
1

Kristian Guillaumier, 2001 76

Backtracking (1)
• Consider the Grammar:

S cAd
A ab | a

• Given the input string cad, we try and construct the
parse tree. We initially start by creating the Root of the
tree from S (the current token is c in the input string:

S

Kristian Guillaumier, 2001 77

Backtracking (2)
• Clearly the current token c does not match S so we expand S using

the first (and only rule):

• The leftmost leaf matches our input symbol c so we proceed to the
next one a and consider the next leaf A. In expanding A, we have
two alternatives. Having no preference, we arbitrarily choose the first
one to get the tree:

S

c A d

S

c A d

a b

2

Kristian Guillaumier, 2001 78

Backtracking (3)
• We have a match for the current token a, so we proceed

with the next one d. Looking at the next leaf b, we see
that the token does not match, so we must have
expanded using the wrong production. We must
backtrack to the state before the production was chosen
– the current symbol is set back to a, and the tree:

S

c A d

Kristian Guillaumier, 2001 79

Backtracking (4)
• We now try the other alternative and expand the

tree to:

• The current input a matches the leaf. We move
to the next token d and the next leaf, which
match too. All the input has been consumed and
we have completed the parse successfully.

S

c A d

a

3

Kristian Guillaumier, 2001 80

Notes (1)
• The parsing methods we have seen are called recursive-descent

parsers.
• Grammars can be rearranged to eliminate the need for backtracking.

Parsers for such grammars are called predictive parsers.
• A left-recursive grammar (productions of the type A Aα) can

cause a recursive-descent parser to go into infinite loops, even if it
has backtracking.

• Consider the grammar:

S Sa
s ε

• Our task is to parse the string aaaaaa.

Kristian Guillaumier, 2001 81

Notes (2)
• The current token is a. We expand the S node to get the

tree:

• The first leaf is a non-terminal so we expand again. We
have two choices so we arbitrarily choose the first:

S

S a

S

S a

S a

4

Kristian Guillaumier, 2001 82

Notes (3)
• Again, the first leaf is a non-terminal so we expand

again. We have two choices so we arbitrarily choose the
first:

• The problem is that the tree will continue growing
indefinitely without ever consuming any input (the
terminating condition is never achieved).

S

S a

S a

S a

Kristian Guillaumier, 2001 83

Eliminating Left-Recursion
• A grammar is left-recursive if it has a derivation of the

type A ⇒+ Aα.
• As we have seen, top-down parsers cannot handle left-

recursion, so we need a transformation these grammars
into right recursive ones.

• A left-recursive production of the form
A Aα | β

• Can be rewritten as:
A βA’

A’ αA’ | ε

5

Kristian Guillaumier, 2001 84

Example
• Consider the following grammar for arithmetic expressions

E E + T | T
T T * F | F
F (E) | Ident

• The grammar is rewritten as:

E TE’
E’ +TE’ | ε
T FT’
T’ *FT’ | ε
F (E) | Ident

Kristian Guillaumier, 2001 85

Non-Immediate Left-Recursion
• Immediate left-recursion involves productions that involve left-

recursive derivations in one step:

A Aα

• There are cases where left-recursion may occur after more than one
derivational steps. For example, the following grammar is not
immediately left recursive:

S Aa | b
A Ac | Sd | ε

• The Non-Terminal S is left-recursive because S ⇒ Aa ⇒ Sda

6

Kristian Guillaumier, 2001 86

Multiple A-Productions
• In the previous example, we considered

eliminating a single instance of left-recursions
from an A-Production (A Aα | β)

• No matter how many left-recursive A-
productions there are (A Aα1 | Aα2 | … |
Aαm | β1 | β2 | … | βn), all we have to do
is replace the productions by:

A β1A’ | β2A’ | … | βnA’
A’ α1A’ | α2A’ | … | αmA’ | ε

Kristian Guillaumier, 2001 87

Algorithm for Eliminating Left-
Recursion (1)
• This algorithm is guaranteed to eliminate left-

recursion for grammars having:
– No Cycles: A ⇒+ A
– No Empty Productions: A ε

• The input of the Algorithm is a grammar G with
No Cycles or Empty Productions.

