
1

Kristian Guillaumier, 2001 173

BISON
• BISON takes an input grammar file and produces a C

program that parses the language described by that
grammar.

• Tokens are read from the lexical analyser function
yylex() which can be coded manually or generated
automatically using FLEX.

• The BISON output file (C program) defines a function
called yyparse() – the implementation of the grammar.

• The parser generated by BISON expects a user-
implemented error reporting function yyerror(). And
the main() C function.

Kristian Guillaumier, 2001 174

BISON Grammar Files
• A BISON grammar file contains four sections separated

by delimiters:

%{
C Declaration
%}

Bison Declarations

%%
Grammar Rules

%%
Additional C Code

2

Kristian Guillaumier, 2001 175

The C Declarations Section
• This section contains global definitions, constants,

variables, #include’s, #define’s and functions that will be
used in the actions of the grammar rules.

• The contents of this section are copied to the very
beginning of the output parser file so that they precede
the yyparse() function.

• If no C declarations are used, the %{ and %} delimiters
may be omitted.

• By now you should have noticed that both BISON and
FLEX have a lot of variable and function definitions
starting with yy. It is a good idea NOT to name any
variables or functions of your own starting with yy too.

Kristian Guillaumier, 2001 176

Other Sections
• Bison Declarations

– This section contains declarations of terminal and non-terminal
symbols used in the language being described, as well as
definitions of operator precedence and the data types of
semantic values of various symbols.

• Grammar Rules Section
– This section contains the grammars production rules, which

define how a non-terminal is constructed from its parts. There
must always be at least one grammar rule in a BISON file.

• Additional C Code
– Like the C Declarations section, the contents of this section

contains C code that is copied exactly to the output. This section
is copied to the END of the output file. It is a convenient way to
put anything required AFTER the yyparse() function such as
main().

3

Kristian Guillaumier, 2001 177

Symbols – Terminal and Non-
Terminal (1)
• A terminal symbol represents lexical analyser tokens. These tokens

are represented by numeric constants, any yylex() returns a
token type code to indicate what token type has been read.

• There are 2 ways of writing terminal symbols in the grammar:
– Single Characters: A single character token type such as + or * does not

need to be declared. It can be used directly in the rules section by
enclosing it in single quotes.

– Multi-Character Tokens: These are represented by a declared name
using a %token declaration. By convention names are written in upper
case. For example the words “Begin” and “End” might be declared as:
%token BEGIN
%token END

-or-

%token BEGIN END

Kristian Guillaumier, 2001 178

Symbols – Terminal and Non-
Terminal (2)
• Internally, each token is represented by an integer,

starting from 257. 0 to 255 are used to represent ASCII
characters and 256 is used to represent the error token.
When using BISON the programmer is not generally
concerned about these values but these token values
must be known when implementing these tokens in
FLEX. Using the ‘–d’ option when running BISON will
automatically generate an include file containing the
definitions for these tokens:

…
#define BEGIN 257
#define END 258
…

4

Kristian Guillaumier, 2001 179

Symbols – Terminal and Non-
Terminal (3)
• Non-terminals are declared in exactly the same

way, but their names are in lowercase by
convention.

Kristian Guillaumier, 2001 180

BISON Grammar Rules (1)
• A BISON grammar rule has the form:

result : components...
;

• Where result is the non-terminal symbol that the rule describes
(LHS) and the components are the various terminal and non-
terminal symbols that put together this rule (RHS).

• For example:

exp : exp ‘+’ exp
;

if_statement : IF exp THEN
;

5

Kristian Guillaumier, 2001 181

BISON Grammar Rules (2)
• Multiple rules for the same result can be written

separately:
exp : exp ‘+’ exp;
exp : exp ‘-’ exp;

• Or together, separated by the vertical bar:
exp : exp ‘+’ exp

| exp ‘-’ exp
;

• If the components section is left empty, it means
that result can match the empty string.

Kristian Guillaumier, 2001 182

BISON Grammar Rules (3)
• Here is how to define a comma separated sequence of zero or more exp

groupings:

expseq : /* empty */
| expseq1
;

expseq1 : exp
| expseq1 ‘,’ exp
;

• It is convention to write a comment /* empty */ in each rule with no
component.

• Within components actions consisting of C statements may be included:

exp : exp ‘+’ exp { printf(“Addition Expression”);}
| exp ‘-’ exp { printf(“Subtraction Expression”);}
;

6

Kristian Guillaumier, 2001 183

Recursive Rules (1)
• A rule is called recursive when its result also appears also on the

right-hand side. Nearly all BISON grammars need to use recursion,
because it is the only way to define a sequence (zero-or-more, one-
or-more) of ‘somethings’.

• Consider the left and right recursive definitions of a comma-
separated sequence of one or more expressions:

expseqleft: exp
| expseqleft ‘,’ exp
;

expseqright : exp
| exp ‘,’ expseqright
;

Kristian Guillaumier, 2001 184

Recursive Rules (2)
• Any kind of sequence may be defined using either left or

right recursion, but one should always use left recursion,
because it can parse a sequence of any number of
elements with bounded stack space.

