
1

Kristian Guillaumier, 2003 1

Windows Programming
CSA2040

Kristian Guillaumier
http://www.cs.um.edu.mt/~kguil

kguil@cs.um.edu.mt

Kristian Guillaumier, 2003 2

Getting Started
• Examples are in C and/or PowerBASIC. It will be trivial

to port from and to different languages.
• All the examples in the “Petzold” book are available

ported to PowerBASIC. You can get them from:
http://www.powerbasic.com/files/pub/pbwin/Petzold.zip

• You can download the Borland C/C++ Compiler Version
5.5 for free from:
http://www.borland.com/products/downloads/download_cbuilder.html

• There is a good WIN32 tutorial at:
http://www.winprog.org/tutorial/ - a number of examples
here are borrowed from this site.

• www.allapi.net is cool.
• msdn.microsoft.com is the definitive resource.

2

Kristian Guillaumier, 2003 3

Recommended Books

• Programming Windows, The Definitive Guide
to the Win32 API by Charles Petzold, 5th
edition, Microsoft Press, ISBN: 157231995X.

• Windows Programming with C++ by Henning
Hansen, Addison Wesley Professional, ISBN:
0201758814.

Kristian Guillaumier, 2003 4

Getting Started
• Programming Windows, requires you to understand the

services offered by the WIN32 Application Programming
Interface (API).

• The API consists of a number of DLLs containing
common Windows functions.
– Kernel32.dll
– GDI32.dll
– User32.dll
– …

• To access the API functions, constant declarations and
types you will need to “wrap” them in your code. In C this
is already available in “windows.h” and in PowerBASIC,
this is available in “WIN32API.INC”.

3

Kristian Guillaumier, 2003 5

WIN32 Hello World
#include <windows.h>

int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
MessageBox(NULL, “Hello World!”,

“My Caption”, MB_OK);
return 0;

}

Kristian Guillaumier, 2003 6

What’s Going On? (1)
• windows.h contains the declarations of

functions and constants such as MessageBox,
MB_OK, HINSTANCE and LPSTR.

• WinMain is the equivalent of the main()
functions in C – it is the starting point of a
Windows application:
– hInstance: Handle/pointer to the EXE in memory.
– hPrevInstance: Always NULL – Never used.
– lpCmdLine: Pointer to the command line string.
– nCmdShow: an integer determining whether the

window will be visible/hidden/…

4

Kristian Guillaumier, 2003 7

What’s Going On? (2)
• The hInstance handle is used as the pointer to

the EXE in memory so it is useful to locate
resources such as images and icons in the
program.

• In C, the WINAPI calling convention before the
WinMain function is equivalent to _stdcall. In
some languages such as PB it is not necessary.

• The WIN32 header file defines a number of
types such as LPSTR (this is exactly equivalent
to char*).

Kristian Guillaumier, 2003 8

More Windows

• We will now see how to create a simple window
like:

5

Kristian Guillaumier, 2003 9

General Structure (1)
If the message is:
 A DOUBLE CLICK:
 Do this...
 A CLICK:
 Do this...
 ...

WINMAIN FUNCTION

Create a "Window Class"

Create the window from the
Class

Show it (Optionally)

Loop thru the Message Loop
until the window is closed.

Return and get out!

W
he

n
we

ge
t a

 m
es

sa
ge

,

"d
isp

at
ch

" i
t t

o
th

e

"c
all

ba
ck

" f
un

ct
io

n.

Kristian Guillaumier, 2003 10

The Window Class
• A Window Class is NOT related to Object Oriented

Software.
• In Windows everything is more or less a Window

(including a button, combo box, …). The type of window
is determined by it’s class.

• A Window Class is a special structure (WNDCLASS)
that is populated to specify the general properties of the
window (e.g. it’s icon, background colour, cursor, …).

• One of the most important properties is the definition of
the Callback function (more on this later).

• Once a class has been created it is “Registered”.

