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Type Checking (1)
• There are 2 classes of ‘checking’ that are made when during the 

lifetime of a program, namely, static and dynamic checking. 
Dynamic checking occurs during the execution (runtime) of a target 
program. Static checking is made at compile time.

• Examples of static checks include:
– Type checks: a compiler should produce an error id an operator is 

applied to an incompatible operand.
– Flow control checks: statements that effect the flow of a program must 

have a ‘place’ were to redirect the flow. For example, the C break
statement causes the control to leave the enclosing while, for or 
switch statement. An error occurs if there is no such enclosing 
statement.

– Uniqueness checks: there are situations were an object must be defined 
only once such as a variable declaration.

– Name-related checks: sometimes, a name must appear two or more 
times (for i = a to b … next i). The compiler must check that 
the same name is used in both places.
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Type Checking (2)
• A type checker verifies that the type of a construct ‘fits’ into its 

current context. For example the Pascal mod operator requires 
integer operands, so the compiler must ensure that this is so.

• A symbol that can represent different operations in differing context 
is said to be ‘overloaded’.

• In principal any check can be made dynamically, if the target code 
contains enough type information.

• A strongly typed language is one that guarantees that if the compiler 
accepted the input, it will run without type errors.

• In practice there are some check that can be made only 
dynamically. For example if we declare an array table: 
array[0..255] of char; and try to reference table[i], the 
compiler cannot guarantee during execution that the value i will lien 
in the 0..255 range.
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A Simple Type Checker (1)
• We will specify a small language in which every identifier 

must be declared before being used.
• The following grammar generates programs starting from 

the starting symbol P consisting of a sequence of 
declarations D followed by a single expression E.

P D ; E
D D ; D | id : T
T char | integer | 

array[ num ] of T | ^T
E literal | num | id | E mod E |

E [ E ] | E^
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A Simple Type Checker (2)
• A program that can be generated from the grammar is:

key: integer;
key mod 1999

• Notes:
– The basic types in the language are char and integer.
– We assume all array indices start from 1 so array[256] is the 

equivalent of array[1..256].
– The prefix ^ operator is the pointer type.
– In the translation scheme we will use, the action associated with 

the production D id : T, will save the type information for 
the identifier in the symbol table.

– Since in the grammar, D appears before E in P D ; E it is 
guaranteed that all the types of identifiers will be known before 
the expression is checked.
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Type Checking Expressions (1)
• The following rules, synthesize the the type of an 

expression :

if E1.Type AND E2.Type = integer

E.Type = integer
else

E.Type = type_error

E E1 mod E2

E.Type ::= lookup(id)
Where lookup searches for id in the symbol table 
and returns the type of the declared identifier.

E id

E.Type ::= integerE num

E.Type ::= charE literal
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Type Checking Expressions (2)

if E1.Type = pointer(t)
E.Type = t

Else
E.Type = type_error

Where t in pointer(t) is the type of the pointer.

E E1^

if E2.Type = integer and
E1.Type = array(s,t)

E.Type = t

else
E.Type = type_error

In array, s is the size and t is the type.

E E1[E2]
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Type Checking Statements (1)

• Certain language constructs like statements 
don’t have values per se so don’t have types 
associated with them. In this case a special 
basic type void can be assigned to them. If an 
error is detected the type_error type is returned.

• We will be considering assignment, while
and if statements here.

• Sequences of statements are separated by 
semicolons. 
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Type Checking Statements (2)

if S1.Type = void and S2.Type = void 

S.Type = void

else
S.Type = type_error

S S1 ; S2

-same as above-S while E do S1

if E.Type = boolean
S.Type = S1.Type

else

S.Type = type_error

S if E then S1

if id.Type = E.Type
S.Type = void

else 

S.Type = type_error

S id := E
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Runtime Support (1)
• Before discussing code generation, we will examine the relationship 

between the text of the source program to the actions that have to 
occur at runtime to implement it.

