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Getting Started
• Examples are in C and/or PowerBASIC. It will be trivial 

to port from and to different languages.
• All the examples in the “Petzold” book are available 

ported to PowerBASIC. You can get them from: 
http://www.powerbasic.com/files/pub/pbwin/Petzold.zip

• You can download the Borland C/C++ Compiler Version 
5.5 for free from: 
http://www.borland.com/products/downloads/download_cbuilder.html

• There is a good WIN32 tutorial at: 
http://www.winprog.org/tutorial/ - a number of examples 
here are borrowed from this site.

• www.allapi.net is cool.
• msdn.microsoft.com is the definitive resource.
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Recommended Books

• Programming Windows, The Definitive Guide 
to the Win32 API by Charles Petzold, 5th 
edition, Microsoft Press, ISBN: 157231995X.

• Windows Programming with C++ by Henning 
Hansen, Addison Wesley Professional, ISBN: 
0201758814.
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Getting Started
• Programming Windows, requires you to understand the 

services offered by the WIN32 Application Programming 
Interface (API).

• The API consists of a number of DLLs containing 
common Windows functions.
– Kernel32.dll
– GDI32.dll
– User32.dll
– …

• To access the API functions, constant declarations and 
types you will need to “wrap” them in your code. In C this 
is already available in “windows.h” and in PowerBASIC, 
this is available in “WIN32API.INC”.
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WIN32 Hello World
#include <windows.h>

int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR     lpCmdLine, 
int nCmdShow) 

{ 
MessageBox(NULL, “Hello World!”,

“My Caption”, MB_OK); 
return 0; 

} 

Kristian Guillaumier, 2003 6

What’s Going On? (1)
• windows.h contains the declarations of 

functions and constants such as MessageBox, 
MB_OK, HINSTANCE and LPSTR. 

• WinMain is the equivalent of the main() 
functions in C – it is the starting point of a 
Windows application:
– hInstance: Handle/pointer to the EXE in memory.
– hPrevInstance: Always NULL – Never used.
– lpCmdLine: Pointer to the command line string.
– nCmdShow: an integer determining whether the 

window will be visible/hidden/…
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What’s Going On? (2)
• The hInstance handle is used as the pointer to 

the EXE in memory so it is useful to locate 
resources such as images and icons in the 
program.

• In C, the WINAPI calling convention before the 
WinMain function is equivalent to _stdcall. In 
some languages such as PB it is not necessary.

• The WIN32 header file defines a number of 
types such as LPSTR (this is exactly equivalent 
to char*).
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More Windows

• We will now see how to create a simple window 
like:
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General Structure (1)
If the message is:
  A DOUBLE CLICK:
    Do this...
  A CLICK:
    Do this...
  ...

WINMAIN FUNCTION

Create a "Window Class"

Create the window from the
Class

Show it (Optionally)

Loop thru the Message Loop
until the window is closed.

Return and get out!
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The Window Class
• A Window Class is NOT related to Object Oriented 

Software.
• In Windows everything is more or less a Window 

(including a button, combo box, …). The type of window 
is determined by it’s class.

• A Window Class is a special structure (WNDCLASS) 
that is populated to specify the general properties of the 
window (e.g. it’s icon, background colour, cursor, …).

• One of the most important properties is the definition of 
the Callback function (more on this later).

• Once a class has been created it is “Registered”.
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Creating the Window
• Once a class structure has been populated and 

registered, a window is created based on it.
• To create the window, the CreateWindow function is 

used (There is a variant called CreateWindowEx).
• Some arguments, CreateWindow takes are:

– The class name to base this window on.
– The text in the title bar.
– The type of window (e.g. borderless, tool window, …)
– The x,y coordinate of the top-left corner – in pixels.
– The width and height of the window – in pixels.
– …
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Showing the Window (1)

• The CreateWindow function returns a 
handle/pointer to the window just created. The 
window is not yet visible.