6

Kristian Guillaumier, 2003 11

Creating the Window
• Once a class structure has been populated and

registered, a window is created based on it.
• To create the window, the CreateWindow function is

used (There is a variant called CreateWindowEx).
• Some arguments, CreateWindow takes are:

– The class name to base this window on.
– The text in the title bar.
– The type of window (e.g. borderless, tool window, …)
– The x,y coordinate of the top-left corner – in pixels.
– The width and height of the window – in pixels.
– …

Kristian Guillaumier, 2003 12

Showing the Window (1)

• The CreateWindow function returns a
handle/pointer to the window just created. The
window is not yet visible.

• The window will be referred to it using its handle.
• To show the window, the ShowWindow API call

is used. ShowWindow takes 2 arguments:
– The handle of the window to show/hide.
– An integer constant determining whether to show/hide

the window.

7

Kristian Guillaumier, 2003 13

Showing the Window (2)
• The show command can be:

– SW_HIDE - Hides the window and activates another window.
– SW_MAXIMIZE - Maximizes the specified window.
– SW_MINIMIZE - Minimizes the specified window and activates

the next top-level window in the Z order.
– SW_RESTORE - Activates and displays the window. If the

window is minimized or maximized, Windows restores it to its
original size and position. An application should specify this flag
when restoring a minimized window.

– SW_SHOW - Activates the window and displays it in its current
size and position.

– …
• Usually after a call to ShowWindow, another call to

UpdateWindow is made. This call basically makes sure
the window is displayed correctly.

Kristian Guillaumier, 2003 14

The Message Loop (1)
• A windows program has a special “message queue”.
• Whenever something happens to the window a message

is placed in its queue. For example, if the window is
clicked a “click” message is placed on its queue.

• We will use a while loop to retrieve messages from this
queue and send them to the callback function for
processing.

• Each message is defined by an integer constant. For
example the WM_CREATE message is sent to the
window when it is created. It is more-or-less equivalent
to the Form_Load event in Visual Basic.

8

Kristian Guillaumier, 2003 15

The Message Loop (2)
• Each message can be accompanied by some

parameters. For example a mouse move message would
be accompanied by the corresponding x and y mouse
coordinates.

• These parameters are sent together with the message to
the callback function.

• You can have a maximum of 2 parameters. These are
called wParam and lParam. They are both long integers
(signed 32-bit).

• Note that wParam and lParam being long integers may
be pointers to whole data structures.

Kristian Guillaumier, 2003 16

The Real Thing (1)
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine,

int nCmdShow)
{

WNDCLASSEX wc;
HWND hwnd;
MSG Msg;

//Step 1: Registering the Window Class
wc.cbSize = sizeof(WNDCLASSEX);
wc.style = 0;
wc.lpfnWndProc = WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
wc.lpszMenuName = NULL;
wc.lpszClassName = g_szClassName;
wc.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

if(!RegisterClassEx(&wc))
{
MessageBox(NULL, "Window Registration Failed!", "Error!", MB_ICONEXCLAMATION | MB_OK);
return 0;

}

Prepare the Window
Class

Register the Class

Tell the Class which
function will act as the

Callback

9

Kristian Guillaumier, 2003 17

The Real Thing (2)
// Step 2: Creating the Window
hwnd = CreateWindowEx(WS_EX_CLIENTEDGE,

g_szClassName,
"The title of my window",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
240, 120, NULL, NULL,
hInstance, NULL);

if (hwnd == NULL)
{

MessageBox(NULL, "Window Creation Failed!", "Error!",
MB_ICONEXCLAMATION | MB_OK);

return 0;
}
ShowWindow(hwnd, nCmdShow);

UpdateWindow(hwnd);

// Step 3: The Message Loop
while(GetMessage(&Msg, NULL, 0, 0) > 0)
{

TranslateMessage(&Msg);
DispatchMessage(&Msg);

}
return Msg.wParam;

}

Create the Window

Show It

Loop Thru the
Messages the Window

Receives and send
them to the callback

function,

Kristian Guillaumier, 2003 18

The Real Thing (3)
// Step 4: the Window Procedure
LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

switch (msg)
{

case WM_CLOSE:
DestroyWindow(hwnd);

break;
case WM_DESTROY:

PostQuitMessage(0);

break;
default:

return DefWindowProc(hwnd, msg, wParam, lParam);
}

return 0;
}

Select which Message

WE CHOOSE
to Handle

Those we do not
handle ourselves, we’ll

ask Windows to
process!

