
Kristian Guillaumier, 2001 1

Compiling Techniques
CSM201

Kristian Guillaumier
http://www.cs.um.edu.mt/~kguil

kguil@cs.um.edu.mt

Kristian Guillaumier, 2001 2

Programmable Machines
• Processors are programmable in a language called

Machine Code.
• The range of features available to this language is

defined by the Instruction Set of the processor.
• Although the instruction set actually contains primitive,

basic operations you can actually write any program
using it.

• Each processor family has it’s own instruction set.
Though basic operations are common to most of them,
they’re incompatible with each other in almost every
other respect.

Kristian Guillaumier, 2001 3

A Simple Program in Machine
Code (1)
• Consider the following simple statement in BASIC:

length = 2*(side1-side2) + 4*(side3-side4)

• We’ll write the equivalent machine code to execute this
statement for a processor with a limited instruction set
called SIMPLE.

• Variables and their values are stored in memory (RAM).
• In addition the SIMPLE processor has a single memory

location (register) called the accumulator.

Kristian Guillaumier, 2001 4

A Simple Program in Machine
Code (2)

Unknown at startupTempLoc8

44Loc7

22Loc6

2Side4Loc5

4Side3Loc4

3Side2Loc3

6Side1Loc2

Unknown at startupLengthLoc1

ValueVariable/ConstantMemory Location

Memory Map

Kristian Guillaumier, 2001 5

A Simple Program in Machine
Code (3)

Stores the result from the accumulator into the
memory location <addr>.

Store <addr>

Like above but multiplies.Mul <addr>

Like above but adds.Add <addr>

Subtracts a value read from <addr> from the one
in the accumulator. The result is stored in the
accumulator.

Sub <addr>

Loads a value from the memory location <addr>
into the accumulator.

Load <addr>

MeaningInstruction

Instruction Set

Kristian Guillaumier, 2001 6

A Simple Program in Machine
Code (4)
• The machine code to evaluate the expression would be:

Load Loc2
Sub Loc3
Mul Loc6
Store Loc8 we need a temp variable
Load Loc4
Sub Loc5
Mul Loc7
Add Loc8
Store Loc1

Kristian Guillaumier, 2001 7

Advantages and Disadvantages
• Advantages:

– Programmers are required to have an intimate knowledge of the
processor. This can lead to highly optimised code.

– May be the only way to program the processor (like an
embedded processor in a microwave oven).

• Disadvantages:
– Programmers are required to have an intimate knowledge of the

processor. Difficult to learn.
– Development time takes longer.
– ‘Easier’ to make mistakes.
– Not portable. The program is tied down to the processor it was

written for.
– Human beings ‘think’ about algorithims differently than a

processor does.

Kristian Guillaumier, 2001 8

What is a Compiler?

• Informally a Compiler:
– Translates a program in a language (source

language) to another language (target language)
usually machine code.

– Checks for syntactical correctness.
– Checks for semantic correctness.

Kristian Guillaumier, 2001 9

Cousins of the Complier (1)
• Assemblers

– Similar to compilers (translation/checks syntax/etc…) but the
source language is Assembly Language.

• Cross-Compilers
– The compiler program runs on a processor type, but the machine

code it produces is designed to run on a different one. An
example of using a cross compilers is to develop software that
runs on mobile phones.

– Cross Compilers are useful:
• Either because the target machine doesn’t have a compiler of it’s

own.
• Or because it doesn’t have the resources to run the compiler in the

first place.

Kristian Guillaumier, 2001 10

Cousins of the Complier (2)

• Interpreters
– An interpreter translates a program into a lower level

version of it, but it still cannot run directly on the
processor. It depends on some runtime support.
Examples of interpreted language include:

• Command Line Interpreters (BASH, command.com)
• Batch Files
• VBScript, JavaScript

– Execution is slower since the translation occurs each
time the program is executed.

– Interpreters are easier to write.

Kristian Guillaumier, 2001 11

A Deeper Look into Compilers

• To keep things manageable the process of
compilation is separated into 3 distinct (though
connected) phases:
– Lexical Analysis
– Syntax and Semantic Analysis
– Code Generation

Kristian Guillaumier, 2001 12

Lexical Analysis
• Lexical Analysers are also called Scanners.
• Recall that a program is made up of many small entities:

– Keywords: IF, THEN, ELSE, …
– Identifiers: counter, my_var, openfile
– Numbers
– Symbols: +, /, >, >=

• Put Simply, the scanners job is to:
– Open the source file,
– Recognise the entities and represent them as tokens,
– Remove Comments,
– Produce error reports.

Kristian Guillaumier, 2001 13

Example
for counter = 1 to 20 print “hello world” next

keywordnext
Value = “hello world”String“hello world”

Keywordprint
Value = 30Constant 20

Keywordto
Value = 1Constant1
EqualsOperator=
Name = CounterIdentifiercounter

Keywordfor

Tokens

Kristian Guillaumier, 2001 14

Syntax Analysis

• The syntax analyser is also known as the
Parser.

• For all the compiler is concerned, the sequence
of tokens produced by the scanner is just a
random sequence of symbols. It is the job of the
syntax analyser to ensure that these symbols
are structured correctly according to the
definition of the language. For example:
– Every BEGIN must match an END in Pascal.
– Every statement must end in a semi-colon.

Kristian Guillaumier, 2001 15

Semantic Analysis
• Even though the structure of the language is

correct, the MEANING of the statements may be
invalid according to the semantics of the
language.

my_var = my_var + 1

is correct in terms of syntax, but is my_var is
declared as a string, the arithmetic addition of a
number to a string isn’t really correct.

Kristian Guillaumier, 2001 16

The Symbol Table and Parse Tree

• The output produced by the Syntax and
Semantic Analyser is the:
– Symbol Table:

• Stores information about identifiers and functions, such as
their types, sizes, names, number of arguments etc…

– Parse Tree:
• Stores the structure of the program.

Kristian Guillaumier, 2001 17

Example Parse Tree

• i = (I * 4) + z

=

i +

× z

4i

Kristian Guillaumier, 2001 18

Code Generation

• After all the preceding phases have been
completed successfully without errors, the
compiler will proceed to build the target code
from the data structures previously constructed.

• In many cases Code Generation of further split:

Intermediate
Code

Generation

Code
Optimiser

Code
Generation

Symbol
Table

Parse
Tree

Intermediate
code

Intermediate
code

Target
Program

Kristian Guillaumier, 2001 19

Intermediate Code Generation

• The code generator starts off by generating an
intermediate form of code representation before
actually building the target code.

• The main difference between intermediate code
and the actual target code is that certain details
such as the exact memory locations are omitted.

• A common representation format for
intermediate code is the Three-Address Code.

Kristian Guillaumier, 2001 20

Three-Address Code
temp1 = 60

temp2 = id2 + temp1

id1 = temp2

id1temp2=

temp2temp1id2+

temp160=

ResultARG2ARG1Operator

Kristian Guillaumier, 2001 21

Code Optimisation

• This phase attempts to rearrange the code to
obtain a smaller or faster running version.

temp1 = 60

temp2 = id2 + temp1

id1 = temp2

Equivalent to:

id1 = id2 + 60

Kristian Guillaumier, 2001 22

Front and Back Ends (1)

• Commonly compiler phases are split into two
different categories:
– The front end: this stage is concerned with the

phases related to the source language and are
independent of the target. This part usually consists
of the lexical analyser, syntax analysis, symbol table
creation, semantic analysis and intermediate code
generation.

– The back end: consists of the stages dependent on
the target machine. This usually consists of the code
generation and certain parts of the optimiser.

Kristian Guillaumier, 2001 23

Front and Back Ends (2)

• Splitting the compiler into front and backends
has the following advantages:
– The backend can be modularly changed to compile

the same source language for a different platform.
– Compilers for different source languages usually

produce standard intermediate code and may reuse
the same backend.

Kristian Guillaumier, 2001 24

Language Specification

• Programming languages must be specified and
properly described before attempting to write a
compiler for them.

• The specification is written in a meta-language.
• Meta-Languages need to be unambiguous and

we rely on Formal Languages to assist.

Kristian Guillaumier, 2001 25

Formal Languages Primer (1)
• In order to specify a formal language rigorously

we need to introduce some concepts:
• A Symbol or Token is an atomic (indivisible)

entity usually a character, digit or keyword.
• An Alphabet, denoted by Σ, is the finite, non-

empty set of symbols.
• A String over the alphabet is a sequence

a1a2…an of symbols from Σ.
• The symbol ε denotes the empty string.
• εa = aε = a

Kristian Guillaumier, 2001 26

Formal Languages Primer (2)

• The set of all strings over the alphabet Σ,
including the empty string ε, is denoted by the
Kleene Closure - Σ*.

• The set of all strings over Σ, whose length is at
least 1 (i.e. does not contain ε), is denoted by
the Positive Closure - Σ+.

• A Language L over the alphabet Σ is a subset of
Σ*.

Kristian Guillaumier, 2001 27

Regular Expressions
• Many languages (though not all) may be described using

a notation called Regular Expressions.
• Regular expressions specify strings in a language by

using symbols from it’s alphabet and a few special meta-
symbols:
– Concatenation: when we wish to concatenate symbols or string

we write them next to each other of use the . (dot) meta-symbol
for extra clarity.

– Alternation: when there is a choice between to symbols α and
β, they are separated by the | (bar) symbol.

– Repetition: a symbol α followed by a * (star) indicates that there
are zero or more repetitions of α.

– Grouping: a group of symbols may be grouped by surrounding
them by the meta-symbols (and) – parenthesis.

Kristian Guillaumier, 2001 28

An Example
• Consider the expression:

1 (1 | 0)* 0

• This expression represents all the strings that
start with a 1, end in a 0 and have an unlimited
(possibly empty) number of 1’s and 0’s in
between.

{10, 100, 110, 1000, …}

Kristian Guillaumier, 2001 29

Notes on Regular Expressions
• Precedence from highest to lowest: Parenthesis Repetition

Concatenation Alternation

ab* ≠ (ab)*

• If the meta-symbols are part of the alphabet, they should be
enclosed in quotes. For example, comments in Pascal would be:

“(“ “*” c* “*” ”)”
where c ∈ Σ

• Another convention normally used is that of the + repetition instead
of the *. It has the same meaning as the Positive Closure. Basically
it’s a shortcut for writing aa*

Kristian Guillaumier, 2001 30

Algebraic Properties of Regular
Expressions

Absorption for closureA* A* = A*
Identity for concatenationA ε = ε A = A

Right distributivity(A | B) C = AC | BC
Left distributivityA (B | C) = AB | AC
Associativity for concatenationA . (B.C) = (A.B).C
Absorption of alternationA | A = A
Associativity for alternationA | (B | C) = (A | B) | C
Commutativity for alternationA | B = B | A

Kristian Guillaumier, 2001 31

Regular Expressions

• Description of Identifiers
(_|A| … |Z|a| … |z).(_|A| … |Z|a| … |z|0| … |9)*

• Description of Integers
(0 | 1 | 2 | … | 9)+

Kristian Guillaumier, 2001 32

Grammars

• Formally a Grammar is a quadruple {N,T,P,S}
where:
– N is the finite set of non-terminal symbols,
– T is the finite set of terminal symbols (Σ),
– P is the finite set of production (or grammar) rules,
– S is the starting, goal or sentence symbol.

• A sentence is a string entirely composed of
terminal symbols.

Kristian Guillaumier, 2001 33

Example
• Consider the following language:

ε
ab
aabb
aaabbb
aaaabbbb

…
• The grammar for the above language is:

({S}, {a,b}, P, S)
where P is:

S ε
S aSb

Kristian Guillaumier, 2001 34

Another Example
• Consider the following

rules for a context
sensitive grammar:

1) S aSBC
2) S aBC
3) CB BC
4) aB ab
5) bB bb
6) bC bc
7) cC cc

• The following is a derivation
from S to a valid string:

S
aSBC (by rule 1)
aaBCBC (by rule 2)
aaBBCC (by rule 3)
aabBCC (by rule 4)
aabbCC (by rule 5)
aabbcC (by rule 6)
aabbcc (by rule 7)

Kristian Guillaumier, 2001 35

Types of Grammars

• The complexity and structures of the rules in a
grammar determines what types of languages
we can describe and recognise using it. These
different “Grammar Types” are categorised by
the Chomsky Hierarchy:
– Type 0 – Unrestricted Grammars
– Type 1 – Context Sensitive Grammars
– Type 2 – Context Free Grammars
– Type 3 – Regular Grammars

Kristian Guillaumier, 2001 36

Unrestricted Grammars

• Productions take the form:

A α

where,
– A and α are arbitrary symbols in the vocabulary

N ∪ T.

