University of Malta

CSA 2010 — Compiling Techniques
Course Assignment 2004-2005

Department of Computer Science and A. I.
University of Malta.
Tutor: Kristian Guillaumier
Email: kguil@cs.um.edu.mt

Creating an Expression Calculator

e The aim of this assignment is to create an application where expressions (that may include
identifiers/variables) are evaluated.

e The design of the application must resemble a calculator:

= Super Calculator E]@

Expression:

|(3+4| |

* / | [mar |
--@D[JEES
..E] ’ M Ret] Eval

IIIM

JError: Missing ') at char S

e This assignment involves:

o

o

o

Creating a lexical analyzer for the expression language (tokens include identifiers,
integer constants, floating point constants, arithmetic operators like + - * and /,
keyword constants like Pl and keyword operators like TAN, SIN and COS).

Creating and managing a symbol table (probably a HashTable implementation).

Creating a top-down predictive parser for the expression language. The BNF for the
expression language should be an augmented version of that found in the lecture
slides. The parser should build a binary tree.

Simple error reporting.

A user interface similar to the one shown above.

e An expression may include (and should support) identifiers. E.g. 3+counter-limit.
Whenever an identifier is encountered it should be placed in the symbol table if it is not
already there (probably during scanning). The initial value of the identifier is null. When the
expression has to be evaluated a popup input box will be displayed for each identifier having
a null value for the user to supply the runtime value.

The expression should be evaluated by calling a evaluation function passing the root note of
the parse tree as an argument (as demonstrated in class). The function will need to be called
recursively. Note that during evaluation if an identifier with a null value is encountered, the
popup box must be displayed to acquire the actual value. Checking must be made to ensure
that the value entered in the popup box is a valid integer or floating point constant.

Operator precedence is informally defined as follows:
Multiplication and division are higher than addition and subtraction.

Brackets may be used to emphasize precedence. Brackets should be supported in the
language.

All operators are left-associative.

Integer constants are 32-bit integers whilst floating point constants are 32-bit floating point
numbers.

The expression language is case-insensitive (for identifiers).

Variable names/identifiers start with a letter or underscore symbol followed by any number of
letters, underscore symbols or digits.

The application must support a basic form of memory clear, memory set and memory recall
functionality. Memory can be recalled from within the identifier value popup box.

Whenever the value of the expression in the textbox changes the entered expression must be
checked for errors and the error (if any) displayed in some sort of status area. This will
involve capturing some sort of TextChanged event for the expression text box. Timers or
threads may be used to improve responsiveness but their use is purely optional.

The program must be accompanied by a technical report describing any implementation
details and techniques used to complete the assignment.

The technical report must include the BNF for the expression grammar as augmented from
the lecture slides.

(Important) Refer to the assignment instructions at
http://webster.cs.um.edu.mt/kguil/assignment.html

