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Programmable Machines
• Processors are programmable in a language called 

Machine Code.
• The range of features available to this language is 

defined by the Instruction Set of the processor.
• Although the instruction set actually contains primitive, 

basic operations you can actually write any program
using it.

• Each processor family has it’s own instruction set. 
Though basic operations are common to most of them, 
they’re incompatible with each other in almost every 
other respect.
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A Simple Program in Machine 
Code (1)
• Consider the following simple statement in BASIC:

length = 2*(side1-side2) + 4*(side3-side4)

• We’ll write the equivalent machine code to execute this 
statement for a processor with a limited instruction set 
called SIMPLE.

• Variables and their values are stored in memory (RAM).
• In addition the SIMPLE processor has a single memory 

location (register) called the accumulator.
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A Simple Program in Machine 
Code (2)

Unknown at startupTempLoc8

44Loc7

22Loc6

2Side4Loc5

4Side3Loc4

3Side2Loc3

6Side1Loc2

Unknown at startupLengthLoc1

ValueVariable/ConstantMemory Location

Memory Map
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A Simple Program in Machine 
Code (3)

Stores the result from the accumulator into the 
memory location <addr>.

Store <addr>

Like above but multiplies.Mul <addr>

Like above but adds.Add <addr>

Subtracts a value read from <addr> from the one 
in the accumulator. The result is stored in the 
accumulator.

Sub <addr>

Loads a value from the memory location <addr> 
into the accumulator.

Load <addr>

MeaningInstruction

Instruction Set
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A Simple Program in Machine 
Code (4)
• The machine code to evaluate the expression would be:

Load Loc2
Sub Loc3
Mul Loc6
Store Loc8 we need a temp variable
Load Loc4
Sub Loc5
Mul Loc7
Add Loc8
Store Loc1
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Advantages and Disadvantages
• Advantages:

– Programmers are required to have an intimate knowledge of the 
processor. This can lead to highly optimised code.

– May be the only way to program the processor (like an 
embedded processor in a microwave oven).

• Disadvantages:
– Programmers are required to have an intimate knowledge of the 

processor. Difficult to learn.
– Development time takes longer.
– ‘Easier’ to make mistakes.
– Not portable. The program is tied down to the processor it was 

written for.
– Human beings ‘think’ about algorithims differently than a 

processor does.
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What is a Compiler?

• Informally a Compiler:
– Translates a program in a language (source 

language) to another language (target language) 
usually machine code.

– Checks for syntactical correctness.
– Checks for semantic correctness.
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Cousins of the Complier (1)
• Assemblers

– Similar to compilers (translation/checks syntax/etc…) but the 
source language is Assembly Language.

• Cross-Compilers
– The compiler program runs on a processor type, but the machine 

code it produces is designed to run on a different one. An 
example of using a cross compilers is to develop software that 
runs on mobile phones.

– Cross Compilers are useful:
• Either because the target machine doesn’t have a compiler of it’s 

own.
• Or because it doesn’t have the resources to run the compiler in the 

first place.
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Cousins of the Complier (2)

• Interpreters
– An interpreter translates a program into a lower level 

version of it, but it still cannot run directly on the 
processor. It depends on some runtime support. 
Examples of interpreted language include:

• Command Line Interpreters (BASH, command.com)
• Batch Files
• VBScript, JavaScript

– Execution is slower since the translation occurs each 
time the program is executed.

– Interpreters are easier to write.
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A Deeper Look into Compilers

• To keep things manageable the process of 
compilation is separated into 3 distinct (though 
connected) phases:
– Lexical Analysis
– Syntax and Semantic Analysis
– Code Generation
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Lexical Analysis
• Lexical Analysers are also called Scanners.
• Recall that a program is made up of many small entities:

– Keywords: IF, THEN, ELSE, …
– Identifiers: counter, my_var, openfile
– Numbers
– Symbols: +, /, >, >=

• Put Simply, the scanners job is to:
– Open the source file,
– Recognise the entities and represent them as tokens,
– Remove Comments,
– Produce error reports.



Kristian Guillaumier, 2001 13

Example
for counter = 1 to 20 print “hello world” next

keywordnext
Value = “hello world”String“hello world”

Keywordprint
Value = 30Constant 20

Keywordto
Value = 1Constant1
EqualsOperator=
Name = CounterIdentifiercounter

Keywordfor

Tokens
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Syntax Analysis

• The syntax analyser is also known as the 
Parser.

• For all the compiler is concerned, the sequence 
of tokens produced by the scanner is just a 
random sequence of symbols. It is the job of the 
syntax analyser to ensure that these symbols 
are structured correctly according to the 
definition of the language. For example:
– Every BEGIN must match an END in Pascal.
– Every statement must end in a semi-colon.
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Semantic Analysis
• Even though the structure of the language is 

correct, the MEANING of the statements may be 
invalid according to the semantics of the 
language.

my_var = my_var + 1

is correct in terms of syntax, but is my_var is 
declared as a string, the arithmetic addition of a 
number to a string isn’t really correct.
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The Symbol Table and Parse Tree

• The output produced by the Syntax and 
Semantic Analyser is the:
– Symbol Table:

• Stores information about identifiers and functions, such as 
their types, sizes, names, number of arguments etc…

– Parse Tree:
• Stores the structure of the program.
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Example Parse Tree

• i = (I * 4) + z

=

i +

× z

4i
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Code Generation

• After all the preceding phases have been 
completed successfully without errors, the 
compiler will proceed to build the target code 
from the data structures previously constructed.

• In many cases Code Generation of further split:

Intermediate
Code

Generation

Code
Optimiser

Code
Generation

Symbol
Table

Parse
Tree

Intermediate
code

Intermediate
code

Target
Program
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Intermediate Code Generation

• The code generator starts off by generating an 
intermediate form of code representation before 
actually building the target code.

• The main difference between intermediate code 
and the actual target code is that certain details 
such as the exact memory locations are omitted.

• A common representation format for 
intermediate code is the Three-Address Code.
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Three-Address Code
temp1 = 60

temp2 = id2 + temp1

id1 = temp2

id1temp2=

temp2temp1id2+

temp160=

ResultARG2ARG1Operator
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Code Optimisation

• This phase attempts to rearrange the code to 
obtain a smaller or faster running version.

temp1 = 60

temp2 = id2 + temp1

id1 = temp2

Equivalent to:

id1 = id2 + 60
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Front and Back Ends (1)

• Commonly compiler phases are split into two 
different categories:
– The front end: this stage is concerned with the 

phases related to the source language and are 
independent of the target. This part usually consists 
of the lexical analyser, syntax analysis, symbol table 
creation, semantic analysis and intermediate code 
generation.

– The back end: consists of the stages dependent on 
the target machine. This usually consists of the code 
generation and certain parts of the optimiser.
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Front and Back Ends (2)

• Splitting the compiler into front and backends
has the following advantages:
– The backend can be modularly changed to compile 

the same source language for a different platform.
– Compilers for different source languages usually 

produce standard intermediate code and may reuse 
the same backend.
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Language Specification

• Programming languages must be specified and 
properly described before attempting to write a 
compiler for them.

• The specification is written in a meta-language.
• Meta-Languages need to be unambiguous and 

we rely on Formal Languages to assist.
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Formal Languages Primer (1)
• In order to specify a formal language rigorously 

we need to introduce some concepts:
• A Symbol or Token is an atomic (indivisible) 

entity usually a character, digit or keyword.
• An Alphabet, denoted by Σ, is the finite, non-

empty set of symbols.
• A String over the alphabet is a sequence 

a1a2…an of symbols from Σ.
• The symbol ε denotes the empty string.
• εa = aε = a
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Formal Languages Primer (2)

• The set of all strings over the alphabet Σ, 
including the empty string ε, is denoted by the 
Kleene Closure - Σ*.

• The set of all strings over Σ, whose length is at 
least 1 (i.e. does not contain ε), is denoted by 
the Positive Closure - Σ+.

• A Language L over the alphabet Σ is a subset of 
Σ*.
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Regular Expressions
• Many languages (though not all) may be described using 

a notation called Regular Expressions.
• Regular expressions specify strings in a language by 

using symbols from it’s alphabet and a few special meta-
symbols:
– Concatenation: when we wish to concatenate symbols or string 

we write them next to each other of use the . (dot) meta-symbol 
for extra clarity.

– Alternation: when there is a choice between to symbols α and 
β, they are separated by the | (bar) symbol.

– Repetition: a symbol α followed by a * (star) indicates that there 
are zero or more repetitions of α.

– Grouping: a group of symbols may be grouped by surrounding 
them by the meta-symbols ( and ) – parenthesis.
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An Example
• Consider the expression:

1 ( 1 | 0 )* 0

• This expression represents all the strings that 
start with a 1, end in a 0 and have an unlimited 
(possibly empty) number of 1’s and 0’s in 
between.

{10, 100, 110, 1000, …}
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Notes on Regular Expressions
• Precedence from highest to lowest: Parenthesis Repetition 

Concatenation Alternation

ab* ≠ (ab)*

• If the meta-symbols are part of the alphabet, they should be 
enclosed in quotes. For example, comments in Pascal would be:

“(“ “*” c*  “*” ”)”
where c ∈ Σ

• Another convention normally used is that of the + repetition instead 
of the *. It has the same meaning as the Positive Closure. Basically 
it’s a shortcut for writing aa*
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Algebraic Properties of Regular 
Expressions

Absorption for closureA* A* = A*
Identity for concatenationA ε = ε A = A

Right distributivity(A | B) C = AC | BC
Left distributivityA (B | C) = AB | AC
Associativity for concatenationA . (B.C) = (A.B).C
Absorption of alternationA | A = A
Associativity for alternationA | (B | C) = (A | B) | C
Commutativity for alternationA | B = B | A
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Regular Expressions

• Description of Identifiers
(_|A| … |Z|a| … |z).(_|A| … |Z|a| … |z|0| … |9)*

• Description of Integers
(0 | 1 | 2 | … | 9)+
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Grammars

• Formally a Grammar is a quadruple {N,T,P,S} 
where:
– N is the finite set of non-terminal symbols,
– T is the finite set of terminal symbols (Σ),
– P is the finite set of production (or grammar) rules,
– S is the starting, goal or sentence symbol.

