
1

Kristian Guillaumier, 2001 142

LR(k) Parsing
• LR Parsing is an efficient bottom-up parsing technique that can be

used to parse a large class of context-free grammars.
• LR means that the input is scanned from left-to-right building a

rightmost derivation in reverse.
• k represents the number of lookahead symbols required to make a

parsing decision.
• If k is omitted it is assumed to be 1. Many grammars in compiling fall

into the LR(1) class of parsers.
• The main advantage of LR parsers is that they be made to

recognise virtually any language for which a context-free grammar
exists.

• The main drawback however is that they tend to be very
complicated to code by hand, however may generators exist that
take a context-free grammar as input and produce a parser for it.

Kristian Guillaumier, 2001 143

Design (1)

• An LR shift-reduce parser consists of an input,
an output, a stack, a parsing program and two
parsing tables (action and goto):

LR
Parsing
Program

Si

Si-1

…

S0

A0 A1 … An

Output

$ Input

Stack

Action
Table

Goto
Table

2

Kristian Guillaumier, 2001 144

Design (2)
• The stack is used to store parsing states.
• The state on the top of the stack combined with the next

input token are used by the parsing program to deduce
whether it has a handle to reduce or whether it should
shift a new state on top of the stack and read the next
input token.

• Each entry in the action table contains the four actions
for any combination of top stack symbol and next token
Si, Aj:
– Shift,
– Reduce,
– Accept,
– Error.

Kristian Guillaumier, 2001 145

Design (3)

• The goto table is used whenever the action is a
reduction. After a reduction X α, the states
corresponding to the handle α are popped from
the stack to expose the new topmost state s’ and
the entry for goto[s’,X] becomes the new state
on top.

3

Kristian Guillaumier, 2001 146

Algorithm (1)
• The parser starts with an initial state s0 on the stack. At

some point through a parse the stack will contain
s0s1s2…si.

• Given the next input token a, the parser will proceed as
follows:
– If action[si,a] = shift si+1, the new state is put on top of the stack

to become: s0s1s2…sisi+1, and the new token is read.
– If action[si,a] = reduce Y X1…Xk, then the k states si-k+1… si

are popped off the stack leaving si-k on top. Now, goto[si-k,Y] is
consulted to find a new topmost state si-k+1 which is put on top of
the stack to become: s0s1s2…si-ksi-k+1.

Kristian Guillaumier, 2001 147

Algorithm (2)

• If action [si,a] = accept, then the parsing is
complete – the whole input tokens have been
consumed and reduced to the sentence symbol.

• If action [si,a] = error, then a syntax error has
been detected.

4

Kristian Guillaumier, 2001 148

Parsing Program (1)
Set pointer ip to point to the input string
Repeat forever

Let s = state on top of stack
Let a = symbol pointed to by ip

if action[s,a] = shift s’ then
push s’ on top of stack
increment ip to next symbol

else if action[s,a] = reduce A B then
for i = 1 to length(B)
pop state from stack

Let s’ be the new state on top of stack
Let s’’ = goto[s’,A]
Push s’’ on top of stack

Kristian Guillaumier, 2001 149

Parsing Program (2)
else if action[s,a] = accept then

exit from infinite loop

else if action[s,a] = error then

report error

End Repeat

5

Kristian Guillaumier, 2001 150

LR Parsing Example (1)
• Consider the expression id * id + id.
• Grammar:

1) E E + T
2) E T
3) T T * F
4) T F
5) F (E)
6) F id

Kristian Guillaumier, 2001 151

LR Parsing Example (2)

R5R5R5R511

R3R3R3R310

R1R1R7R19

S11S68

10S4S57

39S4S56

R6R6R6R65

328S4S54

R4R4R4R43

R2R2S7R22

AcptS61

321S4S50

FTEEOF)(*+id

Goto TableAction Table
State

6

Kristian Guillaumier, 2001 152

LR Parsing Example (3)

• Notes:
– sn means shift state n and read the new token.
– rk means reduce by the production k.
– Encountering blank entries in the tables signify an

error.
– The value goto[s,a] for a TERMINAL a, is found in the

action field action[s,a]. The goto table, therefore
contains values for goto[s,a] where a is a NON-
TERMINAL.

Kristian Guillaumier, 2001 153

LR Parsing Example (4)

AcceptEOFS0S114

Reduce E E + TEOFS0S1S6S913

Reduce T FEOFS0S1S6S312

Reduce F idEOFS0S1S6S511

Shift S5idS0S1S610

Shift S6+S0S19

Reduce E T+S0S28

Reduce T T * F+S0S2S7S107

Reduce F id+S0S2S7S56

Shift S5idS0S2S75

Shift S7*S0S24

Reduce T F*S0S33

Reduce F id*S0S52

Shift S5idS01

ActionNext TokenStack

7

Kristian Guillaumier, 2001 154

LR Parsing Example (5)
• At the beginning the parser is in state 0 with id as the first input

token.
• Therefore action[0,id] is taken giving the state s5 which is

pushed on the stack and the new input token is read.
• ‘*’ is now the input symbol and the action[5,*] is to reduce by

rule 6. One state is popped off (one state on right hand side)
exposing state 0. The value for goto[0,F] is 3 meaning that state
3 must be popped onto the stack.