Kristian Guillaumier, 2001 37

Context Sensitive Grammars
• Productions take the form:

αAβ αγβ

where,
– A ∈ N
– γ ≠ ε
– α, β, γ ∈ (N ∪T)*

– May also include the rule S ε

Kristian Guillaumier, 2001 38

Context Free Grammars

• Productions take the form:

A α

where,
– A is a single non-terminal symbol (A ∈ N),
– α is a, possibly empty, string of terminals and/or non-

terminals.

Kristian Guillaumier, 2001 39

Regular Grammars
• Productions take the form:

The difference between the two is that one is right
recursive (since B can be equal to A) and the other is left
recursive. Regular grammars must either be one or the
other, but never both (otherwise this would be a type 2
grammar)

(i)

A α

A αB

(ii)

A α

A Bα

-or-

Kristian Guillaumier, 2001 40

Backus-Naur-Form (BNF)

Empty or Nothingε

End of line;

Exact symbols in the language are enclosed in quotes –
These symbols are called Terminals. Sometimes the
quotes are omitted.

“ ”

Zero or more repetitions of an item are surrounded by
curly brackets

{ }

Optional items are surrounded by square brackets[]

Angles brackets surround category symbols – These
symbols are called Non-Terminals

< >

Or|

‘is defined as’::=

MeaningSymbol

Kristian Guillaumier, 2001 41

BNF By Example (1)
Consider the identifier:
my_variable

In plain English:
Identifiers consist of any sequence alpha-numeric characters and
the underscore symbols. However an identifier cannot start with a
digit.

Formally in BNF:

<ident> ::= <alpha> | “_” {<alpha>|<digit>|”_”};

<alpha> ::= “a”|”b”|…|”z”|”A”|”B”|…|”Z”;

<digit> ::= “0”|”1”|…|”9”;

Kristian Guillaumier, 2001 42

BNF by Example (2)
Problem:

Construct a BNF specification for simple expressions limited to
integer numbers and identifiers. The operators allowed in this type of
statement are + and –.

For Example:

3

counter

counter + 1

counter + (1 – y)

3 + 4

Kristian Guillaumier, 2001 43

BNF by Example (2½)

<expr> ::= <factor> | <factor> <op> <expr>;

<factor> ::= <integer> | <ident> | “(“ <expr> “)”;

<op> ::= “+” | “-”;

<integer> ::= <digit> {<digit>};

Kristian Guillaumier, 2001 44

Extensions to BNF (EBNF)
• In order to improve the readability and conciseness of descriptions in BNF

several extensions have been proposed to the notation. BNF with these
extensions is called EBNF.

• Kleene Cross: a sequence of one or more items of a class are:

<unsigned-int> ::= <digit>+

• Kleene Star: a sequence of zero or more items of a class are:

<ident> ::= <letter><alphanumneric>*

• Braces are used for grouping instead of the usual ‘zero or more’
interpretation.

<ident> ::= <letter>{<letter>|<digit>}*

Kristian Guillaumier, 2001 45

An Example in EBNF
• Consider BNF for variable declarations in Basic:

<var-decl> ::= “dim” <var-decl-list>

<var-decl-list> ::=
<var-decl-item> {ε | “,” <var-decl-list>}

<var-decl-item> ::= <ident> “as” <var-type>

• In EBNF could would be written as:
<var-decl> ::= “dim” <var-decl-list>

<var-decl-list> ::=
<var-decl-item> {“,” <var-decl-item>}*

<var-decl-item> ::= <ident> “as” <var-type>

Kristian Guillaumier, 2001 46

Designing a Lexical Analyser
• The key function in a lexical analyser is a routine called GetNextToken that

extracts tokens one-by-one from the source file.
• The lexical analyser repeatedly makes calls to GetNextToken to process the

whole file.
• When tokenising the input it is important to identify the Token Separators.

These separators are special characters that delimit one token from an
other. In many programming languages, the token separators are usially
spaces, tab stops and carriage returns.

• The scanning loop can look like:

Initialise;
loop

symbol = GetNextToken();
Print symbol;

Until symbol = End_Of_File;
Clean_Up;

Kristian Guillaumier, 2001 47

Recognising Tokens

• The scanner will start recognising a token after
reading the first character:

• If the first character is:
– A letter: then we’re dealing with a keyword or

identifier.
– Numeric: then we’re dealing with a number.
– An Opening Quote (“): then we’re dealing with a

string.
– Etc…

Kristian Guillaumier, 2001 48

GetNextToken
Function GetNextToken
CurrentChar = Get the next significant character

If CurrentChar = EOF Then
Deal with the end of file

Else
If CurrentChar = Digit Then

CurrentToken = Deal With Number
Else If CurrentChar = Letter Then

CurrentToken = Deal With a Word
Else If

...
Else

CurrentToken = Error – Illegal Character
End IF
GetNextToken = CurrentToken

End If
End Function

Kristian Guillaumier, 2001 49

GetWord
Function GetWord

MyToken = CurrentChar
CurrentChar = Get the next significant character

While CurrentChar is Valid in a Word
MyToken = MyToken + CurrentChar
CurrentChar = Get next significant character

Wend

Return MyToken

End Function

Kristian Guillaumier, 2001 50

Look Ahead

• Since we are reading characters until we find
one that is not part of a word, the last one is
essentially one extra character. We must not
discard it. In fact CurrentChar is usually
implemented as a global variable.

• This extra character is called the LookAhead
character.

Kristian Guillaumier, 2001 51

GetString
Function GetString

MyToken = CurrentChar ‘ the opening quote
CurrentChar = Get the next significant character

While CurrentChar is not the Closing Quote
MyToken = MyToken + CurrentChar
CurrentChar = Get next significant character

Wend

MyToken = MyToken + CurrentChar ‘ The closing quote

‘ Again read an extra character for consistency
CurrentChar = Get the next significant character

Return MyToken

End Function

Kristian Guillaumier, 2001 52

Error Reporting

• There are only a few errors that can be detected
by the scanner. Such errors include:
– Missing closing quote in a string. Missing quotes are

a major issue, since characters will be read until the
opening quote of the next sting are found, potentially
‘eating-up’ much of the actual code. This problem is
typically alleviated by not allowing strings to span
over multiple lines.

– Illegal characters in the input file.

Kristian Guillaumier, 2001 53

Parsing
• When analysing a programs syntax, a data structure

called the Parse Tree is built to reflect the structure of
the program.

• The nodes of the parse tree are the Non-Terminal
symbols, whilst the leaves are the Terminals (Σ).

• The root node is the sentence symbol (S).
• There are two main methods of parsing:

– Top-Down Parsing – the parse tree is build from the root
downwards.

– Bottom-Up Parsing – the parse tree is built from the leaves
upwards to the root.

Kristian Guillaumier, 2001 54

Simple Parsing Example

• Consider the BNF specification for a simple
assignment statement:

<assign> ::= <lhs> <ass-op> <rhs>;
<lhs> ::= <ident>;
<ass-op> ::= “=“;
<rhs> ::= <integer>

<arith-op> <integer>;
<arith-op> ::= “+” | ”-” | ”*” | ”/”;

Kristian Guillaumier, 2001 55

Top-Down Parse (1)
• In this example we will construct a parse tree for the

assignment:
counter = 3 + 4

• The parser looks for the sentence symbol to create the
root node:

• The first symbol in the rule is an LHS so we add it to the
parse tree:

<assign>

<assign>

<lhs>

Kristian Guillaumier, 2001 56

Top-Down Parse (2)
• An LHS is an IDENT which we add to the tree:

• In our example “counter” is an IDENT – we have a match and add it
to the tree:

<assign>

<lhs>

<ident>

<assign>

<lhs>

<ident>

“counter”

Kristian Guillaumier, 2001 57

Top-Down Parse (3)
• The next expected item is the assignment operation, so it is added

to the tree (at the current root because it is a non-terminal):

• An assignment operator is a non-terminal an looks at the next token
and finds one:

<assign>

…
<ass-op>

<assign>

…
<ass-op>

“=“

Kristian Guillaumier, 2001 58

Top-Down Parse (4)
• The next item to be expected is an RHS which is a non-

terminal so we add it to the current root:

• The procedure is repeated until we complete the tree
and find out that our assignment is structurally correct.

<assign>

…
…

<rhs>

Kristian Guillaumier, 2001 59

Top-Down Parse (5)

<assign>

<lhs>

<ident>

“counter”

<ass-op>

“=“

<rhs>

<integer>

“3”

<arith-op>

“+”

<integer>

“4”

Kristian Guillaumier, 2001 60

Bottom-Up Parse (1)
• The first token in the input is an IDENT so the leaf of the

tree is obtained:

• By having a look at the rules we see that an IDENT is an
LHS, so the tree grows up:

<ident>

“counter”

<lhs>

<ident>

“counter”

Kristian Guillaumier, 2001 61

Bottom-Up Parse (2)
• An LHS on it’s own cannot be resolved into anything else, so we

continue reading from the input. We find an “=“ sign so it’s added as
a leaf:

• The ASS-OP non-terminal cannot be resolved into anything else
and neither can the LHS ASS-OP sequence so we continue reading
the input and find a number which we add as a leaf:

<lhs>

<ident>

“counter”

<ass-op>

“=“

Kristian Guillaumier, 2001 62

Bottom Up Parse (3)

• This process continues until we consumed the whole input:

<lhs>

<ident>

“counter”

<ass-op>

“=“

<integer>

“3”

<lhs>

<ident>

“counter”

<ass-op>

“=“

<integer>

“3”

<arith-op>

“+”

<integer>

“3”

Kristian Guillaumier, 2001 63

Bottom-Up Parse (4)
• After reading the last integer we see that the INTEGER ARITH-OP

INTEGER sequence can be reduced to an RHS:

• Similarly in the next step we see that the resulting LHS ASS-OP
RHS sequence can be further reduced to an ASSIGN, thus the
parse is complete.

<lhs>

<ident>

“counter”

<ass-op>

“=“

<integer>

“3”

<arith-op>

“+”

<integer>

“3”

<rhs>

Kristian Guillaumier, 2001 64

Things to Note…
• The grammar chosen for this example was purposely

designed to keep the example simple.
• In reality parsing mechanisms are more sophisticated

and grammars may really manifest properties that make
parsing more complex. Consider the following grammar
for a more elaborate assignment:

<assign> ::= <lhs> <ass-op> <rhs>;
<lhs> ::= <ident>;
<rhs> ::= <factor> { <arith-op> <factor> };
<factor> ::= <ident> | <integer>;
<ass-op> ::= “=“
<arith-op> ::= “+” | “-” | “*” | “/”

Kristian Guillaumier, 2001 65

…Things to Note
• When parsing the assignment statement using the

original grammar, when we read the identifier leaf, we
saw that it could be reduced to an LHS (see Bottom-Up
Parse (1)). Using the grammar presented above, we see
that the identifier could be reduced to both an LHS or a
FACTOR. The question here is – Which path shall I
follow?

• Such issues are tackled by more sophisticated parsers.

