
1

1

SOAP

• Simple Object Access Protocol.
• SOAP is a protocol for communication

between applications – it is a format for
sending messages.

• Since SOAP is based on XML, it is:
– Platform independent.
– Can be transported over HTTP.
– Can get around firewalls.

2

Why?

• Current distributed applications communicate
between them using Remote Procedure Calls
(RPCs).

• Common protocols behind these RPCs are
DCOM and CORBA.

• Since these protocols are not transported over
HTTP they will be blocked by firewalls.

• Also DCOM and CORBA are platform
dependent.

2

3

Syntax (1)

• A SOAP message is an ordinary XML
document:
– It requires a special Envelope element

surrounding the content so the XML
document is recognised as SOAP message.

– Has an optional Header.
– Contains the Body of the message.
– Contains an optional Fault section that

describes errors that occurred when
processing.

4

Syntax (2)
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>...</soap:Header>

<soap:Body>...
<soap:Fault>...</soap:Fault>

</soap:Body>

</soap:Envelope>

3

5

The Envelope

• The root element of a soap message must
be the Envelope.

• The XML namespace should always be
http://www.w3.org/2001/12/soap-envelope

• The encodingStyle attribute defines the
data types that will be present in the
document.

6

The Header

• When a SOAP message is transferred
between a sender and receiver, a number
of SOAP Intermediaries may be involved.
These would typically provide some sort of
value-added services.

• The Header provides a space for SOAP
nodes to exchange information.

4

7

Anatomy of a Header
<soap:Header>

<m:Trans
xmlns:m="http://.../“
soap:actor="http://.../“
soap:mustUnderstand=“1”>

234

</m:Trans>

</soap:Header>

We define an element
called Trans.

Each element needs a
namespace of its own.

The SOAP message may
pass through a number of

intermediaries before it
reaches destination. This is

the URI of the node intended
to process this element.

If the intended node fails to
process the header, abort

and throw a fault.

The actual value.

8

The Body
• Contains the actual SOAP message intended for the

final endpoint node.
<soap:Body>
<m:GetPrice xmlns:m="http://...">
<m:Item>Apples</m:Item>

</m:GetPrice>
</soap:Body>

• Response:
<soap:Body>
<m:GetPriceResponse xmlns:m="http://...">
<m:Price>1.90</m:Price>

</m:GetPriceResponse>
</soap:Body>

5

9

The Fault

• Error messages in SOAP are carried
inside a Fault element. The following sub
elements describe it:

Error information.<detail>

Which node caused the fault.<faultactor>

Description.<faultstring>

A code.<faultcode>

10

Hello World - Request
<s:Envelope>

<s:Body>
<m:sayHello xmlns:m='urn:Example1'>

<name xsi:type='xsd:string'>James</name>
</m:sayHello>

</s:Body>

</s:Envelope>

6

11

Hello World - Response
<s:Envelope>

<s:Body>
<n:sayHelloResponse xmlns:n="urn:Example1">

<return xsi:type="xsd:string">
Hello James

</return>
</n:sayHelloResponse>

</s:Body>

</s:Envelope>

12

Data Types (1)

• Scalar data types:

fjdf=dsafjldsjBinary DataSOAP-ENC:base64
2001-03-27T00:00:01-08:00Date/Timexsd:timeInstant
3.1415Floating-Pointxsd:float/xsd:double
Hello WorldStringxsd:string
11/0xsd:boolean
123432-bit Unsignedxsd:int

ExampleDescType

7

13

Data Types (2)

• Structures/Records:

<param>
<lowerBound xsi:type="xsd:int">18</lowerBound>
<upperBound xsi:type="xsd:int">139</upperBound>

</param>

14

Data Types (3)

• Arrays:

<param SOAP-ENC:arrayType="xsd:ur-type[4]“
xsi:type="SOAP-ENC:Array">

<item xsi:type="xsd:int">12</item>
<item xsi:type="xsd:string">Egypt</item>
<item xsi:type="xsd:boolean">0</item>
<item xsi:type="xsd:int">-31</item>

</param>

8

15

How Web Services Use SOAP
• A client wants to call a function and format the

call in SOAP.
• The SOAP messages is communicated to the

server over HTTP.
• The server receives the XML SOAP data, parses

it and maps it to the ‘real’ business logic function
calls.

• The result of the function call is wrapped inside a
SOAP response which is sent back to the client.

• The Client parses the response and extracts the
data.

16

UDDI

• Universal Description, Discovery, and
Integration.

• Like a large ‘phone book’ where
businesses register their web services.

• Clients can query UDDI to find services
that are required.

• Check out
– http://www.uddi.org/find.html.
– http://uddi.microsoft.com/search/frames.aspx

9

17

WSDL

• Web Services Description Language.
• WSDL is (yet another) XML format for

describing services in a structured way:
– Types – the types defined by some type

system (e.g. XSD).
– Message – a definition of the data being

communicated.
– etc…
– See http://www.w3.org/TR/wsdl

