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Backtracking (1)
• Consider the Grammar:

S cAd
A ab | a

• Given the input string cad, we try and construct the 
parse tree. We initially start by creating the Root of the 
tree from S (the current token is c in the input string:

S
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Backtracking (2)
• Clearly the current token c does not match S so we expand S using 

the first (and only rule):

• The leftmost leaf matches our input symbol c so we proceed to the 
next one a and consider the next leaf A. In expanding A, we have 
two alternatives. Having no preference, we arbitrarily choose the first 
one to get the tree:

S

c A d

S

c A d

a b
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Backtracking (3)
• We have a match for the current token a, so we proceed 

with the next one d. Looking at the next leaf b, we see 
that the token does not match, so we must have 
expanded using the wrong production. We must 
backtrack to the state before the production was chosen 
– the current symbol is set back to a, and the tree:

S

c A d
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Backtracking (4)
• We now try the other alternative and expand the 

tree to:

• The current input a matches the leaf. We move 
to the next token d and the next leaf, which 
match too. All the input has been consumed and 
we have completed the parse successfully.

S

c A d

a
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Notes (1)
• The parsing methods we have seen are called recursive-descent

parsers.
• Grammars can be rearranged to eliminate the need for backtracking. 

Parsers for such grammars are called predictive parsers.
• A left-recursive grammar (productions of the type A Aα) can 

cause a recursive-descent parser to go into infinite loops, even if it 
has backtracking.

• Consider the grammar:

S Sa
s ε

• Our task is to parse the string aaaaaa.
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Notes (2)
• The current token is a. We expand the S node to get the 

tree:

• The first leaf is a non-terminal so we expand again. We 
have two choices so we arbitrarily choose the first:

S

S a

S

S a

S a
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Notes (3)
• Again, the first leaf is a non-terminal so we expand 

again. We have two choices so we arbitrarily choose the 
first:

• The problem is that the tree will continue growing 
indefinitely without ever consuming any input (the 
terminating condition is never achieved).

S

S a

S a

S a
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Eliminating Left-Recursion
• A grammar is left-recursive if it has a derivation of the 

type A ⇒+ Aα.
• As we have seen, top-down parsers cannot handle left-

recursion, so we need a transformation these grammars 
into right recursive ones.

• A left-recursive production of the form 
A Aα | β

• Can be rewritten as:
A βA’

A’ αA’ | ε
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Example
• Consider the following grammar for arithmetic expressions

E E + T | T
T T * F | F
F ( E ) | Ident

• The grammar is rewritten as:

E  TE’
E’ +TE’ | ε
T  FT’
T’ *FT’ | ε
F  ( E ) | Ident
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Non-Immediate Left-Recursion
• Immediate left-recursion involves productions that involve left-

recursive derivations in one step:

A Aα

• There are cases where left-recursion may occur after more than one 
derivational steps. For example, the following grammar is not 
immediately left recursive:

S Aa | b
A Ac | Sd | ε

• The Non-Terminal S is left-recursive because S ⇒ Aa ⇒ Sda
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Multiple A-Productions
• In the previous example, we considered 

eliminating a single instance of left-recursions 
from an A-Production (A Aα | β)

• No matter how many left-recursive A-
productions there are (A Aα1 | Aα2 | … | 
Aαm | β1 | β2 | … | βn), all we have to do 
is replace the productions by:

A  β1A’ | β2A’ | … | βnA’
A’ α1A’ | α2A’ | … | αmA’ | ε
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Algorithm for Eliminating Left-
Recursion (1)
• This algorithm is guaranteed to eliminate left-

recursion for grammars having:
– No Cycles: A ⇒+ A
– No Empty Productions: A ε

• The input of the Algorithm is a grammar G with 
No Cycles or Empty Productions.

• The output of the Algorithm is the equivalent 
grammar without left-recursion.
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Algorithm for Eliminating Left-
Recursion (2)
Arrange the Non-Terminals in some order A1, A2, … , An.

For i  = 1 to n
For j = 1 to (i-1)

replace every production of the form
Ai Ajγ by the productions 
Ai δ1γ | δ2γ | … | δkγ, where
Aj δ1 | δ2 | … | δk

Next j
Eliminate the immediate left-recursion 

among the Ai productions
Next i
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Example on a Grammar (1)
• Consider the grammar:

S Aa | b
A Ac | Sd | ε

• Note: technically, the algorithm is not guaranteed to 
work because of the A ε empty production, though in 
this case it does.

• We order the non-terminals as S, A.
• Starting from S (i = 1), the inner j loop does not 

execute and we have to eliminate immediate left 
recursion. But there is no immediate left recursion 
among S productions so nothing happens.
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Example on a Grammar (2)
• For the step i = 2, the inner j loop, substitutes all 

occurrences of S in the A-Productions, producing the 
following:

A Ac | Aad | bd | ε

• In this case we do have left recursion so proceed to 
remove it, producing:

S  Aa | B
A  bdA’ | A’
A’ cA’ | adA’ | ε
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Left-Factoring (1)
• Left-factoring is a grammar transformation that produces 

grammars suitable for predictive parsing. The basic idea 
is that when it is not clear which of two alternative 
productions to use to expand a non-terminal A, we defer 
the decision until we have seen enough input to make 
the right choice.

• Consider the two productions:

stmt “if” expr “then” stmt “else” stmt
stmt “if” expr “then” stmt

• On seeing the input “IF”, it is not clear which production 
to use to expand the statement.
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Left-Factoring (2)
• In general, given two productions:

A αβ1
A αβ2

• We may rewrite the rules as:

A  αA’
A’ β1 | β2

• This way we have only one choice for expanding A.