• The execution of every procedure is referred to as an activation of 
that procedure.

• If procedures are nested or recursive multiple activations may exist 
at any one point.

• Let us assume that a program is made up of procedures such as in
Pascal. 

• In its simplest form a procedure is the relationship between and
identifier and a statement, where the identifier is the procedure 
name and the statement(s) is the procedure body.

• Procedures that return a value are called functions in many 
programming languages.
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Runtime Support (2)
• A complete program will also be treated as a procedure 

(think Pascal).
• When a procedure appears in an action statement, we 

say that the procedure has been called.
• A procedure may be also called within an expression.
• Some identifiers within a procedure definition are treated 

special and are called the formal parameters of the 
procedure (also called arguments).

• When a procedure is called, actual parameters are 
substituted for the formal ones.
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Activation Trees (1)
• Assumptions on flow control:

– Control flows sequentially.
– The execution of a procedure starts at the beginning of the procedure 

body and ends at the point following where the procedure was called. 
• Each execution of a procedure is referred to as an activation of the 

procedure. The lifetime of an activation is the sequence of steps 
between the first and last steps in the execution of the procedure 
body (including any other procedures called internally).

• In languages like Pascal, each time control enters a procedure Q
from another P, control will eventually return to P in the absence of 
an error.

• So, if P and Q are procedure activations, their lifetimes are either 
nested or non-overlapping. That is if Q enters before P is left, then Q 
must terminate before P does. 

• A procedure is recursive if a new activation can begin before an
earlier activation of the same procedure finished (note: recursion 
may be indirect (P calls Q which calls P).
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Activation Trees (2)

• We use a tree structure called an activation tree 
to depict this control flow. In this tree:
– Each node represents an activation of a procedure.
– The root node represents the activation of the main 

program procedure.
– The node for A is the parent of another node B iff

control flows from activation A to B.
– The node for A is to the left of the node for B iff the 

lifetime of A occurs before that of B.
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Example (1)
program sort

var a: array[0..10] of integer;

procedure readarray;
var i:integer;
begin

for i := 1 to 9 do read(a[i]);
end;

function partition(y,z:integer):integer;
var ...
begin

...
end;
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Example (2)
procedure quicksort(m,n:integer);
var i:integer;
begin

if (n > m) then begin
i := partition(m,n);
quicksort(m,i-1);
quicksort(i+1,n);

end;
end;

begin
a[0] := -9999; a[10] := 9999;
readarray;
quicksort(1,9);

end.
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Example (3)
• Activation Trace:

Execution Begins
Enter readarray
Leave readarray
Enter quicksort(1,9)
Enter partition(1,9)
Leave partition(1,9)
Enter quicksort(1,3)
...
Leave quicksort(1,3)
Enter quicksort(5,9)
...
Leave quicksort(5,9)
Leave quicksort(1,9)
Execution Finishes
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Example (4)

s

r q(1,9)

p(1,9) q(1,3) q(5,9)

p(1,3) q(1,0) q(2,3) p(5,9) q(5,5) q(7,9)

p(2,3) q(2,1) q(3,3) p(7,9) q(7,9) q(9,9)
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Control Stacks (1)
• The flow of control of a program corresponds to a depth 

first traversal of the activation tree.
– (starts at the root, visits nodes before children and visits children 

in a left-to-right order)
• The trace we have seen before can be reconstructed by 

traversing the previous tree as illustrated above. 
• We can use a stack called the control stack to keep 

track of live procedure activations. The idea is to push a 
node onto the stack when activation begins and popping 
it off when activation ends.

• When a node n is on top of the control stack, the stack 
contains the nodes along the path from n to the root 
(start).