Kristian Guillaumier, 2001 66

Parsing a Variable Declaration (1)

• The simplest way to hand-code parsers is to provide
programming language equivalents to BNF notational
constructs:

If-Then Statement.Optional Items – []

If-Then-Else statements.Alternatives - |

A while loop.Repetitions - { }

A procedure or function call.Non-Terminal Symbols

Test for the terminal symbol.Terminal Symbols

Kristian Guillaumier, 2001 67

Parsing a Variable Declaration (2)

• Consider simple variable declaration statements:

integer i,j,k
boolean isReady

• A suitable grammar to parse such statements would
be:

<VarDecl> ::= <TypeName> <VarNameList>;
<TypeName> ::= INTEGER|BOOLEAN|REAL;
<VarNameList> :: <VarName> {“,” <VarName>};

Kristian Guillaumier, 2001 68

Parsing a Variable Declaration (3)

• For each Non-Terminal symbol, we define a
function to parse it:

Function Parse_VarDecl(TOKEN)
// Parse the type name
LOOKAHEAD = Parse_TypeName(TOKEN)

// Parse the variable name list
LOOKAHEAD = Parse_VarNameList(LOOKAHEAD)

Return LOOKAHEAD
End Function

Kristian Guillaumier, 2001 69

Parsing a Variable Declaration (4)

• Since the Variable Declaration (VarDecl) is
defined in terms of 2 other Non-Terminals
(TypeName and VarNameList), it’s parse is
defined as calls to two other functions to parse
each other non-terminal.

• Just as we had a look ahead character in the
lexical analyser, we need a look ahead token in
the parse tree.

Kristian Guillaumier, 2001 70

Parsing a Variable Declaration (5)

• Parsing the Type Name:

Function Parse_TypeName(TOKEN)
If TOKEN is INTEGER_TOKEN then
Return NextToken // New Lookahead

ElseIf TOKEN is BOOLEAN_TOKEN then
Return NextToken

ElseIf TOKEN is REAL_TOKEN then
Return NextToken

Else
Print “Missing Type Name in Declaration”
Return Error

End If
End Function

Kristian Guillaumier, 2001 71

Parsing a Variable Declaration (6)
• Note that in the previous example we used two of the transliteration

mechanisms. We used simple checks to see if a token is a non-
terminal and we used If-Then-Else statements for alternatives.

• Parsing the Variable Name List:

Function Parse_VarNameList(TOKEN)
LOOKAHEAD = Parse_VarName(TOKEN)
While LOOKAHEAD = COMMA_TOKEN
LOOKAHEAD = NextToken
LOOKAHEAD = Parse_VarName(LOOKAHEAD)

End While

Return LOOKAHEAD
End Function

Kristian Guillaumier, 2001 72

Parsing a Variable Declaration (7)
• In the preceding example we used a combination of parsing both

terminals (comma’s) and non-terminals (variable names). The
repetition was handled by a while loop that allowed for zero-or more
items enclosed in the braces { }.

• Parsing the variable name:

Function Parse_VarName(TOKEN)
If TOKEN = IDENT_TOKEN then
Return NextToken

else
Print “Missing Identifier”
Return Error

End If
End Function

Kristian Guillaumier, 2001 73

Parsing an If-Then Statement (1)

• Consider the following definition for an if-then
statement:

<IF_STMT> ::= “IF” <EXPRESSION> “THEN”
<STMT_BLOCK>
[“ELSE” <STMT_BLOCK>]
“ENDIF”

Kristian Guillaumier, 2001 74

Function Parse_If(TOKEN)
If TOKEN = IF_TOKEN Then

LOOKAHEAD = NEXTTOKEN
// Parse the Expression
LOOKAHEAD = Parse_Expression(LOOKAHEAD)
If LOOKAHEAD = THEN_TOKEN then

LOOKAHEAD = NEXTTOKEN
LOOKAHEAD = Parse_StmtBlock(LOOKAHEAD)
// see if we have an else part
If LOOKAHEAD = ELSE_TOKEN then

LOOKAHEAD = NEXTTOKEN
LOOKAHEAD = Parse_StmtBlock(LOOKAHEAD)

End If
// get the ENDIF
If LookAhead = ENDIF_TOKEN Then

Return NEXTTOKEN
Else

Print “Missing ENDIF in conditional”
Return Error

End If
Else

Print “Missing THEN in conditional”
Return Error

End If

End If
End Function

Kristian Guillaumier, 2001 75

Syntax Errors
• Consider the following assignment statement with a

missing comma:

integer i,j k;

• The parse will proceed normally in the VarNameList part
until the variable k is found instead of the comma. The
function will “think” that the variable name list has
terminated returning k as the look ahead token. The
parser will look for the ending semi-colon and will find a k
instead reporting a missing semi-colon instead of the
missing comma.

Kristian Guillaumier, 2001 76

Backtracking (1)
• Consider the Grammar:

S cAd
A ab | a

• Given the input string cad, we try and construct the
parse tree. We initially start by creating the Root of the
tree from S (the current token is c in the input string:

S

Kristian Guillaumier, 2001 77

Backtracking (2)
• Clearly the current token c does not match S so we expand S using

the first (and only rule):

• The leftmost leaf matches our input symbol c so we proceed to the
next one a and consider the next leaf A. In expanding A, we have
two alternatives. Having no preference, we arbitrarily choose the first
one to get the tree:

S

c A d

S

c A d

a b

Kristian Guillaumier, 2001 78

Backtracking (3)
• We have a match for the current token a, so we proceed

with the next one d. Looking at the next leaf b, we see
that the token does not match, so we must have
expanded using the wrong production. We must
backtrack to the state before the production was chosen
– the current symbol is set back to a, and the tree:

S

c A d

Kristian Guillaumier, 2001 79

Backtracking (4)
• We now try the other alternative and expand the

tree to:

• The current input a matches the leaf. We move
to the next token d and the next leaf, which
match too. All the input has been consumed and
we have completed the parse successfully.

S

c A d

a

Kristian Guillaumier, 2001 80

Notes (1)
• The parsing methods we have seen are called recursive-descent

parsers.
• Grammars can be rearranged to eliminate the need for backtracking.

Parsers for such grammars are called predictive parsers.
• A left-recursive grammar (productions of the type A Aα) can

cause a recursive-descent parser to go into infinite loops, even if it
has backtracking.

• Consider the grammar:

S Sa
s ε

• Our task is to parse the string aaaaaa.

Kristian Guillaumier, 2001 81

Notes (2)
• The current token is a. We expand the S node to get the

tree:

• The first leaf is a non-terminal so we expand again. We
have two choices so we arbitrarily choose the first:

S

S a

S

S a

S a

Kristian Guillaumier, 2001 82

Notes (3)
• Again, the first leaf is a non-terminal so we expand

again. We have two choices so we arbitrarily choose the
first:

• The problem is that the tree will continue growing
indefinitely without ever consuming any input (the
terminating condition is never achieved).

S

S a

S a

S a

Kristian Guillaumier, 2001 83

Eliminating Left-Recursion
• A grammar is left-recursive if it has a derivation of the

type A ⇒+ Aα.
• As we have seen, top-down parsers cannot handle left-

recursion, so we need a transformation these grammars
into right recursive ones.

• A left-recursive production of the form
A Aα | β

• Can be rewritten as:
A βA’

A’ αA’ | ε

Kristian Guillaumier, 2001 84

Example
• Consider the following grammar for arithmetic expressions

E E + T | T
T T * F | F
F (E) | Ident

• The grammar is rewritten as:

E TE’
E’ +TE’ | ε
T FT’
T’ *FT’ | ε
F (E) | Ident

Kristian Guillaumier, 2001 85

Non-Immediate Left-Recursion
• Immediate left-recursion involves productions that involve left-

recursive derivations in one step:

A Aα

• There are cases where left-recursion may occur after more than one
derivational steps. For example, the following grammar is not
immediately left recursive:

S Aa | b
A Ac | Sd | ε

• The Non-Terminal S is left-recursive because S ⇒ Aa ⇒ Sda

Kristian Guillaumier, 2001 86

Multiple A-Productions
• In the previous example, we considered

eliminating a single instance of left-recursions
from an A-Production (A Aα | β)

• No matter how many left-recursive A-
productions there are (A Aα1 | Aα2 | … |
Aαm | β1 | β2 | … | βn), all we have to do
is replace the productions by:

A β1A’ | β2A’ | … | βnA’
A’ α1A’ | α2A’ | … | αmA’ | ε

Kristian Guillaumier, 2001 87

Algorithm for Eliminating Left-
Recursion (1)
• This algorithm is guaranteed to eliminate left-

recursion for grammars having:
– No Cycles: A ⇒+ A
– No Empty Productions: A ε

• The input of the Algorithm is a grammar G with
No Cycles or Empty Productions.

• The output of the Algorithm is the equivalent
grammar without left-recursion.

Kristian Guillaumier, 2001 88

Algorithm for Eliminating Left-
Recursion (2)
Arrange the Non-Terminals in some order A1, A2, … , An.

For i = 1 to n
For j = 1 to (i-1)

replace every production of the form
Ai Ajγ by the productions
Ai δ1γ | δ2γ | … | δkγ, where
Aj δ1 | δ2 | … | δk

Next j
Eliminate the immediate left-recursion

among the Ai productions
Next i

Kristian Guillaumier, 2001 89

Example on a Grammar (1)
• Consider the grammar:

S Aa | b
A Ac | Sd | ε

• Note: technically, the algorithm is not guaranteed to
work because of the A ε empty production, though in
this case it does.

• We order the non-terminals as S, A.
• Starting from S (i = 1), the inner j loop does not

execute and we have to eliminate immediate left
recursion. But there is no immediate left recursion
among S productions so nothing happens.

Kristian Guillaumier, 2001 90

Example on a Grammar (2)
• For the step i = 2, the inner j loop, substitutes all

occurrences of S in the A-Productions, producing the
following:

A Ac | Aad | bd | ε

• In this case we do have left recursion so proceed to
remove it, producing:

S Aa | B
A bdA’ | A’
A’ cA’ | adA’ | ε

Kristian Guillaumier, 2001 91

Left-Factoring (1)
• Left-factoring is a grammar transformation that produces

grammars suitable for predictive parsing. The basic idea
is that when it is not clear which of two alternative
productions to use to expand a non-terminal A, we defer
the decision until we have seen enough input to make
the right choice.

• Consider the two productions:

stmt “if” expr “then” stmt “else” stmt
stmt “if” expr “then” stmt

• On seeing the input “IF”, it is not clear which production
to use to expand the statement.

Kristian Guillaumier, 2001 92

Left-Factoring (2)
• In general, given two productions:

A αβ1
A αβ2

• We may rewrite the rules as:

A αA’
A’ β1 | β2

• This way we have only one choice for expanding A.

Kristian Guillaumier, 2001 93

Algorithm for Left-Factoring
Input: Grammar G.
Output: An equivalent left-factored grammar.
Method:

1. For each non-terminal A, find the longest prefix α common to
all the alternatives (2 or more).

2. If α ≠ ε (there IS a common prefix)
3. Replace all the productions for A having the prefix α (A αβ1 ,

A αβ2 , … , A αβn) with:

A αA’
A’ β1 , β2 , … , βn

Kristian Guillaumier, 2001 94

Operator Precedence Parsing of
Expressions
• The basis of Operator Precedence Parsing is

assigning a priority to each operator in an
expression. For example:

3 * 4 + 5 = (3 * 4) + 5

• Parenthesis may be used to change and visually
emphasis precedence:

3 * (4 + 5) ≠ 3 * 4 + 5

Kristian Guillaumier, 2001 95

Associativity of Operators
• Associativity for an operator, say ⊗, may be left-

associative or right associative:
– Left-Associative: expression x ⊗ y ⊗ z is

evaluated as (x ⊗ y) ⊗ z
– Right-Associative: expression x ⊗ y ⊗ z is

evaluated as x ⊗ (y ⊗ z)
• For example, given: a = 4, b = 5, c = 2,

the expression a – b – c may be evaluated
as:
– (a – b) – c = (4 – 5) – 2 = -3, or
– a – (b – c) = 4 – (5 – 2) = 1

Kristian Guillaumier, 2001 96

Operator Precedence for Parsing
Simple Expressions (1)
• Given the following grammar for simple

expressions:

expr ::= <primary> {<op> <expr>};
primary ::= <ident>

| <constant>
| ‘-’ <primary>
| ‘+’ <primary>
| ‘(‘ <expr> ‘)’;

