
1

Kristian Guillaumier, 2001 196

Type Checking (1)
• There are 2 classes of ‘checking’ that are made when during the

lifetime of a program, namely, static and dynamic checking.
Dynamic checking occurs during the execution (runtime) of a target
program. Static checking is made at compile time.

• Examples of static checks include:
– Type checks: a compiler should produce an error id an operator is

applied to an incompatible operand.
– Flow control checks: statements that effect the flow of a program must

have a ‘place’ were to redirect the flow. For example, the C break
statement causes the control to leave the enclosing while, for or
switch statement. An error occurs if there is no such enclosing
statement.

– Uniqueness checks: there are situations were an object must be defined
only once such as a variable declaration.

– Name-related checks: sometimes, a name must appear two or more
times (for i = a to b … next i). The compiler must check that
the same name is used in both places.

Kristian Guillaumier, 2001 197

Type Checking (2)
• A type checker verifies that the type of a construct ‘fits’ into its

current context. For example the Pascal mod operator requires
integer operands, so the compiler must ensure that this is so.

• A symbol that can represent different operations in differing context
is said to be ‘overloaded’.

• In principal any check can be made dynamically, if the target code
contains enough type information.

• A strongly typed language is one that guarantees that if the compiler
accepted the input, it will run without type errors.

• In practice there are some check that can be made only
dynamically. For example if we declare an array table:
array[0..255] of char; and try to reference table[i], the
compiler cannot guarantee during execution that the value i will lien
in the 0..255 range.

2

Kristian Guillaumier, 2001 198

A Simple Type Checker (1)
• We will specify a small language in which every identifier

must be declared before being used.
• The following grammar generates programs starting from

the starting symbol P consisting of a sequence of
declarations D followed by a single expression E.

P D ; E
D D ; D | id : T
T char | integer |

array[num] of T | ^T
E literal | num | id | E mod E |

E [E] | E^

Kristian Guillaumier, 2001 199

A Simple Type Checker (2)
• A program that can be generated from the grammar is:

key: integer;
key mod 1999

• Notes:
– The basic types in the language are char and integer.
– We assume all array indices start from 1 so array[256] is the

equivalent of array[1..256].
– The prefix ^ operator is the pointer type.
– In the translation scheme we will use, the action associated with

the production D id : T, will save the type information for
the identifier in the symbol table.

– Since in the grammar, D appears before E in P D ; E it is
guaranteed that all the types of identifiers will be known before
the expression is checked.

3

Kristian Guillaumier, 2001 200

Type Checking Expressions (1)
• The following rules, synthesize the the type of an

expression :

if E1.Type AND E2.Type = integer

E.Type = integer
else

E.Type = type_error

E E1 mod E2

E.Type ::= lookup(id)
Where lookup searches for id in the symbol table
and returns the type of the declared identifier.

E id

E.Type ::= integerE num

E.Type ::= charE literal

Kristian Guillaumier, 2001 201

Type Checking Expressions (2)

if E1.Type = pointer(t)
E.Type = t

Else
E.Type = type_error

Where t in pointer(t) is the type of the pointer.

E E1^

if E2.Type = integer and
E1.Type = array(s,t)

E.Type = t

else
E.Type = type_error

In array, s is the size and t is the type.

E E1[E2]

4

Kristian Guillaumier, 2001 202

Type Checking Statements (1)

• Certain language constructs like statements
don’t have values per se so don’t have types
associated with them. In this case a special
basic type void can be assigned to them. If an
error is detected the type_error type is returned.

• We will be considering assignment, while
and if statements here.

• Sequences of statements are separated by
semicolons.

Kristian Guillaumier, 2001 203

Type Checking Statements (2)

if S1.Type = void and S2.Type = void

S.Type = void

else
S.Type = type_error

S S1 ; S2

-same as above-S while E do S1

if E.Type = boolean
S.Type = S1.Type

else

S.Type = type_error

S if E then S1

if id.Type = E.Type
S.Type = void

else

S.Type = type_error

S id := E

5

Kristian Guillaumier, 2001 204

Runtime Support (1)
• Before discussing code generation, we will examine the relationship

between the text of the source program to the actions that have to
occur at runtime to implement it.

