
1

Kristian Guillaumier, 2001 1

Compiling Techniques
CSM201

Kristian Guillaumier
http://www.cs.um.edu.mt/~kguil

kguil@cs.um.edu.mt

Kristian Guillaumier, 2001 2

Programmable Machines
• Processors are programmable in a language called

Machine Code.
• The range of features available to this language is

defined by the Instruction Set of the processor.
• Although the instruction set actually contains primitive,

basic operations you can actually write any program
using it.

• Each processor family has it’s own instruction set.
Though basic operations are common to most of them,
they’re incompatible with each other in almost every
other respect.

2

Kristian Guillaumier, 2001 3

A Simple Program in Machine
Code (1)
• Consider the following simple statement in BASIC:

length = 2*(side1-side2) + 4*(side3-side4)

• We’ll write the equivalent machine code to execute this
statement for a processor with a limited instruction set
called SIMPLE.

• Variables and their values are stored in memory (RAM).
• In addition the SIMPLE processor has a single memory

location (register) called the accumulator.

Kristian Guillaumier, 2001 4

A Simple Program in Machine
Code (2)

Unknown at startupTempLoc8

44Loc7

22Loc6

2Side4Loc5

4Side3Loc4

3Side2Loc3

6Side1Loc2

Unknown at startupLengthLoc1

ValueVariable/ConstantMemory Location

Memory Map

3

Kristian Guillaumier, 2001 5

A Simple Program in Machine
Code (3)

Stores the result from the accumulator into the
memory location <addr>.

Store <addr>

Like above but multiplies.Mul <addr>

Like above but adds.Add <addr>

Subtracts a value read from <addr> from the one
in the accumulator. The result is stored in the
accumulator.

Sub <addr>

Loads a value from the memory location <addr>
into the accumulator.

Load <addr>

MeaningInstruction

Instruction Set

Kristian Guillaumier, 2001 6

A Simple Program in Machine
Code (4)
• The machine code to evaluate the expression would be:

Load Loc2
Sub Loc3
Mul Loc6
Store Loc8 we need a temp variable
Load Loc4
Sub Loc5
Mul Loc7
Add Loc8
Store Loc1

4

Kristian Guillaumier, 2001 7

Advantages and Disadvantages
• Advantages:

– Programmers are required to have an intimate knowledge of the
processor. This can lead to highly optimised code.

– May be the only way to program the processor (like an
embedded processor in a microwave oven).

• Disadvantages:
– Programmers are required to have an intimate knowledge of the

processor. Difficult to learn.
– Development time takes longer.
– ‘Easier’ to make mistakes.
– Not portable. The program is tied down to the processor it was

written for.
– Human beings ‘think’ about algorithims differently than a

processor does.

Kristian Guillaumier, 2001 8

What is a Compiler?

• Informally a Compiler:
– Translates a program in a language (source

language) to another language (target language)
usually machine code.

– Checks for syntactical correctness.
– Checks for semantic correctness.

5

Kristian Guillaumier, 2001 9

Cousins of the Complier (1)
• Assemblers

– Similar to compilers (translation/checks syntax/etc…) but the
source language is Assembly Language.

• Cross-Compilers
– The compiler program runs on a processor type, but the machine

code it produces is designed to run on a different one. An
example of using a cross compilers is to develop software that
runs on mobile phones.

– Cross Compilers are useful:
• Either because the target machine doesn’t have a compiler of it’s

own.
• Or because it doesn’t have the resources to run the compiler in the

first place.

Kristian Guillaumier, 2001 10

Cousins of the Complier (2)

• Interpreters
– An interpreter translates a program into a lower level

version of it, but it still cannot run directly on the
processor. It depends on some runtime support.
Examples of interpreted language include:

• Command Line Interpreters (BASH, command.com)
• Batch Files
• VBScript, JavaScript

– Execution is slower since the translation occurs each
time the program is executed.

– Interpreters are easier to write.