• The window will be referred to it using its handle.
• To show the window, the ShowWindow API call 

is used. ShowWindow takes 2 arguments:
– The handle of the window to show/hide.
– An integer constant determining whether to show/hide 

the window.
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Showing the Window (2)
• The show command can be:

– SW_HIDE - Hides the window and activates another window.
– SW_MAXIMIZE - Maximizes the specified window.
– SW_MINIMIZE - Minimizes the specified window and activates 

the next top-level window in the Z order.
– SW_RESTORE - Activates and displays the window. If the 

window is minimized or maximized, Windows restores it to its 
original size and position. An application should specify this flag 
when restoring a minimized window.

– SW_SHOW - Activates the window and displays it in its current 
size and position.

– …
• Usually after a call to ShowWindow, another call to 

UpdateWindow is made. This call basically makes sure 
the window is displayed correctly.
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The Message Loop (1)
• A windows program has a special “message queue”.
• Whenever something happens to the window a message 

is placed in its queue. For example, if the window is 
clicked a “click” message is placed on its queue.

• We will use a while loop to retrieve messages from this 
queue and send them to the callback function for 
processing.

• Each message is defined by an integer constant. For 
example the WM_CREATE message is sent to the 
window when it is created. It is more-or-less equivalent 
to the Form_Load event in Visual Basic.
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The Message Loop (2)
• Each message can be accompanied by some 

parameters. For example a mouse move message would 
be accompanied by the corresponding x and y mouse 
coordinates.

• These parameters are sent together with the message to 
the callback function.

• You can have a maximum of 2 parameters. These are 
called wParam and lParam. They are both long integers 
(signed 32-bit).

• Note that wParam and lParam being long integers may 
be pointers to whole data structures.
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The Real Thing (1)
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, 

int nCmdShow) 
{ 

WNDCLASSEX wc; 
HWND hwnd; 
MSG Msg; 

//Step 1: Registering the Window Class 
wc.cbSize = sizeof(WNDCLASSEX); 
wc.style = 0; 
wc.lpfnWndProc = WndProc; 
wc.cbClsExtra = 0; 
wc.cbWndExtra = 0; 
wc.hInstance = hInstance; 
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION); 
wc.hCursor = LoadCursor(NULL, IDC_ARROW); 
wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1); 
wc.lpszMenuName = NULL; 
wc.lpszClassName = g_szClassName; 
wc.hIconSm = LoadIcon(NULL, IDI_APPLICATION); 

if(!RegisterClassEx(&wc)) 
{ 
MessageBox(NULL, "Window Registration Failed!", "Error!", MB_ICONEXCLAMATION | MB_OK); 
return 0; 

}

Prepare the Window 
Class

Register the Class

Tell the Class which 
function will act as the 

Callback
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The Real Thing (2)
// Step 2: Creating the Window 
hwnd = CreateWindowEx(WS_EX_CLIENTEDGE,

g_szClassName, 
"The title of my window",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT, 
240, 120, NULL, NULL, 
hInstance, NULL); 

if (hwnd == NULL) 
{ 

MessageBox(NULL, "Window Creation Failed!", "Error!",
MB_ICONEXCLAMATION | MB_OK); 

return 0; 
} 
ShowWindow(hwnd, nCmdShow); 

UpdateWindow(hwnd);

// Step 3: The Message Loop 
while(GetMessage(&Msg, NULL, 0, 0) > 0) 
{ 

TranslateMessage(&Msg); 
DispatchMessage(&Msg); 

} 
return Msg.wParam; 

}

Create the Window

Show It

Loop Thru the 
Messages the Window 

Receives and send 
them to the callback 

function,
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The Real Thing (3)
// Step 4: the Window Procedure
LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) 
{ 

switch (msg) 
{ 

case WM_CLOSE: 
DestroyWindow(hwnd); 

break; 
case WM_DESTROY: 

PostQuitMessage(0); 

break; 
default: 

return DefWindowProc(hwnd, msg, wParam, lParam); 
} 

return 0; 
} 

Select which Message 

WE CHOOSE
to Handle

Those we do not 
handle ourselves, we’ll 

ask Windows to 
process!