• A sentence is a string entirely composed of 
terminal symbols.
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Example
• Consider the following language:

ε
ab
aabb
aaabbb
aaaabbbb

…
• The grammar for the above language is:

({S}, {a,b}, P, S)
where P is:

S ε
S aSb
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Another Example
• Consider the following 

rules for a context 
sensitive grammar:

1) S  aSBC
2) S  aBC
3) CB BC
4) aB ab
5) bB bb
6) bC bc
7) cC cc

• The following is a derivation
from S to a valid string:

S
aSBC (by rule 1)
aaBCBC (by rule 2)
aaBBCC (by rule 3)
aabBCC (by rule 4)
aabbCC (by rule 5)
aabbcC (by rule 6)
aabbcc (by rule 7)
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Types of Grammars

• The complexity and structures of the rules in a 
grammar determines what types of languages 
we can describe and recognise using it. These 
different “Grammar Types” are categorised by 
the Chomsky Hierarchy:
– Type 0 – Unrestricted Grammars
– Type 1 – Context Sensitive Grammars
– Type 2 – Context Free Grammars
– Type 3 – Regular Grammars
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Unrestricted Grammars

• Productions take the form:

A α

where, 
– A and α are arbitrary symbols in the vocabulary 

N ∪ T.
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Context Sensitive Grammars
• Productions take the form:

αAβ αγβ

where, 
– A ∈ N
– γ ≠ ε
– α, β, γ ∈ (N ∪T)*

– May also include the rule S ε
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Context Free Grammars

• Productions take the form:

A α

where, 
– A is a single non-terminal symbol (A ∈ N),
– α is a, possibly empty, string of terminals and/or non-

terminals.
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Regular Grammars
• Productions take the form:

The difference between the two is that one is right 
recursive (since B can be equal to A) and the other is left 
recursive. Regular grammars must either be one or the 
other, but never both (otherwise this would be a type 2 
grammar)

(i)

A α

A αB

(ii)

A α

A Bα

-or-
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Backus-Naur-Form (BNF)

Empty or Nothingε

End of line;

Exact symbols in the language are enclosed in quotes –
These symbols are called Terminals. Sometimes the 
quotes are omitted.

“ ”

Zero or more repetitions of an item are surrounded by 
curly brackets

{  }

Optional items are surrounded by square brackets[  ]

Angles brackets surround category symbols – These 
symbols are called Non-Terminals

< >

Or|

‘is defined as’::=

MeaningSymbol
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BNF By Example (1)
Consider the identifier:
my_variable

In plain English:
Identifiers consist of any sequence alpha-numeric characters and 
the underscore symbols. However an identifier cannot start with a 
digit.

Formally in BNF:

<ident> ::= <alpha> | “_” {<alpha>|<digit>|”_”};

<alpha> ::= “a”|”b”|…|”z”|”A”|”B”|…|”Z”;

<digit> ::= “0”|”1”|…|”9”;
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BNF by Example (2)
Problem:

Construct a BNF specification for simple expressions limited to 
integer numbers and identifiers. The operators allowed in this type of 
statement are + and –. 

For Example:

3

counter 

counter + 1

counter + (1 – y)

3 + 4
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BNF by Example (2½)

<expr> ::= <factor> | <factor> <op> <expr>;

<factor> ::= <integer> | <ident> | “(“ <expr> “)”;

<op> ::= “+” | “-”;

<integer> ::= <digit> {<digit>};
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Extensions to BNF (EBNF)
• In order to improve the readability and conciseness of descriptions in BNF 

several extensions have been proposed to the notation. BNF with these 
extensions is called EBNF.

• Kleene Cross: a sequence of one or more items of a class are:

<unsigned-int> ::= <digit>+

• Kleene Star: a sequence of zero or more items of a class are:

<ident> ::= <letter><alphanumneric>*

• Braces are used for grouping instead of the usual ‘zero or more’ 
interpretation.

<ident> ::=  <letter>{<letter>|<digit>}*
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An Example in EBNF
• Consider BNF for variable declarations in Basic:

<var-decl> ::= “dim” <var-decl-list>

<var-decl-list> ::= 
<var-decl-item> {ε | “,” <var-decl-list>}

<var-decl-item> ::= <ident> “as” <var-type>

• In EBNF could would be written as:
<var-decl> ::= “dim” <var-decl-list>

<var-decl-list> ::= 
<var-decl-item> {“,” <var-decl-item>}*

<var-decl-item> ::= <ident> “as” <var-type>
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Designing a Lexical Analyser
• The key function in a lexical analyser is a routine called GetNextToken that 

extracts tokens one-by-one from the source file.
• The lexical analyser repeatedly makes calls to GetNextToken to process the 

whole file.
• When tokenising the input it is important to identify the Token Separators. 

These separators are special characters that delimit one token from an 
other. In many programming languages, the token separators are usially
spaces, tab stops and carriage returns.

• The scanning loop can look like:

Initialise;
loop

symbol = GetNextToken();
Print symbol;

Until symbol = End_Of_File;
Clean_Up;
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Recognising Tokens

• The scanner will start recognising a token after 
reading the first character:

• If the first character is:
– A letter: then we’re dealing with a keyword or 

identifier.
– Numeric: then we’re dealing with a number.
– An Opening Quote (“): then we’re dealing with a 

string.
– Etc…
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GetNextToken
Function GetNextToken
CurrentChar = Get the next significant character

If CurrentChar = EOF Then
Deal with the end of file

Else
If CurrentChar = Digit Then 

CurrentToken = Deal With Number
Else If CurrentChar = Letter Then

CurrentToken = Deal With a Word
Else If

...
Else

CurrentToken = Error – Illegal Character
End IF
GetNextToken = CurrentToken

End If
End Function
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GetWord
Function GetWord

MyToken = CurrentChar
CurrentChar = Get the next significant character

While CurrentChar is Valid in a Word
MyToken = MyToken + CurrentChar
CurrentChar = Get next significant character

Wend

Return MyToken

End Function
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Look Ahead

• Since we are reading characters until we find 
one that is not part of a word, the last one is 
essentially one extra character. We must not 
discard it. In fact CurrentChar is usually 
implemented as a global variable.

• This extra character is called the LookAhead
character.
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GetString
Function GetString

MyToken = CurrentChar ‘ the opening quote
CurrentChar = Get the next significant character

While CurrentChar is not the Closing Quote
MyToken = MyToken + CurrentChar
CurrentChar = Get next significant character

Wend

MyToken = MyToken + CurrentChar ‘ The closing quote

‘ Again read an extra character for consistency
CurrentChar = Get the next significant character

Return MyToken

End Function
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Error Reporting

• There are only a few errors that can be detected 
by the scanner. Such errors include:
– Missing closing quote in a string. Missing quotes are 

a major issue, since characters will be read until the 
opening quote of the next sting are found, potentially 
‘eating-up’ much of the actual code. This problem is 
typically alleviated by not allowing strings to span 
over multiple lines.

– Illegal characters in the input file.
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Parsing
• When analysing a programs syntax, a data structure 

called the Parse Tree is built to reflect the structure of 
the program. 

• The nodes of the parse tree are the Non-Terminal 
symbols, whilst the leaves are the Terminals (Σ). 

• The root node is the sentence symbol (S).
• There are two main methods of parsing:

– Top-Down Parsing – the parse tree is build from the root 
downwards.

– Bottom-Up Parsing – the parse tree is built from the leaves 
upwards to the root.
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Simple Parsing Example

• Consider the BNF specification for a simple 
assignment statement:

<assign> ::= <lhs> <ass-op> <rhs>;
<lhs> ::= <ident>;
<ass-op> ::= “=“;
<rhs> ::= <integer> 

<arith-op> <integer>;
<arith-op> ::= “+” | ”-” | ”*” | ”/”;
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Top-Down Parse (1)
• In this example we will construct a parse tree for the 

assignment:
counter = 3 + 4

• The parser looks for the sentence symbol to create the 
root node:

• The first symbol in the rule is an LHS so we add it to the 
parse tree:

<assign>

<assign>

<lhs>
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Top-Down Parse (2)
• An LHS is an IDENT which we add to the tree:

• In our example “counter” is an IDENT – we have a match and add it 
to the tree:

<assign>

<lhs>

<ident>

<assign>

<lhs>

<ident>

“counter”
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Top-Down Parse (3)
• The next expected item is the assignment operation, so it is added 

to the tree (at the current root because it is a non-terminal):

• An assignment operator is a non-terminal an looks at the next token 
and finds one:

<assign>

…
<ass-op>

<assign>

…
<ass-op>

“=“
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Top-Down Parse (4)
• The next item to be expected is an RHS which is a non-

terminal so we add it to the current root:

• The procedure is repeated until we complete the tree 
and find out that our assignment is structurally correct.

<assign>

…
…

<rhs>
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Top-Down Parse (5)

<assign>

<lhs>

<ident>

“counter”

<ass-op>

“=“

<rhs>

<integer>

“3”

<arith-op>

“+”

<integer>

“4”
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Bottom-Up Parse (1)
• The first token in the input is an IDENT so the leaf of the 

tree is obtained:

• By having a look at the rules we see that an IDENT is an 
LHS, so the tree grows up:

<ident>

“counter”

<lhs>

<ident>

“counter”
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Bottom-Up Parse (2)
• An LHS on it’s own cannot be resolved into anything else, so we 

continue reading from the input. We find an “=“ sign so it’s added as 
a leaf:

• The ASS-OP non-terminal cannot be resolved into anything else 
and neither can the LHS ASS-OP sequence so we continue reading 
the input and find a number which we add as a leaf:

<lhs>

<ident>

“counter”

<ass-op>

“=“
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Bottom Up Parse (3)

• This process continues until we consumed the whole input:

<lhs>

<ident>

“counter”

<ass-op>

“=“

<integer>

“3”

<lhs>

<ident>

“counter”

<ass-op>

“=“

<integer>

“3”

<arith-op>

“+”

<integer>

“3”
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Bottom-Up Parse (4)
• After reading the last integer we see that the INTEGER ARITH-OP 

INTEGER sequence can be reduced to an RHS:

• Similarly in the next step we see that the resulting LHS ASS-OP 
RHS sequence can be further reduced to an ASSIGN, thus the 
parse is complete.

<lhs>

<ident>

“counter”

<ass-op>

“=“

<integer>

“3”

<arith-op>

“+”

<integer>

“3”

<rhs>
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Things to Note…
• The grammar chosen for this example was purposely 

designed to keep the example simple.
• In reality parsing mechanisms are more sophisticated 

and grammars may really manifest properties that make 
parsing more complex. Consider the following grammar 
for a more elaborate assignment:

<assign> ::= <lhs> <ass-op> <rhs>;
<lhs> ::= <ident>;
<rhs> ::= <factor> { <arith-op> <factor> };
<factor> ::= <ident> | <integer>;
<ass-op> ::= “=“
<arith-op> ::= “+” | “-” | “*” | “/”
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…Things to Note
• When parsing the assignment statement using the 

original grammar, when we read the identifier leaf, we 
saw that it could be reduced to an LHS (see Bottom-Up 
Parse (1)). Using the grammar presented above, we see 
that the identifier could be reduced to both an LHS or a 
FACTOR. The question here is – Which path shall I 
follow?

• Such issues are tackled by more sophisticated parsers.
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Parsing a Variable Declaration (1)

• The simplest way to hand-code parsers is to provide 
programming language equivalents to BNF notational 
constructs:

If-Then Statement.Optional Items – [ ]

If-Then-Else statements.Alternatives - |

A while loop.Repetitions - { }

A procedure or function call.Non-Terminal Symbols

Test for the terminal symbol.Terminal Symbols
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Parsing a Variable Declaration (2)

• Consider simple variable declaration statements:

integer i,j,k
boolean isReady

• A suitable grammar to parse such statements would 
be:

<VarDecl> ::= <TypeName> <VarNameList>;
<TypeName> ::= INTEGER|BOOLEAN|REAL;
<VarNameList> :: <VarName> {“,” <VarName>};
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Parsing a Variable Declaration (3)

• For each Non-Terminal symbol, we define a 
function to parse it:

Function Parse_VarDecl(TOKEN)
// Parse the type name
LOOKAHEAD = Parse_TypeName(TOKEN)

// Parse the variable name list
LOOKAHEAD = Parse_VarNameList(LOOKAHEAD)

Return LOOKAHEAD
End Function
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Parsing a Variable Declaration (4)

• Since the Variable Declaration (VarDecl) is 
defined in terms of 2 other Non-Terminals 
(TypeName and VarNameList), it’s parse is 
defined as calls to two other functions to parse 
each other non-terminal.