Kristian Guillaumier, 2001 97

Parsing the Primaries (1)
Function Parse_Primary(token)

if token = IDENTIFIER then
// create a leaf with the identifier
node = IdentLeaf(token)

else if token = CONSTANT then
// create a leaf with the constant
node = ConstantLeaf(token)

else if token = ADD_OP or token = SUB_OP then
remember the operator
lookahead = GetNextToken()
// parse the primary following the unary op
primary_node = Parse_Primary(lookahead)
// combine the unary op and primary in a node
node = UnaryOpNode(saved operator, primary_node)

Kristian Guillaumier, 2001 98

Parsing the Primaries (2)
else if token = OPEN_BRACKET then

lookahead = GetNextToken()
// the Parse_Expression function returns the expression
// node and consumes the next lookahead character
// which should be the closing bracket
node = Parse_Expression(lookahead)

if lookahead <> CLOSE_BRACKET then
Error – Missing Closing Bracket

else // read the lookahead
lookahead = GetNextToken()

end if
else

// an invalid character
Error – Invalid character in primary

end if

Kristian Guillaumier, 2001 99

Parsing the Expression (1)
Function Parse_Expression(token, LeftPriority)

lhs = Parse_Primary(token)
if Primary Parsed Correctly then

EndOfExpression = FALSE

While (token is an oparator)
AND (NOT EndOfExpression)

// see if this operator has a higher priority
// than the one to its left. The priority
// of the token to the left is passed as an
// argument to this function
if (Priority of current op)

> (LeftPriority) then
// this op takes precedence – parse the rhs
Remember this operator
token = GetNextToken()

Kristian Guillaumier, 2001 100

Parsing the Expression (2)
rhs = Parse_Expression(token,

Priority of current op)

// combine the lhs to the rhs to act as an
// lhs for further operators to the right
lhs = BinaryOpNode(lhs, Current Op, rhs)

else
// left op has higher or equal priority
EndOfExpression = TRUE

end if
end while

// make expression node in parse tree
node = ExpressionNode(lhs)

return the lookahead at expression node

Kristian Guillaumier, 2001 101

Example (1)
• Consider the parsing of the expression “3 + 4 * 5 /
6”

• The first call to Parse_Expression would be
ParseExpression(3, 0)
– Since there are no operators to the left we pass 0 (the lowest

possible priority).
– The call to Parse_Primary will create a constant leaf

containing 3.
– The operator read is a “+” which has a higher priority than the

one to the left (which actually doesn’t exist)
– An re-invocation to Parse_Expression is made to parse the

rhs.

Kristian Guillaumier, 2001 102

Example (2)
• The call to parse the rhs would be Parse_Expression (4,

Priority of “+”).
– Parse_Primary will create a constant leaf for “4”.
– The operator here is “*” which has a higher priority than the

one on it’s left “+”
– Another call to Parse_Expression is made to parse the rhs.

• The call to parse the rhs would be Parse_Expression(5,
Priority of “*”).
– Parse_Primary will create a constant leaf for “5”.
– The operator here is “/” which does not have a priority greater

than the one to the left “*” so EndOfExpression is set to true,
the function terminates and control passes to the previous call of
Parse_Expression(4, Priority of “+”)

Kristian Guillaumier, 2001 103

Example (3)

• So far the tree is:

• Now Parse_Expression has both the LHS
and RHS of the multiplication and can join the
nodes to get:

constant

3

constant

4

constant

5

constant

4

constant

5

*

constant

3

Kristian Guillaumier, 2001 104

Example (4)

• The multiplication becomes the lhs for the
current token “/”. This is greater then the
priority of the current left operator “+” so a new
call to parse is made:

• Parse_Expression(6, Priority of “/”)
– The function will return after creating the constant leaf

for “6”.

constant

4

constant

5

*

constant

3

constant

6

Kristian Guillaumier, 2001 105

Example (5)

• The function will now return to the previous call
that will join the lhs and rhs using the division
node:

constant

4

constant

5

*

constant

3

constant

6

/

Kristian Guillaumier, 2001 106

Example (6)

• Again the function will return to the previous call
that will join the lhs and rhs using the addition
node:

constant

4

constant

5

*

constant

3

constant

6

/

+

Kristian Guillaumier, 2001 107

The Symbol Table
• The purpose of the symbol table table is to record the

use of ‘names’ in a program.
• Such names include:

– Variables, procedure and function names, constants and user
defined types.

• The information stored in the symbol table depends on
what the names are used for. For example:
– A variable name requires its type and runtime address.
– A procedure requires a pointer the list of arguments it takes.
– A function requires a pointer to the list of arguments it takes and

the return type of the function.
– An argument requires its type and a pointer to the next argument

in the list.

Kristian Guillaumier, 2001 108

Declarations of Variables
• The purpose of variable declarations in programming

languages is to create an entry for that variable in the
symbol table and associate a type with it.

• Some programming languages (such as earlier versions
of BASIC and APL) do not require a declaration and a
symbol table entry is made upon their first use.

• When a compiler meets a statement such as x = 3, it
must verify that:
– x is declared (look for it in the symbol table),
– x is declared as a variable and not, for example, a procedure

name,
– The type of x is an integer or floating-point number.

Kristian Guillaumier, 2001 109

Functions

• When processing a statement such as

if f(a, b) then, the compiler must check:

– f, a and b are declared,
– f takes exactly 2 arguments,
– f is a function and returns a boolean value,
– a and b are of the proper types.

Kristian Guillaumier, 2001 110

Building the Table while Scanning

• When the lexical analyser is scanning the input
and meets an identifier, it looks for it in the
symbol table:
– If it does not find it, it has to be declared. An entry

for that variable is made in the table and its position is
returned as the value of the token.

– If it does find it, the position is returned as the value
of the token.

• The actual description of the symbol table entry
(like its type) is handled by a separate Object
Description Phase.

Kristian Guillaumier, 2001 111

Building the Table while Parsing (1)

• A simple lexical analyser does not attempt to process an
identifier in anyway. It just returns a token indicating the
occurrence of one.

• The actual processing of the identifier is then left to the
parser that will deal with it depending on the context in
which it has been found. For example, if an identifier is
found in a:
– Declaration Statement, the identifier is looked for in the symbol

table. If it is found then the compilers should complain that there
is a variable re-declaration. If it does not find it, an entry is made
according to the description in the declaration.

– If the identifier is used in an action statement, a check has to be
made to see if it has been declared and that it is used properly
(correct number of arguments, no type mismatches, etc…)

Kristian Guillaumier, 2001 112

Building the Table while Parsing (2)

• The method described so far may be
implemented in two different ways:
– The whole parse tree for the variable declaration is

built, then declarations in the symbol table and other
actions are performed from the tree by the Object
Description Phase.

– Symbol table declarations and other actions are made
along the way when parsing.

Kristian Guillaumier, 2001 113

Symbol Table from the Parse Tree – Option 1

• Suppose we are parsing the declaration:
integer a, b, c

• The parse tree is passed to an object description
phase to analyse it and make the declarations:

Variable Declaration

Type Name Variable List

Integer Variable Variable Variable

a b c

Kristian Guillaumier, 2001 114

Revised Variable Declaration (1) – Option 2

• Note: See slide 67 for original version.
• Consider variable declarations following this format:

integer i,j,k
boolean isReady

• Recall the grammar:

<VarDecl> ::= <TypeName> <VarNameList>;
<TypeName> ::= INTEGER|BOOLEAN|REAL;
<VarNameList> :: <VarName> {“,” <VarName>};

Kristian Guillaumier, 2001 115

Revised Variable Declaration (2)

• Parsing the declaration per se remains the
same, so we have no changes so far:

Function Parse_VarDecl(TOKEN)
// Parse the type name
LOOKAHEAD = Parse_TypeName(TOKEN)

// Parse the variable name list
LOOKAHEAD = Parse_VarNameList(LOOKAHEAD)

Return LOOKAHEAD
End Function

Kristian Guillaumier, 2001 116

Revised Variable Declaration (3)

• Apart from returning the next token, we need to return
the type name we just parsed to use later:

Function Parse_TypeName(TOKEN)
If TOKEN is INTEGER_TOKEN then
Return NextToken, Return Integer Type

ElseIf TOKEN is BOOLEAN_TOKEN then
Return NextToken, Return Boolean Type

ElseIf TOKEN is REAL_TOKEN then
Return NextToken, Return Real Type

Else
Print “Missing Type Name in Declaration”
Return Error, Return ERROR Type

End If
End Function

Kristian Guillaumier, 2001 117

Revised Variable Declaration (4)

• Note that when parsing the type name, apart from
returning the next lookahead, we also return an
indication of which type name we just parsed.

• Parsing the Variable Name List:

Function Parse_VarNameList(TOKEN, THE_TYPE)
LOOKAHEAD = Parse_VarName(TOKEN, THE_TYPE)
While LOOKAHEAD = COMMA_TOKEN
LOOKAHEAD = NextToken
LOOKAHEAD = Parse_VarName(LOOKAHEAD, THE_TYPE)

End While

Return LOOKAHEAD
End Function

Kristian Guillaumier, 2001 118

Revised Variable Declaration (4)

• Parsing the variable name:

Function Parse_VarName(TOKEN, THE_TYPE)
If TOKEN = IDENT_TOKEN then
Call procedure VARDECLARE(VARNAME, VARTYPE)
Note: VARDECLARE is part of the Object
description phase NOT the parser.
Return NextToken

else
Print “Missing Identifier”
Return Error

End If
End Function

Kristian Guillaumier, 2001 119

Final Notes (1)
• The Object Description Phase is a subset of

semantic analysis. Ensuring that variables are
properly used in action statements is part of
another stage of semantic analysis.

• The procedure VarDeclare, first looks for the
entry of the variable in the symbol table.
– If the entry is NOT found, a new one is made,

recording details (such as the type) of the declaration.
– If the name is already found, a variable re-declaration

might have occurred depending on the scoping rules
of the language.

Kristian Guillaumier, 2001 120

Final Notes (2)

• Reuse of the variable declaration is allowed if:
– All previous uses are no longer in scope.
– Or, this declaration is made at a lexically lower level

than all other active declarations

Kristian Guillaumier, 2001 121

Final Notes (3)
Function VarDeclare(token, VarType)

Look for a previous occurrence of the Variable

If no occurrence found then
Enter details for the variable name and type

Else
If (Use is at a lexically lower level

than all other active ones) OR
(Previous uses are not active) then

Store details in table
Else

Re-declaration Error
End If

End If
End Function

Kristian Guillaumier, 2001 122

Bottom-Up Parsing
• So far we have seen parsers that try to find a derivation

from the starting grammar symbol to the input sting.
• In this section we will be considering the essentially

equivalent approach of finding a path from the input
sentence to the starting symbol (bottom-up).

• We will be discussing a general technique for bottom-up
parsing called shift-reduce parsing and an
implementation of it called LR parsing.

• This method is used in automatic parser generators such
as BISON, which we will cover in the next lessons.

Kristian Guillaumier, 2001 123

Notes on Shift-Reduce Parsing
• Bottom-Up parsing can be thought of reducing the input

string to the starting symbol of the grammar.
• Each reduction step involves a sequence of symbols

from the input being replaced by a left hand side non-
terminal according to the grammar rules.

• Just as in producing a Top-Down derivation there may
be several non-terminals that may be expanded at any
one step, in bottom-up parsing, there may be several
sequences of symbols in the input string that may be
reduced in a step.

Kristian Guillaumier, 2001 124

LL and LR Parsing
• It is important to choose a parsing methodology to apply

to each derivation or reduction and apply it consistently.
• In in top-down parsing we always expand the leftmost

non-terminal in a sentential form then we obtain a
leftmost derivation. If we always expand the rightmost
non-terminal then the derivation is rightmost.

• The rule that we will apply to bottom-up parsing is to
always reduce the sequence of symbols which would
trace a rightmost derivation in reverse. So, the input is
scanned from left to right (hence LR).

• LL parsers scan the input from left to right to produce a
leftmost derivation.