• The execution of every procedure is referred to as an activation of
that procedure.

• If procedures are nested or recursive multiple activations may exist
at any one point.

• Let us assume that a program is made up of procedures such as in
Pascal.

• In its simplest form a procedure is the relationship between and
identifier and a statement, where the identifier is the procedure
name and the statement(s) is the procedure body.

• Procedures that return a value are called functions in many
programming languages.

Kristian Guillaumier, 2001 205

Runtime Support (2)
• A complete program will also be treated as a procedure

(think Pascal).
• When a procedure appears in an action statement, we

say that the procedure has been called.
• A procedure may be also called within an expression.
• Some identifiers within a procedure definition are treated

special and are called the formal parameters of the
procedure (also called arguments).

• When a procedure is called, actual parameters are
substituted for the formal ones.

6

Kristian Guillaumier, 2001 206

Activation Trees (1)
• Assumptions on flow control:

– Control flows sequentially.
– The execution of a procedure starts at the beginning of the procedure

body and ends at the point following where the procedure was called.
• Each execution of a procedure is referred to as an activation of the

procedure. The lifetime of an activation is the sequence of steps
between the first and last steps in the execution of the procedure
body (including any other procedures called internally).

• In languages like Pascal, each time control enters a procedure Q
from another P, control will eventually return to P in the absence of
an error.

• So, if P and Q are procedure activations, their lifetimes are either
nested or non-overlapping. That is if Q enters before P is left, then Q
must terminate before P does.

• A procedure is recursive if a new activation can begin before an
earlier activation of the same procedure finished (note: recursion
may be indirect (P calls Q which calls P).

Kristian Guillaumier, 2001 207

Activation Trees (2)

• We use a tree structure called an activation tree
to depict this control flow. In this tree:
– Each node represents an activation of a procedure.
– The root node represents the activation of the main

program procedure.
– The node for A is the parent of another node B iff

control flows from activation A to B.
– The node for A is to the left of the node for B iff the

lifetime of A occurs before that of B.

7

Kristian Guillaumier, 2001 208

Example (1)
program sort

var a: array[0..10] of integer;

procedure readarray;
var i:integer;
begin

for i := 1 to 9 do read(a[i]);
end;

function partition(y,z:integer):integer;
var ...
begin

...
end;

Kristian Guillaumier, 2001 209

Example (2)
procedure quicksort(m,n:integer);
var i:integer;
begin

if (n > m) then begin
i := partition(m,n);
quicksort(m,i-1);
quicksort(i+1,n);

end;
end;

begin
a[0] := -9999; a[10] := 9999;
readarray;
quicksort(1,9);

end.

8

Kristian Guillaumier, 2001 210

Example (3)
• Activation Trace:

Execution Begins
Enter readarray
Leave readarray
Enter quicksort(1,9)
Enter partition(1,9)
Leave partition(1,9)
Enter quicksort(1,3)
...
Leave quicksort(1,3)
Enter quicksort(5,9)
...
Leave quicksort(5,9)
Leave quicksort(1,9)
Execution Finishes

Kristian Guillaumier, 2001 211

Example (4)

s

r q(1,9)

p(1,9) q(1,3) q(5,9)

p(1,3) q(1,0) q(2,3) p(5,9) q(5,5) q(7,9)

p(2,3) q(2,1) q(3,3) p(7,9) q(7,9) q(9,9)

9

Kristian Guillaumier, 2001 212

Control Stacks (1)
• The flow of control of a program corresponds to a depth

first traversal of the activation tree.
– (starts at the root, visits nodes before children and visits children

in a left-to-right order)
• The trace we have seen before can be reconstructed by

traversing the previous tree as illustrated above.
• We can use a stack called the control stack to keep

track of live procedure activations. The idea is to push a
node onto the stack when activation begins and popping
it off when activation ends.

• When a node n is on top of the control stack, the stack
contains the nodes along the path from n to the root
(start).

Kristian Guillaumier, 2001 213

Control Stacks (2)

s

r q(1,9)

p(1,9) q(1,3)

p(1,3) q(1,0) q(2,3)

The state of the stack when q(2,3) is on top.