• The output of the Algorithm is the equivalent
grammar without left-recursion.

7

Kristian Guillaumier, 2001 88

Algorithm for Eliminating Left-
Recursion (2)
Arrange the Non-Terminals in some order A1, A2, … , An.

For i = 1 to n
For j = 1 to (i-1)

replace every production of the form
Ai Ajγ by the productions
Ai δ1γ | δ2γ | … | δkγ, where
Aj δ1 | δ2 | … | δk

Next j
Eliminate the immediate left-recursion

among the Ai productions
Next i

Kristian Guillaumier, 2001 89

Example on a Grammar (1)
• Consider the grammar:

S Aa | b
A Ac | Sd | ε

• Note: technically, the algorithm is not guaranteed to
work because of the A ε empty production, though in
this case it does.

• We order the non-terminals as S, A.
• Starting from S (i = 1), the inner j loop does not

execute and we have to eliminate immediate left
recursion. But there is no immediate left recursion
among S productions so nothing happens.

8

Kristian Guillaumier, 2001 90

Example on a Grammar (2)
• For the step i = 2, the inner j loop, substitutes all

occurrences of S in the A-Productions, producing the
following:

A Ac | Aad | bd | ε

• In this case we do have left recursion so proceed to
remove it, producing:

S Aa | B
A bdA’ | A’
A’ cA’ | adA’ | ε

Kristian Guillaumier, 2001 91

Left-Factoring (1)
• Left-factoring is a grammar transformation that produces

grammars suitable for predictive parsing. The basic idea
is that when it is not clear which of two alternative
productions to use to expand a non-terminal A, we defer
the decision until we have seen enough input to make
the right choice.

• Consider the two productions:

stmt “if” expr “then” stmt “else” stmt
stmt “if” expr “then” stmt

• On seeing the input “IF”, it is not clear which production
to use to expand the statement.

9

Kristian Guillaumier, 2001 92

Left-Factoring (2)
• In general, given two productions:

A αβ1
A αβ2

• We may rewrite the rules as:

A αA’
A’ β1 | β2

• This way we have only one choice for expanding A.

Kristian Guillaumier, 2001 93

Algorithm for Left-Factoring
Input: Grammar G.
Output: An equivalent left-factored grammar.
Method:

1. For each non-terminal A, find the longest prefix α common to
all the alternatives (2 or more).

2. If α ≠ ε (there IS a common prefix)
3. Replace all the productions for A having the prefix α (A αβ1 ,

A αβ2 , … , A αβn) with:

A αA’
A’ β1 , β2 , … , βn

10

Kristian Guillaumier, 2001 94

Operator Precedence Parsing of
Expressions
• The basis of Operator Precedence Parsing is

assigning a priority to each operator in an
expression. For example:

3 * 4 + 5 = (3 * 4) + 5

• Parenthesis may be used to change and visually
emphasis precedence:

3 * (4 + 5) ≠ 3 * 4 + 5

Kristian Guillaumier, 2001 95

Associativity of Operators
• Associativity for an operator, say ⊗, may be left-

associative or right associative:
– Left-Associative: expression x ⊗ y ⊗ z is

evaluated as (x ⊗ y) ⊗ z
– Right-Associative: expression x ⊗ y ⊗ z is

evaluated as x ⊗ (y ⊗ z)
• For example, given: a = 4, b = 5, c = 2,

the expression a – b – c may be evaluated
as:
– (a – b) – c = (4 – 5) – 2 = -3, or
– a – (b – c) = 4 – (5 – 2) = 1

11

Kristian Guillaumier, 2001 96

Operator Precedence for Parsing
Simple Expressions (1)
• Given the following grammar for simple

expressions:

expr ::= <primary> {<op> <expr>};
primary ::= <ident>

| <constant>
| ‘-’ <primary>
| ‘+’ <primary>
| ‘(‘ <expr> ‘)’;

