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ABSTRACT 

The present work investigates the theoretical framework and the interpretation algorithm of the 
Prolog programming language. The implementation of a structure-sharing interpreter for a 
subset of the language written in Modula-2 is described. 

Chapter 1 introduces the concepts underlying resolution deduction procedures in general, and 
the Prolog programming language in particular.  The equivalence of the satisfiability and 
deduction problems is demonstrated. The resolution principle is introduced as a 
refutation/deduction mechanism for propositional formulae in clausal form, and a completeness 
proof using semantic trees is given. It is then shown how restricting formulae to Horn clauses 
results in a more efficient resolution procedure called SLD-resolution. The completeness of 
SLD-resolution for Horn clause logic programs is demonstrated. Finally, it is shown how the 
addition of a search strategy to SLD-resolution results in an automatic refutation procedure. An 
implementation of such a procedure in Modula-2 is described. 

Chapter 2 extends these refutation methods to 1st order logic. It is shown that a set S of 1st-order 
clauses is unsatisfiable iff it is false under all interpretations over the Herbrand universe. 
Moreover, S is unsatisfiable iff a FINITE set of ground instances of clauses in S is unsatisfiable, 
iff S has a (finite) failure tree.  The resolution procedure given for propositional clauses can be 
LIFTED to non-ground clauses by unification. This result is used to demonstrate the 
completeness of resolution refutations in the 1st order case using a proof similar to the one used 
for the propositional case. 

Chapter 3 outlines the implementation of Prolog. Following a brief review of the Prolog 
language, the interpretation strategy is discussed. The representation of terms constructed during 
unification in structure-sharing and non-structure-sharing systems is compared, and a basic 
optimization technique which exploits determinism in a Prolog program (deterministic-frame 
optimization, DFO) is outlined.  

Chapter 4 describes the implementation of a small structure-sharing interpreter for a subset of 
the Prolog language. The interpreter is only meant to demonstrate some implementation 
principles and to serve as a test-bed for optimization techniques, although the design is 
sufficiently open to form the kernel of a more practical implementation. 
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1 PROPOSITIONAL LOGIC 

1.1 Objectives 
This chapter introduces, within the context of propositional logic, the concepts underlying 
resolution deduction procedures in general, and the Prolog programming language in particular. 

After a brief overview of the syntax and semantics of propositional logic, the equivalence of the 
satisfiability and deduction problems is demonstrated. The resolution principle is introduced as 
a refutation/deduction mechanism for formulae in clausal form, and a completeness proof using 
semantic trees is given. It is then shown how restricting formulae to Horn clauses results in a 
more efficient resolution procedure called SLD-resolution, which is the main computational 
mechanism of Prolog. The completeness of SLD-resolution for Horn clause logic programs is 
demonstrated. Finally, it is shown how the addition of a search strategy to SLD-resolution 
results in an automatic refutation procedure. An implementation of such a procedure in Modula-
2 is described briefly. 

1.2 Syntax 
The alphabet of propositional calculus 

1. a countable set PS of PROPOSITIONAL SYMBOLS (or ATOMS): {pi | i ≥ 0} 
2. the set of logical connectives LCON : {∧, ∨, ⇒, ⇔, ¬} 
3. the set AUX of auxiliary symbols: {(, )} 
Informally, the set WFF of well-formed (propositional) formulae is defined as the set of strings 
over the alphabet AS ∪ LCON ∪ AUX, such that 

1. every atom is in WFF 
2. if X is in the set WFF, then so is ¬X 
3. if X and Y are in WFF, then so are (X∨Y), (X∧Y), (X⇒Y) and (X⇔Y). 
4. only strings generated from the application of rules 1-3 are in the set WFF 
For convenience, we adopt the following conventions: 

1. lower case letters a..z represent atoms 
2. upper case letters A..Z represent arbitrary well-formed formulae (or formulae for short). 
2. the brackets [ and ] will sometimes be used for clarity in place of ( and ) respectively. 
4. X ≡ Y will denote the logical equivalence of formulae X and Y. Note that X ≡ Y is not a 

formula but a statement about the two formulae X and Y. 
5. We sometimes drop brackets from formulae where this causes no ambiguity. In particular, 

outer brackets. 

