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Designing a Lexical Analyser
• The key function in a lexical analyser is a routine called GetNextToken that 

extracts tokens one-by-one from the source file.
• The lexical analyser repeatedly makes calls to GetNextToken to process the 

whole file.
• When tokenising the input it is important to identify the Token Separators. 

These separators are special characters that delimit one token from an 
other. In many programming languages, the token separators are usially
spaces, tab stops and carriage returns.

• The scanning loop can look like:

Initialise;
loop

symbol = GetNextToken();
Print symbol;

Until symbol = End_Of_File;
Clean_Up;
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Recognising Tokens

• The scanner will start recognising a token after 
reading the first character:

• If the first character is:
– A letter: then we’re dealing with a keyword or 

identifier.
– Numeric: then we’re dealing with a number.
– An Opening Quote (“): then we’re dealing with a 

string.
– Etc…
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GetNextToken
Function GetNextToken

CurrentChar = Get the next significant character

If CurrentChar = EOF Then
Deal with the end of file

Else
If CurrentChar = Digit Then 

CurrentToken = Deal With Number
Else If CurrentChar = Letter Then

CurrentToken = Deal With a Word
Else If

...
Else

CurrentToken = Error – Illegal Character
End IF
GetNextToken = CurrentToken

End If
End Function
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GetWord
Function GetWord

MyToken = CurrentChar
CurrentChar = Get the next significant character

While CurrentChar is Valid in a Word
MyToken = MyToken + CurrentChar
CurrentChar = Get next significant character

Wend

Return MyToken

End Function
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Look Ahead

• Since we are reading characters until we find 
one that is not part of a word, the last one is 
essentially one extra character. We must not 
discard it. In fact CurrentChar is usually 
implemented as a global variable.

• This extra character is called the LookAhead
character.
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GetString
Function GetString

MyToken = CurrentChar ‘ the opening quote
CurrentChar = Get the next significant character

While CurrentChar is not the Closing Quote
MyToken = MyToken + CurrentChar
CurrentChar = Get next significant character

Wend

MyToken = MyToken + CurrentChar ‘ The closing quote

‘ Again read an extra character for consistency
CurrentChar = Get the next significant character

Return MyToken

End Function
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Error Reporting

• There are only a few errors that can be detected 
by the scanner. Such errors include:
– Missing closing quote in a string. Missing quotes are 

a major issue, since characters will be read until the 
opening quote of the next sting are found, potentially 
‘eating-up’ much of the actual code. This problem is 
typically alleviated by not allowing strings to span 
over multiple lines.

– Illegal characters in the input file.
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Parsing
• When analysing a programs syntax, a data structure 

called the Parse Tree is built to reflect the structure of 
the program. 

• The nodes of the parse tree are the Non-Terminal 
symbols, whilst the leaves are the Terminals (Σ). 

• The root node is the sentence symbol (S).
• There are two main methods of parsing:

– Top-Down Parsing – the parse tree is build from the root 
downwards.

– Bottom-Up Parsing – the parse tree is built from the leaves 
upwards to the root.
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Simple Parsing Example

• Consider the BNF specification for a simple 
assignment statement:

<assign> ::= <lhs> <ass-op> <rhs>;
<lhs> ::= <ident>;
<ass-op> ::= “=“;
<rhs> ::= <integer> 

<arith-op> <integer>;
<arith-op> ::= “+” | ”-” | ”*” | ”/”;
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Top-Down Parse (1)
• In this example we will construct a parse tree for the 

assignment:
counter = 3 + 4

• The parser looks for the sentence symbol to create the 
root node:

• The first symbol in the rule is an LHS so we add it to the 
parse tree:

<assign>

<assign>

<lhs>
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Top-Down Parse (2)
• An LHS is an IDENT which we add to the tree:

• In our example “counter” is an IDENT – we have a match and add it 
to the tree:

<assign>

<lhs>

<ident>

<assign>

<lhs>

<ident>

“counter”
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Top-Down Parse (3)
• The next expected item is the assignment operation, so it is added 

to the tree (at the current root because it is a non-terminal):

• An assignment operator is a non-terminal an looks at the next token 
and finds one:

<assign>

…
<ass-op>

<assign>

…
<ass-op>

“=“
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Top-Down Parse (4)
• The next item to be expected is an RHS which is a non-

terminal so we add it to the current root:

• The procedure is repeated until we complete the tree 
and find out that our assignment is structurally correct.

<assign>

…
…

<rhs>
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Top-Down Parse (5)

<assign>

<lhs>

<ident>

“counter”

<ass-op>

“=“

<rhs>

<integer>

“3”

<arith-op>

“+”

<integer>

“4”
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Bottom-Up Parse (1)
• The first token in the input is an IDENT so the leaf of the 

tree is obtained:

• By having a look at the rules we see that an IDENT is an 
LHS, so the tree grows up:

<ident>

“counter”

<lhs>

<ident>

“counter”
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Bottom-Up Parse (2)
• An LHS on it’s own cannot be resolved into anything else, so we 

continue reading from the input. We find an “=“ sign so it’s added as 
a leaf:

• The ASS-OP non-terminal cannot be resolved into anything else 
and neither can the LHS ASS-OP sequence so we continue reading 
the input and find a number which we add as a leaf:

<lhs>

<ident>

“counter”

<ass-op>

“=“
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Bottom Up Parse (3)

• This process continues until we consumed the whole input:

<lhs>

<ident>

“counter”

<ass-op>

“=“

<integer>

“3”

<lhs>

<ident>

“counter”

<ass-op>

“=“

<integer>

“3”

<arith-op>

“+”

<integer>

“3”
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Bottom-Up Parse (4)
• After reading the last integer we see that the INTEGER ARITH-OP 

INTEGER sequence can be reduced to an RHS:

• Similarly in the next step we see that the resulting LHS ASS-OP 
RHS sequence can be further reduced to an ASSIGN, thus the 
parse is complete.