Kristian Guillaumier, 2001 97

Parsing the Primaries (1)
Function Parse_Primary(token)

if token = IDENTIFIER then
// create a leaf with the identifier
node = IdentLeaf(token)

else if token = CONSTANT then
// create a leaf with the constant
node = ConstantLeaf(token)

else if token = ADD_OP or token = SUB_OP then
remember the operator
lookahead = GetNextToken()
// parse the primary following the unary op
primary_node = Parse_Primary(lookahead)
// combine the unary op and primary in a node
node = UnaryOpNode(saved operator, primary_node)

12

Kristian Guillaumier, 2001 98

Parsing the Primaries (2)
else if token = OPEN_BRACKET then

lookahead = GetNextToken()
// the Parse_Expression function returns the expression
// node and consumes the next lookahead character
// which should be the closing bracket
node = Parse_Expression(lookahead)

if lookahead <> CLOSE_BEACKET then
Error – Missing Closing Bracket

else // read the lookahead
lookahead = GetNextToken()

end if
else

// an invalid character
Error – Invalid character in primary

end if

Kristian Guillaumier, 2001 99

Parsing the Expression (1)
Function Parse_Expression(token, LeftPriority)

lhs = Parse_Primary(token)
if Primary Parsed Correctly then

EndOfExpression = FALSE

While (token is an oparator)
AND (NOT EndOfExpression)

// see if this operator has a higher priority
// than the one to its left. The priority
// of the token to the left is passed as an
// argument to this function
if (Priority of current op)

> (LeftPriority) then
// this op takes precedence – parse the rhs
Remember this operator
token = GetNextToken()

13

Kristian Guillaumier, 2001 100

Parsing the Expression (2)
rhs = Parse_Expression(token,

Priority of current op)

// combine the lhs to the rhs to act as an
// lhs for further operators to the right
lhs = BinaryOpNode(lhs, Current Op, rhs)

else
// left op has higher or equal priority
EndOfExpression = TRUE

end if
end while

// make expression node in parse tree
node = ExpressionNode(lhs)

return the lookahead at expression node

Kristian Guillaumier, 2001 101

Example (1)
• Consider the parsing of the expression “3 + 4 * 5 /
6”

• The first call to Parse_Expression would be
ParseExpression(3, 0)
– Since there are no operators to the left we pass 0 (the lowest

possible priority).
– The call to Parse_Primary will create a constant leaf

containing 3.
– The operator read is a “+” which has a higher priority than the

one to the left (which actually doesn’t exist)
– An re-invocation to Parse_Expression is made to parse the

rhs.

14

Kristian Guillaumier, 2001 102

Example (2)
• The call to parse the rhs would be Parse_Expression (4,

Priority of “+”).
– Parse_Primary will create a constant leaf for “4”.
– The operator here is “*” which has a higher priority than the

one on it’s left “+”
– Another call to Parse_Expression is made to parse the rhs.

• The call to parse the rhs would be Parse_Expression(5,
Priority of “*”).
– Parse_Primary will create a constant leaf for “5”.
– The operator here is “/” which does not have a priority greater

than the one to the left “*” so EndOfExpression is set to true,
the function terminates and control passes to the previous call of
Parse_Expression(4, Priority of “+”)

Kristian Guillaumier, 2001 103

Example (3)

• So far the tree is:

• Now Parse_Expression has both the LHS
and RHS of the multiplication and can join the
nodes to get:

constant

3

constant

4

constant

5

constant

4

constant

5

*

constant

3

15

Kristian Guillaumier, 2001 104

Example (4)

• The multiplication becomes the lhs for the
current token “/”. This is greater then the
priority of the current left operator “+” so a new
call to parse is made:

• Parse_Expression(6, Priority of “/”)
– The function will return after creating the constant leaf

for “6”.

constant

4

constant

5

*

constant

3

constant

6

Kristian Guillaumier, 2001 105

Example (5)

• The function will now return to the previous call
that will join the lhs and rhs using the division
node:

constant

4

constant

5

*

constant

3

constant

6

/

16

Kristian Guillaumier, 2001 106

Example (6)

• Again the function will return to the previous call
that will join the lhs and rhs using the addition
node:

constant

4

constant

5

*

constant

3

constant

6

/

+