Kristian Guillaumier, 2001 125

Example (1)
• Consider the following grammar

E ::= E + E
E ::= E – E
E ::= id
E ::= num

• And the input string ‘1 + x – y’. A leftmost
derivation would be:

E E + E
num + E
num + E – E
num + id – E
num + id - id

Kristian Guillaumier, 2001 126

Example (2)
• The parse tree would be:

• A rightmost derivation would be:
E E + E

E + E – E
E + E – id
E + id - id
num + id – id

• Which gives the same parse tree.

E

E E+

num E E-

id id

Kristian Guillaumier, 2001 127

Example (3)
One should note however
that the grammar is ambiguous.
We could have the following
derivations:

E E – E
E – id
E + E – id
E + id – id
num + id - id

E E – E
E + E – E
num + E – E
num + id – E
num + id - id

RightmostLeftmost

E

E E-

numE E+

id id

Kristian Guillaumier, 2001 128

Rightmost Derivations in Reverse (1)

• The first rightmost derivation we had was:

E E + E
E + E – E
E + E – id
E + id - id
num + id – id

• If applied in reverse we get a bottom-up parse:

num + id – id E + id – id
E + E – id
E + E – E
E + E
E

Kristian Guillaumier, 2001 129

Rightmost Derivations in Reverse (2)

• The second rightmost derivation we had was:

E E – E
E – id
E + E – id
E + id – id
num + id – id

• If applied in reverse we get a bottom-up parse:

num + id – id E + id – id
E + E – id
E - id
E - E
E

Kristian Guillaumier, 2001 130

Handles (1)
• The term input string will be used to refer to

any sentential form in the reduction of a
sentence to the starting symbol.

• The term handle is a sequence of symbols in
the input string which, if replaced by a matching
left hand side non-terminal, leads to the tracing
out of the reversed rightmost derivation of the
original sentence.

• Consider the example we had before in reducing
num + id – id to E.

Kristian Guillaumier, 2001 131

Handles (2)

E

E E + EE + EE + E

E E – EE – EE + E – E

E idid2E + E – id2

E idid1E + id1 – id2

E numnumnum + id1 – id2

Reducing ProductionHandleRight Sentential Form

Kristian Guillaumier, 2001 132

Handles (3)

E

E E – EE – EE – E

E idid2E – id2

E E + EE + EE + E – id2

E idId1E + id1 – id2

E numnumnum + id1 – id2

Reducing ProductionHandleRight Sentential Form

Kristian Guillaumier, 2001 133

Handles (4)
• Note that upon having reached the input sting ‘E
+ E – id’, there are two possible handles ‘id’
or ‘E + E’. This reflects the ambiguity in the
grammar. If a grammar is unambiguous, then for
any input string there would be only one handle
for any stage in the reduction.

• An issue in designing a bottom-up parser is to
– Decide how to locate handles in the input string.
– How to choose which left hand side to replace with

assuming that there may be more than one left hand
side for a handle.

Kristian Guillaumier, 2001 134

Stack Implementation of Shift
Reduce Parsing (1)
• Shift-reduce parsers are usually implemented using a

stack to hold grammar symbols and an input buffer to
hold the string X to be parsed.

• We shall use the dollar symbol, $, to denote the
bottom of the stack and the end of the input string.

• Initially we would have:

X$$
Input StringStack

Kristian Guillaumier, 2001 135

Stack Implementation of Shift
Reduce Parsing (2)
• The parse works by shifting symbols from the input

string to the stack until a handle appears on the top of
the stack.

• The parser reduces the handle on top of the stack to the
left hand side of the appropriate production.

• The cycle is repeated until we find an error or the stack
consists of the starting symbol and the input is empty.

• At this point, the parser stops and reports success.

Y

Input StringStack

Kristian Guillaumier, 2001 136

Example (1)

• Consider the following unambiguous grammar…

E E + T
E E – T
E T
T id
T num

• …to parse ‘num + id + id’

Kristian Guillaumier, 2001 137

Example (2)

Accept$$ E

Reduce E E – T$$ E – T

Reduce T id$$ E – id

Shift idid $$ E -

Shift -- id $$ E

Reduce E E + T - id $$ E + T

Reduce T id- id $ $ E + id

Shift idid – id $$ E +

Shift ++ id – id $$ E

Reduce E T+ id – id $$ T

Reduce T num+ id – id $$ num

Shift numnum + id – id $$

ActionInputStack

Kristian Guillaumier, 2001 138

Parsing Actions
• Shift:

– In a shift operation, the next input symbol is put on the top of the
stack.

• Reduce:
– The handle which is on top of the stack is replaced by the

appropriate non-terminal symbol.

• Accept:
– The parser accepts when all the input symbols are consumed

and there is the sentence symbol on the stack.

• Error:
– The parser encounters an error an calls any error recovery

routine.

Kristian Guillaumier, 2001 139

Shift-Reduce Conflicts (1)

• There are grammars that cannot be parsed by a
shift reduce parser. In such cases, the parser
can get into a state in which it cannot decide
whether to shift or reduce.

• Ambiguous grammars are of such a type
because there may be more than one handle at
a time under certain circumstances.

• Consider the dangling else grammar:
S if E then S | if E then S else S

Kristian Guillaumier, 2001 140

Shift-Reduce Conflicts (2)
• The shift-reduce parser may find itself in the following

situation:

Else S $$ if E then if E then S

Input StringStack

• At this point the parser wouldn’t know whether to shift
the else onto the stack or reduce the first production for
s to get:

Else S $$ if E then S

Input StringStack

Kristian Guillaumier, 2001 141

Good News

• Shift-reduce parsers may be easily modified to
handle such grammars in a consistent way. For
example, such shift-reduce conflicts may be
resolved by forcing the parser to shift.

• Shift-reduce conflicts are not very common and
are often an indication that there is a problem in
the definition of the language.

Kristian Guillaumier, 2001 142

LR(k) Parsing
• LR Parsing is an efficient bottom-up parsing technique that can be

used to parse a large class of context-free grammars.
• LR means that the input is scanned from left-to-right building a

rightmost derivation in reverse.
• k represents the number of lookahead symbols required to make a

parsing decision.
• If k is omitted it is assumed to be 1. Many grammars in compiling fall

into the LR(1) class of parsers.
• The main advantage of LR parsers is that they be made to

recognise virtually any language for which a context-free grammar
exists.

• The main drawback however is that they tend to be very
complicated to code by hand, however may generators exist that
take a context-free grammar as input and produce a parser for it.

Kristian Guillaumier, 2001 143

Design (1)

• An LR shift-reduce parser consists of an input,
an output, a stack, a parsing program and two
parsing tables (action and goto):

LR
Parsing
Program

Si

Si-1

…

S0

A0 A1 … An

Output

$ Input

Stack

Action
Table

Goto
Table

Kristian Guillaumier, 2001 144

Design (2)
• The stack is used to store parsing states.
• The state on the top of the stack combined with the next

input token are used by the parsing program to deduce
whether it has a handle to reduce or whether it should
shift a new state on top of the stack and read the next
input token.

• Each entry in the action table contains the four actions
for any combination of top stack symbol and next token
Si, Aj:
– Shift,
– Reduce,
– Accept,
– Error.

Kristian Guillaumier, 2001 145

Design (3)

• The goto table is used whenever the action is a
reduction. After a reduction X α, the states
corresponding to the handle α are popped from
the stack to expose the new topmost state s’ and
the entry for goto[s’,X] becomes the new state
on top.

Kristian Guillaumier, 2001 146

Algorithm (1)
• The parser starts with an initial state s0 on the stack. At

some point through a parse the stack will contain
s0s1s2…si.

• Given the next input token a, the parser will proceed as
follows:
– If action[si,a] = shift si+1, the new state is put on top of the stack

to become: s0s1s2…sisi+1, and the new token is read.
– If action[si,a] = reduce Y X1…Xk, then the k states si-k+1… si

are popped off the stack leaving si-k on top. Now, goto[si-k,Y] is
consulted to find a new topmost state si-k+1 which is put on top of
the stack to become: s0s1s2…si-ksi-k+1.

Kristian Guillaumier, 2001 147

Algorithm (2)

• If action [si,a] = accept, then the parsing is
complete – the whole input tokens have been
consumed and reduced to the sentence symbol.

• If action [si,a] = error, then a syntax error has
been detected.

Kristian Guillaumier, 2001 148

Parsing Program (1)
Set pointer ip to point to the input string
Repeat forever
Let s = state on top of stack
Let a = symbol pointed to by ip

if action[s,a] = shift s’ then
push s’ on top of stack
increment ip to next symbol

else if action[s,a] = reduce A B then
for i = 1 to length(B)
pop state from stack

Let s’ be the new state on top of stack
Let s’’ = goto[s’,A]
Push s’’ on top of stack

Kristian Guillaumier, 2001 149

Parsing Program (2)
else if action[s,a] = accept then
exit from infinite loop

else if action[s,a] = error then
report error

End Repeat

Kristian Guillaumier, 2001 150

LR Parsing Example (1)
• Consider the expression id * id + id.
• Grammar:

1) E E + T
2) E T
3) T T * F
4) T F
5) F (E)
6) F id

Kristian Guillaumier, 2001 151

LR Parsing Example (2)

R5R5R5R511

R3R3R3R310

R1R1R7R19

S11S68

10S4S57

39S4S56

R6R6R6R65

328S4S54

R4R4R4R43

R2R2S7R22

AcptS61

321S4S50

FTEEOF)(*+id

Goto TableAction Table
State

Kristian Guillaumier, 2001 152

LR Parsing Example (3)

• Notes:
– sn means shift state n and read the new token.
– rk means reduce by the production k.
– Encountering blank entries in the tables signify an

error.
– The value goto[s,a] for a TERMINAL a, is found in the

action field action[s,a]. The goto table, therefore
contains values for goto[s,a] where a is a NON-
TERMINAL.

Kristian Guillaumier, 2001 153

LR Parsing Example (4)

AcceptEOFS0S114

Reduce E E + TEOFS0S1S6S913

Reduce T FEOFS0S1S6S312

Reduce F idEOFS0S1S6S511

Shift S5idS0S1S610

Shift S6+S0S19

Reduce E T+S0S28

Reduce T T * F+S0S2S7S107

Reduce F id+S0S2S7S56

Shift S5idS0S2S75

Shift S7*S0S24

Reduce T F*S0S33

Reduce F id*S0S52

Shift S5idS01

ActionNext TokenStack

Kristian Guillaumier, 2001 154

LR Parsing Example (5)
• At the beginning the parser is in state 0 with id as the first input

token.
• Therefore action[0,id] is taken giving the state s5 which is

pushed on the stack and the new input token is read.
• ‘*’ is now the input symbol and the action[5,*] is to reduce by

rule 6. One state is popped off (one state on right hand side)
exposing state 0. The value for goto[0,F] is 3 meaning that state
3 must be popped onto the stack.

• ‘*’ is still the input symbol and action[3,*] is to reduce by rule
4. One state is popped off (one state on right hand side) exposing
state 0. The value for goto[0,T] is 2 meaning that state 2 must be
popped onto the stack.

• And so on…

Kristian Guillaumier, 2001 155

Constructing The Parsing Tables

• There are 3 widely used LR parsing techniques:
– Canonical LR(k) or LR(k) is the most general form of LR parsing

methods and is the most powerful. Such parsers usually have
many thousands of states for a programming languages and are
VERY difficult to hand code.

– Simple LR(k) or SLR(k) is a variant of LR(k) parsing and usually
involves a few hundred states. SLR parsers are the weakest in
terms of grammars it can handle but serves as a good starting
point to other LR parsing methods.

– Lookahead LR(k) or LALR(k) is somewhat in the middle in terms
of the grammars it can handle. LALR parsers have the same
number of states as the equivalent SLR parser but are more
difficult to construct. Popular parser generators use this
technique to automate parser generation.

Kristian Guillaumier, 2001 156

FLEX

• FLEX is a popular program that generates
lexical analysers.

• FLEX accepts as an input a description of the
scanner it has to generate and produces a C
source file called ‘lexyy.c’ containing the
scanning code.

• By convention, FLEX input files have the
extension ‘.l’.

