Bottom-Up Parsing

» So far we have seen parsers that try to find a derivation
from the starting grammar symbol to the input sting.

+ In this section we will be considering the essentially
equivalent approach of finding a path from the input
sentence to the starting symbol (bottom-up).

+ We will be discussing a general technique for bottom-up
parsing called shift-reduce parsing and an
implementation of it called LR parsing.

« This method is used in automatic parser generators such
as BISON, which we will cover in the next lessons.

Kristian Guillaumier, 2001 122

Notes on Shift-Reduce Parsing

+ Bottom-Up parsing can be thought of reducing the input
string to the starting symbol of the grammar.

» Each reduction step involves a sequence of symbols
from the input being replaced by a left hand side non-
terminal according to the grammar rules.

« Just as in producing a Top-Down derivation there may
be several non-terminals that may be expanded at any
one step, in bottom-up parsing, there may be several
sequences of symbols in the input string that may be
reduced in a step.

Kristian Guillaumier, 2001 123

LL and LR Parsing

* Itis important to choose a parsing methodology to apply
to each derivation or reduction and apply it consistently.

* Inin top-down parsing we always expand the leftmost
non-terminal in a sentential form then we obtain a
leftmost derivation. If we always expand the rightmost
non-terminal then the derivation is rightmost.

» The rule that we will apply to bottom-up parsing is to
always reduce the sequence of symbols which would
trace a rightmost derivation in reverse. So, the input is
scanned from left to right (hence LR).

» LL parsers scan the input from left to right to produce a
leftmost derivation.

Kristian Guillaumier, 2001 124

Example (1)

» Consider the following grammar

E ::=E + E
E ::=FE - E
E ::= id
E = num

* And the input string ‘1 + x - y’. Aleftmost
derivation would be:

E=>E+E
-2 num + E
2 num + E - E
- num + id - E
- num + id - id

Kristian Guillaumier, 2001 125

Example (2)

* The parse tree would be: E + E

num E - E

A rightmost derivation would be:
E > E+E

> +E-E

> + E - id

2 E + id - id

9

num + id - id

id id

E
E

* Which gives the same parse tree.

Kristian Guillaumier, 2001 126

Example (3) i

One should note however . } "
that the grammar is ambiguous. m I
We could have the following ‘

derivations: id id
Leftmost Rightmost
E>E-E E>E-E

> E + E - E 2> E - id

> num + E - E 2> E + E - id

= num + id - E 2> E + id - id

- num + id - id - num + id - id

Kristian Guillaumier, 2001 127

Rightmost Derivations in Reverse (1)

* The first rightmost derivation we had was:

E2>E+E

> E+E - E

2 E + E - id

2 E + id - id
- num + id - id

» If applied in reverse we get a bottom-up parse:

num + id - id 2 E + id - id
2> E + E - id
2> E+E-E
> E + E
2> E
Kristian Guillaumier, 2001 128

Rightmost Derivations in Reverse (2)

+ The second rightmost derivation we had was:

E>E-E

2> E - id

2 E + E - id

2> E + id - id
- num + id - id

» If applied in reverse we get a bottom-up parse:

num + id - id =2 E + id - id
2 E + E - id
2 E - id
2> E - E
2 E

Kristian Guillaumier, 2001 129

Handles (1)

* The term input string will be used to refer to
any sentential form in the reduction of a
sentence to the starting symbol.

* The term handle is a sequence of symbols in
the input string which, if replaced by a matching
left hand side non-terminal, leads to the tracing
out of the reversed rightmost derivation of the

original sentence.

+ Consider the example we had before in reducing

num + id - idtoE.

