriorityClass API functions.



10

Kristian Guillaumier, 2003 37

Assigning Priorities (3)
• When a thread is created, it is given the priority of the 

process (base priority).
• You can change the thread’s priority relative to the base 

priority using the SetThreadPriority API call.
– Lowest = Base - 2
– Below Normal = Base - 1
– Normal = Base
– Above Normal = Base + 1
– Highest = Base + 2
– Critical = 15, except if the process is real time. Then the priority 

becomes 31.