Kristian Guillaumier, 2001 157

The FLEX Input File
• The general format of a FLEX source file is:

Definitions
%%
Rules
%%
User Subroutines

• The definitions and user subroutines sections are
optional as is the second set of %% delimiters. Note that
the first set of delimiters is required to separate the
definitions section from the rules.

• The absolute minimum FLEX program is:
%%

• Which copies the input program to the output
unchanged.

Kristian Guillaumier, 2001 158

FLEX Definitions (1)
• The definition sections contains declaration of language

constructs to simplify the scanner specification.
• These declarations have the form:

name definition

• Where name is any alpha-numeric word starting with an
underscore of a letter.

• For example:
– Digit [0-9]
– Ident [a-z][a-z0-9]*

• Where Digit defines a regular expression that recognises
a simple one-character digit and Ident recognises a word
starting with a letter followed by zero or more
occurences of a letter or digit.

Kristian Guillaumier, 2001 159

FLEX Definitions (2)
• Thus, a subsequent call to:

{digit}* ”,” {digit}+

• Is identical to
([0-9])* ”.” ([0-9])+

• In the definitions section, any indented text or text
enclosed within %{ and %} is copied to the output as it is
with the %{ and %} removed.

• The text lines within are usually:
– Compiler directives such as #include’s or #define’s.
– Declarations of variables that are used by other sections of the

FLEX input file.

Kristian Guillaumier, 2001 160

FLEX Rules
• The rules section of a FLEX program contain a

series of pattern action statements.
• For example:

Integer puts(“I found an integer”)

• Would print a message each time an Integer
(defined in the definitions section) is found.

• Any indented or ‘%{…%}’ code appearing before
the first rule in this section is local to the main
scanning routine generated by FLEX and is
executed each time the routine is called.

Kristian Guillaumier, 2001 161

FLEX User Subroutines

• The user subroutines section is copied exactly to
the output source produced by FLEX.

• When building FLEX scanners that are not
interfaced by external programs the C main
function is defined and programmed here.

Kristian Guillaumier, 2001 162

Regular Expressions in FLEX (1)

2 or more r’s.r{2,}

Anything between 2 and 5 r’s.r{2,5}

An optional r (zero or one)r?

One or more r’s.r+

Zero or more r’s where r is a regular expression.r*

A negated character class with an escape character (newline).[^A-Z\n]

A negated character class.[^A-Z]

A character class with a range in it – matches an ‘a’, a ‘b’, any
letter from ‘j’ to ‘o’ or ‘Z’.

[abj-oZ]

A ‘character class’ – in this case it matches an ‘x’ a ‘y’ or a ‘z’[xyz]

Any character except the newline..

Matches the character x.x

Kristian Guillaumier, 2001 163

Regular Expressions in FLEX (2)

The end of file.<<EOF>>

An r but only at the end of a line – equivalent to r\n.r$

An r but only ath the beginning of a line.^r

Either an r or an s.r|s

Concatenation of regular expression r and s.rs

Match an r – parenthesis are used to emphasis precedence.(r)

A character with the hexadecimal value 2a.\x2a

A character with the octal value of 123.\123

If X is an a,b,f,n,r,t or v, the ANSI C interpretation of \X otherwise
the literal X – for example \”

\X

The literal ‘[xyz]’“[xyz]”

The expansion of a name definition.{name}

Exactly 4 r’s.r{4}

Kristian Guillaumier, 2001 164

Regular Expressions in FLEX (3)

• If there is more than one rule matching the input,
the one matching the most text characters is
chosen. If the matches have the same length,
the file listed first is chosen.

• Once a match is made, the text corresponding
the match is put in a special character pointer (C
string) variable called yytext (char *yytext)
and its length is in yyleng.
– Integer printf(“I found an integer %s.”,
yytext);

Kristian Guillaumier, 2001 165

Actions (1)
• Each pattern in a rule has a corresponding action that

may be any arbitrary C statement.
• The pattern ends at the first non escaped whitespace

character. The rest of the line is the action statement.
• If the action is left empty, the token found is discarded.
• The following FLEX program deletes all occurrences of

the word ‘username’ from the input an keeps the rest:
%%
“username”

• The following program compreses multiple spaces and
tabs into one space charater and removes trailing
spaces too:
[\t]+ putchar(‘ ‘);
[\t]+$ /* ignore trailing blanks */

Kristian Guillaumier, 2001 166

Actions (2)
• An action consisting of only the vertical bar ‘|’ means “the same action as

the one for the next rule. If the action contains a ‘{‘, then the action spans
until the next balancing ‘}’. For example:

IF |
if {

puts{“Keyword IF found.”);
return IFWORD;

}

• Actions contain arbitrary C code, including return statements to return
values to whatever external routine called yylex() – the token parser.

• Each time yylex() is called, it continues processing from where it last left
off until it reaches an EOF or meets a return statement.

• Once yylex() reaches the end of file, however, any subsequent call to
yylex() will immediately return unless yyrestart() is called.

• Note any actions are not allowed to modify yytext or yyleng.

Kristian Guillaumier, 2001 167

Special Routines and Directives (1)

• ECHO: copies yytext to the scanners output.
• yymore(): tells the scanner that the next time it

matches a rule, the corresponding token should be
appended onto the current value of yytext rather than
replacing it. For example:
%%
a- ECHO; yymore();
b ECHO;

• The first ‘a-’ is matched and echoed to the output. Then
‘b’ is matched by the previous ‘a-’ is still in yytext so
the echo for ‘b’ will include the previous ‘a-’s

Kristian Guillaumier, 2001 168

Special Routines and Directives (2)
• yyless(n): redirects all but the first n characters of the current token back

to the input stream, where they will be rescanned when the scanner looks
for the next match. yytext and yyleng are adjusted appropriately. Note
that a call to yyless(0) will cause the entire input string to be scanned
again and would result in an infinite loop unless care is taken.

• unput(c): puts the character ‘c’ back onto the input stream which will then
be the next character scanned. For example the following action will take
the current token and cause it to be rescanned enclosed in parenthesis:
{

int i;
unput(‘)‘);
for (i = yyleng -1; i > 0; --i)
unput(yytext[i]);

unput(‘{’);
}

• Note that all characters are pushed to the BEGINNING of the input string so
the original characters are put in reverse.

Kristian Guillaumier, 2001 169

Special Routines and Directives (3)

• input(): reads the next character from the
input stream. (or yyinput() if used with C++)

• yyterminate(): can be used instead of a
return statement. It aborts the action returning 0.
subsequent calls to yylex() immediately return
unless yyrestart() is called. (usually called
on encountering the EOF)

• yyrestart(): tells FLEX to start scanning from
a new (maybe the same) input file. Takes a
single file * pointer.

Kristian Guillaumier, 2001 170

The Generated Scanner (1)
• Whenever yylex() is called, it scans tokens

from a global input file denoted by yyin which
by default points to standard input unless
specified using the C function fopen (file open).

• For example, to open example.txt for reading
in text mode:
yyin = fopen(“example.txt”,”r”);

• yylex() continues reading from yyin until it
reaches EOF. In this case the function will return
immediately unless yyrestart() is called and yyin
is set to point to a new file.

Kristian Guillaumier, 2001 171

The Generated Scanner (2)
• Likewise, the scanner produces output to yyout

which, again, by default, points to standard
output. As with yyin, yyout can be changed by
assigning it another FILE pointer:
– yyout = fopen(“output.txt”, “w”);

Kristian Guillaumier, 2001 172

Interfacing with Parser Generators
• One of the main uses of FLEX is interfacing it with an external

parser generator like Bison. Bison parsers expect to call a function
called yylex() to find the next input token.

• yylex(), is expected to return the type of the token found
(implemented as a constant, maybe) and putting any associated
value in yylval.

• To use Bison in association with FLEX, it is called with the –d option
to instruct is to generate an header file containing all the token
definitions. This header is then used in FLEX. To include the
header:
%{
#include “generated_header.h”
%}
%%
[0-9]+ yylval = atoi(yytext); return NUM;

Kristian Guillaumier, 2001 173

BISON
• BISON takes an input grammar file and produces a C

program that parses the language described by that
grammar.

• Tokens are read from the lexical analyser function
yylex() which can be coded manually or generated
automatically using FLEX.

• The BISON output file (C program) defines a function
called yyparse() – the implementation of the grammar.

• The parser generated by BISON expects a user-
implemented error reporting function yyerror(). And
the main() C function.

Kristian Guillaumier, 2001 174

BISON Grammar Files
• A BISON grammar file contains four sections separated

by delimiters:

%{
C Declaration
%}

Bison Declarations

%%
Grammar Rules

%%
Additional C Code

Kristian Guillaumier, 2001 175

The C Declarations Section
• This section contains global definitions, constants,

variables, #include’s, #define’s and functions that will be
used in the actions of the grammar rules.

• The contents of this section are copied to the very
beginning of the output parser file so that they precede
the yyparse() function.

• If no C declarations are used, the %{ and %} delimiters
may be omitted.

• By now you should have noticed that both BISON and
FLEX have a lot of variable and function definitions
starting with yy. It is a good idea NOT to name any
variables or functions of your own starting with yy too.

Kristian Guillaumier, 2001 176

Other Sections
• Bison Declarations

– This section contains declarations of terminal and non-terminal
symbols used in the language being described, as well as
definitions of operator precedence and the data types of
semantic values of various symbols.

• Grammar Rules Section
– This section contains the grammars production rules, which

define how a non-terminal is constructed from its parts. There
must always be at least one grammar rule in a BISON file.

• Additional C Code
– Like the C Declarations section, the contents of this section

contains C code that is copied exactly to the output. This section
is copied to the END of the output file. It is a convenient way to
put anything required AFTER the yyparse() function such as
main().

Kristian Guillaumier, 2001 177

Symbols – Terminal and Non-
Terminal (1)
• A terminal symbol represents lexical analyser tokens. These tokens

are represented by numeric constants, any yylex() returns a
token type code to indicate what token type has been read.

• There are 2 ways of writing terminal symbols in the grammar:
– Single Characters: A single character token type such as + or * does not

need to be declared. It can be used directly in the rules section by
enclosing it in single quotes.

– Multi-Character Tokens: These are represented by a declared name
using a %token declaration. By convention names are written in upper
case. For example the words “Begin” and “End” might be declared as:
%token BEGIN
%token END

-or-

%token BEGIN END

Kristian Guillaumier, 2001 178

Symbols – Terminal and Non-
Terminal (2)
• Internally, each token is represented by an integer,

starting from 257. 0 to 255 are used to represent ASCII
characters and 256 is used to represent the error token.
When using BISON the programmer is not generally
concerned about these values but these token values
must be known when implementing these tokens in
FLEX. Using the ‘–d’ option when running BISON will
automatically generate an include file containing the
definitions for these tokens:

…
#define BEGIN 257
#define END 258
…

Kristian Guillaumier, 2001 179

Symbols – Terminal and Non-
Terminal (3)
• Non-terminals are declared in exactly the same

way, but their names are in lowercase by
convention.

Kristian Guillaumier, 2001 180

BISON Grammar Rules (1)
• A BISON grammar rule has the form:

result : components...
;

• Where result is the non-terminal symbol that the rule describes
(LHS) and the components are the various terminal and non-
terminal symbols that put together this rule (RHS).

• For example:

exp : exp ‘+’ exp
;

if_statement : IF exp THEN
;

Kristian Guillaumier, 2001 181

BISON Grammar Rules (2)
• Multiple rules for the same result can be written

separately:
exp : exp ‘+’ exp;
exp : exp ‘-’ exp;

• Or together, separated by the vertical bar:
exp : exp ‘+’ exp

| exp ‘-’ exp
;

• If the components section is left empty, it means
that result can match the empty string.

Kristian Guillaumier, 2001 182

BISON Grammar Rules (3)
• Here is how to define a comma separated sequence of zero or more exp

groupings:

expseq : /* empty */
| expseq1
;

expseq1 : exp
| expseq1 ‘,’ exp
;

• It is convention to write a comment /* empty */ in each rule with no
component.