• Just as we had a look ahead character in the 
lexical analyser, we need a look ahead token in 
the parse tree.
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Parsing a Variable Declaration (5)

• Parsing the Type Name:

Function Parse_TypeName(TOKEN)
If TOKEN is INTEGER_TOKEN then
Return NextToken // New Lookahead

ElseIf TOKEN is BOOLEAN_TOKEN then
Return NextToken

ElseIf TOKEN is REAL_TOKEN then
Return NextToken

Else
Print “Missing Type Name in Declaration”
Return Error

End If
End Function
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Parsing a Variable Declaration (6)
• Note that in the previous example we used two of the transliteration 

mechanisms. We used simple checks to see if a token is a non-
terminal and we used If-Then-Else statements for alternatives.

• Parsing the Variable Name List:

Function Parse_VarNameList(TOKEN)
LOOKAHEAD = Parse_VarName(TOKEN)
While LOOKAHEAD = COMMA_TOKEN
LOOKAHEAD = NextToken
LOOKAHEAD = Parse_VarName(LOOKAHEAD)

End While

Return LOOKAHEAD
End Function
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Parsing a Variable Declaration (7)
• In the preceding example we used a combination of parsing both 

terminals (comma’s) and non-terminals (variable names). The 
repetition was handled by a while loop that allowed for zero-or more 
items enclosed in the braces { }.

• Parsing the variable name:

Function Parse_VarName(TOKEN)
If TOKEN = IDENT_TOKEN then
Return NextToken

else
Print “Missing Identifier”
Return Error

End If 
End Function
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Parsing an If-Then Statement (1)

• Consider the following definition for an if-then 
statement:

<IF_STMT> ::= “IF” <EXPRESSION> “THEN”
<STMT_BLOCK> 
[“ELSE” <STMT_BLOCK>]
“ENDIF”
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Function Parse_If(TOKEN)
If TOKEN = IF_TOKEN Then

LOOKAHEAD = NEXTTOKEN
// Parse the Expression
LOOKAHEAD = Parse_Expression(LOOKAHEAD)
If LOOKAHEAD = THEN_TOKEN then

LOOKAHEAD = NEXTTOKEN
LOOKAHEAD = Parse_StmtBlock(LOOKAHEAD)
// see if we have an else part
If LOOKAHEAD = ELSE_TOKEN then

LOOKAHEAD = NEXTTOKEN
LOOKAHEAD = Parse_StmtBlock(LOOKAHEAD)

End If
// get the ENDIF
If LookAhead = ENDIF_TOKEN Then

Return NEXTTOKEN
Else

Print “Missing ENDIF in conditional”
Return Error

End If
Else

Print “Missing THEN in conditional”
Return Error

End If

End If
End Function
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Syntax Errors
• Consider the following assignment statement with a 

missing comma:

integer i,j k;

• The parse will proceed normally in the VarNameList part 
until the variable k is found instead of the comma. The 
function will “think” that the variable name list has 
terminated returning k as the look ahead token. The 
parser will look for the ending semi-colon and will find a k 
instead reporting a missing semi-colon instead of the 
missing comma.
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Backtracking (1)
• Consider the Grammar:

S cAd
A ab | a

• Given the input string cad, we try and construct the 
parse tree. We initially start by creating the Root of the 
tree from S (the current token is c in the input string:

S
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Backtracking (2)
• Clearly the current token c does not match S so we expand S using 

the first (and only rule):

• The leftmost leaf matches our input symbol c so we proceed to the 
next one a and consider the next leaf A. In expanding A, we have 
two alternatives. Having no preference, we arbitrarily choose the first 
one to get the tree:

S

c A d

S

c A d

a b
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Backtracking (3)
• We have a match for the current token a, so we proceed 

with the next one d. Looking at the next leaf b, we see 
that the token does not match, so we must have 
expanded using the wrong production. We must 
backtrack to the state before the production was chosen 
– the current symbol is set back to a, and the tree:

S

c A d
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Backtracking (4)
• We now try the other alternative and expand the 

tree to:

• The current input a matches the leaf. We move 
to the next token d and the next leaf, which 
match too. All the input has been consumed and 
we have completed the parse successfully.

S

c A d

a
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Notes (1)
• The parsing methods we have seen are called recursive-descent

parsers.
• Grammars can be rearranged to eliminate the need for backtracking. 

Parsers for such grammars are called predictive parsers.
• A left-recursive grammar (productions of the type A Aα) can 

cause a recursive-descent parser to go into infinite loops, even if it 
has backtracking.

• Consider the grammar:

S Sa
s ε

• Our task is to parse the string aaaaaa.
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Notes (2)
• The current token is a. We expand the S node to get the 

tree:

• The first leaf is a non-terminal so we expand again. We 
have two choices so we arbitrarily choose the first:

S

S a

S

S a

S a
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Notes (3)
• Again, the first leaf is a non-terminal so we expand 

again. We have two choices so we arbitrarily choose the 
first:

• The problem is that the tree will continue growing 
indefinitely without ever consuming any input (the 
terminating condition is never achieved).

S

S a

S a

S a
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Eliminating Left-Recursion
• A grammar is left-recursive if it has a derivation of the 

type A ⇒+ Aα.
• As we have seen, top-down parsers cannot handle left-

recursion, so we need a transformation these grammars 
into right recursive ones.

• A left-recursive production of the form 
A Aα | β

• Can be rewritten as:
A βA’

A’ αA’ | ε
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Example
• Consider the following grammar for arithmetic expressions

E E + T | T
T T * F | F
F ( E ) | Ident

• The grammar is rewritten as:

E  TE’
E’ +TE’ | ε
T  FT’
T’ *FT’ | ε
F  ( E ) | Ident
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Non-Immediate Left-Recursion
• Immediate left-recursion involves productions that involve left-

recursive derivations in one step:

A Aα

• There are cases where left-recursion may occur after more than one 
derivational steps. For example, the following grammar is not 
immediately left recursive:

S Aa | b
A Ac | Sd | ε

• The Non-Terminal S is left-recursive because S ⇒ Aa ⇒ Sda
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Multiple A-Productions
• In the previous example, we considered 

eliminating a single instance of left-recursions 
from an A-Production (A Aα | β)

• No matter how many left-recursive A-
productions there are (A Aα1 | Aα2 | … | 
Aαm | β1 | β2 | … | βn), all we have to do 
is replace the productions by:

A  β1A’ | β2A’ | … | βnA’
A’ α1A’ | α2A’ | … | αmA’ | ε
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Algorithm for Eliminating Left-
Recursion (1)
• This algorithm is guaranteed to eliminate left-

recursion for grammars having:
– No Cycles: A ⇒+ A
– No Empty Productions: A ε

• The input of the Algorithm is a grammar G with 
No Cycles or Empty Productions.

• The output of the Algorithm is the equivalent 
grammar without left-recursion.
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Algorithm for Eliminating Left-
Recursion (2)
Arrange the Non-Terminals in some order A1, A2, … , An.

For i  = 1 to n
For j = 1 to (i-1)

replace every production of the form
Ai Ajγ by the productions 
Ai δ1γ | δ2γ | … | δkγ, where
Aj δ1 | δ2 | … | δk

Next j
Eliminate the immediate left-recursion 

among the Ai productions
Next i
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Example on a Grammar (1)
• Consider the grammar:

S Aa | b
A Ac | Sd | ε

• Note: technically, the algorithm is not guaranteed to 
work because of the A ε empty production, though in 
this case it does.

• We order the non-terminals as S, A.
• Starting from S (i = 1), the inner j loop does not 

execute and we have to eliminate immediate left 
recursion. But there is no immediate left recursion 
among S productions so nothing happens.
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Example on a Grammar (2)
• For the step i = 2, the inner j loop, substitutes all 

occurrences of S in the A-Productions, producing the 
following:

A Ac | Aad | bd | ε

• In this case we do have left recursion so proceed to 
remove it, producing:

S  Aa | B
A  bdA’ | A’
A’ cA’ | adA’ | ε



Kristian Guillaumier, 2001 91

Left-Factoring (1)
• Left-factoring is a grammar transformation that produces 

grammars suitable for predictive parsing. The basic idea 
is that when it is not clear which of two alternative 
productions to use to expand a non-terminal A, we defer 
the decision until we have seen enough input to make 
the right choice.

• Consider the two productions:

stmt “if” expr “then” stmt “else” stmt
stmt “if” expr “then” stmt

• On seeing the input “IF”, it is not clear which production 
to use to expand the statement.
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Left-Factoring (2)
• In general, given two productions:

A αβ1
A αβ2

• We may rewrite the rules as:

A  αA’
A’ β1 | β2

• This way we have only one choice for expanding A.
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Algorithm for Left-Factoring
Input: Grammar G.
Output: An equivalent left-factored grammar.
Method:

1. For each non-terminal A, find the longest prefix α common to 
all the alternatives (2 or more).

2. If α ≠ ε (there IS a common prefix)
3. Replace all the productions for A having the prefix α (A αβ1 , 

A αβ2 , … , A αβn) with:

A  αA’
A’ β1 , β2 , … , βn
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Operator Precedence Parsing of 
Expressions
• The basis of Operator Precedence Parsing is 

assigning a priority to each operator in an 
expression. For example:

3 * 4 + 5 = (3 * 4) + 5

• Parenthesis may be used to change and visually 
emphasis precedence:

3 * (4 + 5) ≠ 3 * 4 + 5
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Associativity of Operators
• Associativity for an operator, say ⊗, may be left-

associative or right associative:
– Left-Associative: expression x ⊗ y ⊗ z is 

evaluated as (x ⊗ y) ⊗ z
– Right-Associative: expression x ⊗ y ⊗ z is 

evaluated as x ⊗ (y ⊗ z)
• For example, given: a = 4, b = 5, c = 2, 

the expression a – b – c may be evaluated 
as:
– (a – b) – c = (4 – 5) – 2 = -3, or
– a – (b – c) = 4 – (5 – 2) = 1
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Operator Precedence for Parsing 
Simple Expressions (1)
• Given the following grammar for simple 

expressions:

expr ::= <primary> {<op> <expr>};
primary ::= <ident>

| <constant>
| ‘-’ <primary>
| ‘+’ <primary>
| ‘(‘ <expr> ‘)’;
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Parsing the Primaries (1)
Function Parse_Primary(token)

if token = IDENTIFIER then
// create a leaf with the identifier
node = IdentLeaf(token)

else if token = CONSTANT then
// create a leaf with the constant
node = ConstantLeaf(token)

else if token = ADD_OP or token = SUB_OP then
remember the operator
lookahead = GetNextToken()
// parse the primary following the unary op
primary_node = Parse_Primary(lookahead)
// combine the unary op and primary in a node
node = UnaryOpNode(saved operator, primary_node)
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Parsing the Primaries (2)
else if token = OPEN_BRACKET then

lookahead = GetNextToken()
// the Parse_Expression function returns the expression
// node and consumes the next lookahead character
// which should be the closing bracket
node = Parse_Expression(lookahead)

if lookahead <> CLOSE_BRACKET then
Error – Missing Closing Bracket

else // read the lookahead
lookahead = GetNextToken()

end if
else

// an invalid character
Error – Invalid character in primary

end if
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Parsing the Expression (1)
Function Parse_Expression(token, LeftPriority)

lhs = Parse_Primary(token)
if Primary Parsed Correctly then

EndOfExpression = FALSE

While (token is an oparator) 
AND (NOT EndOfExpression)