Kristian Guillaumier, 2001 213

Control Stacks (2)

s

r q(1,9)

p(1,9) q(1,3)

p(1,3) q(1,0) q(2,3)

The state of the stack when q(2,3) is on top.
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Activation Records
• Information (memory space) needed for the execution of a single procedure 

is managed by a block of storage called an activation record.
• Not all languages or compilers use the same structure for this record.
• Common fields in this record are:

– Temporaries: temporary values such as those intermediate values when 
evaluating an expression.

– Local data: local values to the procedures.
– Saved machine status: the state just before the procedure was called.
– Access link: link to non-local data.
– Control link: link to the activation record of the calling procedure.
– Actual parameters: values of the actual parameters passed the procedure.
– Returned value: the returned value if the procedure is a ‘function’.

• ‘Out of Stack Space’ issue in infinitely recurring calls.
• The sizes of most fields are usually determined at compile time with 

exceptions if there is a local array whose size depends on an actual 
argument or the procedure can take a variable number of parameters.
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Intermediate Code
• It is common practice for the front end of a compiler to 

produce an intermediate form of code before passing 
that on to the backend to generate the target code itself.

• This is desirable since:
– Retargeting is facilitated (a compiler for the same language but

different machine).
– A machine-independent code optimiser may be developed 

(optimisation applied to the intermediate code).

• We will assume that at this point the language has been 
parsed and statically checked.
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Intermediate Languages (1)
• Syntax trees and postfix are two types of intermediate 

representations.  
• In this section we will discuss a new one called the three 

address code.
• The three address code (3AC – my abbreviation!) is a 

sequence of statements of the general form:
x := y op z

• Where x, y and z are names, constants or compiler-
generated temporaries. 

• Op, stands for an operator such as integer or floating-
point arithmetic operators or a logical operator on 
boolean data.
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Intermediate Languages (2)
• Note that no ‘built-up’ expressions are allowed since 

there is only one operator in the RHS. So, something like 
p + q * r, would look like:
t1 := q * r
t2 := p + t1

• Where, t1 and t2 are compiler-generated temporaries.
• The use of names for intermediate values allows 3AC to 

be easily rearrange unlike postfix notation. 
• 3AC is a linear representation of the syntax tree (like 

postfix).
• The reason for the term ‘Three Address Code’ is that 

each statement usually contains 3 addresses, 2 for the 
operands and 1 for the result.
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Intermediate Languages (3)
3AC

t1 := -c
t2 := b * t1
t3 := -c
t4 := b * t3
t5 := t2 + t4
a  := t5

Assign

a +

* *

b UMinus b UMinus

c c

a := b * -c + b * -c

Syntax Tree
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Types of 3AC (1)

y is an optional return value. Typically used as 
a sequence:
param x1
…
param xn
call p,n

param x
call p, n
return y

Parameters, Calls 
and Returns

Apply a relational operator (>, <, <=,…) to x 
and y and jump to L if true otherwise continues 
with the next code.

if x relop y goto LConditional Jump
Where L is a label to the next statement to run.goto LUnconditional Jump
Copy y into x.x := yCopy
Op is a unary operator (-, NOT,…)x := op yAssignment
Op is a binary arithmetic or logical operator.x := y op zAssignment
NotesFormType
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Types of 3AC (2)

The first sets the value of x to the memory 
location of y.
In the second, presumably y is a pointer.
In the third, presumably x is a pointer.

x := &y
x := *y
*x = y

Address/Pointer 
Assignments

The first sets x to the value in the location i 
memory units beyond y.
The second sets the value at the location i 
memory units beyond x to y.

x := y[i]
x[i] = y

Indexed 
Assignments

NotesFormType

Note:
The operator set in the design of the 3AC must be rich enough to describe the operations 
in the source language. A small set is easier to implement on the target machine, but the 
resulting code would be very long, making the life of the optimiser harder if it is to 
produce good code.
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Code Generation (1)
• The final phase in compiler is the code generator which takes an

intermediate representation of a source program and generates 
equivalent target code.