1.2:a DEFN: (LITERAL). A LITERAL L is an atom p (a positive literal) or its negation ¬p (a 
negative literal). 

1.3 Semantics 
We start by defining the set BOOLEAN = {FALSE,TRUE}, where FALSE and TRUE are 
called TRUTH VALUES, and a function CONJUGATE : BOOLEAN → BOOLEAN defined 
as: 

CONJUGATE(TRUE)  = FALSE 
CONJUGATE(FALSE) = TRUE 
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1.3:a DEFN: (BASE).  
The BASE Bs of a finite set S of formulae is the (finite) set {p1, p2,..,pn} of atoms 
pi∈PS which appear in S. 

1.3:b DEFN: (TRUTH ASSIGNMENT).  
A TRUTH ASSIGNMENT τ for a set of formulae S is a function τ:Bs → BOOLEAN, 
We write τ(p)=TRUE to denote that τ assigns the truth-value TRUE to an atom p. 

1.3:c DEFN: (INTERPRETATION).  
An INTERPRETATION I for a set of formulae S is a function I:S → BOOLEAN, 
defined as follows: 

1. for any atom p, I(p) = τ(p) 
2. for any non-atomic formula ¬A, I(¬A) = CONJUGATE(I(A)) 
3. for any non-atomic formula A, and formulae X and Y, A=X∗Y (∗ ∈ LCON \ {¬}), 

I(A) is a function of I(X),I(Y) and ∗, as follows: 

 I(X) I(Y) I(X∨Y) I(X∧Y) I(X⇒Y) I(X⇔Y) 
T T T T T T 

T F T F F F 

F T T F T F 

F F F F T T 
   

where F and T stand for the truth values FALSE and TRUE respectively. We write 
I(A)=TRUE to denote that the extended interpretation I assigns the value TRUE to the 
formula A. Clearly, I is a compositional extension of the truth-assignment τ, and the term 
INTERPRETATION will henceforth denote both. 

An interpretation I induces a partition of Bs into two sets Bsf={p∈Bs : I(p)=FALSE}, and 
Bst={p∈Bs : I(p)=TRUE}. Conversely, for every bipartition of Bs there corresponds a unique 
interpretation. It is thus convenient to represent an interpretation as a set of literals I={L1,..,Ln} 
such that Li=pi if pi∈Bst, and Li=¬pi if pi∈Bsf. 

Since there are 2n bipartitions of Bs (where n = |Bs|), it follows that there are 2n possible distinct 
interpretations of S. 

1.4 Satisfiability 
A interpretation I is said to SATISFY a formula A if I(A)=TRUE. We denote this by I⊨A. I is 
then called a MODEL of A. The formula A is said to be SATISFIABLE (or CONSISTENT) 
if there exists an interpretation which is a model of A. Otherwise, A is said to be 
UNSATISFIABLE. An interpretation I cannot satisfy both A and ¬A, because 
I(¬A)=CONJUGATE(I(A)). Hence (A∧¬A) is an unsatisfiable formula. 

A is said to be a TAUTOLOGY (or VALID) if every interpretation of A is also a model of A, 
and we denote this by ⊨A. Hence, A is a tautology iff ¬A is unsatisfiable. 

Two formulae A and B are said to be LOGICALLY EQUIVALENT, denoted A≡B, if 
⊨A⇔B, ie if I(A)=I(B) for all interpretations I. 