• ‘*’ is still the input symbol and action[3,*] is to reduce by rule
4. One state is popped off (one state on right hand side) exposing
state 0. The value for goto[0,T] is 2 meaning that state 2 must be
popped onto the stack.

• And so on…

Kristian Guillaumier, 2001 155

Constructing The Parsing Tables

• There are 3 widely used LR parsing techniques:
– Canonical LR(k) or LR(k) is the most general form of LR parsing

methods and is the most powerful. Such parsers usually have
many thousands of states for a programming languages and are
VERY difficult to hand code.

– Simple LR(k) or SLR(k) is a variant of LR(k) parsing and usually
involves a few hundred states. SLR parsers are the weakest in
terms of grammars it can handle but serves as a good starting
point to other LR parsing methods.

– Lookahead LR(k) or LALR(k) is somewhat in the middle in terms
of the grammars it can handle. LALR parsers have the same
number of states as the equivalent SLR parser but are more
difficult to construct. Popular parser generators use this
technique to automate parser generation.

8

Kristian Guillaumier, 2001 156

FLEX

• FLEX is a popular program that generates
lexical analysers.

• FLEX accepts as an input a description of the
scanner it has to generate and produces a C
source file called ‘lexyy.c’ containing the
scanning code.

• By convention, FLEX input files have the
extension ‘.l’.

Kristian Guillaumier, 2001 157

The FLEX Input File
• The general format of a FLEX source file is:

Definitions
%%
Rules
%%
User Subroutines

• The definitions and user subroutines setions are optional
as is the second set of %% delimiters. Note that the first
set of delimiters is required to separate the definitions
section from the rules.

• The absolute minimum FLEX program is:
%%

• Which copies the input program to the output
unchanged.

9

Kristian Guillaumier, 2001 158

FLEX Definitions (1)
• The definition sections contains declaration of language

constructs to simplify the scanner specification.
• These declarations have the form:

name definition

• Where name is any alpha-numeric word starting with an
underscore of a letter.

• For example:
– Digit [0-9]
– Ident [a-z][a-z0-9]*

• Where Digit defines a regular expression that recognises
a simple one-character digit and Ident recognises a word
starting with a letter followed by zero or more
occurences of a letter or digit.

Kristian Guillaumier, 2001 159

FLEX Definitions (2)
• Thus, a subsequent call to:

{digit}* ”,” {digit}+

• Is identical to
([0-9])* ”.” ([0-9])+

• In the definitions section, any indented text or text
enclosed within %{ and %} is copied to the output as it is
with the %{ and %} removed.

• The text lines within are usually:
– Compiler directives such as #include’s or #define’s.
– Declarations of variables that are used by other sections of the

FLEX input file.

10

Kristian Guillaumier, 2001 160

FLEX Rules
• The rules section of a FLEX program contain a

series of pattern action statements.
• For example:

Integer puts(“I found an integer”)

• Would print a message each time an Integer
(defined in the definitions section) is found.

• Any indented or ‘%{…%}’ code appearing before
the first rule in this section is local to the main
scanning routine generated by FLEX and is
executed each time the routine is called.

Kristian Guillaumier, 2001 161

FLEX User Subroutines

• The user subroutines section is copied excatly to
the output source produced by FLEX.

• When building FLEX scanners that are not
interfaced by external programs the C main
function is defined and programmed here.

11

Kristian Guillaumier, 2001 162

Regular Expressions in FLEX (1)

2 or more r’s.r{2,}

Anything between 2 and 5 r’s.r{2,5}

An optional r (zero or one)r?

One or more r’s.r+

Zero or more r’s where r is a regular expression.r*

A negated character class with an escape character (newline).[^A-Z\n]

A negated character class.[^A-Z]

A character class with a range in it – matches an ‘a’, a ‘b’, any
letter from ‘j’ to ‘o’ or ‘Z’.

[abj-oZ]

A ‘character class’ – in this case it matches an ‘x’ a ‘y’ or a ‘z’[xyz]

Any character except the newline..

Matches the character x.x

Kristian Guillaumier, 2001 163

Regular Expressions in FLEX (2)

The end of file.<<EOF>>

An r but only at the end of a line – equivalent to r\n.r$

An r but only ath the beginning of a line.^r

Either an r or an s.r|s

Concatenation of regular expression r and s.rs

Match an r – parenthesis are used to emphasis precedence.(r)

A character with the hexadecimal value 2a.\x2a

A character with the octal value of 123.\123

If X is an a,b,f,n,r,t or v, the ANSI C interpretation of \X otherwise
the literal X – for example \”

\X

The literal ‘[xyz]’“[xyz]”

The expansion of a name definition.{name}

Exactly 4 r’s.r{4}

12

Kristian Guillaumier, 2001 164

Regular Expressions in FLEX (3)

• If there is more than one rule matching the input,
the one matching the most text characters is
chosen. If the matches have the same length,
the file listed first is chosen.