• In between the intermediate code stage and code generation stage
there could be a code optimisation stage. Code optimisation may be 
implemented on the final target code too.

• The requirements generally imposed on a code generator are that 
the target code should be correct of high quality and effectively use 
resources on the target computer. Also the code generator itself
must be efficient. 

• Mathematically, the problem of generating optimal code is 
undecidable. In practice, heuristics that generate good code (not 
necessarily optimal) are typically used.

• The choice of such heuristics is important. Carefully designed code 
generators may produce code that is several times faster than that 
produced by a bad one.
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Code Generation (2)
• In order to design an efficient code generator the 

designer must have intimate knowledge of the 
target hardware and operating system.

• Issues such as memory management, 
instruction selection, register allocation and 
evaluation order are inherent to almost all code 
generation problems.

• Due to highly specialised, platform-dependent 
issues, in this section will examine generic 
design issues only.
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Input to the Code Generator
• The input is typically, 

– The intermediate code produced by the front end.
– The symbol table that is used to determine the runtime 

addresses of the data objects denoted by the names in the 
intermediate representation.

• We assume that,
– The source code has been properly scanned and parsed 

correctly.
– All relevant information is available to the code generator.
– Type checking has occurred.
– In general the input is error-free.
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Target Programs
• The output of a code generator is the target language. This may 

take on different forms such as,
– Absolute machine code,
– Relocatable machine language,
– Or assembly language.

• Producing absolute machine code has the advantage that it can be
placed in a fixed memory location and execute immediately. 

• Producing relocatable (object) code has the advantage that 
separate sub-programs may be compiled separately and then linked 
and loaded to execute. Whilst the code has the overhead of linking 
and loading we gain a lot of flexibility (think DLLs – though not 
exactly).

• Producing assembly language makes the code generation task 
simpler but involves the extra step of assembling the output.
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Memory Management

• Mapping names in the source program to 
addresses of data objects is done cooperatively 
by the front-end and back-end of the compiler. 

• A name in a 3AC statement refers to a symbol 
table entry for the name.

• The type of a declaration determines the amount 
of storage allocated in memory (e.g. a long 
integer would take up 4 bytes). 
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Instruction Selection (1)
• The nature of the instruction set of the target machines 

determines the instruction selection when generating 
code.

• Also, if the target machine does not support each data 
type natively, special arrangements have to be made.

• Instruction speeds are an important factors when 
generating code. If the quality of the target code is not an 
issue, then each 3AC statement could be associated 
with  a ‘template’. For example, every 3AC statement of 
the form x := y + z could be translated into:

MOV y, R0
ADD z, R0
MOV R0, x
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Instruction Selection (2)
• Unfortunately, this technique can (and most likely will) 

produce inefficient code. For example:
a := b + c
d := a + e

• Will produce:
MOV b,R0
ADD c,R0
MOV R0,a
MOV a,R0
ADD e,R0
MOV R0,d

• There the third and fourth statements are redundant if a 
is not subsequently used.
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Instruction Selection (3)
• The quality of code is usually determined by its 

execution speed and its size.
• A target machine with a rich instruction set may provide 

several ways to perform any given operation. In this case 
a ‘narrow-minded’ code generator may produce correct, 
though unacceptably inefficient code.

• For example, say, the machine supports an increment 
(INC) operation. Then the 3AC instruction a := a + 1 may 
be implemented more efficiently by the single instruction 
rather than using the ‘template’ we have seen before.
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Register Allocation
• Instructions involving register operands are usually 

shorter and much faster than those involving memory 
operands. For this reason, efficient utilization of registers 
is important in generating fast code.

• The use of registers is often subdivided into two 
problems:
– During register allocation, we select the set of variables that 

will reside in registers at a point in the program.
– During subsequent register assignment, we pick the specific 

register that the variable will ‘live’ in.
• Finding the optimal assignment of registers is 

mathematically NP complete and further restrictions may 
be enforced by the hardware and/or operating system