An interpretation I is said to satisfy a set of formulae Γ={ß1,..,ßn} iff ∀ßi∈Γ, I⊨ßi. Thus a set of 
formulae is satisfiable (or CONSISTENT) if all its members admit a common model. In this 
sense, Γ ≡ ß1∧..∧ßn, ie Γ can be viewed as a conjunction of the formulae ßi. 
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1.5 Clausal Form And Conjunctive Normal Form 

1.5:a DEFN: (CLAUSE).  
A CLAUSE is a disjunction of a finite number of literals: (L1 ∨ .. ∨ Ln) n ≥ 0. When n = 
0, the clause is called an EMPTY (or NULL) clause, denoted by □. When n=1 the clause 
consists of a single literal (L) and is called a UNIT CLAUSE. 

1.5:b DEFN: (CONJUNCTIVE NORMAL FORM).  
A conjunctive normal form (CNF) is a conjunction of a finite number of clauses: (C1 ∧ .. 
∧ Cm). 

1.5:c THEOREM: 
For every wff A in the propositional calculus there exists a formula A' in CNF such that 
A≡A'. 

A constructive proof may be found in any textbook on logic, for example [DOW86 
pp22ff],[THA88 pp15ff]. 

Henceforth assume that all formulae are in CNF. 

A clause can be represented as a set of literals {Li | i = 1,..,n}. Similarly, a CNF can be 
represented as a set of clauses {Cj | j = 1,..,m}, each Cj being a clause {Lji | i = 1,..,n}. 

For convenience the set-representation of clauses and conjunctive normal forms will be used 
henceforth. Thus, the conjunctive formula 

(A∨B) ∧ (C∨¬D) ∧ (E) 

will be represented as the set of clauses 

{{A,B} , {C,¬D} , {E}}. 

The semantics of clauses and CNFs follow from the more general semantics of WFFs. For a 
clause C = {L1,..,Ln}: 

a. I(C)=TRUE iff ∃Li ∈ C such that I(Li)=TRUE. 
b. Hence the empty clause □ is unsatisfiable - ie I(□)=FALSE for all possible interpretations I, 

including the null interpretation I={}. □ is the only clause falsified by the null interpretation. 
c. ⊨C ⇔ ∃Li,Lj ∈ C such that Li = ¬Lj 

For a set of clauses (CNF) S = {C1,..,Cn}: 

a. I(S)=TRUE iff ∀Ci∈S, I(C)=TRUE. 
b. Since □ is unsatisfiable, a set of clauses which contains □ as a member is unsatisfiable. 

1.6 Logical Consequence 
A formula ∆ is said to be a LOGICAL CONSEQUENCE of a set of formulae Γ={ß1,..,ßn} if 
every interpretation which satisfies Γ also satisfies ∆, denoted Γ⊨∆. If Γ is unsatisfiable, then 
Γ⊨∆ for all formulae ∆. 

1.6:a LEMMA: 
If Γ⊨∆ and Γ⊨Ω, then Γ⊨(∆∧Ω). 

PROOF: since all interpretations which satisfy Γ also satisfy ∆, and all interpretations which 
satisfy Γ also satisfy Ω, all interpretations which satisfy Γ also satisfy (∆∧Ω). Hence 
Γ⊨(∆∧Ω). 

1.6:b COROLLARY: 
Γ⊨∆ and Γ⊨¬∆ iff Γ is unsatisfiable. 
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PROOF: by lemma 1.6:a, Γ⊨∆ and Γ⊨¬∆ implies that Γ⊨(∆∧¬∆). But since no 
interpretation satisfies (∆∧¬∆), then no interpretation satisfies Γ. Hence Γ is 
unsatisfiable. 

1.6:c THEOREM:(DEDUCTION PRINCIPLE)  
Γ⊨∆ if and only if  Γ∪{¬∆} is unsatisfiable. 

PROOF: 
(⇒) Γ⊨∆  ⇒  Γ∪{¬∆} is unsatisfiable. 

For any interpretation I, either I(ß)=TRUE for all ß∈Γ and I(∆)=TRUE (hence 
I(¬∆)=FALSE), or I(ß)=FALSE for some ß∈Γ. Either way, I(Γ ∪ {¬∆})=FALSE. 

