
1

Kristian Guillaumier, 2001 46

Designing a Lexical Analyser
• The key function in a lexical analyser is a routine called GetNextToken that

extracts tokens one-by-one from the source file.
• The lexical analyser repeatedly makes calls to GetNextToken to process the

whole file.
• When tokenising the input it is important to identify the Token Separators.

These separators are special characters that delimit one token from an
other. In many programming languages, the token separators are usially
spaces, tab stops and carriage returns.

• The scanning loop can look like:

Initialise;
loop

symbol = GetNextToken();
Print symbol;

Until symbol = End_Of_File;
Clean_Up;

Kristian Guillaumier, 2001 47

Recognising Tokens

• The scanner will start recognising a token after
reading the first character:

• If the first character is:
– A letter: then we’re dealing with a keyword or

identifier.
– Numeric: then we’re dealing with a number.
– An Opening Quote (“): then we’re dealing with a

string.
– Etc…

2

Kristian Guillaumier, 2001 48

GetNextToken
Function GetNextToken

CurrentChar = Get the next significant character

If CurrentChar = EOF Then
Deal with the end of file

Else
If CurrentChar = Digit Then

CurrentToken = Deal With Number
Else If CurrentChar = Letter Then

CurrentToken = Deal With a Word
Else If

...
Else

CurrentToken = Error – Illegal Character
End IF
GetNextToken = CurrentToken

End If
End Function

Kristian Guillaumier, 2001 49

GetWord
Function GetWord

MyToken = CurrentChar
CurrentChar = Get the next significant character

While CurrentChar is Valid in a Word
MyToken = MyToken + CurrentChar
CurrentChar = Get next significant character

Wend

Return MyToken

End Function

3

Kristian Guillaumier, 2001 50

Look Ahead

• Since we are reading characters until we find
one that is not part of a word, the last one is
essentially one extra character. We must not
discard it. In fact CurrentChar is usually
implemented as a global variable.

• This extra character is called the LookAhead
character.

Kristian Guillaumier, 2001 51

GetString
Function GetString

MyToken = CurrentChar ‘ the opening quote
CurrentChar = Get the next significant character

While CurrentChar is not the Closing Quote
MyToken = MyToken + CurrentChar
CurrentChar = Get next significant character

Wend

MyToken = MyToken + CurrentChar ‘ The closing quote

‘ Again read an extra character for consistency
CurrentChar = Get the next significant character

Return MyToken

End Function

4

Kristian Guillaumier, 2001 52

Error Reporting

• There are only a few errors that can be detected
by the scanner. Such errors include:
– Missing closing quote in a string. Missing quotes are

a major issue, since characters will be read until the
opening quote of the next sting are found, potentially
‘eating-up’ much of the actual code. This problem is
typically alleviated by not allowing strings to span
over multiple lines.

– Illegal characters in the input file.

Kristian Guillaumier, 2001 53

Parsing
• When analysing a programs syntax, a data structure

called the Parse Tree is built to reflect the structure of
the program.

• The nodes of the parse tree are the Non-Terminal
symbols, whilst the leaves are the Terminals (Σ).

• The root node is the sentence symbol (S).
• There are two main methods of parsing:

– Top-Down Parsing – the parse tree is build from the root
downwards.

– Bottom-Up Parsing – the parse tree is built from the leaves
upwards to the root.

5

Kristian Guillaumier, 2001 54

Simple Parsing Example

• Consider the BNF specification for a simple
assignment statement:

<assign> ::= <lhs> <ass-op> <rhs>;
<lhs> ::= <ident>;
<ass-op> ::= “=“;
<rhs> ::= <integer>

<arith-op> <integer>;
<arith-op> ::= “+” | ”-” | ”*” | ”/”;

Kristian Guillaumier, 2001 55

Top-Down Parse (1)
• In this example we will construct a parse tree for the

assignment:
counter = 3 + 4

• The parser looks for the sentence symbol to create the
root node:

• The first symbol in the rule is an LHS so we add it to the
parse tree:

<assign>

<assign>

<lhs>

6

Kristian Guillaumier, 2001 56

Top-Down Parse (2)
• An LHS is an IDENT which we add to the tree:

• In our example “counter” is an IDENT – we have a match and add it
to the tree:

<assign>

<lhs>

<ident>

<assign>

<lhs>

<ident>

“counter”

Kristian Guillaumier, 2001 57

Top-Down Parse (3)
• The next expected item is the assignment operation, so it is added

to the tree (at the current root because it is a non-terminal):

• An assignment operator is a non-terminal an looks at the next token
and finds one:

<assign>

…
<ass-op>

<assign>

…
<ass-op>

“=“

7

Kristian Guillaumier, 2001 58

Top-Down Parse (4)
• The next item to be expected is an RHS which is a non-

terminal so we add it to the current root:

• The procedure is repeated until we complete the tree
and find out that our assignment is structurally correct.

<assign>

…
…

<rhs>

Kristian Guillaumier, 2001 59

Top-Down Parse (5)

<assign>

<lhs>

<ident>

“counter”

<ass-op>

“=“

<rhs>

<integer>

“3”

<arith-op>

“+”

<integer>

“4”

8

Kristian Guillaumier, 2001 60

Bottom-Up Parse (1)
• The first token in the input is an IDENT so the leaf of the

tree is obtained:

• By having a look at the rules we see that an IDENT is an
LHS, so the tree grows up:

<ident>

“counter”

<lhs>

<ident>

“counter”

Kristian Guillaumier, 2001 61

Bottom-Up Parse (2)
• An LHS on it’s own cannot be resolved into anything else, so we

continue reading from the input. We find an “=“ sign so it’s added as
a leaf:

• The ASS-OP non-terminal cannot be resolved into anything else
and neither can the LHS ASS-OP sequence so we continue reading
the input and find a number which we add as a leaf:

<lhs>

<ident>

“counter”

<ass-op>

“=“

9

Kristian Guillaumier, 2001 62

Bottom Up Parse (3)

• This process continues until we consumed the whole input:

<lhs>

<ident>

“counter”

<ass-op>

“=“

<integer>

“3”

<lhs>

<ident>

“counter”

<ass-op>

“=“

<integer>

“3”

<arith-op>

“+”

<integer>

“3”

Kristian Guillaumier, 2001 63

Bottom-Up Parse (4)
• After reading the last integer we see that the INTEGER ARITH-OP

INTEGER sequence can be reduced to an RHS:

• Similarly in the next step we see that the resulting LHS ASS-OP
RHS sequence can be further reduced to an ASSIGN, thus the
parse is complete.

<lhs>

<ident>

“counter”

<ass-op>

“=“

<integer>

“3”

<arith-op>

“+”

<integer>

“3”

<rhs>

10

Kristian Guillaumier, 2001 64

Things to Note…
• The grammar chosen for this example was purposely

designed to keep the example simple.
• In reality parsing mechanisms are more sophisticated

and grammars may really manifest properties that make
parsing more complex. Consider the following grammar
for a more elaborate assignment:

<assign> ::= <lhs> <ass-op> <rhs>;
<lhs> ::= <ident>;
<rhs> ::= <factor> { <arith-op> <factor> };
<factor> ::= <ident> | <integer>;
<ass-op> ::= “=“
<arith-op> ::= “+” | “-” | “*” | “/”

Kristian Guillaumier, 2001 65

…Things to Note
• When parsing the assignment statement using the

original grammar, when we read the identifier leaf, we
saw that it could be reduced to an LHS (see Bottom-Up
Parse (1)). Using the grammar presented above, we see
that the identifier could be reduced to both an LHS or a
FACTOR. The question here is – Which path shall I
follow?

• Such issues are tackled by more sophisticated parsers.

11

Kristian Guillaumier, 2001 66

Parsing a Variable Declaration (1)

• The simplest way to hand-code parsers is to provide
programming language equivalents to BNF notational
constructs:

If-Then Statement.Optional Items – []

If-Then-Else statements.Alternatives - |

A while loop.Repetitions - { }

A procedure or function call.Non-Terminal Symbols

Test for the terminal symbol.Terminal Symbols

Kristian Guillaumier, 2001 67

Parsing a Variable Declaration (2)

• Consider simple variable declaration statements:

integer i,j,k
boolean isReady

• A suitable grammar to parse such statements would
be:

<VarDecl> ::= <TypeName> <VarNameList>;
<TypeName> ::= INTEGER|BOOLEAN|REAL;
<VarNameList> :: <VarName> {“,” <VarName>};

12

Kristian Guillaumier, 2001 68

Parsing a Variable Declaration (3)

• For each Non-Terminal symbol, we define a
function to parse it:

Function Parse_VarDecl(TOKEN)
// Parse the type name
LOOKAHEAD = Parse_TypeName(TOKEN)

// Parse the variable name list
LOOKAHEAD = Parse_VarNameList(LOOKAHEAD)

Return LOOKAHEAD
End Function

Kristian Guillaumier, 2001 69

Parsing a Variable Declaration (4)

• Since the Variable Declaration (VarDecl) is
defined in terms of 2 other Non-Terminals
(TypeName and VarNameList), it’s parse is
defined as calls to two other functions to parse
each other non-terminal.

• Just as we had a look ahead character in the
lexical analyser, we need a look ahead token in
the parse tree.

13

Kristian Guillaumier, 2001 70

Parsing a Variable Declaration (5)

• Parsing the Type Name:

Function Parse_TypeName(TOKEN)
If TOKEN is INTEGER_TOKEN then
Return NextToken // New Lookahead

ElseIf TOKEN is BOOLEAN_TOKEN then
Return NextToken

ElseIf TOKEN is REAL_TOKEN then
Return NextToken

Else
Print “Missing Type Name in Declaration”
Return Error

End If
End Function

Kristian Guillaumier, 2001 71

Parsing a Variable Declaration (6)
• Note that in the previous example we used two of the transliteration

mechanisms. We ised simple checks to see if a token is a non-
terminal and we used If-Then-Else statements for alternatives.

• Parsing the Variable Name List:

Function Parse_VarNameList(TOKEN)
LOOKAHEAD = Parse_VarName(TOKEN)
While LOOKAHEAD = COMMA_TOKEN
LOOKAHEAD = NextToken
LOOKAHEAD = Parse_VarName(LOOKAHEAD)

End While

Return LOOKAHEAD
End Function

14

Kristian Guillaumier, 2001 72

Parsing a Variable Declaration (7)
• In the preceding example we used a combination of parsing both

terminals (comma’s) and non-terminals (variable names). The
repetition was handled by a while loop that allowed for zero-or more
items enclosed in the braces { }.

• Parsing the variable name:

Function Parse_VarName(TOKEN)
If TOKEN = IDENT_TOKEN then
Return NextToken

else
Print “Missing Identifier”
Return Error

End If
End Function

Kristian Guillaumier, 2001 73

Parsing an If-Then Statement (1)

• Consider the following definition for an if-then
statement:

<IF_STMT> ::= “IF” <EXPRESSION> “THEN”
<STMT_BLOCK>
[“ELSE” <STMT_BLOCK>]
“ENDIF”

15

Kristian Guillaumier, 2001 74

Function Parse_If(TOKEN)
If TOKEN = IF_TOKEN Then

LOOKAHEAD = NEXTTOKEN
// Parse the Expression
LOOKAHEAD = Parse_Expression(LOOKAHEAD)
If LOOKAHEAD = THEN_TOKEN then

LOOKAHEAD = NEXTTOKEN
LOOKAHEAD = Parse_StmtBlock(LOOKAHEAD)
// see if we have an else part
If LOOKAHEAD = ELSE_TOKEN then

LOOKAHEAD = NEXTTOKEN
LOOKAHEAD = Parse_StmtBlock(LOOKAHEAD)

End If
// get the ENDIF
If LookAhead = ENDIF_TOKEN Then

Return NEXTTOKEN
Else

Print “Missing ENDIF in conditional”
Return Error

End If
Else

Print “Missing THEN in conditional”
Return Error

End If

End If
End Function

Kristian Guillaumier, 2001 75

Syntax Errors
• Consider the following assignment statement with a

missing comma:

integer i,j k;

• The parse will proceed normally in the VarNameList part
until the variable k is found instead of the comma. The
function will “think” that the variable name list has
terminated returning k as the look ahead token. The
parser will look for the ending semi-colon and will find a k
instead reporting a missing semi-colon instead of the
missing comma.

