
MEMORY MANAGEMENT

Introduction

That part of the OS that manages memory is called the memory

manager. Its job is to keep track of which parts of memory are in

use, allocate memory to processes when they need it and

manage the swapping of processes between the main memory

and the hard disk when the memory is not big enough to hold all

the processes.

One of the earliest memory management policies was to use

virtual memory. The basic idea behind virtual memory is that

the combined size of the program, its data and the stack may

exceed the amount of physical memory available for it. What the

OS does is to keep those parts of the program currently in use in

memory and the rest on the disk. The two most common

technique of memory are paging and segmentation.

In early systems, another more straightforward method was to

use overlays. A large program would be split by the

programmers into pieces called overlays. The first overlay will

be loaded in memory, start running and when it was done it

would call another overlay in memory. Although the OS did the

actual work of swapping overlays in and out of memory, the

splitting of the program into small modules was the

programmer’s responsibility.

Memory Maps / Memory Allocation Methods

a) Fixed Partition Memory

In a fixed memory partition system, the memory is divided into

unequal length partitions and, as each partition becomes free, the

job closest to the front of the queue that fits into the partition

will be loaded into it and executed.

Note that since a job will not exactly fit a partition size, there

will always be some wasted space referred to as internal

fragmentation. Another disadvantage is that a process may not

be able to run because it is larger than the largest available

partition.

Partition 4

Partition 3

Partition 2

Partition 1

OS

Internal Memory

(RAM)

Input Queue

(processes)

b) Variable Partition Memory

In this scheme, the partitions are allowed to be variable in size at

load time. This is done in order to allocate the process the exact

amount of memory it requires. Processes are loaded into

consecutive areas until the memory is filled. When a process

terminates the space it occupied is freed and becomes available

for other processes.

The distribution of the free memory space (holes) in the way

shown in the diagram is called external fragmentation.

It is possible to combine all the holes into one big chunk by

moving the processes downward as far as possible. This is

known as memory compaction and involves a substantial

amount of processing since all active process would have to be

suspended during the reshuffling.

E

D

C

B

A

OS

E

C

B

A

OS

E

C

A

OS

E

C

OS

When a process terminates the freed space is termed a

“hole” (Process D has terminated).

Coalescing of

“holes”

Relocation and Protection

Multi programming introduces two problems that must be

solved, namely relocation and protection.

Relocation can be solved in two ways:

1) by a relocating loader, which modifies the actual jump

instructions so that the effect of the load address is taken

into account.

2) by the use of a base register (also called a relocation

register). The base register is a CPU register which is

loaded with the starting address in memory of where the

program is in memory. All “jumps” are then made relative

to this address, i.e. the effective address = value of base +

jump address.

Note: Some systems also have a limit register. This would be

loaded with the length of the partition (area in memory for

storing the process). Addresses are then checked against the

limit register to make sure they do not attempt to address

memory outside the current partition.

Note also that the base register technique has the advantage over

relocating loaders that a program can be moved in memory after

it has started execution. After it has been moved all that needs to

be done to make it ready to run is change the value of the base

register.

Paging

In a paged system each process is divided into a number of fixed

size chunks called pages. The memory space is viewed as a set

of page frames of the same size. The loading process now

involves transferring each process page to some memory page

frame.

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

 A

Page 1

Page 2

Page 3

 B

Page 1

Page 2

Page 3

 C

Page 4

Page 1 of A

Aprocess A
Page 2

Page 3

Page 4

Page 5

Page 6

Internal Memory

Page 1 of B

Process B
Page 2

Page 3

Page 1 of C

CProcess C
Page 2

Page 3

Page 4

The above diagram shows three processes of different sizes.

They are loaded in memory in consecutive locations.

If process B terminates and anther process (say process D)

consisting of 5 pages needs to be loaded into memory, then we

may end up with the situation shown below

Page 1 of process A

Page 2

Page 3

Page 4

Page 5

Page 6

Internal Memory

Page 1 of Process D

Page 2

Page 3

Page 1 of Process C

Page 2

Page 3

Page 4

Page 4 of process D

Page 5

With paging, an address is divided into 2 parts, a page number

and a displacement, or offset. This is called page addressing.

In the above example, the top 5 bits are used for the page

number and 11 bits are used for the displacement.

Hence with such a system, a maximum of 25 or 32 pages can be

supported. Each page can be up to 211 or 2048 memory

locations long.

Note that the relocation problem can be solved by simply

changing the page number when a page is loaded into a different

page frame.

Page number Displacement

Memory Address

