
1

Kristian Guillaumier, 2001 230

Code Optimisation
• An optimiser looks at a representation of the source

program and tries to produce shorter or faster code (or
both).

• There are essentially two ways in which optimisation can
take place:
– Reorganise the structure of the source algorithms to make them

more efficient. This generally operates on the parse tree. This
technique is machine independent.

– Modification of the code produced by a simple translator to make
it efficient. This phase operates on the object code.

Kristian Guillaumier, 2001 231

Common Optimisation Tasks (1)
• Common Sub Expressions

– An occurrence of an expression E is called a common sub-
expression if E was previously computed and the values of the
variables in E have not changed. In such cases we can avoid
recomputing an expression of we can use the previously
computed value.

• Copy Propagation
– Reorganises assignment statements so that:

x = y
z = x

– becomes
x = y
z = y

– (more on this later)

2

Kristian Guillaumier, 2001 232

Common Optimisation Tasks (2)
• Dead Code Elimination

– A variable is ‘live’ at a point in a program if its value can be used
subsequently, otherwise it is ‘dead’ at that point. Statements may
compute values that may never be used in a program. While a
programmer is unlikely to introduce dead code intentionally, it
may appear as a result of previous transformations. Consider the
statement:
if (debug) then Print ...

– By data flow analysis it may be deduced that no matter what
path the program takes, when the statement is reached, the
value of debug would always be false, so the test and printing
may be removed from the object code.

Kristian Guillaumier, 2001 233

Common Optimisation Tasks (3)
• Dead Code Elimination Continued

– One advantage of copy propagation is that it often turns an assignment
statement into dead code. For example copy propagation followed by
dead code elimination would convert:
x = t3
a[t2] = t5
a[t4] = x
goto b2

– By elimination of copy propagation:
x = t3
a[t2] = t5
a[t4] = t3
goto b5

– By Dead code elimination:
a[t2] = t5
a[t4] = t3
goto b5

3

Kristian Guillaumier, 2001 234

Common Optimisation Tasks (4)
• Loop Optimisation

– Loops are an important place where optimisations may occur.
The running time of a loop may be improved if we decrease the
number of instructions occurring inside. A common loop
optimisation is called code motion.

– Code motion attempts to move code out of the loop (though the
expression must yield the same result). This transformation
takes an expression that has the same evaluation independent
of the number of times the loop executes (called a loop-invariant
computation) and places it before the loop. For example the
computation of limit – 1, is loop invariant in:
while (i < (limit – 1)) ...

– So we can have:
t = limit – 1
while (i < t) ...