Kristian Guillaumier, 2001 93

Algorithm for Left-Factoring
Input: Grammar G.
Output: An equivalent left-factored grammar.
Method:

1. For each non-terminal A, find the longest prefix α common to 
all the alternatives (2 or more).

2. If α ≠ ε (there IS a common prefix)
3. Replace all the productions for A having the prefix α (A αβ1 , 

A αβ2 , … , A αβn) with:

A  αA’
A’ β1 , β2 , … , βn
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Operator Precedence Parsing of 
Expressions
• The basis of Operator Precedence Parsing is 

assigning a priority to each operator in an 
expression. For example:

3 * 4 + 5 = (3 * 4) + 5

• Parenthesis may be used to change and visually 
emphasis precedence:

3 * (4 + 5) ≠ 3 * 4 + 5
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Associativity of Operators
• Associativity for an operator, say ⊗, may be left-

associative or right associative:
– Left-Associative: expression x ⊗ y ⊗ z is 

evaluated as (x ⊗ y) ⊗ z
– Right-Associative: expression x ⊗ y ⊗ z is 

evaluated as x ⊗ (y ⊗ z)
• For example, given: a = 4, b = 5, c = 2, 

the expression a – b – c may be evaluated 
as:
– (a – b) – c = (4 – 5) – 2 = -3, or
– a – (b – c) = 4 – (5 – 2) = 1
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Operator Precedence for Parsing 
Simple Expressions (1)
• Given the following grammar for simple 

expressions:

expr ::= <primary> {<op> <expr>};
primary ::= <ident>

| <constant>
| ‘-’ <primary>
| ‘+’ <primary>
| ‘(‘ <expr> ‘)’;
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Parsing the Primaries (1)
Function Parse_Primary(token)

if token = IDENTIFIER then
// create a leaf with the identifier
node = IdentLeaf(token)

else if token = CONSTANT then
// create a leaf with the constant
node = ConstantLeaf(token)

else if token = ADD_OP or token = SUB_OP then
remember the operator
lookahead = GetNextToken()
// parse the primary following the unary op
primary_node = Parse_Primary(lookahead)
// combine the unary op and primary in a node
node = UnaryOpNode(saved operator, primary_node)
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Parsing the Primaries (2)
else if token = OPEN_BRACKET then

lookahead = GetNextToken()
// the Parse_Expression function returns the expression
// node and consumes the next lookahead character
// which should be the closing bracket
node = Parse_Expression(lookahead)

if lookahead <> CLOSE_BEACKET then
Error – Missing Closing Bracket

else // read the lookahead
lookahead = GetNextToken()

end if
else

// an invalid character
Error – Invalid character in primary

end if
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Parsing the Expression (1)
Function Parse_Expression(token, LeftPriority)

lhs = Parse_Primary(token)
if Primary Parsed Correctly then

EndOfExpression = FALSE

While (token is an oparator) 
AND (NOT EndOfExpression)

// see if this operator has a higher priority
// than the one to its left. The priority
// of the token to the left is passed as an
// argument to this function
if    (Priority of current op) 

> (LeftPriority) then
// this op takes precedence – parse the rhs
Remember this operator
token = GetNextToken()
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Parsing the Expression (2)
rhs = Parse_Expression(token,

Priority of current op) 

// combine the lhs to the rhs to act as an
// lhs for further operators to the right
lhs = BinaryOpNode(lhs, Current Op, rhs)

else
// left op has higher or equal priority
EndOfExpression = TRUE

end if 
end while

// make expression node in parse tree
node = ExpressionNode(lhs)

return the lookahead at expression node
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Example (1)
• Consider the parsing of the expression “3 + 4 * 5 / 
6”

• The first call to Parse_Expression would be 
ParseExpression(3, 0)
– Since there are no operators to the left we pass 0 (the lowest 

possible priority).
– The call to Parse_Primary will create a constant leaf 

containing 3.
– The operator read is a “+” which has a higher priority than the 

one to the left (which actually doesn’t exist)
– An re-invocation to Parse_Expression is made to parse the 

rhs.
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Example (2)
• The call to parse the rhs would be Parse_Expression (4, 

Priority of “+”).
– Parse_Primary will create a constant leaf for “4”.
– The operator here is “*” which has a higher priority than the 

one on it’s left “+”
– Another call to Parse_Expression is made to parse the rhs.

• The call to parse the rhs would be Parse_Expression(5, 
Priority of “*”).
– Parse_Primary will create a constant leaf for “5”.
– The operator here is “/” which does not have a priority greater 

than the one to the left “*” so EndOfExpression is set to true, 
the function terminates and control passes to the previous call of 
Parse_Expression(4, Priority of “+”)
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Example (3)

• So far the tree is:

• Now Parse_Expression has both the LHS 
and RHS of the multiplication and can join the 
nodes to get:

constant

3

constant

4

constant

5

constant

4

constant

5

*

constant

3
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Example (4)

• The multiplication becomes the lhs for the 
current token “/”. This is greater then the 
priority of the current left operator “+” so a new 
call to parse is made:

• Parse_Expression(6, Priority of “/”)
– The function will return after creating the constant leaf 

for “6”.

constant

4

constant

5

*

constant

3

constant

6
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Example (5)

• The function will now return to the previous call 
that will join the lhs and rhs using the division 
node:

constant

4

constant

5

*

constant

3

constant

6

/
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Example (6)

• Again the function will return to the previous call 
that will join the lhs and rhs using the addition 
node:

constant

4

constant

5

*

constant

3

constant

6

/

+