(⇐) Γ∪{¬∆} is unsatisfiable  ⇒  Γ⊨∆. 

For any interpretation I, either I(ß)=TRUE for all ß∈Γ and I(¬∆)=FALSE (hence 
I(∆)=TRUE), or I(ß)=FALSE for some ß∈Γ. Thus I(∆)=TRUE whenever I(Γ)=TRUE, 
and so Γ⊨∆. 

1.7 Deduction Procedures 
The deduction principle thus reduces the problem of inferring a goal formula A from the 
hypothesis set Γ to the equivalent problem of determining whether the formula set Γ∪{¬A} is 
satisfiable or not.  Since much of the application of logic in mainstream AI (including Prolog) 
involves automatic deduction, the development of efficient algorithms for determining the 
satisfiability of a set of formulae is clearly of paramount importance. 

[CHA74] presents a thorough treatment of many of the seminal work in the field of automated 
theorem proving, such as that of Davis and Putnam. A review of more recent developments in 
the field may be found in [LOV84]. 

In the context of Prolog, the most important developments were in the area of resolution 
deduction. An extension of a theorem by Herbrand and of the work of Davis and Putnam, the 
resolution principle was introduced by Robinson in 1965 [ROB65].  The algorithm was further 
refined in subsequent years by Robinson, Kowalski and others [CHA74][GAL87] (in particular 
by restricting its use to the class of Horn formulae).  Kowalski's work led directly to the 
development of Prolog by Colmerauer and Roussel at Marseille in the early 1970s. 

In this chapter, the application of resolution to the propositional calculus will be discussed, 
together with a few refinements to the basic algorithm. At the end of this section, an interpreter 
for a propositional version of Prolog will be developed to illustrate implementation techniques. 
In the next chapter, the resolution principle will be extended to the 1st order case. 

1.8 Semantic Trees 

DEFN: (SEMANTIC TREE). 
Let S={C1,..,Cn} be a set of clauses and Bs={p1,..,pm} its base. A SEMANTIC TREE Ts 
is a complete binary tree with m levels (with the root at level 1) such that all left/right 
edges emanating from nodes at level i are labelled ¬pi/pi. 

EXAMPLE: 

S  = { {p,¬q} , {q,r} , {¬p,¬r} } 
Bs = { p, q, r } 
Ts =  
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Ts

¬p

¬q

¬r ¬r ¬r ¬r

¬q

p

q

r

q

r r r

 
Figure 1: Semantic Tree 

Let IN={L1,..,Ln}, where Li is either pi or ¬pi, be the path from the root of a semantic tree Ts to 
node N. Then IN corresponds to a (partial) interpretation for S. Similarly, every root-to-leaf path 
in Ts corresponds to an interpretation of S, and vice-versa. 

DEFN: (FAILURE NODE).  
A node N in a semantic tree is said to be a FAILURE NODE if IN falsifies some clause 
in S but IM satisfies S for every ancestor node M of N. If a set of clauses S is 
unsatisfiable, then every path in the semantic tree Ts must pass through a failure node. 

DEFN: (FAILURE TREE).  
For a set of clauses S, let T' be the tree obtained from the semantic tree Ts by truncating 
all paths at failure nodes. If all leaves of T' are failure nodes for S, then T' is called a 
FAILURE TREE and denoted FTs. Each leaf of FTs is labelled with the set of clauses 
falsified by the corresponding interpretation. 

EXAMPLE: 
Let S = { {a,b} , {a,¬b} , {¬a} } 

Then the following is a failure tree of S 

FTS

¬a

¬b

a

b
{¬a}

{a,b} {a,¬b}

 
Figure 2: Failure tree 

1.8:d LEMMA: A clause set S has a failure tree if and only if S is unsatisfiable. 