10

Kristian Guillaumier, 2001 214

Activation Records
• Information (memory space) needed for the execution of a single procedure

is managed by a block of storage called an activation record.
• Not all languages or compilers use the same structure for this record.
• Common fields in this record are:

– Temporaries: temporary values such as those intermediate values when
evaluating an expression.

– Local data: local values to the procedures.
– Saved machine status: the state just before the procedure was called.
– Access link: link to non-local data.
– Control link: link to the activation record of the calling procedure.
– Actual parameters: values of the actual parameters passed the procedure.
– Returned value: the returned value if the procedure is a ‘function’.

• ‘Out of Stack Space’ issue in infinitely recurring calls.
• The sizes of most fields are usually determined at compile time with

exceptions if there is a local array whose size depends on an actual
argument or the procedure can take a variable number of parameters.

Kristian Guillaumier, 2001 215

Intermediate Code
• It is common practice for the front end of a compiler to

produce an intermediate form of code before passing
that on to the backend to generate the target code itself.

• This is desirable since:
– Retargeting is facilitated (a compiler for the same language but

different machine).
– A machine-independent code optimiser may be developed

(optimisation applied to the intermediate code).

• We will assume that at this point the language has been
parsed and statically checked.

11

Kristian Guillaumier, 2001 216

Intermediate Languages (1)
• Syntax trees and postfix are two types of intermediate

representations.
• In this section we will discuss a new one called the three

address code.
• The three address code (3AC – my abbreviation!) is a

sequence of statements of the general form:
x := y op z

• Where x, y and z are names, constants or compiler-
generated temporaries.

• Op, stands for an operator such as integer or floating-
point arithmetic operators or a logical operator on
boolean data.

Kristian Guillaumier, 2001 217

Intermediate Languages (2)
• Note that no ‘built-up’ expressions are allowed since

there is only one operator in the RHS. So, something like
p + q * r, would look like:
t1 := q * r
t2 := p + t1

• Where, t1 and t2 are compiler-generated temporaries.
• The use of names for intermediate values allows 3AC to

be easily rearrange unlike postfix notation.
• 3AC is a linear representation of the syntax tree (like

postfix).
• The reason for the term ‘Three Address Code’ is that

each statement usually contains 3 addresses, 2 for the
operands and 1 for the result.

12

Kristian Guillaumier, 2001 218

Intermediate Languages (3)
3AC

t1 := -c
t2 := b * t1
t3 := -c
t4 := b * t3
t5 := t2 + t4
a := t5

Assign

a +

* *

b UMinus b UMinus

c c

a := b * -c + b * -c

Syntax Tree

Kristian Guillaumier, 2001 219

Types of 3AC (1)

y is an optional return value. Typically used as
a sequence:
param x1
…
param xn
call p,n

param x
call p, n
return y

Parameters, Calls
and Returns

Apply a relational operator (>, <, <=,…) to x
and y and jump to L if true otherwise continues
with the next code.

if x relop y goto LConditional Jump
Where L is a label to the next statement to run.goto LUnconditional Jump
Copy y into x.x := yCopy
Op is a unary operator (-, NOT,…)x := op yAssignment
Op is a binary arithmetic or logical operator.x := y op zAssignment
NotesFormType

13

Kristian Guillaumier, 2001 220

Types of 3AC (2)

The first sets the value of x to the memory
location of y.
In the second, presumably y is a pointer.
In the third, presumably x is a pointer.

x := &y
x := *y
*x = y

Address/Pointer
Assignments

The first sets x to the value in the location i
memory units beyond y.
The second sets the value at the location i
memory units beyond x to y.

x := y[i]
x[i] = y

Indexed
Assignments

NotesFormType

Note:
The operator set in the design of the 3AC must be rich enough to describe the operations
in the source language. A small set is easier to implement on the target machine, but the
resulting code would be very long, making the life of the optimiser harder if it is to
produce good code.

Kristian Guillaumier, 2001 221

Code Generation (1)
• The final phase in compiler is the code generator which takes an

intermediate representation of a source program and generates
equivalent target code.