Kristian Guillaumier, 2001

130

Handles (2)

Right Sentential Form | Handle

Reducing Production

num + idl - id2 num E 2 num
E + idl - id2 id1 E > id
E + E - id2 id2 E 2> id
E+E-E E - E E>E-E
E + E E + E E>E + E

E

Kristian Guillaumier, 2001

131

Handles (3)

Right Sentential Form | Handle Reducing Production
num + idl - id2 num E =2 num

E + idl - id2 1d1 E 2 id

E + E - id2 E + E E>E+E

E - id2 id2 E 2 id

E - E E - E E>E-E

E

Kristian Guillaumier, 2001 132

Handles (4)

* Note that upon having reached the input sting ‘E
+ E - 1id’, there are two possible handles ‘id’
or ‘E + E’. This reflects the ambiguity in the
grammar. If a grammar is unambiguous, then for
any input string there would be only one handle
for any stage in the reduction.

* An issue in designing a bottom-up parser is to

— Decide how to locate handles in the input string.

— How to choose which left hand side to replace with
assuming that there may be more than one left hand
side for a handle.

Kristian Guillaumier, 2001 133

Stack Implementation of Shift
Reduce Parsing (1)

» Shift-reduce parsers are usually implemented using a
stack to hold grammar symbols and an input buffer to
hold the string X to be parsed.

« We shall use the dollar symbol, $, to denote the
bottom of the stack and the end of the input string.

+ Initially we would have:

Stack Input String
$ X$

Kristian Guillaumier, 2001 134

Stack Implementation of Shift
Reduce Parsing (2)

» The parse works by shifting symbols from the input
string to the stack until a handle appears on the top of
the stack.

» The parser reduces the handle on top of the stack to the
left hand side of the appropriate production.

» The cycle is repeated until we find an error or the stack
consists of the starting symbol and the input is empty.

At this point, the parser stops and reports success.

Stack Input String
$ X$

Kristian Guillaumier, 2001 135

Example (1)
« Consider the following unambiguous grammar...

2> E+ T
> E - T
2> T
- id

- num

(o= B o B £ B £ B |

e ...toparse ‘num + id + id’

Kristian Guillaumier, 2001 136

Example (2)

Stack Input Action
$ num + id - id $|Shift num
$ num + id - id $|Reduce T = num
ST + id - id $|Reduce E > T
$ E + id - id $|Shift +
$ E id - id $|sShift id
$ E + id - id $|Reduce T -2 id
$E+T - id $|Reduce E 2 E + T
$ E - id $|Shift -
$E - id $|Shift id
$ E - id $|Reduce T = id
$E-T $|Reduce E > E - T
S E $ | Accept

Kristian Guillaumier, 2001 137

Parsing Actions

» Shift:

— In a shift operation, the next input symbol is put on the top of the
stack.

* Reduce:

— The handle which is on top of the stack is replaced by the
appropriate non-terminal symbol.

» Accept:

— The parser accepts when all the input symbols are consumed
and there is the sentence symbol on the stack.

* Error:

— The parser encounters an error an calls any error recovery
routine.

Kristian Guillaumier, 2001 138

Shift-Reduce Conflicts (1)

» There are grammars that cannot be parsed by a
shift reduce parser. In such cases, the parser
can get into a state in which it cannot decide
whether to shift or reduce.

» Ambiguous grammars are of such a type
because there may be more than one handle at
a time under certain circumstances.

» Consider the dangling else grammar:
S 2 if E then S | if E then S else S

Kristian Guillaumier, 2001 139

Shift-Reduce Conflicts (2)

» The shift-reduce parser may find itself in the following
situation:

Stack Input String
$ if E then if E then S Else S $

At this point the parser wouldn’t know whether to shift
the else onto the stack or reduce the first production for
s to get:

Stack Input String
$ 1if E then S Else S $
Kristian Guillaumier, 2001 140
Good News

» Shift-reduce parsers may be easily modified to
handle such grammars in a consistent way. For
example, such shift-reduce conflicts may be
resolved by forcing the parser to shift.

« Shift-reduce conflicts are not very common and
are often an indication that there is a problem in
the definition of the language.

Kristian Guillaumier, 2001 141