// see if this operator has a higher priority
// than the one to its left. The priority
// of the token to the left is passed as an
// argument to this function
if    (Priority of current op) 

> (LeftPriority) then
// this op takes precedence – parse the rhs
Remember this operator
token = GetNextToken()
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Parsing the Expression (2)
rhs = Parse_Expression(token,

Priority of current op) 

// combine the lhs to the rhs to act as an
// lhs for further operators to the right
lhs = BinaryOpNode(lhs, Current Op, rhs)

else
// left op has higher or equal priority
EndOfExpression = TRUE

end if 
end while

// make expression node in parse tree
node = ExpressionNode(lhs)

return the lookahead at expression node
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Example (1)
• Consider the parsing of the expression “3 + 4 * 5 / 
6”

• The first call to Parse_Expression would be 
ParseExpression(3, 0)
– Since there are no operators to the left we pass 0 (the lowest 

possible priority).
– The call to Parse_Primary will create a constant leaf 

containing 3.
– The operator read is a “+” which has a higher priority than the 

one to the left (which actually doesn’t exist)
– An re-invocation to Parse_Expression is made to parse the 

rhs.
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Example (2)
• The call to parse the rhs would be Parse_Expression (4, 

Priority of “+”).
– Parse_Primary will create a constant leaf for “4”.
– The operator here is “*” which has a higher priority than the 

one on it’s left “+”
– Another call to Parse_Expression is made to parse the rhs.

• The call to parse the rhs would be Parse_Expression(5, 
Priority of “*”).
– Parse_Primary will create a constant leaf for “5”.
– The operator here is “/” which does not have a priority greater 

than the one to the left “*” so EndOfExpression is set to true, 
the function terminates and control passes to the previous call of 
Parse_Expression(4, Priority of “+”)
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Example (3)

• So far the tree is:

• Now Parse_Expression has both the LHS 
and RHS of the multiplication and can join the 
nodes to get:

constant

3

constant

4

constant

5

constant

4

constant

5

*

constant

3
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Example (4)

• The multiplication becomes the lhs for the 
current token “/”. This is greater then the 
priority of the current left operator “+” so a new 
call to parse is made:

• Parse_Expression(6, Priority of “/”)
– The function will return after creating the constant leaf 

for “6”.

constant

4

constant

5

*

constant

3

constant

6
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Example (5)

• The function will now return to the previous call 
that will join the lhs and rhs using the division 
node:

constant

4

constant

5

*

constant

3

constant

6

/
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Example (6)

• Again the function will return to the previous call 
that will join the lhs and rhs using the addition 
node:

constant

4

constant

5

*

constant

3

constant

6

/

+



Kristian Guillaumier, 2001 107

The Symbol Table
• The purpose of the symbol table table is to record the 

use of ‘names’ in a program.
• Such names include:

– Variables, procedure and function names, constants and user 
defined types.

• The information stored in the symbol table depends on 
what the names are used for. For example:
– A variable name requires its type and runtime address.
– A procedure requires a pointer the list of arguments it takes.
– A function requires a pointer to the list of arguments it takes and 

the return type of the function.
– An argument requires its type and a pointer to the next argument

in the list.
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Declarations of Variables
• The purpose of variable declarations in programming 

languages is to create an entry for that variable in the 
symbol table and associate a type with it.

• Some programming languages (such as earlier versions 
of BASIC and APL) do not require a declaration and a 
symbol table entry is made upon their first use.

• When a compiler meets a statement such as x = 3, it 
must verify that:
– x is declared (look for it in the symbol table),
– x is declared as a variable and not, for example, a procedure 

name,
– The type of x is an integer or floating-point number.
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Functions

• When processing a statement such as 

if f(a, b) then, the compiler must check:

– f, a and b are declared,
– f takes exactly 2 arguments,
– f is a function and returns a boolean value,
– a and b are of the proper types.
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Building the Table while Scanning

• When the lexical analyser is scanning the input 
and meets an identifier, it looks for it in the 
symbol table:
– If it does not find it, it has to be declared. An entry 

for that variable is made in the table and its position is 
returned as the value of the token.

– If it does find it, the position is returned as the value 
of the token.

• The actual description of the symbol table entry 
(like its type) is handled by a separate Object 
Description Phase.
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Building the Table while Parsing (1)

• A simple lexical analyser does not attempt to process an 
identifier in anyway. It just returns a token indicating the 
occurrence of one.

• The actual processing of the identifier is then left to the 
parser that will deal with it depending on the context in 
which it has been found. For example, if an identifier is 
found in a:
– Declaration Statement, the identifier is looked for in the symbol 

table. If it is found then the compilers should complain that there 
is a variable re-declaration. If it does not find it, an entry is made 
according to the description in the declaration.

– If the identifier is used in an action statement, a check has to be 
made to see if it has been declared and that it is used properly
(correct number of arguments, no type mismatches, etc…)



Kristian Guillaumier, 2001 112

Building the Table while Parsing (2)

• The method described so far may be 
implemented in two different ways:
– The whole parse tree for the variable declaration is 

built, then declarations in the symbol table and other 
actions are performed from the tree by the Object 
Description Phase.

– Symbol table declarations and other actions are made 
along the way when parsing. 
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Symbol Table from the Parse Tree – Option 1

• Suppose we are parsing the declaration:
integer a, b, c

• The parse tree is passed to an object description 
phase to analyse it and make the declarations:

Variable Declaration

Type Name Variable List

Integer Variable Variable Variable

a b c
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Revised Variable Declaration (1) – Option 2

• Note: See slide 67 for original version.
• Consider variable declarations following this format:

integer i,j,k
boolean isReady

• Recall the grammar:

<VarDecl> ::= <TypeName> <VarNameList>;
<TypeName> ::= INTEGER|BOOLEAN|REAL;
<VarNameList> :: <VarName> {“,” <VarName>};
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Revised Variable Declaration (2)

• Parsing the declaration per se remains the 
same, so we have no changes so far:

Function Parse_VarDecl(TOKEN)
// Parse the type name
LOOKAHEAD = Parse_TypeName(TOKEN)

// Parse the variable name list
LOOKAHEAD = Parse_VarNameList(LOOKAHEAD)

Return LOOKAHEAD
End Function
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Revised Variable Declaration (3)

• Apart from returning the next token, we need to return 
the type name we just parsed to use later:

Function Parse_TypeName(TOKEN)
If TOKEN is INTEGER_TOKEN then
Return NextToken, Return Integer Type

ElseIf TOKEN is BOOLEAN_TOKEN then
Return NextToken, Return Boolean Type

ElseIf TOKEN is REAL_TOKEN then
Return NextToken, Return Real Type

Else
Print “Missing Type Name in Declaration”
Return Error, Return ERROR Type

End If
End Function
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Revised Variable Declaration (4)

• Note that when parsing the type name, apart from 
returning the next lookahead, we also return an 
indication of which type name we just parsed.

• Parsing the Variable Name List:

Function Parse_VarNameList(TOKEN, THE_TYPE)
LOOKAHEAD = Parse_VarName(TOKEN, THE_TYPE)
While LOOKAHEAD = COMMA_TOKEN
LOOKAHEAD = NextToken
LOOKAHEAD = Parse_VarName(LOOKAHEAD, THE_TYPE)

End While

Return LOOKAHEAD
End Function
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Revised Variable Declaration (4)

• Parsing the variable name:

Function Parse_VarName(TOKEN, THE_TYPE)
If TOKEN = IDENT_TOKEN then
Call procedure VARDECLARE(VARNAME, VARTYPE)
Note: VARDECLARE is part of the Object 
description phase NOT the parser.
Return NextToken

else
Print “Missing Identifier”
Return Error

End If 
End Function
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Final Notes (1)
• The Object Description Phase is a subset of 

semantic analysis. Ensuring that variables are 
properly used in action statements is part of 
another stage of semantic analysis.

• The procedure VarDeclare, first looks for the 
entry of the variable in the symbol table. 
– If the entry is NOT found, a new one is made, 

recording details (such as the type) of the declaration.
– If the name is already found, a variable re-declaration 

might have occurred depending on the scoping rules 
of the language.



Kristian Guillaumier, 2001 120

Final Notes (2)

• Reuse of the variable declaration is allowed if:
– All previous uses are no longer in scope.
– Or, this declaration is made at a lexically lower level 

than all other active declarations
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Final Notes (3)
Function VarDeclare(token, VarType)

Look for a previous occurrence of the Variable

If no occurrence found then
Enter details for the variable name and type

Else
If (Use is at a lexically lower level 

than all other active ones) OR
(Previous uses are not active) then

Store details in table
Else

Re-declaration Error
End If

End If
End Function
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Bottom-Up Parsing
• So far we have seen parsers that try to find a derivation 

from the starting grammar symbol to the input sting.
• In this section we will be considering the essentially 

equivalent approach of finding a path from the input 
sentence to the starting symbol (bottom-up).

• We will be discussing a general technique for bottom-up 
parsing called shift-reduce parsing and an 
implementation of it called LR parsing.

• This method is used in automatic parser generators such 
as BISON, which we will cover in the next lessons.
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Notes on Shift-Reduce Parsing
• Bottom-Up parsing can be thought of reducing the input 

string to the starting symbol of the grammar.
• Each reduction step involves a sequence of symbols 

from the input being replaced by a left hand side non-
terminal according to the grammar rules.

• Just as in producing a Top-Down derivation there may 
be several non-terminals that may be expanded at any 
one step, in bottom-up parsing, there may be several 
sequences of symbols in the input string that may be 
reduced in a step.
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LL and LR Parsing
• It is important to choose a parsing methodology to apply 

to each derivation or reduction and apply it consistently.
• In in top-down parsing we always expand the leftmost 

non-terminal in a sentential form then we obtain a 
leftmost derivation. If we always expand the rightmost 
non-terminal then the derivation is rightmost.

• The rule that we will apply to bottom-up parsing is to 
always reduce the sequence of symbols which would 
trace a rightmost derivation in reverse. So, the input is 
scanned from left to right (hence LR).

• LL parsers scan the input from left to right to produce a 
leftmost derivation.



Kristian Guillaumier, 2001 125

Example (1)
• Consider the following grammar

E ::= E + E
E ::= E – E
E ::= id
E ::= num

• And the input string ‘1 + x – y’. A leftmost 
derivation would be:

E E + E
num + E
num + E – E
num + id – E
num + id - id
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Example (2)
• The parse tree would be:

• A rightmost derivation would be:
E E + E

E + E – E
E + E – id
E + id - id
num + id – id

• Which gives the same parse tree.