• Within components actions consisting of C statements may be included:

exp : exp ‘+’ exp { printf(“Addition Expression”);}
| exp ‘-’ exp { printf(“Subtraction Expression”);}
;

Kristian Guillaumier, 2001 183

Recursive Rules (1)
• A rule is called recursive when its result also appears also on the

right-hand side. Nearly all BISON grammars need to use recursion,
because it is the only way to define a sequence (zero-or-more, one-
or-more) of ‘somethings’.

• Consider the left and right recursive definitions of a comma-
separated sequence of one or more expressions:

expseqleft: exp
| expseqleft ‘,’ exp
;

expseqright : exp
| exp ‘,’ expseqright
;

Kristian Guillaumier, 2001 184

Recursive Rules (2)
• Any kind of sequence may be defined using either left or

right recursion, but one should always use left recursion,
because it can parse a sequence of any number of
elements with bounded stack space.

• Indirect or mutual recursion occurs when the result of the
rule does not appear directly on the right hand side, but
does appear in rules for other non-terminals which do
appear on its right hand side. For example:
expr : primary

| primary ‘+’ primary
;

primary : constant
| ‘(‘ expr ‘)’
;

Kristian Guillaumier, 2001 185

Defining Semantics (1)
• The grammar rules for a language determine only its

syntax. The semantics are determined by the semantic
‘meaning’ associated with various tokens and the actions
taken when these tokens are recognised.

• A formal grammar selects tokens only by their
classifications: for example, if a rule mentions the
terminal symbol `integer constant', it means that any
integer constant is grammatically valid in that position.
The precise value of the constant is irrelevant to how to
parse the input: if `x+4' is grammatical then `x+1' or
`x+3989' is equally grammatical.

Kristian Guillaumier, 2001 186

Defining Semantics (2)
• Semantic values have all the rest of the information about the

meaning of a token, such as the value of an integer, or the name of
an identifier. (A token such as ',' which is just punctuation doesn't
need to have any semantic value.)

• For example, an input token might be classified as token type
INTEGER and have the semantic value 4. Another input token might
have the same token type INTEGER but value 3989. When a
grammar rule says that INTEGER is allowed, either of these tokens
is acceptable because each is an INTEGER. When the parser
accepts the token, it keeps track of the token's semantic value.

• Each grouping can also have a semantic value as well as its non-
terminal symbol. For example, in a calculator, an expression
typically has a semantic value that is a number. In a compiler for a
programming language, an expression typically has a semantic
value that is a tree structure describing the meaning of the
expression.

Kristian Guillaumier, 2001 187

Defining Semantics (3)
• Most of the time, the purpose of an action is to compute the

semantic value of the whole construct from the semantic values of
its parts. For example, suppose we have a rule which says an
expression can be the sum of two expressions. When the parser
recognizes such a sum, each of the sub-expressions has a semantic
value which describes how it was built up. The action for this rule
should create a similar sort of value for the newly recognized larger
expression.

• The C code in an action can refer to the semantic values of the
components matched by the rule with the construct $n, which
stands for the value of the nth component. The semantic value for
the grouping being constructed is $$. (Bison translates both of these
constructs into array element references when it copies the actions
into the parser file.)

• Here is a typical example:
exp: ...

| exp '+' exp { $$ = $1 + $3; }

Kristian Guillaumier, 2001 188

Defining Semantics (4)

• If you don't specify an action for a rule, Bison
supplies a default: $$ = $1.

• Every terminal and non-terminal defined in the
grammar is given a type. Bison’s default is to
use the int type for all semantic values.
Clearly, this can be overridden.

Kristian Guillaumier, 2001 189

BISON Declarations

• This section defines all the symbols used in
formulating the grammar and the data types of
semantic values.

• All token types except for single character
tokens (such as +, which are enclosed in single
quotes) must be declared.

• Non-terminal symbols must be declared if you
need to specify which data type to use for the
semantic value.

Kristian Guillaumier, 2001 190

The Sentence Symbol

• The sentence symbol of the grammar is, by
default, the first non-terminal defined at the start
of the rules section. An alternative start symbol
may be specified using the %start statement.
For example, if the starting symbol in your
language is program, you may specify this as:
%start program

Kristian Guillaumier, 2001 191

Token Types
• The basic way to specify a token is using the
%token statement:
%token begin
%token end

• One can explicitly specify a numeric code to
each token type:
%token begin 300
%token end 301

• But, in general, it is better to let BISON choose
the numeric code itself.

Kristian Guillaumier, 2001 192

Types of Semantic Values (1)
• The BISON %union declaration is used to

specify the collection of all possible data types
for all the semantic values:
%union
{
double val;
char * str;

}

• This means that we defined two types – val
(based on the double type) and str (a C string).

Kristian Guillaumier, 2001 193

Types of Semantic Values (2)
• In certain cases, token declarations (%token …) should

be assigned a type. For example, if the token NUM must
be associated to the semantic type double, then the
token declaration should be modified as:
%token <val> NUM

• We previously mentioned that in some cases, non-
terminals could be associated with a semantic type. In
this case the non-terminal declaration is mandatory.
Suppose the EXPR and PRIMARY non-terminals are
associated a double type:
%type <val> EXPR PRIMARY

Kristian Guillaumier, 2001 194

Associativity
• If one wishes to declare a token and specify its

associativity the %left, %right and %nonassoc
statements are used.

• If ‘+’ is declared to be left associative:
%left ‘+’

• The same reasoning goes for right associativity. A token
may be non-associative. Say, ‘+’ should be declared with
no associative information. We get:
%nonassoc ‘+’

• But keep in mind that statements like ‘a+b+c’ will be
considered as a syntax error (we have more than one
operator but don’t have associativity information)

Kristian Guillaumier, 2001 195

Precedence

• All tokens declared together have the same
precedence.

• When tokens are declared separately, the one
declared later has the highest precedence.
%left ‘+’ ‘-’
%left ‘*’

Kristian Guillaumier, 2001 196

Type Checking (1)
• There are 2 classes of ‘checking’ that are made when during the

lifetime of a program, namely, static and dynamic checking.
Dynamic checking occurs during the execution (runtime) of a target
program. Static checking is made at compile time.

• Examples of static checks include:
– Type checks: a compiler should produce an error id an operator is

applied to an incompatible operand.
– Flow control checks: statements that effect the flow of a program must

have a ‘place’ were to redirect the flow. For example, the C break
statement causes the control to leave the enclosing while, for or
switch statement. An error occurs if there is no such enclosing
statement.

– Uniqueness checks: there are situations were an object must be defined
only once such as a variable declaration.

– Name-related checks: sometimes, a name must appear two or more
times (for i = a to b … next i). The compiler must check that
the same name is used in both places.

Kristian Guillaumier, 2001 197

Type Checking (2)
• A type checker verifies that the type of a construct ‘fits’ into its

current context. For example the Pascal mod operator requires
integer operands, so the compiler must ensure that this is so.

• A symbol that can represent different operations in differing context
is said to be ‘overloaded’.

• In principal any check can be made dynamically, if the target code
contains enough type information.

• A strongly typed language is one that guarantees that if the compiler
accepted the input, it will run without type errors.

• In practice there are some check that can be made only
dynamically. For example if we declare an array table:
array[0..255] of char; and try to reference table[i], the
compiler cannot guarantee during execution that the value i will lie
in the 0..255 range.

Kristian Guillaumier, 2001 198

A Simple Type Checker (1)
• We will specify a small language in which every identifier

must be declared before being used.
• The following grammar generates programs starting from

the starting symbol P consisting of a sequence of
declarations D followed by a single expression E.

P D ; E
D D ; D | id : T
T char | integer |

array[num] of T | ^T
E literal | num | id | E mod E |

E [E] | E^

Kristian Guillaumier, 2001 199

A Simple Type Checker (2)
• A program that can be generated from the grammar is:

key: integer;
key mod 1999

• Notes:
– The basic types in the language are char and integer.
– We assume all array indices start from 1 so array[256] is the

equivalent of array[1..256].
– The prefix ^ operator is the pointer type.
– In the translation scheme we will use, the action associated with

the production D id : T, will save the type information for
the identifier in the symbol table.

– Since in the grammar, D appears before E in P D ; E it is
guaranteed that all the types of identifiers will be known before
the expression is checked.

Kristian Guillaumier, 2001 200

Type Checking Expressions (1)
• The following rules, synthesize the the type of an

expression :

if E1.Type AND E2.Type = integer

E.Type = integer
else

E.Type = type_error

E E1 mod E2

E.Type ::= lookup(id)
Where lookup searches for id in the symbol table
and returns the type of the declared identifier.

E id

E.Type ::= integerE num

E.Type ::= charE literal

Kristian Guillaumier, 2001 201

Type Checking Expressions (2)

if E1.Type = pointer(t)
E.Type = t

Else
E.Type = type_error

Where t in pointer(t) is the type of the pointer.

E E1^

if E2.Type = integer and

E1.Type = array(s,t)
E.Type = t

else
E.Type = type_error

In array, s is the size and t is the type.

E E1[E2]

Kristian Guillaumier, 2001 202

Type Checking Statements (1)

• Certain language constructs like statements
don’t have values per se so don’t have types
associated with them. In this case a special
basic type void can be assigned to them. If an
error is detected the type_error type is returned.

• We will be considering assignment, while
and if statements here.

• Sequences of statements are separated by
semicolons.

Kristian Guillaumier, 2001 203

Type Checking Statements (2)

if S1.Type = void and S2.Type = void
S.Type = void

else

S.Type = type_error

S S1 ; S2

-same as above-S while E do S1

if E.Type = boolean

S.Type = S1.Type
else

S.Type = type_error

S if E then S1

if id.Type = E.Type

S.Type = void
else

S.Type = type_error

S id := E

Kristian Guillaumier, 2001 204

Runtime Support (1)
• Before discussing code generation, we will examine the relationship

between the text of the source program to the actions that have to
occur at runtime to implement it.

• The execution of every procedure is referred to as an activation of
that procedure.

• If procedures are nested or recursive multiple activations may exist
at any one point.

• Let us assume that a program is made up of procedures such as in
Pascal.

• In its simplest form a procedure is the relationship between and
identifier and a statement, where the identifier is the procedure
name and the statement(s) is the procedure body.

• Procedures that return a value are called functions in many
programming languages.

Kristian Guillaumier, 2001 205

Runtime Support (2)
• A complete program will also be treated as a procedure

(think Pascal).
• When a procedure appears in an action statement, we

say that the procedure has been called.
• A procedure may be also called within an expression.
• Some identifiers within a procedure definition are treated

special and are called the formal parameters of the
procedure (also called arguments).

• When a procedure is called, actual parameters are
substituted for the formal ones.

Kristian Guillaumier, 2001 206

Activation Trees (1)
• Assumptions on flow control:

– Control flows sequentially.
– The execution of a procedure starts at the beginning of the procedure

body and ends at the point following where the procedure was called.
• Each execution of a procedure is referred to as an activation of the

procedure. The lifetime of an activation is the sequence of steps
between the first and last steps in the execution of the procedure
body (including any other procedures called internally).

• In languages like Pascal, each time control enters a procedure Q
from another P, control will eventually return to P in the absence of
an error.

• So, if P and Q are procedure activations, their lifetimes are either
nested or non-overlapping. That is if Q enters before P is left, then Q
must terminate before P does.

• A procedure is recursive if a new activation can begin before an
earlier activation of the same procedure finished (note: recursion
may be indirect (P calls Q which calls P).

Kristian Guillaumier, 2001 207

Activation Trees (2)

• We use a tree structure called an activation tree
to depict this control flow. In this tree:
– Each node represents an activation of a procedure.
– The root node represents the activation of the main

program procedure.
– The node for A is the parent of another node B iff

control flows from activation A to B.
– The node for A is to the left of the node for B iff the

lifetime of A occurs before that of B.

Kristian Guillaumier, 2001 208

Example (1)
program sort
var a: array[0..10] of integer;

procedure readarray;
var i:integer;
begin

for i := 1 to 9 do read(a[i]);
end;

function partition(y,z:integer):integer;
var ...
begin

...
end;

Kristian Guillaumier, 2001 209

Example (2)
procedure quicksort(m,n:integer);
var i:integer;
begin

if (n > m) then begin
i := partition(m,n);
quicksort(m,i-1);
quicksort(i+1,n);

end;
end;

begin
a[0] := -9999; a[10] := 9999;
readarray;
quicksort(1,9);

end.