6

Kristian Guillaumier, 2001 11

A Deeper Look into Compilers

• To keep things manageable the process of
compilation is separated into 3 distinct (though
connected) phases:
– Lexical Analysis
– Syntax and Semantic Analysis
– Code Generation

Kristian Guillaumier, 2001 12

Lexical Analysis
• Lexical Analysers are also called Scanners.
• Recall that a program is made up of many small entities:

– Keywords: IF, THEN, ELSE, …
– Identifiers: counter, my_var, openfile
– Numbers
– Symbols: +, /, >, >=

• Put Simply, the scanners job is to:
– Open the source file,
– Recognise the entities and represent them as tokens,
– Remove Comments,
– Produce error reports.

7

Kristian Guillaumier, 2001 13

Example
for counter = 1 to 20 print “hello world” next

keywordnext
Value = “hello world”String“hello world”

Keywordprint
Value = 30Constant 20

Keywordto
Value = 1Constant1
EqualsOperator=
Name = CounterIdentifiercounter

Keywordfor

Tokens

Kristian Guillaumier, 2001 14

Syntax Analysis

• The syntax analyser is also known as the
Parser.

• For all the compiler is concerned, the sequence
of tokens produced by the scanner is just a
random sequence of symbols. It is the job of the
syntax analyser to ensure that these symbols
are structured correctly according to the
definition of the language. For example:
– Every BEGIN must match an END in Pascal.
– Every statement must end in a semi-colon.

8

Kristian Guillaumier, 2001 15

Semantic Analysis
• Even though the structure of the language is

correct, the MEANING of the statements may be
invalid according to the semantics of the
language.

my_var = my_var + 1

is correct in terms of syntax, but is my_var is
declared as a string, the arithmetic addition of a
number to a string isn’t really correct.

Kristian Guillaumier, 2001 16

The Symbol Table and Parse Tree

• The output produced by the Syntax and
Semantic Analyser is the:
– Symbol Table:

• Stores information about identifiers and functions, such as
their types, sizes, names, number of arguments etc…

– Parse Tree:
• Stores the structure of the program.

9

Kristian Guillaumier, 2001 17

Example Parse Tree

• i = (I * 4) + z

=

i +

× z

4i

Kristian Guillaumier, 2001 18

Code Generation

• After all the preceding phases have been
completed successfully without errors, the
compiler will proceed to build the target code
from the data structures previously constructed.

• In many cases Code Generation of further split:

Intermediate
Code

Generation

Code
Optimiser

Code
Generation

Symbol
Table

Parse
Tree

Intermediate
code

Intermediate
code

Target
Program

10

Kristian Guillaumier, 2001 19

Intermediate Code Generation

• The code generator starts off by generating an
intermediate form of code representation before
actually building the target code.

• The main difference between intermediate code
and the actual target code is that certain details
such as the exact memory locations are omitted.

• A common representation format for
intermediate code is the Three-Address Code.

Kristian Guillaumier, 2001 20

Three-Address Code
temp1 = 60
temp2 = id2 + temp1
id1 = temp2

id1temp2=

temp2temp1id2+

temp160=

ResultARG2ARG1Operator

11

Kristian Guillaumier, 2001 21

Code Optimisation

• This phase attempts to rearrange the code to
obtain a smaller or faster running version.

temp1 = 60
temp2 = id2 + temp1
id1 = temp2

Equivalent to:

id1 = id2 + 60

Kristian Guillaumier, 2001 22

Front and Back Ends (1)

• Commonly compiler phases are split into two
different categories:
– The front end: this stage is concerned with the

phases related to the source language and are
independent of the target. This part usually consists
of the lexical analyser, syntax analysis, symbol table
creation, semantic analysis and intermediate code
generation.

– The back end: consists of the stages dependent on
the target machine. This usually consists of the code
generation and certain parts of the optimiser.

12

Kristian Guillaumier, 2001 23

Front and Back Ends (2)

• Splitting the compiler into front and backends
has the following advantages:
– The backend can be modularly changed to compile

the same source language for a different platform.
– Compilers for different source languages usually

produce standard intermediate code and may reuse
the same backend.

Kristian Guillaumier, 2001 24

Language Specification

• Programming languages must be specified and
properly described before attempting to write a
compiler for them.

• The specification is written in a meta-language.
• Meta-Languages need to be unambiguous and

we rely on Formal Languages to assist.