<lhs>

<ident>

“counter”

<ass-op>

“=“

<integer>

“3”

<arith-op>

“+”

<integer>

“3”

<rhs>
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Things to Note…
• The grammar chosen for this example was purposely 

designed to keep the example simple.
• In reality parsing mechanisms are more sophisticated 

and grammars may really manifest properties that make 
parsing more complex. Consider the following grammar 
for a more elaborate assignment:

<assign> ::= <lhs> <ass-op> <rhs>;
<lhs> ::= <ident>;
<rhs> ::= <factor> { <arith-op> <factor> };
<factor> ::= <ident> | <integer>;
<ass-op> ::= “=“
<arith-op> ::= “+” | “-” | “*” | “/”
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…Things to Note
• When parsing the assignment statement using the 

original grammar, when we read the identifier leaf, we 
saw that it could be reduced to an LHS (see Bottom-Up 
Parse (1)). Using the grammar presented above, we see 
that the identifier could be reduced to both an LHS or a 
FACTOR. The question here is – Which path shall I 
follow?

• Such issues are tackled by more sophisticated parsers.
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Parsing a Variable Declaration (1)

• The simplest way to hand-code parsers is to provide 
programming language equivalents to BNF notational 
constructs:

If-Then Statement.Optional Items – [ ]

If-Then-Else statements.Alternatives - |

A while loop.Repetitions - { }

A procedure or function call.Non-Terminal Symbols

Test for the terminal symbol.Terminal Symbols
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Parsing a Variable Declaration (2)

• Consider simple variable declaration statements:

integer i,j,k
boolean isReady

• A suitable grammar to parse such statements would 
be:

<VarDecl> ::= <TypeName> <VarNameList>;
<TypeName> ::= INTEGER|BOOLEAN|REAL;
<VarNameList> :: <VarName> {“,” <VarName>};
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Parsing a Variable Declaration (3)

• For each Non-Terminal symbol, we define a 
function to parse it:

Function Parse_VarDecl(TOKEN)
// Parse the type name
LOOKAHEAD = Parse_TypeName(TOKEN)

// Parse the variable name list
LOOKAHEAD = Parse_VarNameList(LOOKAHEAD)

Return LOOKAHEAD
End Function
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Parsing a Variable Declaration (4)

• Since the Variable Declaration (VarDecl) is 
defined in terms of 2 other Non-Terminals 
(TypeName and VarNameList), it’s parse is 
defined as calls to two other functions to parse 
each other non-terminal.

• Just as we had a look ahead character in the 
lexical analyser, we need a look ahead token in 
the parse tree.
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Parsing a Variable Declaration (5)

• Parsing the Type Name:

Function Parse_TypeName(TOKEN)
If TOKEN is INTEGER_TOKEN then
Return NextToken // New Lookahead

ElseIf TOKEN is BOOLEAN_TOKEN then
Return NextToken

ElseIf TOKEN is REAL_TOKEN then
Return NextToken

Else
Print “Missing Type Name in Declaration”
Return Error

End If
End Function
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Parsing a Variable Declaration (6)
• Note that in the previous example we used two of the transliteration 

mechanisms. We ised simple checks to see if a token is a non-
terminal and we used If-Then-Else statements for alternatives.

• Parsing the Variable Name List:

Function Parse_VarNameList(TOKEN)
LOOKAHEAD = Parse_VarName(TOKEN)
While LOOKAHEAD = COMMA_TOKEN
LOOKAHEAD = NextToken
LOOKAHEAD = Parse_VarName(LOOKAHEAD)

End While

Return LOOKAHEAD
End Function
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Parsing a Variable Declaration (7)
• In the preceding example we used a combination of parsing both 

terminals (comma’s) and non-terminals (variable names). The 
repetition was handled by a while loop that allowed for zero-or more 
items enclosed in the braces { }.

• Parsing the variable name:

Function Parse_VarName(TOKEN)
If TOKEN = IDENT_TOKEN then
Return NextToken

else
Print “Missing Identifier”
Return Error

End If 
End Function
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Parsing an If-Then Statement (1)

• Consider the following definition for an if-then 
statement:

<IF_STMT> ::= “IF” <EXPRESSION> “THEN”
<STMT_BLOCK> 
[“ELSE” <STMT_BLOCK>]
“ENDIF”
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Function Parse_If(TOKEN)
If TOKEN = IF_TOKEN Then

LOOKAHEAD = NEXTTOKEN
// Parse the Expression
LOOKAHEAD = Parse_Expression(LOOKAHEAD)
If LOOKAHEAD = THEN_TOKEN then

LOOKAHEAD = NEXTTOKEN
LOOKAHEAD = Parse_StmtBlock(LOOKAHEAD)
// see if we have an else part
If LOOKAHEAD = ELSE_TOKEN then

LOOKAHEAD = NEXTTOKEN
LOOKAHEAD = Parse_StmtBlock(LOOKAHEAD)

End If
// get the ENDIF
If LookAhead = ENDIF_TOKEN Then

Return NEXTTOKEN
Else

Print “Missing ENDIF in conditional”
Return Error

End If
Else

Print “Missing THEN in conditional”
Return Error

End If

End If
End Function
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Syntax Errors
• Consider the following assignment statement with a 

missing comma:

integer i,j k;

• The parse will proceed normally in the VarNameList part 
until the variable k is found instead of the comma. The 
function will “think” that the variable name list has 
terminated returning k as the look ahead token. The 
parser will look for the ending semi-colon and will find a k 
instead reporting a missing semi-colon instead of the 
missing comma.