Kristian Guillaumier, 2001 210

Example (3)
• Activation Trace:

Execution Begins
Enter readarray
Leave readarray
Enter quicksort(1,9)
Enter partition(1,9)
Leave partition(1,9)
Enter quicksort(1,3)
...
Leave quicksort(1,3)
Enter quicksort(5,9)
...
Leave quicksort(5,9)
Leave quicksort(1,9)
Execution Finishes

Kristian Guillaumier, 2001 211

Example (4)

s

r q(1,9)

p(1,9) q(1,3) q(5,9)

p(1,3) q(1,0) q(2,3) p(5,9) q(5,5) q(7,9)

p(2,3) q(2,1) q(3,3) p(7,9) q(7,9) q(9,9)

Kristian Guillaumier, 2001 212

Control Stacks (1)
• The flow of control of a program corresponds to a depth

first traversal of the activation tree.
– (starts at the root, visits nodes before children and visits children

in a left-to-right order)
• The trace we have seen before can be reconstructed by

traversing the previous tree as illustrated above.
• We can use a stack called the control stack to keep

track of live procedure activations. The idea is to push a
node onto the stack when activation begins and popping
it off when activation ends.

• When a node n is on top of the control stack, the stack
contains the nodes along the path from n to the root
(start).

Kristian Guillaumier, 2001 213

Control Stacks (2)

s

r q(1,9)

p(1,9) q(1,3)

p(1,3) q(1,0) q(2,3)

The state of the stack when q(2,3) is on top.

Kristian Guillaumier, 2001 214

Activation Records
• Information (memory space) needed for the execution of a single procedure

is managed by a block of storage called an activation record.
• Not all languages or compilers use the same structure for this record.
• Common fields in this record are:

– Temporaries: temporary values such as those intermediate values when
evaluating an expression.

– Local data: local values to the procedures.
– Saved machine status: the state just before the procedure was called.
– Access link: link to non-local data.
– Control link: link to the activation record of the calling procedure.
– Actual parameters: values of the actual parameters passed the procedure.
– Returned value: the returned value if the procedure is a ‘function’.

• ‘Out of Stack Space’ issue in infinitely recurring calls.
• The sizes of most fields are usually determined at compile time with

exceptions if there is a local array whose size depends on an actual
argument or the procedure can take a variable number of parameters.

Kristian Guillaumier, 2001 215

Intermediate Code
• It is common practice for the front end of a compiler to

produce an intermediate form of code before passing
that on to the backend to generate the target code itself.

• This is desirable since:
– Retargeting is facilitated (a compiler for the same language but

different machine).
– A machine-independent code optimiser may be developed

(optimisation applied to the intermediate code).

• We will assume that at this point the language has been
parsed and statically checked.

Kristian Guillaumier, 2001 216

Intermediate Languages (1)
• Syntax trees and postfix are two types of intermediate

representations.
• In this section we will discuss a new one called the three

address code.
• The three address code (3AC – my abbreviation!) is a

sequence of statements of the general form:
x := y op z

• Where x, y and z are names, constants or compiler-
generated temporaries.

• Op, stands for an operator such as integer or floating-
point arithmetic operators or a logical operator on
boolean data.

Kristian Guillaumier, 2001 217

Intermediate Languages (2)
• Note that no ‘built-up’ expressions are allowed since

there is only one operator in the RHS. So, something like
p + q * r, would look like:
t1 := q * r
t2 := p + t1

• Where, t1 and t2 are compiler-generated temporaries.
• The use of names for intermediate values allows 3AC to

be easily rearrange unlike postfix notation.
• 3AC is a linear representation of the syntax tree (like

postfix).
• The reason for the term ‘Three Address Code’ is that

each statement usually contains 3 addresses, 2 for the
operands and 1 for the result.

Kristian Guillaumier, 2001 218

Intermediate Languages (3)
3AC

t1 := -c
t2 := b * t1
t3 := -c
t4 := b * t3
t5 := t2 + t4
a := t5

Assign

a +

* *

b UMinus b UMinus

c c

a := b * -c + b * -c

Syntax Tree

Kristian Guillaumier, 2001 219

Types of 3AC (1)

y is an optional return value. Typically used as
a sequence:
param x1
…
param xn
call p,n

param x
call p, n
return y

Parameters, Calls
and Returns

Apply a relational operator (>, <, <=,…) to x
and y and jump to L if true otherwise continues
with the next code.

if x relop y goto LConditional Jump
Where L is a label to the next statement to run.goto LUnconditional Jump
Copy y into x.x := yCopy
Op is a unary operator (-, NOT,…)x := op yAssignment
Op is a binary arithmetic or logical operator.x := y op zAssignment
NotesFormType

Kristian Guillaumier, 2001 220

Types of 3AC (2)

The first sets the value of x to the memory
location of y.
In the second, presumably y is a pointer.
In the third, presumably x is a pointer.

x := &y
x := *y
*x = y

Address/Pointer
Assignments

The first sets x to the value in the location i
memory units beyond y.
The second sets the value at the location i
memory units beyond x to y.

x := y[i]
x[i] = y

Indexed
Assignments

NotesFormType

Note:
The operator set in the design of the 3AC must be rich enough to describe the operations
in the source language. A small set is easier to implement on the target machine, but the
resulting code would be very long, making the life of the optimiser harder if it is to
produce good code.

Kristian Guillaumier, 2001 221

Code Generation (1)
• The final phase in compiler is the code generator which takes an

intermediate representation of a source program and generates
equivalent target code.

• In between the intermediate code stage and code generation stage
there could be a code optimisation stage. Code optimisation may be
implemented on the final target code too.

• The requirements generally imposed on a code generator are that
the target code should be correct of high quality and effectively use
resources on the target computer. Also the code generator itself
must be efficient.

• Mathematically, the problem of generating optimal code is
undecidable. In practice, heuristics that generate good code (not
necessarily optimal) are typically used.

• The choice of such heuristics is important. Carefully designed code
generators may produce code that is several times faster than that
produced by a bad one.

Kristian Guillaumier, 2001 222

Code Generation (2)
• In order to design an efficient code generator the

designer must have intimate knowledge of the
target hardware and operating system.

• Issues such as memory management,
instruction selection, register allocation and
evaluation order are inherent to almost all code
generation problems.

• Due to highly specialised, platform-dependent
issues, in this section will examine generic
design issues only.

Kristian Guillaumier, 2001 223

Input to the Code Generator
• The input is typically,

– The intermediate code produced by the front end.
– The symbol table that is used to determine the runtime

addresses of the data objects denoted by the names in the
intermediate representation.

• We assume that,
– The source code has been properly scanned and parsed

correctly.
– All relevant information is available to the code generator.
– Type checking has occurred.
– In general the input is error-free.

Kristian Guillaumier, 2001 224

Target Programs
• The output of a code generator is the target language. This may

take on different forms such as,
– Absolute machine code,
– Relocatable machine language,
– Or assembly language.

• Producing absolute machine code has the advantage that it can be
placed in a fixed memory location and execute immediately.

• Producing relocatable (object) code has the advantage that
separate sub-programs may be compiled separately and then linked
and loaded to execute. Whilst the code has the overhead of linking
and loading we gain a lot of flexibility (think DLLs – though not
exactly).

• Producing assembly language makes the code generation task
simpler but involves the extra step of assembling the output.

Kristian Guillaumier, 2001 225

Memory Management

• Mapping names in the source program to
addresses of data objects is done cooperatively
by the front-end and back-end of the compiler.

• A name in a 3AC statement refers to a symbol
table entry for the name.

• The type of a declaration determines the amount
of storage allocated in memory (e.g. a long
integer would take up 4 bytes).

Kristian Guillaumier, 2001 226

Instruction Selection (1)
• The nature of the instruction set of the target machines

determines the instruction selection when generating
code.

• Also, if the target machine does not support each data
type natively, special arrangements have to be made.

• Instruction speeds are an important factors when
generating code. If the quality of the target code is not an
issue, then each 3AC statement could be associated
with a ‘template’. For example, every 3AC statement of
the form x := y + z could be translated into:

MOV y, R0
ADD z, R0
MOV R0, x

Kristian Guillaumier, 2001 227

Instruction Selection (2)
• Unfortunately, this technique can (and most likely will)

produce inefficient code. For example:
a := b + c
d := a + e

• Will produce:
MOV b,R0
ADD c,R0
MOV R0,a
MOV a,R0
ADD e,R0
MOV R0,d

• There the third and fourth statements are redundant if a
is not subsequently used.

Kristian Guillaumier, 2001 228

Instruction Selection (3)
• The quality of code is usually determined by its

execution speed and its size.
• A target machine with a rich instruction set may provide

several ways to perform any given operation. In this case
a ‘narrow-minded’ code generator may produce correct,
though unacceptably inefficient code.

• For example, say, the machine supports an increment
(INC) operation. Then the 3AC instruction a := a + 1 may
be implemented more efficiently by the single instruction
rather than using the ‘template’ we have seen before.

Kristian Guillaumier, 2001 229

Register Allocation
• Instructions involving register operands are usually

shorter and much faster than those involving memory
operands. For this reason, efficient utilization of registers
is important in generating fast code.

• The use of registers is often subdivided into two
problems:
– During register allocation, we select the set of variables that

will reside in registers at a point in the program.
– During subsequent register assignment, we pick the specific

register that the variable will ‘live’ in.
• Finding the optimal assignment of registers is

mathematically NP complete and further restrictions may
be enforced by the hardware and/or operating system

Kristian Guillaumier, 2001 230

Code Optimisation
• An optimiser looks at a representation of the source

program and tries to produce shorter or faster code (or
both).

• There are essentially two ways in which optimisation can
take place:
– Reorganise the structure of the source algorithms to make them

more efficient. This generally operates on the parse tree. This
technique is machine independent.

– Modification of the code produced by a simple translator to make
it efficient. This phase operates on the object code.

Kristian Guillaumier, 2001 231

Common Optimisation Tasks (1)
• Common Sub Expressions

– An occurrence of an expression E is called a common sub-
expression if E was previously computed and the values of the
variables in E have not changed. In such cases we can avoid
recomputing an expression of we can use the previously
computed value.

• Copy Propagation
– Reorganises assignment statements so that:

x = y
z = x

– becomes
x = y
z = y

– (more on this later)

Kristian Guillaumier, 2001 232

Common Optimisation Tasks (2)
• Dead Code Elimination

– A variable is ‘live’ at a point in a program if its value can be used
subsequently, otherwise it is ‘dead’ at that point. Statements may
compute values that may never be used in a program. While a
programmer is unlikely to introduce dead code intentionally, it
may appear as a result of previous transformations. Consider the
statement:
if (debug) then Print ...

– By data flow analysis it may be deduced that no matter what
path the program takes, when the statement is reached, the
value of debug would always be false, so the test and printing
may be removed from the object code.

Kristian Guillaumier, 2001 233

Common Optimisation Tasks (3)
• Dead Code Elimination Continued

– One advantage of copy propagation is that it often turns an assignment
statement into dead code. For example copy propagation followed by
dead code elimination would convert:
x = t3
a[t2] = t5
a[t4] = x
goto b2

– By elimination of copy propagation:
x = t3
a[t2] = t5
a[t4] = t3
goto b5

– By Dead code elimination:
a[t2] = t5
a[t4] = t3
goto b5

Kristian Guillaumier, 2001 234

Common Optimisation Tasks (4)
• Loop Optimisation

– Loops are an important place where optimisations may occur.
The running time of a loop may be improved if we decrease the
number of instructions occurring inside. A common loop
optimisation is called code motion.

– Code motion attempts to move code out of the loop (though the
expression must yield the same result). This transformation
takes an expression that has the same evaluation independent
of the number of times the loop executes (called a loop-invariant
computation) and places it before the loop. For example the
computation of limit – 1, is loop invariant in:
while (i < (limit – 1)) ...

– So we can have:
t = limit – 1
while (i < t) ...