E

E E+

num E E-

id id
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Example (3)
One should note however 
that the grammar is ambiguous. 
We could have the following
derivations:

E E – E
E – id
E + E – id
E + id – id
num + id - id

E E – E
E + E – E
num + E – E
num + id – E
num + id - id

RightmostLeftmost

E

E E-

numE E+

id id
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Rightmost Derivations in Reverse (1)

• The first rightmost derivation we had was:

E E + E
E + E – E
E + E – id
E + id - id
num + id – id

• If applied in reverse we get a bottom-up parse:

num + id – id E + id – id
E + E – id
E + E – E
E + E
E
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Rightmost Derivations in Reverse (2)

• The second rightmost derivation we had was:

E E – E
E – id
E + E – id
E + id – id
num + id – id

• If applied in reverse we get a bottom-up parse:

num + id – id E + id – id
E + E – id
E - id
E - E
E
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Handles (1)
• The term input string will be used to refer to 

any sentential form in the reduction of a 
sentence to the starting symbol.

• The term handle is a sequence of symbols in 
the input string which, if replaced by a matching 
left hand side non-terminal, leads to the tracing 
out of the reversed rightmost derivation of the 
original sentence.

• Consider the example we had before in reducing 
num + id – id to E.
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Handles (2)

E

E E + EE + EE + E

E E – EE – EE + E – E

E idid2E + E – id2

E idid1E + id1 – id2

E numnumnum + id1 – id2

Reducing ProductionHandleRight Sentential Form
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Handles (3)

E

E E – EE – EE – E

E idid2E – id2

E E + EE + EE + E – id2

E idId1E + id1 – id2

E numnumnum + id1 – id2

Reducing ProductionHandleRight Sentential Form
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Handles (4)
• Note that upon having reached the input sting ‘E 
+ E – id’, there are two possible handles ‘id’ 
or ‘E + E’. This reflects the ambiguity in the 
grammar. If a grammar is unambiguous, then for 
any input string there would be only one handle 
for any stage in the reduction.

• An issue in designing a bottom-up parser is to
– Decide how to locate handles in the input string.
– How to choose which left hand side to replace with 

assuming that there may be more than one left hand 
side for a handle.
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Stack Implementation of Shift 
Reduce Parsing (1)
• Shift-reduce parsers are usually implemented using a 

stack to hold grammar symbols and an input buffer to 
hold the string X to be parsed.

• We shall use the dollar symbol, $, to denote the 
bottom of the stack and the end of the input string.

• Initially we would have:

X$$
Input StringStack
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Stack Implementation of Shift 
Reduce Parsing (2)
• The parse works by shifting symbols from the input 

string to the stack until a handle appears on the top of 
the stack.

• The parser reduces the handle on top of the stack to the 
left hand side of the appropriate production.

• The cycle is repeated until we find an error or the stack 
consists of the starting symbol and the input is empty.

• At this point, the parser stops and reports success.

$Y$

Input StringStack
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Example (1)

• Consider the following unambiguous grammar…

E E + T
E E – T
E T
T id
T num

• …to parse ‘num + id + id’
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Example (2)

Accept$$ E

Reduce E E – T$$ E – T

Reduce T id$$ E – id

Shift idid $$ E -

Shift -- id $$ E

Reduce E E + T - id $$ E + T

Reduce T id- id $ $ E + id

Shift idid – id $$ E +

Shift ++ id – id $$ E

Reduce E T+ id – id $$ T

Reduce T num+ id – id $$ num

Shift numnum + id – id $$

ActionInputStack
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Parsing Actions
• Shift: 

– In a shift operation, the next input symbol is put on the top of the 
stack.

• Reduce: 
– The handle which is on top of the stack is replaced by the 

appropriate non-terminal symbol.

• Accept: 
– The parser accepts when all the input symbols are consumed 

and there is the sentence symbol on the stack.

• Error: 
– The parser encounters an error an calls any error recovery 

routine.
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Shift-Reduce Conflicts (1)

• There are grammars that cannot be parsed by a 
shift reduce parser. In such cases, the parser 
can get into a state in which it cannot decide 
whether to shift or reduce. 

• Ambiguous grammars are of such a type 
because there may be more than one handle at 
a time under certain circumstances.

• Consider the dangling else grammar:
S if E then S | if E then S else S
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Shift-Reduce Conflicts (2)
• The shift-reduce parser may find itself in the following 

situation:

Else S $$ if E then if E then S

Input StringStack

• At this point the parser wouldn’t know whether to shift 
the else onto the stack or reduce the first production for 
s to get:

Else S $$ if E then S

Input StringStack
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Good News

• Shift-reduce parsers may be easily modified to 
handle such grammars in a consistent way. For 
example, such shift-reduce conflicts may be 
resolved by forcing the parser to shift.

• Shift-reduce conflicts are not very common and 
are often an indication that there is a problem in 
the definition of the language.
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LR(k) Parsing
• LR Parsing is an efficient bottom-up parsing technique that can be 

used to parse a large class of context-free grammars.
• LR means that the input is scanned from left-to-right building a 

rightmost derivation in reverse.
• k represents the number of lookahead symbols required to make a 

parsing decision.
• If k is omitted it is assumed to be 1. Many grammars in compiling fall 

into the LR(1) class of parsers.
• The main advantage of LR parsers is that they be made to 

recognise virtually any language for which a context-free grammar 
exists.

• The main drawback however is that they tend to be very 
complicated to code by hand, however may generators exist that 
take a context-free grammar as input and produce a parser for it.
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Design (1)

• An LR shift-reduce parser consists of an input, 
an output, a stack, a parsing program and two 
parsing tables (action and goto):

LR
Parsing 
Program

Si

Si-1

…

S0

A0 A1 … An

Output

$ Input

Stack

Action
Table

Goto
Table
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Design (2)
• The stack is used to store parsing states.
• The state on the top of the stack combined with the next 

input token are used by the parsing program to deduce 
whether it has a handle to reduce or whether it should 
shift a new state on top of the stack and read the next 
input token.

• Each entry in the action table contains the four actions 
for any combination of top stack symbol and next token 
Si, Aj:
– Shift,
– Reduce, 
– Accept,
– Error.
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Design (3)

• The goto table is used whenever the action is a 
reduction. After a reduction X α, the states 
corresponding to the handle α are popped from 
the stack to expose the new topmost state s’ and 
the entry for goto[s’,X] becomes the new state 
on top.
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Algorithm (1)
• The parser starts with an initial state s0 on the stack. At 

some point through a parse the stack will contain 
s0s1s2…si.

• Given the next input token a, the parser will proceed as 
follows:
– If action[si,a] = shift si+1, the new state is put on top of the stack 

to become: s0s1s2…sisi+1, and the new token is read.
– If action[si,a] = reduce Y X1…Xk, then the k states si-k+1… si

are popped off the stack leaving si-k on top. Now, goto[si-k,Y] is 
consulted to find a new topmost state si-k+1 which is put on top of 
the stack to become: s0s1s2…si-ksi-k+1.
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Algorithm (2)

• If action [si,a] = accept, then the parsing is 
complete – the whole input tokens have been 
consumed and reduced to the sentence symbol.

• If action [si,a] = error, then a syntax error has 
been detected.
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Parsing Program (1)
Set pointer ip to point to the input string
Repeat forever
Let s = state on top of stack
Let a = symbol pointed to by ip

if action[s,a] = shift s’ then
push s’ on top of stack
increment ip to next symbol

else if action[s,a] = reduce A B then
for i = 1 to length(B)
pop state from stack

Let s’ be the new state on top of stack
Let s’’ = goto[s’,A]
Push s’’ on top of stack
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Parsing Program (2)
else if action[s,a] = accept then
exit from infinite loop

else if action[s,a] = error then
report error

End Repeat
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LR Parsing Example (1)
• Consider the expression id * id + id.
• Grammar:

1)  E E + T
2)  E T
3)  T T * F
4)  T F
5)  F (E)
6)  F id
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LR Parsing Example (2)

R5R5R5R511

R3R3R3R310

R1R1R7R19

S11S68

10S4S57

39S4S56

R6R6R6R65

328S4S54

R4R4R4R43

R2R2S7R22

AcptS61

321S4S50

FTEEOF)(*+id

Goto TableAction Table
State
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LR Parsing Example (3)

• Notes:
– sn means shift state n and read the new token.
– rk means reduce by the production k.
– Encountering blank entries in the tables signify an 

error.
– The value goto[s,a] for a TERMINAL a, is found in the 

action field action[s,a]. The goto table, therefore 
contains values for goto[s,a] where a is a NON-
TERMINAL.
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LR Parsing Example (4)

AcceptEOFS0S114

Reduce E E + TEOFS0S1S6S913

Reduce T FEOFS0S1S6S312

Reduce F idEOFS0S1S6S511

Shift S5idS0S1S610

Shift S6+S0S19

Reduce E T+S0S28

Reduce T T * F+S0S2S7S107

Reduce F id+S0S2S7S56

Shift S5idS0S2S75

Shift S7*S0S24

Reduce T F*S0S33

Reduce F id*S0S52

Shift S5idS01

ActionNext TokenStack
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LR Parsing Example (5)
• At the beginning the parser is in state 0 with id as the first input 

token.
• Therefore action[0,id] is taken giving the state s5 which is 

pushed on the stack and the new input token is read.
• ‘*’ is now the input symbol and the action[5,*] is to reduce by 

rule 6. One state is popped off (one state on right hand side) 
exposing state 0. The value for goto[0,F] is 3 meaning that state 
3 must be popped onto the stack.

• ‘*’ is still the input symbol and action[3,*] is to reduce by rule 
4. One state is popped off (one state on right hand side) exposing 
state 0. The value for goto[0,T] is 2 meaning that state 2 must be 
popped onto the stack.

• And so on…
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Constructing The Parsing Tables

• There are 3 widely used LR parsing techniques:
– Canonical LR(k) or LR(k) is the most general form of LR parsing 

methods and is the most powerful. Such parsers usually have 
many thousands of states for a programming languages and are 
VERY difficult to hand code.

– Simple LR(k) or SLR(k) is a variant of LR(k) parsing and usually 
involves a few hundred states. SLR parsers are the weakest in 
terms of grammars it can handle but serves as a good starting 
point to other LR parsing methods.

– Lookahead LR(k) or LALR(k) is somewhat in the middle in terms 
of the grammars it can handle. LALR parsers have the same 
number of states as the equivalent SLR parser but are more 
difficult to construct. Popular parser generators use this 
technique to automate parser generation.
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FLEX

• FLEX is a popular program that generates 
lexical analysers.

• FLEX accepts as an input a description of the 
scanner it has to generate and produces a C 
source file called ‘lexyy.c’ containing the 
scanning code.

• By convention, FLEX input files have the 
extension ‘.l’.
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The FLEX Input File
• The general format of a FLEX source file is:

Definitions
%%
Rules
%%
User Subroutines

• The definitions and user subroutines sections are 
optional as is the second set of %% delimiters. Note that 
the first set of delimiters is required to separate the 
definitions section from the rules.

• The absolute minimum FLEX program is:
%%

• Which copies the input program to the output 
unchanged.



Kristian Guillaumier, 2001 158

FLEX Definitions (1)
• The definition sections contains declaration of language 

constructs to simplify the scanner specification.
• These declarations have the form:

name definition

• Where name is any alpha-numeric word starting with an 
underscore of a letter.