• In between the intermediate code stage and code generation stage
there could be a code optimisation stage. Code optimisation may be
implemented on the final target code too.

• The requirements generally imposed on a code generator are that
the target code should be correct of high quality and effectively use
resources on the target computer. Also the code generator itself
must be efficient.

• Mathematically, the problem of generating optimal code is
undecidable. In practice, heuristics that generate good code (not
necessarily optimal) are typically used.

• The choice of such heuristics is important. Carefully designed code
generators may produce code that is several times faster than that
produced by a bad one.

14

Kristian Guillaumier, 2001 222

Code Generation (2)
• In order to design an efficient code generator the

designer must have intimate knowledge of the
target hardware and operating system.

• Issues such as memory management,
instruction selection, register allocation and
evaluation order are inherent to almost all code
generation problems.

• Due to highly specialised, platform-dependent
issues, in this section will examine generic
design issues only.

Kristian Guillaumier, 2001 223

Input to the Code Generator
• The input is typically,

– The intermediate code produced by the front end.
– The symbol table that is used to determine the runtime

addresses of the data objects denoted by the names in the
intermediate representation.

• We assume that,
– The source code has been properly scanned and parsed

correctly.
– All relevant information is available to the code generator.
– Type checking has occurred.
– In general the input is error-free.

15

Kristian Guillaumier, 2001 224

Target Programs
• The output of a code generator is the target language. This may

take on different forms such as,
– Absolute machine code,
– Relocatable machine language,
– Or assembly language.

• Producing absolute machine code has the advantage that it can be
placed in a fixed memory location and execute immediately.

• Producing relocatable (object) code has the advantage that
separate sub-programs may be compiled separately and then linked
and loaded to execute. Whilst the code has the overhead of linking
and loading we gain a lot of flexibility (think DLLs – though not
exactly).

• Producing assembly language makes the code generation task
simpler but involves the extra step of assembling the output.

Kristian Guillaumier, 2001 225

Memory Management

• Mapping names in the source program to
addresses of data objects is done cooperatively
by the front-end and back-end of the compiler.

• A name in a 3AC statement refers to a symbol
table entry for the name.

• The type of a declaration determines the amount
of storage allocated in memory (e.g. a long
integer would take up 4 bytes).

16

Kristian Guillaumier, 2001 226

Instruction Selection (1)
• The nature of the instruction set of the target machines

determines the instruction selection when generating
code.

• Also, if the target machine does not support each data
type natively, special arrangements have to be made.

• Instruction speeds are an important factors when
generating code. If the quality of the target code is not an
issue, then each 3AC statement could be associated
with a ‘template’. For example, every 3AC statement of
the form x := y + z could be translated into:

MOV y, R0
ADD z, R0
MOV R0, x

Kristian Guillaumier, 2001 227

Instruction Selection (2)
• Unfortunately, this technique can (and most likely will)

produce inefficient code. For example:
a := b + c
d := a + e

• Will produce:
MOV b,R0
ADD c,R0
MOV R0,a
MOV a,R0
ADD e,R0
MOV R0,d

• There the third and fourth statements are redundant if a
is not subsequently used.

17

Kristian Guillaumier, 2001 228

Instruction Selection (3)
• The quality of code is usually determined by its

execution speed and its size.
• A target machine with a rich instruction set may provide

several ways to perform any given operation. In this case
a ‘narrow-minded’ code generator may produce correct,
though unacceptably inefficient code.

• For example, say, the machine supports an increment
(INC) operation. Then the 3AC instruction a := a + 1 may
be implemented more efficiently by the single instruction
rather than using the ‘template’ we have seen before.

Kristian Guillaumier, 2001 229

Register Allocation
• Instructions involving register operands are usually

shorter and much faster than those involving memory
operands. For this reason, efficient utilization of registers
is important in generating fast code.

• The use of registers is often subdivided into two
problems:
– During register allocation, we select the set of variables that

will reside in registers at a point in the program.
– During subsequent register assignment, we pick the specific

register that the variable will ‘live’ in.
• Finding the optimal assignment of registers is

mathematically NP complete and further restrictions may
be enforced by the hardware and/or operating system