13

Kristian Guillaumier, 2001 25

Formal Languages Primer (1)
• In order to specify a formal language rigorously

we need to introduce some concepts:
• A Symbol or Token is an atomic (indivisible)

entity usually a character, digit or keyword.
• An Alphabet, denoted by Σ, is the finite, non-

empty set of symbols.
• A String over the alphabet is a sequence

a1a2…an of symbols from Σ.
• The symbol ε denotes the empty string.
• εa = aε = a

Kristian Guillaumier, 2001 26

Formal Languages Primer (2)

• The set of all strings over the alphabet Σ,
including the empty string ε, is denoted by the
Kleene Closure - Σ*.

• The set of all strings over Σ, whose length is at
least 1 (i.e. does not contain ε), is denoted by
the Positive Closure - Σ+.

• A Language L over the alphabet Σ is a subset of
Σ*.

14

Kristian Guillaumier, 2001 27

Regular Expressions
• Many languages (though not all) may be described using

a notation called Regular Expressions.
• Regular expressions specify strings in a language by

using symbols from it’s alphabet and a few special meta-
symbols:
– Concatenation: when we wish to concatenate symbols or string

we write them next to each other of use the . (dot) meta-symbol
for extra clarity.

– Alternation: when there is a choice between to symbols α and
β, they are separated by the | (bar) symbol.

– Repetition: a symbol α followed by a * (star) indicates that there
are zero or more repetitions of α.

– Grouping: a group of symbols may be grouped by surrounding
them by the meta-symbols (and) – parenthesis.

Kristian Guillaumier, 2001 28

An Example
• Consider the expression:

1 (1 | 0)* 0

• This expression represents all the strings that
start with a 1, end in a 0 and have an unlimited
(possibly empty) number of 1’s and 0’s in
between.

{10, 100, 110, 1000, …}

15

Kristian Guillaumier, 2001 29

Notes on Regular Expressions
• Precedence from highest to lowest: Parenthesis Repetition

Concatenation Alternation

ab* ≠ (ab)*

• If the meta-symbols are part of the alphabet, they should be
enclosed in quotes. For example, comments in Pascal would be:

“(“ “*” c* “*” ”)”
where c ∈ Σ

• Another convention normally used is that of the + repetition instead
of the *. It has the same meaning as the Positive Closure. Basically
it’s a shortcut for writing aa*

Kristian Guillaumier, 2001 30

Algebraic Properties of Regular
Expressions

Absorption for closureA* A* = A*
Identity for concatenationA ε = ε A = A
Right distributivity(A | B) C = AC | BC
Left distributivityA (B | C) = AB | AC
Associativity for concatenationA . (B.C) = (A.B).C
Absorption of alternationA | A = A
Associativity for alternationA | (B | C) = (A | B) | C
Commutativity for alternationA | B = B | A

16

Kristian Guillaumier, 2001 31

Regular Expressions

• Description of Identifiers
(_|A| … |Z|a| … |z).(_|A| … |Z|a| … |z|0| … |9)*

• Description of Integers
(0 | 1 | 2 | … | 9)+

Kristian Guillaumier, 2001 32

Grammars

• Formally a Grammar is a quadruple {N,T,P,S}
where:
– N is the finite set of non-terminal symbols,
– T is the finite set of terminal symbols (Σ),
– P is the finite set of production (or grammar) rules,
– S is the starting, goal or sentence symbol.

• A sentence is a string entirely composed of
terminal symbols.

17

Kristian Guillaumier, 2001 33

Example
• Consider the following language:

ε
ab
aabb
aaabbb
aaaabbbb

…
• The grammar for the above language is:

({S}, {a,b}, P, S)
where P is:

S ε
S aSb

Kristian Guillaumier, 2001 34

Another Example
• Consider the following

rules for a context
sensitive grammar:

1) S aSBC
2) S aBC
3) CB BC
4) aB ab
5) bB bb
6) bC bc
7) cC cc

• The following is a derivation
from S to a valid string:

S
aSBC (by rule 1)
aaBCBC (by rule 2)
aaBBCC (by rule 3)
aabBCC (by rule 4)
aabbCC (by rule 5)
aabbcC (by rule 6)
aabbcc (by rule 7)

18

Kristian Guillaumier, 2001 35

Types of Grammars

• The complexity and structures of the rules in a
grammar determines what types of languages
we can describe and recognise using it. These
different “Grammar Types” are categorised by
the Chomsky Hierarchy:
– Type 0 – Unrestricted Grammars
– Type 1 – Context Sensitive Grammars
– Type 2 – Context Free Grammars
– Type 3 – Regular Grammars

Kristian Guillaumier, 2001 36

Unrestricted Grammars

• Productions take the form:

A α

where,
– A and α are arbitrary symbols in the vocabulary

N ∪ T.