• For example:
– Digit [0-9]
– Ident [a-z][a-z0-9]*

• Where Digit defines a regular expression that recognises
a simple one-character digit and Ident recognises a word 
starting with a letter followed by zero or more 
occurences of a letter or digit.
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FLEX Definitions (2)
• Thus, a subsequent call to:

{digit}* ”,” {digit}+

• Is identical to
([0-9])* ”.” ([0-9])+

• In the definitions section, any indented text or text 
enclosed within %{ and %} is copied to the output as it is 
with the %{ and %} removed.

• The text lines within are usually:
– Compiler directives such as #include’s or #define’s.
– Declarations of variables that are used by other sections of the

FLEX input file.
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FLEX Rules
• The rules section of a FLEX program contain a 

series of pattern action statements.
• For example:

Integer puts(“I found an integer”)

• Would print a message each time an Integer 
(defined in the definitions section) is found.

• Any indented or ‘%{…%}’ code appearing before 
the first rule in this section is local to the main 
scanning routine generated by FLEX and is 
executed each time the routine is called.
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FLEX User Subroutines

• The user subroutines section is copied exactly to 
the output source produced by FLEX.

• When building FLEX scanners that are not 
interfaced by external programs the C main
function is defined and programmed here.
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Regular Expressions in FLEX (1)

2 or more r’s.r{2,}

Anything between 2 and 5 r’s.r{2,5}

An optional r (zero or one)r?

One or more r’s.r+

Zero or more r’s where r is a regular expression.r*

A negated character class with an escape character (newline).[^A-Z\n]

A negated character class.[^A-Z]

A character class with a range in it – matches an ‘a’, a ‘b’, any 
letter from ‘j’ to ‘o’ or ‘Z’.

[abj-oZ]

A ‘character class’ – in this case it matches an ‘x’ a ‘y’ or a ‘z’[xyz]

Any character except the newline..

Matches the character x.x
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Regular Expressions in FLEX (2)

The end of file.<<EOF>>

An r but only at the end of a line – equivalent to r\n.r$

An r but only ath the beginning of a line.^r

Either an r or an s.r|s

Concatenation of regular expression r and s.rs

Match an r – parenthesis are used to emphasis precedence.(r)

A character with the hexadecimal value 2a.\x2a

A character with the octal value of 123.\123

If X is an a,b,f,n,r,t or v, the ANSI C interpretation of \X otherwise 
the literal X – for example \”

\X

The literal ‘[xyz]’“[xyz]”

The expansion of a name definition.{name}

Exactly 4 r’s.r{4}
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Regular Expressions in FLEX (3)

• If there is more than one rule matching the input, 
the one matching the most text characters is 
chosen. If the matches have the same length, 
the file listed first is chosen.

• Once a match is made, the text corresponding 
the match is put in a special character pointer (C 
string) variable called yytext (char *yytext) 
and its length is in yyleng.
– Integer printf(“I found an integer %s.”, 
yytext);
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Actions (1)
• Each pattern in a rule has a corresponding action that 

may be any arbitrary C statement.
• The pattern ends at the first non escaped whitespace

character. The rest of the line is the action statement.
• If the action is left empty, the token found is discarded.
• The following FLEX program deletes all occurrences of 

the word ‘username’ from the input an keeps the rest:
%%
“username”

• The following program compreses multiple spaces and 
tabs into one space charater and removes trailing 
spaces too:
[ \t]+ putchar(‘ ‘);
[ \t]+$ /* ignore trailing blanks */
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Actions (2)
• An action consisting of only the vertical bar ‘|’ means “the same action as 

the one for the next rule. If the action contains a ‘{‘, then the action spans 
until the next balancing ‘}’. For example:

IF |
if {

puts{“Keyword IF found.”);
return IFWORD;

}

• Actions contain arbitrary C code, including return statements to return 
values to whatever external routine called yylex() – the token parser. 

• Each time yylex() is called, it continues processing from where it last left 
off until it reaches an EOF or meets a return statement.

• Once yylex() reaches the end of file, however, any subsequent call to 
yylex() will immediately return unless yyrestart() is called.

• Note any actions are not allowed to modify yytext or yyleng.
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Special Routines and Directives (1)

• ECHO: copies yytext to the scanners output.
• yymore(): tells the scanner that the next time it 

matches a rule, the corresponding token should be 
appended onto the current value of yytext rather than 
replacing it. For example:
%%
a- ECHO; yymore();
b ECHO;

• The first ‘a-’ is matched and echoed to the output. Then 
‘b’ is matched by the previous ‘a-’ is still in yytext so 
the echo for ‘b’ will include the previous ‘a-’s
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Special Routines and Directives (2)
• yyless(n): redirects all but the first n characters of the current token back 

to the input stream, where they will be rescanned when the scanner looks 
for the next match. yytext and yyleng are adjusted appropriately. Note 
that a call to yyless(0) will cause the entire input string to be scanned 
again and would result in an infinite loop unless care is taken.

• unput(c): puts the character ‘c’ back onto the input stream which will then 
be the next character scanned. For example the following action will take 
the current token and cause it to be rescanned enclosed in parenthesis:
{

int i;
unput(‘)‘);
for (i = yyleng -1; i > 0; --i)
unput( yytext[i] );

unput(‘{’);
}

• Note that all characters are pushed to the BEGINNING of the input string so 
the original characters are put in reverse.
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Special Routines and Directives (3)

• input(): reads the next character from the 
input stream. (or yyinput() if used with C++)

• yyterminate(): can be used instead of a 
return statement. It aborts the action returning 0. 
subsequent calls to yylex() immediately return 
unless yyrestart() is called. (usually called 
on encountering the EOF)

• yyrestart(): tells FLEX to start scanning from 
a new (maybe the same) input file. Takes a 
single file * pointer.
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The Generated Scanner (1)
• Whenever yylex() is called, it scans tokens 

from a global input file denoted by yyin which 
by default points to standard input unless 
specified using the C function fopen (file open).

• For example, to open example.txt for reading 
in text mode:
yyin = fopen(“example.txt”,”r”);

• yylex() continues reading from yyin until it 
reaches EOF. In this case the function will return 
immediately unless yyrestart() is called and yyin
is set to point to a new file.
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The Generated Scanner (2)
• Likewise, the scanner produces output to yyout

which, again, by default, points to standard 
output. As with yyin, yyout can be changed by 
assigning it another FILE pointer:
– yyout = fopen(“output.txt”, “w”);
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Interfacing with Parser Generators
• One of the main uses of FLEX is interfacing it with an external 

parser generator like Bison. Bison parsers expect to call a function 
called yylex() to find the next input token. 

• yylex(), is expected to return the type of the token found 
(implemented as a constant, maybe) and putting any associated 
value in yylval.

• To use Bison in association with FLEX, it is called with the –d option 
to instruct is to generate an header file containing all the token 
definitions. This header is then used in FLEX. To include the 
header:
%{
#include “generated_header.h”
%}
%%
[0-9]+ yylval = atoi(yytext); return NUM;
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BISON
• BISON takes an input grammar file and produces a C 

program that parses the language described by that 
grammar.

• Tokens are read from the lexical analyser function 
yylex() which can be coded manually or generated 
automatically using FLEX.

• The BISON output file (C program) defines a function 
called yyparse() – the implementation of the grammar.

• The parser generated by BISON expects a user-
implemented error reporting function yyerror(). And 
the main() C function.
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BISON Grammar Files
• A BISON grammar file contains four sections separated 

by delimiters:

%{
C Declaration
%}

Bison Declarations

%%
Grammar Rules

%%
Additional C Code
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The C Declarations Section
• This section contains global definitions, constants, 

variables, #include’s, #define’s and functions that will be 
used in the actions of the grammar rules.

• The contents of this section are copied to the very 
beginning of the output parser file so that they precede 
the yyparse() function.

• If no C declarations are used, the %{ and %} delimiters 
may be omitted.

• By now you should have noticed that both BISON and 
FLEX have a lot of variable and function definitions 
starting with yy. It is a good idea NOT to name any 
variables or functions of your own starting with yy too.
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Other Sections
• Bison Declarations

– This section contains declarations of terminal and non-terminal 
symbols used in the language being described, as well as 
definitions of operator precedence and the data types of 
semantic values of various symbols.

• Grammar Rules Section
– This section contains the grammars production rules, which 

define how a non-terminal is constructed from its parts. There 
must always be at least one grammar rule in a BISON file.

• Additional C Code
– Like the C Declarations section, the contents of this section 

contains C code that is copied exactly to the output. This section 
is copied to the END of the output file. It is a convenient way to 
put anything required AFTER the yyparse() function such as 
main().
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Symbols – Terminal and Non-
Terminal (1)
• A terminal symbol represents lexical analyser tokens. These tokens 

are represented by numeric constants, any yylex() returns a 
token type code to indicate what token type has been read.

• There are 2 ways of writing terminal symbols in the grammar:
– Single Characters: A single character token type such as + or * does not 

need to be declared. It can be used directly in the rules section by 
enclosing it in single quotes.

– Multi-Character Tokens: These are represented by a declared name 
using a %token declaration. By convention names are written in upper 
case. For example the words “Begin” and “End” might be declared as:
%token BEGIN
%token END

-or-

%token BEGIN END
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Symbols – Terminal and Non-
Terminal (2)
• Internally, each token is represented by an integer, 

starting from 257. 0 to 255 are used to represent ASCII 
characters and 256 is used to represent the error token. 
When using BISON the programmer is not generally 
concerned about these values but these token values 
must be known when implementing these tokens in 
FLEX. Using the ‘–d’ option when running BISON will 
automatically generate an include file containing the 
definitions for these tokens:

…
#define BEGIN 257
#define END 258
…
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Symbols – Terminal and Non-
Terminal (3)
• Non-terminals are declared in exactly the same 

way, but their names are in lowercase by 
convention.
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BISON Grammar Rules (1)
• A BISON grammar rule has the form:

result : components... 
;

• Where result is the non-terminal symbol that the rule describes 
(LHS) and the components are the various terminal and non-
terminal symbols that put together this rule (RHS).

• For example:

exp : exp ‘+’ exp
;

if_statement : IF exp THEN
;
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BISON Grammar Rules (2)
• Multiple rules for the same result can be written 

separately:
exp : exp ‘+’ exp;
exp : exp ‘-’ exp;

• Or together, separated by the vertical bar:
exp : exp ‘+’ exp

| exp ‘-’ exp
;

• If the components section is left empty, it means 
that result can match the empty string.
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BISON Grammar Rules (3)
• Here is how to define a comma separated sequence of zero or more exp

groupings:

expseq : /* empty */
| expseq1
;

expseq1 : exp
| expseq1 ‘,’ exp
;

• It is convention to write a comment /* empty */ in each rule with no 
component.

• Within components actions consisting of C statements may be included:

exp : exp ‘+’ exp { printf(“Addition Expression”);}
| exp ‘-’ exp { printf(“Subtraction Expression”);}
;
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Recursive Rules (1)
• A rule is called recursive when its result also appears also on the 

right-hand side. Nearly all BISON grammars need to use recursion, 
because it is the only way to define a sequence (zero-or-more, one-
or-more) of ‘somethings’.

