Tutorial 12 - Thin Rectangular and Circular plates

1. A rectangular plate measuring $a \times b$ is simply supported on all four sides. The plate is subjected to a rate of loading $P=P_{o} \operatorname{Sin} \frac{\pi x}{a} \operatorname{Sin} \frac{\pi y}{b}$.

Using an energy method find the transverse displacement w anywhere along the plate. The deflected form of the plate may be assumed to be $w=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}$.

$$
\text { Ans: } \quad w=\frac{P_{o}}{D \pi^{4}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)^{2}} \operatorname{Sin} \frac{\pi x}{a} \operatorname{Sin} \frac{\pi y}{b}
$$

2. The simply supported rectangular plate shown in question (1) is subjected to a distributed load p given by

$$
p=\frac{36 P(a-x)(b-y)}{a^{3} b^{3}} .
$$

Derive an expression for the deflection of the plate in terms of the constants P, a, b, and D. Use an energy method.

$$
\begin{array}{r}
\text { Ans: } w=\sum \sum A_{m n} \operatorname{Sin} \frac{m \pi x}{a} \operatorname{Sin} \frac{n \pi y}{b} \\
\text { where } A_{m n}=\frac{36 P}{\operatorname{Dmn} \pi^{6}\left\{\frac{m^{4} b^{2}}{4 a^{2}}+\frac{m^{2} n^{2}}{2}+\frac{n^{4} a^{2}}{4 b^{2}}\right\}}
\end{array}
$$

3. A concentrated load P is applied at the centre of a simply supported rectangular plate (shown in problem 1). Determine, using an energy method, and if $m=n=1, v=0.3$, and $a=2 b$
(i) The maximum deflection.
(ii) The maximum stress in the plate.

Ans: (i) $w_{\max }=0.013 \frac{P b^{2}}{D}$ (ii) $\sigma_{y \max }=0.828 \frac{P}{t^{2}}$
4. A uniformly loaded rectangular plate has its edges $y=0$ and $y=b$ simply supported, the side $x=0$ clamped, and the side $x=a$ is free. Assume a solution of the form $w=C \frac{x^{2}}{a^{2}} \operatorname{Sin} \frac{\pi y}{b}$ where C is an undetermined coefficient. Apply the Ritz method to derive an expression for the deflected surface. Find the deflection at the middle of the free edge, if $a=b$ and $v=0.3$.

$$
\text { Ans: } w \text { (middle point of free edge })=0.0112 \frac{p_{o} a^{4}}{D}
$$

5. A square plate of sides ' a ' has thickness ' t '. The plate is simply supported on all edges and subjected to a uniform biaxial compression N. Determine the buckling stress by using an energy method.

$$
\text { Ans: } \quad N_{\text {CRITICAL }}=\frac{2 \pi^{2} D}{a^{2}}
$$

6. A uniform rectangular flat plate is simply supported on three sides $x=0, x=a, y=0$ and is free to deflect laterally along the fourth side $y=b$. The plate is subjected to a uniform compressive edge loading N_{x} on two opposite simply supported edges. If the deformation of the plate can be represented by the series $w=\sum A_{m} y \operatorname{Sin} \frac{m \pi x}{a}$ show that the critical value of N_{χ} which will initiate instability is N_{χ} CRITICAL $=\frac{\pi^{2} D}{b^{2}}\left[\left(\frac{b}{a}\right)^{2}+\frac{6(1-v)}{\pi^{2}}\right]$
7. A circular plate radius " a " having its edge clamped all round is loaded at the centre by a concentrated load P. Find equations for (a) the deflection (b) radial stress (c) circumferential stress.
(a) $\quad \omega=\frac{P}{16 \pi D}\left(2 r^{2} \ln \frac{r}{a}+a^{2}-r^{2}\right)$

Ans:
(b) $\quad \sigma_{r}=\frac{3 P z}{\pi t^{3}}\left[(1+v) \ln \frac{a}{r}-1\right]$
(c) $\quad \sigma_{\theta}=\frac{3 P z}{\pi t^{3}}\left[(1+v) \ln \frac{a}{r}-v\right]$
8. A circular clamped window of a seabed observation boat is subjected to a uniform pressure differential p_{o} per m^{2} between the cabin and the outside. The plate is made of an isotopic
material of tensile yield strength $\sigma_{y p}$, thickness ' t ', and raius ' a '. Use the shear strain energy theory $\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}=2 \sigma y p^{2}$ to predict the load carrying capacity of the plate.
(Hint: The circular plate first yields at the built-in edge)

$$
\text { Ans: } p_{o}=1.5 \frac{t^{2}}{a^{2}} \sigma_{y p}
$$

9. Determine the Bending Moments M_{r} and M_{θ} and the central deflection for a simply supported circular plate of radius " a " subjected to a uniformly distributed load p_{o} per m^{2}. Find also σ_{r} and σ_{θ} and the maximum value of σ if it occurs at the centre.

$$
\begin{aligned}
& w=\frac{p_{o} r^{4}}{64 D}-\frac{p_{o} a^{2} r^{2}}{32 D} \frac{(3+v)}{(1+v)}+\frac{p_{o} a^{4}}{64 D} \frac{(5+v)}{(1+v)} \\
& M_{r}=\frac{p_{o}}{16}(3+v)\left(a^{2}-r^{2}\right) \\
& M_{\theta}=\frac{p_{o}}{16}\left[(3+v) a^{2}-(1+3 v) r^{2}\right] \\
& \sigma_{r \max }=\sigma_{\vartheta_{\max }}=\frac{3 p_{o} a^{2}}{8 t^{2}}(3+v)
\end{aligned}
$$

10. A pressure control system includes a thin steel disk which is to close an electrical circuit by deflecting 1 mm at the centre when the pressure attains a value of 3 MPa . Calculate the required disk thickness if it has a radius of 0.03 m and is built-in at the edge. $v=0.3$ $\mathrm{E}=200 \mathrm{GPa}$

Ans: $t=1.275 \mathrm{~mm}$
11. A circular plate is simply supported round the outer boundary $r=a$. If the plate carries a point load P at the centre, derive the deflected shape of the plate and expressions for the radial and circumferential bending moments.

$$
\begin{aligned}
\quad w & =\frac{P}{16 \pi D}\left\{2 r^{2} \ln \frac{r}{a}+\frac{(3+v)}{(1+v)}\left(a^{2}-r^{2}\right)\right\} \\
\text { Ans: } \quad M_{r} & =\frac{P}{4 \pi}(1+v) \ln \frac{a}{r} \\
M_{\theta} & =\frac{P}{4 \pi}\left[(1+v) \ln \frac{a}{r}+1-v\right]
\end{aligned}
$$

12. A circular flat plate is rigidly built-in along the outer boundary $r=a$. The plate has a rigid insert radius $r=b$ and carries a uniformly distributed load of intensity " p " per unit area. Obtain an expression for the deflected form of the plate and deduce the corresponding expression for a uniformly loaded continuous flat plate without a rigid insert.

$$
\text { Ans: } w=\frac{p}{64 D}\left[\left(r^{4}-a^{4}\right)-2\left(a^{2}+b^{2}\right)\left(r^{2}-a^{2}\right)+4 a^{2} b^{2} \ln \frac{r}{a}\right]
$$

