
1

Kristian Guillaumier, 2001 122

Bottom-Up Parsing
• So far we have seen parsers that try to find a derivation 

from the starting grammar symbol to the input sting.
• In this section we will be considering the essentially 

equivalent approach of finding a path from the input 
sentence to the starting symbol (bottom-up).

• We will be discussing a general technique for bottom-up 
parsing called shift-reduce parsing and an 
implementation of it called LR parsing.

• This method is used in automatic parser generators such 
as BISON, which we will cover in the next lessons.

Kristian Guillaumier, 2001 123

Notes on Shift-Reduce Parsing
• Bottom-Up parsing can be thought of reducing the input 

string to the starting symbol of the grammar.
• Each reduction step involves a sequence of symbols 

from the input being replaced by a left hand side non-
terminal according to the grammar rules.

• Just as in producing a Top-Down derivation there may 
be several non-terminals that may be expanded at any 
one step, in bottom-up parsing, there may be several 
sequences of symbols in the input string that may be 
reduced in a step.



2

Kristian Guillaumier, 2001 124

LL and LR Parsing
• It is important to choose a parsing methodology to apply 

to each derivation or reduction and apply it consistently.
• In in top-down parsing we always expand the leftmost 

non-terminal in a sentential form then we obtain a 
leftmost derivation. If we always expand the rightmost 
non-terminal then the derivation is rightmost.

• The rule that we will apply to bottom-up parsing is to 
always reduce the sequence of symbols which would 
trace a rightmost derivation in reverse. So, the input is 
scanned from left to right (hence LR).

• LL parsers scan the input from left to right to produce a 
leftmost derivation.

Kristian Guillaumier, 2001 125

Example (1)
• Consider the following grammar

E ::= E + E
E ::= E – E
E ::= id
E ::= num

• And the input string ‘1 + x – y’. A leftmost 
derivation would be:

E E + E
num + E
num + E – E
num + id – E
num + id - id



3

Kristian Guillaumier, 2001 126

Example (2)
• The parse tree would be:

• A rightmost derivation would be:
E E + E

E + E – E
E + E – id
E + id - id
num + id – id

• Which gives the same parse tree.

E

E E+

num E E-

id id

Kristian Guillaumier, 2001 127

Example (3)
One should note however 
that the grammar is ambiguous. 
We could have the following
derivations:

E E – E
E – id
E + E – id
E + id – id
num + id - id

E E – E
E + E – E
num + E – E
num + id – E
num + id - id

RightmostLeftmost

E

E E-

numE E+

id id



4

Kristian Guillaumier, 2001 128

Rightmost Derivations in Reverse (1)

• The first rightmost derivation we had was:

E E + E
E + E – E
E + E – id
E + id - id
num + id – id

• If applied in reverse we get a bottom-up parse:

num + id – id E + id – id
E + E – id
E + E – E
E + E
E

Kristian Guillaumier, 2001 129

Rightmost Derivations in Reverse (2)

• The second rightmost derivation we had was:

E E – E
E – id
E + E – id
E + id – id
num + id – id

• If applied in reverse we get a bottom-up parse:

num + id – id E + id – id
E + E – id
E - id
E - E
E



5

Kristian Guillaumier, 2001 130

Handles (1)
• The term input string will be used to refer to 

any sentential form in the reduction of a 
sentence to the starting symbol.

• The term handle is a sequence of symbols in 
the input string which, if replaced by a matching 
left hand side non-terminal, leads to the tracing 
out of the reversed rightmost derivation of the 
original sentence.

• Consider the example we had before in reducing 
num + id – id to E.

Kristian Guillaumier, 2001 131

Handles (2)

E

E E + EE + EE + E

E E – EE – EE + E – E

E idid2E + E – id2

E idid1E + id1 – id2

E numnumnum + id1 – id2

Reducing ProductionHandleRight Sentential Form



6

Kristian Guillaumier, 2001 132

Handles (3)

E

E E – EE – EE – E

E idid2E – id2

E E + EE + EE + E – id2

E idId1E + id1 – id2

E numnumnum + id1 – id2

Reducing ProductionHandleRight Sentential Form

Kristian Guillaumier, 2001 133

Handles (4)
• Note that upon having reached the input sting ‘E 
+ E – id’, there are two possible handles ‘id’ 
or ‘E + E’. This reflects the ambiguity in the 
grammar. If a grammar is unambiguous, then for 
any input string there would be only one handle 
for any stage in the reduction.

• An issue in designing a bottom-up parser is to
– Decide how to locate handles in the input string.
– How to choose which left hand side to replace with 

assuming that there may be more than one left hand 
side for a handle.



7

Kristian Guillaumier, 2001 134

Stack Implementation of Shift 
Reduce Parsing (1)
• Shift-reduce parsers are usually implemented using a 

stack to hold grammar symbols and an input buffer to 
hold the string X to be parsed.

• We shall use the dollar symbol, $, to denote the 
bottom of the stack and the end of the input string.

• Initially we would have:

X$$
Input StringStack

Kristian Guillaumier, 2001 135

Stack Implementation of Shift 
Reduce Parsing (2)
• The parse works by shifting symbols from the input 

string to the stack until a handle appears on the top of 
the stack.

• The parser reduces the handle on top of the stack to the 
left hand side of the appropriate production.

• The cycle is repeated until we find an error or the stack 
consists of the starting symbol and the input is empty.

• At this point, the parser stops and reports success.

X$$

Input StringStack



8

Kristian Guillaumier, 2001 136

Example (1)

• Consider the following unambiguous grammar…

E E + T
E E – T
E T
T id
T num

• …to parse ‘num + id + id’

Kristian Guillaumier, 2001 137

Example (2)

Accept$$ E

Reduce E E – T$$ E – T

Reduce T id$$ E – id

Shift idid $$ E -

Shift -- id $$ E

Reduce E E + T - id $$ E + T

Reduce T id- id $ $ E + id

Shift idid – id $$ E +

Shift ++ id – id $$ E

Reduce E T+ id – id $$ T

Reduce T num+ id – id $$ num

Shift numnum + id – id $$

ActionInputStack



9

Kristian Guillaumier, 2001 138

Parsing Actions
• Shift: 

– In a shift operation, the next input symbol is put on the top of the 
stack.

• Reduce: 
– The handle which is on top of the stack is replaced by the 

appropriate non-terminal symbol.

• Accept: 
– The parser accepts when all the input symbols are consumed 

and there is the sentence symbol on the stack.

• Error: 
– The parser encounters an error an calls any error recovery 

routine.

Kristian Guillaumier, 2001 139

Shift-Reduce Conflicts (1)

• There are grammars that cannot be parsed by a 
shift reduce parser. In such cases, the parser 
can get into a state in which it cannot decide 
whether to shift or reduce. 

• Ambiguous grammars are of such a type 
because there may be more than one handle at 
a time under certain circumstances.

• Consider the dangling else grammar:
S if E then S | if E then S else S



10

Kristian Guillaumier, 2001 140

Shift-Reduce Conflicts (2)
• The shift-reduce parser may find itself in the following 

situation:

Else S $$ if E then if E then S

Input StringStack

• At this point the parser wouldn’t know whether to shift 
the else onto the stack or reduce the first production for 
s to get:

Else S $$ if E then S

Input StringStack

Kristian Guillaumier, 2001 141

Good News

• Shift-reduce parsers may be easily modified to 
handle such grammars in a consistent way. For 
example, such shift-reduce conflicts may be 
resolved by forcing the parser to shift.

• Shift-reduce conflicts are not very common and 
are often an indication that there is a problem in 
the definition of the language.