• Consider the left and right recursive definitions of a comma-
separated sequence of one or more expressions:

expseqleft: exp
| expseqleft ‘,’ exp
;

expseqright : exp
| exp ‘,’ expseqright
;
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Recursive Rules (2)
• Any kind of sequence may be defined using either left or 

right recursion, but one should always use left recursion, 
because it can parse a sequence of any number of 
elements with bounded stack space.

• Indirect or mutual recursion occurs when the result of the 
rule does not appear directly on the right hand side, but 
does appear in rules for other non-terminals which do 
appear on its right hand side. For example:
expr : primary

| primary ‘+’ primary
;

primary : constant
| ‘(‘ expr ‘)’
;
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Defining Semantics (1)
• The grammar rules for a language determine only its 

syntax. The semantics are determined by the semantic 
‘meaning’ associated with various tokens and the actions 
taken when these tokens are recognised.

• A formal grammar selects tokens only by their 
classifications: for example, if a rule mentions the 
terminal symbol `integer constant', it means that any
integer constant is grammatically valid in that position. 
The precise value of the constant is irrelevant to how to 
parse the input: if `x+4' is grammatical then `x+1' or 
`x+3989' is equally grammatical. 
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Defining Semantics (2)
• Semantic values have all the rest of the information about the 

meaning of a token, such as the value of an integer, or the name of 
an identifier. (A token such as ',' which is just punctuation doesn't 
need to have any semantic value.) 

• For example, an input token might be classified as token type 
INTEGER and have the semantic value 4. Another input token might
have the same token type INTEGER but value 3989. When a 
grammar rule says that INTEGER is allowed, either of these tokens 
is acceptable because each is an INTEGER. When the parser 
accepts the token, it keeps track of the token's semantic value.

• Each grouping can also have a semantic value as well as its non-
terminal symbol. For example, in a calculator, an expression 
typically has a semantic value that is a number. In a compiler for a 
programming language, an expression typically has a semantic 
value that is a tree structure describing the meaning of the 
expression. 
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Defining Semantics (3)
• Most of the time, the purpose of an action is to compute the 

semantic value of the whole construct from the semantic values of 
its parts. For example, suppose we have a rule which says an 
expression can be the sum of two expressions. When the parser 
recognizes such a sum, each of the sub-expressions has a semantic 
value which describes how it was built up. The action for this rule 
should create a similar sort of value for the newly recognized larger 
expression.

• The C code in an action can refer to the semantic values of the 
components matched by the rule with the construct $n, which 
stands for the value of the nth component. The semantic value for 
the grouping being constructed is $$. (Bison translates both of these 
constructs into array element references when it copies the actions 
into the parser file.) 

• Here is a typical example: 
exp: ...

| exp '+' exp { $$ = $1 + $3; }
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Defining Semantics (4)

• If you don't specify an action for a rule, Bison 
supplies a default: $$ = $1. 

• Every terminal and non-terminal defined in the 
grammar is given a type. Bison’s default is to 
use the int type for all semantic values. 
Clearly, this can be overridden.
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BISON Declarations

• This section defines all the symbols used in 
formulating the grammar and the data types of 
semantic values. 

• All token types except for single character 
tokens (such as +, which are enclosed in single 
quotes) must be declared.

• Non-terminal symbols must be declared if you 
need to specify which data type to use for the 
semantic value.
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The Sentence Symbol

• The sentence symbol of the grammar is, by 
default, the first non-terminal defined at the start 
of the rules section. An alternative start symbol 
may be specified using the %start statement. 
For example, if the starting symbol in your 
language is program, you may specify this as:
%start program
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Token Types
• The basic way to specify a token is using the 
%token statement:
%token begin
%token end

• One can explicitly specify a numeric code to 
each token type:
%token begin 300
%token end 301

• But, in general, it is better to let BISON choose 
the numeric code itself.
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Types of Semantic Values (1)
• The BISON %union declaration is used to 

specify the collection of all possible data types 
for all the semantic values:
%union
{
double val;
char * str;

}

• This means that we defined two types – val
(based on the double type) and str (a C string).
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Types of Semantic Values (2)
• In certain cases, token declarations (%token …) should 

be assigned a type. For example, if the token NUM must 
be associated to the semantic type double, then the 
token declaration should be modified as:
%token <val> NUM

• We previously mentioned that in some cases, non-
terminals could be associated with a semantic type. In 
this case the non-terminal declaration is mandatory. 
Suppose the EXPR and PRIMARY non-terminals are 
associated a double type:
%type <val> EXPR PRIMARY
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Associativity
• If one wishes to declare a token and specify its 

associativity the %left, %right and %nonassoc
statements are used.

• If ‘+’ is declared to be left associative:
%left ‘+’

• The same reasoning goes for right associativity. A token 
may be non-associative. Say, ‘+’ should be declared with 
no associative information. We get:
%nonassoc ‘+’

• But keep in mind that statements like ‘a+b+c’ will be 
considered as a syntax error (we have more than one 
operator but don’t have associativity information)
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Precedence

• All tokens declared together have the same 
precedence. 

• When tokens are declared separately, the one 
declared later has the highest precedence.
%left ‘+’ ‘-’
%left ‘*’
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Type Checking (1)
• There are 2 classes of ‘checking’ that are made when during the 

lifetime of a program, namely, static and dynamic checking. 
Dynamic checking occurs during the execution (runtime) of a target 
program. Static checking is made at compile time.

• Examples of static checks include:
– Type checks: a compiler should produce an error id an operator is 

applied to an incompatible operand.
– Flow control checks: statements that effect the flow of a program must 

have a ‘place’ were to redirect the flow. For example, the C break
statement causes the control to leave the enclosing while, for or 
switch statement. An error occurs if there is no such enclosing 
statement.

– Uniqueness checks: there are situations were an object must be defined 
only once such as a variable declaration.

– Name-related checks: sometimes, a name must appear two or more 
times (for i = a to b … next i). The compiler must check that 
the same name is used in both places.
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Type Checking (2)
• A type checker verifies that the type of a construct ‘fits’ into its 

current context. For example the Pascal mod operator requires 
integer operands, so the compiler must ensure that this is so.

• A symbol that can represent different operations in differing context 
is said to be ‘overloaded’.

• In principal any check can be made dynamically, if the target code 
contains enough type information.

• A strongly typed language is one that guarantees that if the compiler 
accepted the input, it will run without type errors.

• In practice there are some check that can be made only 
dynamically. For example if we declare an array table: 
array[0..255] of char; and try to reference table[i], the 
compiler cannot guarantee during execution that the value i will lie 
in the 0..255 range.
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A Simple Type Checker (1)
• We will specify a small language in which every identifier 

must be declared before being used.
• The following grammar generates programs starting from 

the starting symbol P consisting of a sequence of 
declarations D followed by a single expression E.

P D ; E
D D ; D | id : T
T char | integer | 

array[ num ] of T | ^T
E literal | num | id | E mod E |

E [ E ] | E^
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A Simple Type Checker (2)
• A program that can be generated from the grammar is:

key: integer;
key mod 1999

• Notes:
– The basic types in the language are char and integer.
– We assume all array indices start from 1 so array[256] is the 

equivalent of array[1..256].
– The prefix ^ operator is the pointer type.
– In the translation scheme we will use, the action associated with 

the production D id : T, will save the type information for 
the identifier in the symbol table.

– Since in the grammar, D appears before E in P D ; E it is 
guaranteed that all the types of identifiers will be known before 
the expression is checked.
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Type Checking Expressions (1)
• The following rules, synthesize the the type of an 

expression :

if E1.Type AND E2.Type = integer

E.Type = integer
else

E.Type = type_error

E E1 mod E2

E.Type ::= lookup(id)
Where lookup searches for id in the symbol table 
and returns the type of the declared identifier.

E id

E.Type ::= integerE num

E.Type ::= charE literal



Kristian Guillaumier, 2001 201

Type Checking Expressions (2)

if E1.Type = pointer(t)
E.Type = t

Else
E.Type = type_error

Where t in pointer(t) is the type of the pointer.

E E1^

if E2.Type = integer and

E1.Type = array(s,t)
E.Type = t

else
E.Type = type_error

In array, s is the size and t is the type.

E E1[E2]
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Type Checking Statements (1)

• Certain language constructs like statements 
don’t have values per se so don’t have types 
associated with them. In this case a special 
basic type void can be assigned to them. If an 
error is detected the type_error type is returned.

• We will be considering assignment, while
and if statements here.

• Sequences of statements are separated by 
semicolons. 
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Type Checking Statements (2)

if S1.Type = void and S2.Type = void 
S.Type = void

else

S.Type = type_error

S S1 ; S2

-same as above-S while E do S1

if E.Type = boolean

S.Type = S1.Type
else

S.Type = type_error

S if E then S1

if id.Type = E.Type

S.Type = void
else 

S.Type = type_error

S id := E



Kristian Guillaumier, 2001 204

Runtime Support (1)
• Before discussing code generation, we will examine the relationship 

between the text of the source program to the actions that have to 
occur at runtime to implement it.

• The execution of every procedure is referred to as an activation of 
that procedure.

• If procedures are nested or recursive multiple activations may exist 
at any one point.

• Let us assume that a program is made up of procedures such as in
Pascal. 

• In its simplest form a procedure is the relationship between and
identifier and a statement, where the identifier is the procedure 
name and the statement(s) is the procedure body.

• Procedures that return a value are called functions in many 
programming languages.
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Runtime Support (2)
• A complete program will also be treated as a procedure 

(think Pascal).
• When a procedure appears in an action statement, we 

say that the procedure has been called.
• A procedure may be also called within an expression.
• Some identifiers within a procedure definition are treated 

special and are called the formal parameters of the 
procedure (also called arguments).

• When a procedure is called, actual parameters are 
substituted for the formal ones.
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Activation Trees (1)
• Assumptions on flow control:

– Control flows sequentially.
– The execution of a procedure starts at the beginning of the procedure 

body and ends at the point following where the procedure was called. 
• Each execution of a procedure is referred to as an activation of the 

procedure. The lifetime of an activation is the sequence of steps 
between the first and last steps in the execution of the procedure 
body (including any other procedures called internally).

• In languages like Pascal, each time control enters a procedure Q
from another P, control will eventually return to P in the absence of 
an error.

• So, if P and Q are procedure activations, their lifetimes are either 
nested or non-overlapping. That is if Q enters before P is left, then Q 
must terminate before P does. 

• A procedure is recursive if a new activation can begin before an
earlier activation of the same procedure finished (note: recursion 
may be indirect (P calls Q which calls P).
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Activation Trees (2)

• We use a tree structure called an activation tree 
to depict this control flow. In this tree:
– Each node represents an activation of a procedure.
– The root node represents the activation of the main 

program procedure.
– The node for A is the parent of another node B iff

control flows from activation A to B.
– The node for A is to the left of the node for B iff the 

lifetime of A occurs before that of B.
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Example (1)
program sort
var a: array[0..10] of integer;

procedure readarray;
var i:integer;
begin

for i := 1 to 9 do read(a[i]);
end;

function partition(y,z:integer):integer;
var ...
begin

...
end;
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Example (2)
procedure quicksort(m,n:integer);
var i:integer;
begin

if (n > m) then begin
i := partition(m,n);
quicksort(m,i-1);
quicksort(i+1,n);

end;
end;

begin
a[0] := -9999; a[10] := 9999;
readarray;
quicksort(1,9);

end.
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Example (3)
• Activation Trace:

Execution Begins
Enter readarray
Leave readarray
Enter quicksort(1,9)
Enter partition(1,9)
Leave partition(1,9)
Enter quicksort(1,3)
...
Leave quicksort(1,3)
Enter quicksort(5,9)
...
Leave quicksort(5,9)
Leave quicksort(1,9)
Execution Finishes
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Example (4)

s

r q(1,9)

p(1,9) q(1,3) q(5,9)

p(1,3) q(1,0) q(2,3) p(5,9) q(5,5) q(7,9)

p(2,3) q(2,1) q(3,3) p(7,9) q(7,9) q(9,9)
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Control Stacks (1)
• The flow of control of a program corresponds to a depth 

first traversal of the activation tree.
– (starts at the root, visits nodes before children and visits children 

in a left-to-right order)
• The trace we have seen before can be reconstructed by 

traversing the previous tree as illustrated above. 
• We can use a stack called the control stack to keep 

track of live procedure activations. The idea is to push a 
node onto the stack when activation begins and popping 
it off when activation ends.