• Once a match is made, the text corresponding
the match is put in a special character pointer (C
string) variable called yytext (char *yytext)
and its length is in yyleng.
– Integer printf(“I found an integer %s.”,
yytext);

Kristian Guillaumier, 2001 165

Actions (1)
• Each pattern in a rule has a corresponding action that

may be any arbitrary C statement.
• The pattern ends at the first non escaped whitespace

character. The rest of the line is the action statement.
• If the action is left empty, the token found is discarded.
• The following FLEX program deletes all occurrences of

the word ‘username’ from the input an keeps the rest:
%%
“username”

• The following program compreses multiple spaces and
tabs into one space charater and removes trailing
spaces too:
[\t]+ putchar(‘ ‘);
[\t]+$ /* ignore trailing blanks */

13

Kristian Guillaumier, 2001 166

Actions (2)
• An action consisting of only the vertical bar ‘|’ means “the same action as

the one for the next rule. If the action contains a ‘{‘, then the action spans
until the next balancing ‘}’. For example:

IF |
if {

puts{“Keyword IF found.”);
return IFWORD;

}

• Actions contain arbitrary C code, including return statements to return
values to whatever external routine called yylex() – the token parser.

• Each time yylex() is called, it continues processing from where it last left
off until it reaches an EOF or meets a return statement.

• Once yylex() reaches the end of file, however, any subsequent call to
yylex() will immediately return unless yyrestart() is called.

• Note any actions are not allowed to modify yytext or yyleng.

Kristian Guillaumier, 2001 167

Special Routines and Directives (1)

• ECHO: copies yytext to the scanners output.
• yymore(): tells the scanner that the next time it

matches a rule, the corresponding token should be
appended onto the current value of yytext rather than
replacing it. For example:
%%
a- ECHO; yymore();
b ECHO;

• The first ‘a-’ is matched and echoed to the output. Then
‘b’ is matched by the previous ‘a-’ is still in yytext so
the echo for ‘b’ will include the previous ‘a-’s

14

Kristian Guillaumier, 2001 168

Special Routines and Directives (2)
• yyless(n): redirects all but the first n characters of the current token back

to the input stream, where they will be rescanned when the scanner looks
for the next match. yytext and yyleng are adjusted appropriately. Note
that a call to yyless(0) will cause the entire input string to be scanned
again and would result in an infinite loop unless care is taken.

• unput(c): puts the character ‘c’ back onto the input stream which will then
be the next character scanned. For example the following action will take
the current token and cause it to be rescanned enclosed in parenthesis:
{

int i;
unput(‘)‘);
for (i = yyleng -1; i > 0; --i)
unput(yytext[i]);

unput(‘{’);
}

• Note that all characters are pushed to the BEGINNING of the input string so
the original characters are put in reverse.

Kristian Guillaumier, 2001 169

Special Routines and Directives (3)

• input(): reads the next character from the
input stream. (or yyinput() if used with C++)

• yyterminate(): can be used instead of a
return statement. It aborts the action returning 0.
subsequent calls to yylex() immediately return
unless yyrestart() is called. (usually called
on encountering the EOF)

• yyrestart(): tells FLEX to start scanning from
a new (maybe the same) input file. Takes a
single file * pointer.

15

Kristian Guillaumier, 2001 170

The Generated Scanner (1)
• Whenever yylex() is called, it scans tokens

from a global input file denoted by yyin which
by default points to standard input unless
specified using the C function fopen (file open).

• For example, to open example.txt for reading
in text mode:
yyin = fopen(“example.txt”,”r”);

• yylex() continues reading from yyin until it
reaches EOF. In this case the function will return
immediately unless yyrestart() is called and yyin
is set to point to a new file.

Kristian Guillaumier, 2001 171

The Generated Scanner (2)
• Likewise, the scanner produces output to yyout

which, again, by default, points to standard
output. As with yyin, yyout can be changed by
assigning it another FILE pointer:
– yyout = fopen(“output.txt”, “w”);

16

Kristian Guillaumier, 2001 172

Interfacing with Parser Generators
• One of the main uses of FLEX is interfacing it with an external

parser generator like Bison. Bison parsers expect to call a function
called yylex() to find the next input token.

• yylex(), is expected to return the type of the token found
(implemented as a constant, maybe) and putting any associated
value in yylval.

• To use Bison in association with FLEX, it is called with the –d option
to instruct is to generate an header file containing all the token
definitions. This header is then used in FLEX. To include the
header:
%{
#include “generated_header.h”
%}
%%
[0-9]+ yylval = atoi(yytext); return NUM;

