
1

Kristian Guillaumier, 2001 107

The Symbol Table
• The purpose of the symbol table table is to record the

use of ‘names’ in a program.
• Such names include:

– Variables, procedure and function names, constants and user
defined types.

• The information stored in the symbol table depends on
what the names are used for. For example:
– A variable name requires its type and runtime address.
– A procedure requires a pointer the list of arguments it takes.
– A function requires a pointer to the list of arguments it takes and

the return type of the function.
– An argument requires its type and a pointer to the next argument

in the list.

Kristian Guillaumier, 2001 108

Declarations of Variables
• The purpose of variable declarations in programming

languages is to create an entry for that variable in the
symbol table and associate a type with it.

• Some programming languages (such as earlier versions
of BASIC and APL) do not require a declaration and a
symbol table entry is made upon their first use.

• When a compiler meets a statement such as x = 3, it
must verify that:
– x is declared (look for it in the symbol table),
– x is declared as a variable and not, for example, a procedure

name,
– The type of x is an integer or floating-point number.

2

Kristian Guillaumier, 2001 109

Functions

• When processing a statement such as

if f(a, b) then, the compiler must check:

– f, a and b are declared,
– f takes exactly 2 arguments,
– f is a function and returns a boolean value,
– a and b are of the proper types.

Kristian Guillaumier, 2001 110

Building the Table while Scanning

• When the lexical analyser is scanning the input
and meets an identifier, it looks for it in the
symbol table:
– If it does not find it, it has to be declared. An entry

for that variable is made in the table and its position is
returned as the value of the token.

– If it does find it, the position is returned as the value
of the token.

• The actual description of the symbol table entry
(like its type) is handled by a separate Object
Description Phase.

3

Kristian Guillaumier, 2001 111

Building the Table while Parsing (1)

• A simple lexical analyser does not attempt to process an
identifier in anyway. It just returns a token indicating the
occurrence of one.

• The actual processing of the identifier is then left to the
parser that will deal with it depending on the context in
which it has been found. For example, if an identifier is
found in a:
– Declaration Statement, the identifier is looked for in the symbol

table. If it is found then the compilers should complain that there
is a variable re-declaration. If it does not find it, an entry is made
according to the description in the declaration.

– If the identifier is used in an action statement, a check has to be
made to see if it has been declared and that it is used properly
(correct number of arguments, no type mismatches, etc…)

Kristian Guillaumier, 2001 112

Building the Table while Parsing (2)

• The method described so far may be
implemented in two different ways:
– The whole parse tree for the variable declaration is

built, then declarations in the symbol table and other
actions are performed from the tree by the Object
Description Phase.

– Symbol table declarations and other actions are made
along the way when parsing.

4

Kristian Guillaumier, 2001 113

Symbol Table from the Parse Tree – Option 1

• Suppose we are parsing the declaration:
integer a, b, c

• The parse tree is passed to an object description
phase to analyse it and make the declarations:

Variable Declaration

Type Name Variable List

Integer Variable Variable Variable

a b c

Kristian Guillaumier, 2001 114

Revised Variable Declaration (1) – Option 2

• Note: See slide 67 for original version.
• Consider variable declarations following this format:

integer i,j,k
boolean isReady

• Recall the grammar:

<VarDecl> ::= <TypeName> <VarNameList>;
<TypeName> ::= INTEGER|BOOLEAN|REAL;
<VarNameList> :: <VarName> {“,” <VarName>};

5

Kristian Guillaumier, 2001 115

Revised Variable Declaration
(2)
• Parsing the declaration per se remains the

same, so we have no changes so far:

Function Parse_VarDecl(TOKEN)
// Parse the type name
LOOKAHEAD = Parse_TypeName(TOKEN)

// Parse the variable name list
LOOKAHEAD = Parse_VarNameList(LOOKAHEAD)

Return LOOKAHEAD
End Function

Kristian Guillaumier, 2001 116

Revised Variable Declaration
(3)
• Apart from returning the next token, we need to return

the type name we just parsed to use later:

Function Parse_TypeName(TOKEN)
If TOKEN is INTEGER_TOKEN then
Return NextToken, Return Integer Type

ElseIf TOKEN is BOOLEAN_TOKEN then
Return NextToken, Return Boolean Type

ElseIf TOKEN is REAL_TOKEN then
Return NextToken, Return Real Type

Else
Print “Missing Type Name in Declaration”
Return Error, Return ERROR Type

End If
End Function

6

Kristian Guillaumier, 2001 117

Revised Variable Declaration
(4)
• Note that when parsing the type name, apart from

returning the next lookahead, we also return an
indication of which type name we just parsed.

• Parsing the Variable Name List:

Function Parse_VarNameList(TOKEN, THE_TYPE)
LOOKAHEAD = Parse_VarName(TOKEN, THE_TYPE)
While LOOKAHEAD = COMMA_TOKEN
LOOKAHEAD = NextToken
LOOKAHEAD = Parse_VarName(LOOKAHEAD, THE_TYPE)

End While

Return LOOKAHEAD
End Function

Kristian Guillaumier, 2001 118

Revised Variable Declaration
(4)
• Parsing the variable name:

Function Parse_VarName(TOKEN, THE_TYPE)
If TOKEN = IDENT_TOKEN then
Call procedure VARDECLARE(VARNAME, VARTYPE)
Note: VARDECLARE is part of the Object
description phase NOT the parser.
Return NextToken

else
Print “Missing Identifier”
Return Error

End If
End Function

7

Kristian Guillaumier, 2001 119

Final Notes (1)
• The Object Description Phase is a subset of

semantic analysis. Ensuring that variables are
properly used in action statements is part of
another stage of semantic analysis.

• The procedure VarDeclare, first looks for the
entry of the variable in the symbol table.
– If the entry is NOT found, a new one is made,

recording details (such as the type) of the declaration.
– If the name is already found, a variable re-declaration

might have occurred depending on the scoping rules
of the language.

Kristian Guillaumier, 2001 120

Final Notes (2)

• Reuse of the variable declaration is allowed if:
– All previous uses are no longer in scope.
– Or, this declaration is made at a lexically lower level

than all other active declarations

8

Kristian Guillaumier, 2001 121

Final Notes (3)
Function VarDeclare(token, VarType)

Look for a previous occurrence of the Variable

If no occurrence found then
Enter details for the variable name and type

Else
If (Use is at a lexically lower level

than all other active ones) OR
(Previous uses are not active) then

Store details in table
Else

Re-declaration Error
End If

End If
End Function