PROOF:  
(⇒) Let FTs be a failure tree for S. By definition, every path in FTs terminates in a failure 
node. Hence every interpretation of S falsifies some clause in S. Hence S is unsatisfiable. 
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(⇐) Let S be unsatisfiable. Then every interpretation I falsifies some clause in S. Hence 
every path in the semantic tree Ts terminates in a failure node - and therefore S has a 
failure tree. 

A refutation of S is a traversal of the semantic tree Ts in search of the failure tree FTs. 

1.8:e LEMMA:  
A set of clauses S has a failure tree of one node iff S contains the empty clause □. 

PROOF:   
The failure tree of one node corresponds to the null interpretation I={}. Since □ is the 
only clause falsified by the null interpretation, it follows that if S is falsified by the null 
interpretation it must contain the empty clause. Conversely, if S contains □, then S is 
falsified by the null interpretation, and therefore its failure tree must be the one-node tree. 

1.8:f DEFN: (INFERENCE NODE). 
A node N in a failure tree is said to be an INFERENCE NODE if BOTH child nodes of 
N are failure nodes (and therefore leaves of FTs). 

1.8:g LEMMA: 
Every failure tree (with the exception of the trivial one-node tree) must have at least one 
inference node. 

PROOF:  
Assume FTs is a failure tree of more than one node which has no inference nodes. Then 
every node has at least one non-failure descendant, and therefore we could find a root-to-
leaf path in FTs without failure nodes, corresponding to an interpretation which satisfies 
S. But this is a contradiction, since S is unsatisfiable. 

1.9 Resolution 
In the propositional case, the resolution inference rule is essentially Gentzen's cut rule 
[SMU68], itself a generalization of modus ponens. 

1.9:a LEMMA:  
[(A∨P) ∧ (B∨¬P)] ≡ [(A∨P) ∧ (B∨¬P) ∧ (A∨B)] for all formulae A,B and P. 

PROOF: 
a. [(A∨P) ∧ (B∨¬P) ∧ (A∨B)] ⇒ [(A∨P) ∧ (B∨¬P)] 

If an interpretation I⊨[(A∨P) ∧ (B∨¬P) ∧ (A∨B)] then by definition I⊨(A∨P) and 
I⊨(B∨¬P). Thus I⊨[(A∨P) ∧ (B∨¬P)] 

b. [(A∨P) ∧ (B∨¬P)] ⇒ [(A∨P) ∧ (B∨¬P) ∧ (A∨B)] 

This implication is of the form 

X ⇒ X∧Y 
→ ¬X ∨ (X∧Y) 
→ (¬X∨X) ∧ (¬X∨Y) 
→ (¬X∨Y) 
→ X ⇒ Y 

Hence, it suffices to show that 

[(A∨P) ∧ (B∨¬P)] ⇒ (A∨B)] 

This eventually simplifies to the CNF 

(A∨B∨¬A∨¬B) ∧ (A∨B∨¬B∨¬P) ∧ (A∨B∨¬A∨P) ∧ (A∨B∨P∨¬P) 

Which is a tautology, since each disjunction contains at least one conjugate pair of 
formulae. 
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In particular, (1) holds for arbitrary disjunctions A,B and atomic formula P. Hence, the set of 
clauses 

{{A,P} , {B,¬P}} 

is logically equivalent to 

{{A,P} , {B,¬P} , {A,B}} 

ie, we can add a new clause, {A,B}, without affecting the satisfiability of the set. In general, the 
set 

{C1, .., Cn, {A,P}, {B,¬P}, {A,B}} 

is unsatisfiable iff 

{C1, .., Cn, {A,P}, {B,¬P}} 

is unsatisfiable [GAL87 p128]. 

The clause {A,B} is called the RESOLVENT of the clauses {A,P} and {B,¬P}, which are 
called PARENT CLAUSES, and the process of adding a resolvent of two parent clauses from a 
set to that set is called a RESOLUTION STEP. 