• Indirect or mutual recursion occurs when the result of the
rule does not appear directly on the right hand side, but
does appear in rules for other non-terminals which do
appear on its right hand side. For example:
expr : primary

| primary ‘+’ primary
;

primary : constant
| ‘(‘ expr ‘)’
;

7

Kristian Guillaumier, 2001 185

Defining Semantics (1)
• The grammar rules for a language determine only its

syntax. The semantics are determined by the semantic
‘meaning’ associated with various tokens and the actions
taken when these tokens are recognised.

• A formal grammar selects tokens only by their
classifications: for example, if a rule mentions the
terminal symbol `integer constant', it means that any
integer constant is grammatically valid in that position.
The precise value of the constant is irrelevant to how to
parse the input: if `x+4' is grammatical then `x+1' or
`x+3989' is equally grammatical.

Kristian Guillaumier, 2001 186

Defining Semantics (2)
• Semantic values have all the rest of the information about the

meaning of a token, such as the value of an integer, or the name of
an identifier. (A token such as ',' which is just punctuation doesn't
need to have any semantic value.)

• For example, an input token might be classified as token type
INTEGER and have the semantic value 4. Another input token might
have the same token type INTEGER but value 3989. When a
grammar rule says that INTEGER is allowed, either of these tokens
is acceptable because each is an INTEGER. When the parser
accepts the token, it keeps track of the token's semantic value.

• Each grouping can also have a semantic value as well as its non-
terminal symbol. For example, in a calculator, an expression
typically has a semantic value that is a number. In a compiler for a
programming language, an expression typically has a semantic
value that is a tree structure describing the meaning of the
expression.

8

Kristian Guillaumier, 2001 187

Defining Semantics (3)
• Most of the time, the purpose of an action is to compute the

semantic value of the whole construct from the semantic values of
its parts. For example, suppose we have a rule which says an
expression can be the sum of two expressions. When the parser
recognizes such a sum, each of the sub-expressions has a semantic
value which describes how it was built up. The action for this rule
should create a similar sort of value for the newly recognized larger
expression.

• The C code in an action can refer to the semantic values of the
components matched by the rule with the construct $n, which
stands for the value of the nth component. The semantic value for
the grouping being constructed is $$. (Bison translates both of these
constructs into array element references when it copies the actions
into the parser file.)

• Here is a typical example:
exp: ...

| exp '+' exp { $$ = $1 + $3; }

Kristian Guillaumier, 2001 188

Defining Semantics (4)

• If you don't specify an action for a rule, Bison
supplies a default: $$ = $1.

• Every terminal and non-terminal defined in the
grammar is given a type. Bison’s default is to
use the int type for all semantic values.
Clearly, this can be overridden.

9

Kristian Guillaumier, 2001 189

BISON Declarations

• This section defines all the symbols used in
formulating the grammar and the data types of
semantic values.

• All token types except for single character
tokens (such as +, which are enclosed in single
quotes) must be declared.

• Non-terminal symbols must be declared if you
need to specify which data type to use for the
semantic value.

Kristian Guillaumier, 2001 190

The Sentence Symbol

• The sentence symbol of the grammar is, by
default, the first non-terminal defined at the start
of the rules section. An alternative start symbol
may be specified using the %start statement.
For example, if the starting symbol in your
language is program, you may specify this as:
%start program

10

Kristian Guillaumier, 2001 191

Token Types
• The basic way to specify a token is using the
%token statement:
%token begin
%token end

• One can explicitly specify a numeric code to
each token type:
%token begin 300
%token end 301

• But, in general, it is better to let BISON choose
the numeric code itself.

Kristian Guillaumier, 2001 192

Types of Semantic Values (1)
• The BISON %union declaration is used to

specify the collection of all possible data types
for all the semantic values:
%union
{
double val;
char * str;

}
• This means that we defined two types – val

(based on the double type) and str (a C string).

11

Kristian Guillaumier, 2001 193

Types of Semantic Values (2)
• In certain cases, token declarations (%token …) should

be assigned a type. For example, if the token NUM must
be associated to the semantic type double, then the
token declaration should be modified as:
%token <val> NUM

• We previously mentioned that in some cases, non-
terminals could be associated with a semantic type. In
this case the non-terminal declaration is mandatory.
Suppose the EXPR and PRIMARY non-terminals are
associated a double type:
%type <val> EXPR PRIMARY

Kristian Guillaumier, 2001 194

Associativity
• If one wishes to declare a token and specify its

associativity the %left, %right and %nonassoc
statements are used.

• If ‘+’ is declared to be left associative:
%left ‘+’

• The same reasoning goes for right associativity. A token
may be non-associative. Say, ‘+’ should be declared with
no associative information. We get:
%nonassoc ‘+’

• But keep in mind that statements like ‘a+b+c’ will be
considered as a syntax error (we have more than one
operator but don’t have associativity information)

12

Kristian Guillaumier, 2001 195

Precedence

• All tokens declared together have the same
precedence.

• When tokens are declared separately, the one
declared later has the highest precedence.
%left ‘+’ ‘-’
%left ‘*’