19

Kristian Guillaumier, 2001 37

Context Sensitive Grammars
• Productions take the form:

αAβ αγβ

where,
– A ∈ N
– γ ≠ ε
– α, β, γ ∈ (N ∪T)*

– May also include the rule S ε

Kristian Guillaumier, 2001 38

Context Free Grammars

• Productions take the form:

A α

where,
– A is a single non-terminal symbol (A ∈ N),
– α is a, possibly empty, string of terminals and/or non-

terminals.

20

Kristian Guillaumier, 2001 39

Regular Grammars
• Productions take the form:

The difference between the two is that one is right
recursive (since B can be equal to A) and the other is left
recursive. Regular grammars must either be one or the
other, but never both (otherwise this would be a type 2
grammar)

(i)

A α

A αB

(ii)

A α

A Bα

-or-

Kristian Guillaumier, 2001 40

Backus-Naur-Form (BNF)

Empty or Nothingε

End of line;

Exact symbols in the language are enclosed in quotes –
These symbols are called Terminals. Sometimes the
quotes are omitted.

“ ”

Zero or more repetitions of an item are surrounded by
curly brackets

{ }

Optional items are surrounded by square brackets[]

Angles brackets surround category symbols – These
symbols are called Non-Terminals

< >

Or|

‘is defined as’::=

MeaningSymbol

21

Kristian Guillaumier, 2001 41

BNF By Example (1)
Consider the identifier:
my_variable

In plain English:
Identifiers consist of any sequence alpha-numeric characters and
the underscore symbols. However an identifier cannot start with a
digit.

Formally in BNF:

<ident> ::= <alpha> | “_” {<alpha>|<digit>|”_”};
<alpha> ::= “a”|”b”|…|”z”|”A”|”B”|…|”Z”;
<digit> ::= “0”|”1”|…|”9”;

Kristian Guillaumier, 2001 42

BNF by Example (2)
Problem:

Construct a BNF specification for simple expressions limited to
integer numbers and identifiers. The operators allowed in this type of
statement are + and –.

For Example:

3
counter
counter + 1
counter + (1 – y)
3 + 4

22

Kristian Guillaumier, 2001 43

BNF by Example (2½)

<expr> ::= <factor> | <factor> <op> <expr>;

<factor> ::= <integer> | <ident> | “(“ <expr> “)”;

<op> ::= “+” | “-”;

<integer> ::= <digit> {<digit>};

Kristian Guillaumier, 2001 44

Extensions to BNF (EBNF)
• In order to improve the readability and conciseness of descriptions in BNF

several extensions have been proposed to the notation. BNF with these
extensions is called EBNF.

• Kleene Cross: a sequence of one or more items of a class are:

<unsigned-int> ::= <digit>+

• Kleene Star: a sequence of zero or more items of a class are:

<ident> ::= <letter><alphanumneric>*

• Braces are used for grouping instead of the usual ‘zero or more’
interpretation.

<ident> ::= <letter>{<letter>|<digit>}*

23

Kristian Guillaumier, 2001 45

An Example in EBNF
• Consider BNF for variable declarations in Basic:

<var-decl> ::= “dim” <var-decl-list>
<var-decl-list> ::=

<var-decl-item> {ε | “,” <var-decl-list>}
<var-decl-item> ::= <ident> “as” <var-type>

• In EBNF could would be written as:

<var-decl> ::= “dim” <var-decl-list>
<var-decl-list> ::=

<var-decl-item> {“,” <var-decl-item>}*
<var-decl-item> ::= <ident> “as” <var-type>