• When a node n is on top of the control stack, the stack 
contains the nodes along the path from n to the root 
(start).
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Control Stacks (2)

s

r q(1,9)

p(1,9) q(1,3)

p(1,3) q(1,0) q(2,3)

The state of the stack when q(2,3) is on top.
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Activation Records
• Information (memory space) needed for the execution of a single procedure 

is managed by a block of storage called an activation record.
• Not all languages or compilers use the same structure for this record.
• Common fields in this record are:

– Temporaries: temporary values such as those intermediate values when 
evaluating an expression.

– Local data: local values to the procedures.
– Saved machine status: the state just before the procedure was called.
– Access link: link to non-local data.
– Control link: link to the activation record of the calling procedure.
– Actual parameters: values of the actual parameters passed the procedure.
– Returned value: the returned value if the procedure is a ‘function’.

• ‘Out of Stack Space’ issue in infinitely recurring calls.
• The sizes of most fields are usually determined at compile time with 

exceptions if there is a local array whose size depends on an actual 
argument or the procedure can take a variable number of parameters.
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Intermediate Code
• It is common practice for the front end of a compiler to 

produce an intermediate form of code before passing 
that on to the backend to generate the target code itself.

• This is desirable since:
– Retargeting is facilitated (a compiler for the same language but

different machine).
– A machine-independent code optimiser may be developed 

(optimisation applied to the intermediate code).

• We will assume that at this point the language has been 
parsed and statically checked.
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Intermediate Languages (1)
• Syntax trees and postfix are two types of intermediate 

representations.  
• In this section we will discuss a new one called the three 

address code.
• The three address code (3AC – my abbreviation!) is a 

sequence of statements of the general form:
x := y op z

• Where x, y and z are names, constants or compiler-
generated temporaries. 

• Op, stands for an operator such as integer or floating-
point arithmetic operators or a logical operator on 
boolean data.
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Intermediate Languages (2)
• Note that no ‘built-up’ expressions are allowed since 

there is only one operator in the RHS. So, something like 
p + q * r, would look like:
t1 := q * r
t2 := p + t1

• Where, t1 and t2 are compiler-generated temporaries.
• The use of names for intermediate values allows 3AC to 

be easily rearrange unlike postfix notation. 
• 3AC is a linear representation of the syntax tree (like 

postfix).
• The reason for the term ‘Three Address Code’ is that 

each statement usually contains 3 addresses, 2 for the 
operands and 1 for the result.
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Intermediate Languages (3)
3AC

t1 := -c
t2 := b * t1
t3 := -c
t4 := b * t3
t5 := t2 + t4
a  := t5

Assign

a +

* *

b UMinus b UMinus

c c

a := b * -c + b * -c

Syntax Tree
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Types of 3AC (1)

y is an optional return value. Typically used as 
a sequence:
param x1
…
param xn
call p,n

param x
call p, n
return y

Parameters, Calls 
and Returns

Apply a relational operator (>, <, <=,…) to x 
and y and jump to L if true otherwise continues 
with the next code.

if x relop y goto LConditional Jump
Where L is a label to the next statement to run.goto LUnconditional Jump
Copy y into x.x := yCopy
Op is a unary operator (-, NOT,…)x := op yAssignment
Op is a binary arithmetic or logical operator.x := y op zAssignment
NotesFormType
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Types of 3AC (2)

The first sets the value of x to the memory 
location of y.
In the second, presumably y is a pointer.
In the third, presumably x is a pointer.

x := &y
x := *y
*x = y

Address/Pointer 
Assignments

The first sets x to the value in the location i 
memory units beyond y.
The second sets the value at the location i 
memory units beyond x to y.

x := y[i]
x[i] = y

Indexed 
Assignments

NotesFormType

Note:
The operator set in the design of the 3AC must be rich enough to describe the operations 
in the source language. A small set is easier to implement on the target machine, but the 
resulting code would be very long, making the life of the optimiser harder if it is to 
produce good code.
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Code Generation (1)
• The final phase in compiler is the code generator which takes an

intermediate representation of a source program and generates 
equivalent target code.

• In between the intermediate code stage and code generation stage
there could be a code optimisation stage. Code optimisation may be 
implemented on the final target code too.

• The requirements generally imposed on a code generator are that 
the target code should be correct of high quality and effectively use 
resources on the target computer. Also the code generator itself
must be efficient. 

• Mathematically, the problem of generating optimal code is 
undecidable. In practice, heuristics that generate good code (not 
necessarily optimal) are typically used.

• The choice of such heuristics is important. Carefully designed code 
generators may produce code that is several times faster than that 
produced by a bad one.
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Code Generation (2)
• In order to design an efficient code generator the 

designer must have intimate knowledge of the 
target hardware and operating system.

• Issues such as memory management, 
instruction selection, register allocation and 
evaluation order are inherent to almost all code 
generation problems.

• Due to highly specialised, platform-dependent 
issues, in this section will examine generic 
design issues only.
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Input to the Code Generator
• The input is typically, 

– The intermediate code produced by the front end.
– The symbol table that is used to determine the runtime 

addresses of the data objects denoted by the names in the 
intermediate representation.

• We assume that,
– The source code has been properly scanned and parsed 

correctly.
– All relevant information is available to the code generator.
– Type checking has occurred.
– In general the input is error-free.
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Target Programs
• The output of a code generator is the target language. This may 

take on different forms such as,
– Absolute machine code,
– Relocatable machine language,
– Or assembly language.

• Producing absolute machine code has the advantage that it can be
placed in a fixed memory location and execute immediately. 

• Producing relocatable (object) code has the advantage that 
separate sub-programs may be compiled separately and then linked 
and loaded to execute. Whilst the code has the overhead of linking 
and loading we gain a lot of flexibility (think DLLs – though not 
exactly).

• Producing assembly language makes the code generation task 
simpler but involves the extra step of assembling the output.
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Memory Management

• Mapping names in the source program to 
addresses of data objects is done cooperatively 
by the front-end and back-end of the compiler. 

• A name in a 3AC statement refers to a symbol 
table entry for the name.

• The type of a declaration determines the amount 
of storage allocated in memory (e.g. a long 
integer would take up 4 bytes). 
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Instruction Selection (1)
• The nature of the instruction set of the target machines 

determines the instruction selection when generating 
code.

• Also, if the target machine does not support each data 
type natively, special arrangements have to be made.

• Instruction speeds are an important factors when 
generating code. If the quality of the target code is not an 
issue, then each 3AC statement could be associated 
with  a ‘template’. For example, every 3AC statement of 
the form x := y + z could be translated into:

MOV y, R0
ADD z, R0
MOV R0, x
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Instruction Selection (2)
• Unfortunately, this technique can (and most likely will) 

produce inefficient code. For example:
a := b + c
d := a + e

• Will produce:
MOV b,R0
ADD c,R0
MOV R0,a
MOV a,R0
ADD e,R0
MOV R0,d

• There the third and fourth statements are redundant if a 
is not subsequently used.
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Instruction Selection (3)
• The quality of code is usually determined by its 

execution speed and its size.
• A target machine with a rich instruction set may provide 

several ways to perform any given operation. In this case 
a ‘narrow-minded’ code generator may produce correct, 
though unacceptably inefficient code.

• For example, say, the machine supports an increment 
(INC) operation. Then the 3AC instruction a := a + 1 may 
be implemented more efficiently by the single instruction 
rather than using the ‘template’ we have seen before.
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Register Allocation
• Instructions involving register operands are usually 

shorter and much faster than those involving memory 
operands. For this reason, efficient utilization of registers 
is important in generating fast code.

• The use of registers is often subdivided into two 
problems:
– During register allocation, we select the set of variables that 

will reside in registers at a point in the program.
– During subsequent register assignment, we pick the specific 

register that the variable will ‘live’ in.
• Finding the optimal assignment of registers is 

mathematically NP complete and further restrictions may 
be enforced by the hardware and/or operating system
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Code Optimisation
• An optimiser looks at a representation of the source 

program and tries to produce shorter or faster code (or 
both).

• There are essentially two ways in which optimisation can 
take place:
– Reorganise the structure of the source algorithms to make them 

more efficient. This generally operates on the parse tree. This 
technique is machine independent.

– Modification of the code produced by a simple translator to make
it efficient. This phase operates on the object code.
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Common Optimisation Tasks (1)
• Common Sub Expressions

– An occurrence of an expression E is called a common sub-
expression if E  was previously computed and the values of the 
variables in E have not changed. In such cases we can avoid 
recomputing an expression of we can use the previously 
computed value.

• Copy Propagation
– Reorganises assignment statements so that:

x = y
z = x

– becomes
x = y
z = y

– (more on this later)
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Common Optimisation Tasks (2)
• Dead Code Elimination

– A variable is ‘live’ at a point in a program if its value can be used 
subsequently, otherwise it is ‘dead’ at that point. Statements may 
compute values that may never be used in a program. While a 
programmer is unlikely to introduce dead code intentionally, it 
may appear as a result of previous transformations. Consider the
statement:
if (debug) then Print ...

– By data flow analysis it may be deduced that no matter what 
path the program takes, when the statement is reached, the 
value of debug would always be false, so the test and printing 
may be removed from the object code.
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Common Optimisation Tasks (3)
• Dead Code Elimination Continued

– One advantage of copy propagation is that it often turns an assignment 
statement into dead code. For example copy propagation followed by 
dead code elimination would convert:
x = t3
a[t2] = t5
a[t4] = x
goto b2

– By elimination of copy propagation:
x = t3 
a[t2] = t5
a[t4] = t3
goto b5

– By Dead code elimination:
a[t2] = t5
a[t4] = t3
goto b5



Kristian Guillaumier, 2001 234

Common Optimisation Tasks (4)
• Loop Optimisation

– Loops are an important place where optimisations may occur. 
The running time of a loop may be improved if we decrease the 
number of instructions occurring inside. A common loop 
optimisation is called code motion. 

– Code motion attempts to move code out of the loop (though the 
expression must yield the same result). This transformation 
takes an expression that has the same evaluation independent 
of the number of times the loop executes (called a loop-invariant 
computation) and places it before the loop. For example the 
computation of limit – 1, is loop invariant in:
while (i < (limit – 1)) ...

– So we can have:
t = limit – 1
while (i < t) ...