1.9:b DEFN: (RESOLVENT).  
The RESOLVENT of two parent clauses C1 and C2 with respect to some literal L, L∈C1 
and ¬L∈C2, is a clause CR such that CR = (C1\{L}) ∪ (C2\{¬L}) 

In particular, if C1 = {L} and C2 = {¬L}, then CR = {} - ie the resolvent of the two clauses {P} 
and {¬P} is the empty clause □. A set of clauses which has □ as a resolvent is unsatisfiable as 
seen above. 

1.9:c DEFN: (RESOLUTION CLOSURE). 
The resolution closure S* of a set of clauses S is the closure of the set S under the 
operation of resolution. 

1.10 The Method Of Refutation By Resolution 
Starting with some set of clauses, S, the method of refutation by resolution attempts to derive 
the resolvent □ by successive application of resolution steps: 

S → {S, R1,..,Rn, □}. 

The procedure can be stated as 
WHILE (□ ∉ S) DO 
BEGIN 
  Select literal L and clauses C1,C2 ∈ S such that L∈C1, ¬L∈C2 
  compute their resolvent R = C1\{L} ∪ C2\{¬L} 
  add the clause R to S 
END 

EXAMPLE: 
Consider a refutation of the set 

S = {{a,¬b},{c,b},{¬c},{c,¬a}} 

1. {a,¬b} 
2. {c,b} 
3. {¬c} 
4. {c,¬a} 
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5. {a,c} /* Res(1,2) */ 
6. {¬a} /* Res(3,4) */ 
7. {a} /* Res(3,5} */ 
8. □ /* Res(6,7) */ 

EXAMPLE: 
Consider a deduction of ∆={a,¬b,c} from the hypothesis set Γ={ {a,d} , {c,¬d} , {¬c}}. 

By the deduction principle (Theorem 1.6:c), Γ⊨∆ iff Γ∪¬∆ is unsatisfiable. 

We convert ¬∆ to CNF, giving {{¬a},{b},{¬c}}, and then use the resolution procedure 
to try and refute the set {{a,d} , {c,¬d} , {¬c}, {¬a}, {b}} 

1. {a,d} 
2. {c,¬d} 
3. {¬c} 
4. {¬a} 
5. {b} 
6. {a,c} /* Res(1,2) */ 
7. {a} /* Res(6,3) */ 
8. □ /* Res(7,4) */ 

Since the set Γ∪¬∆ is unsatisfiable, Γ⊨∆. 

1.11 Completeness Of The Resolution Principle (Propositional Case) 
To prove the completeness of resolution refutation we first demonstrate the relationship between 
resolution and failure trees. 

Consider an inference node i in a failure tree FTs of an unsatisfiable set of clauses S, whose 
child nodes j and k falsify the two clauses Cj and Ck. 

i

j k
Cj Ck

p¬p

 
Figure 3: Inference Node 

Since Cj fails at node j, then it must contain the literal p. Similarly, Ck must contain the literal 
¬p. Hence, the two clauses resolve on p to produce the resolvent clause CR = Cj\{p} ∪ Ck\{¬p}. 
We note that 

a. Since Cj fails at node j, then all the literals in Cj\{p} must be false at or above node i, and 
similarly 

b. Since Ck fails at node k, then all the literals in Ck\{¬p} must be false at or above node i. 
Hence CR must fail at or above node i. Consequently, the set S∪CR has a smaller failure tree 
than the set S. 
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1.11:a THEOREM: (COMPLETENESS OF THE RESOLUTION PRINCIPLE - 
PROPOSITIONAL CASE). 
A (finite) set of clauses S is unsatisfiable iff the empty clause □ can be deduced from S 
by resolution. 

PROOF:  
(⇒) Proof by induction on the number of nodes in FTs, the failure tree of S. Let S be 
unsatisfiable. Then S has a failure tree FTs. If FTs has only a single node, then S must 
contain the empty clause □, and so the theorem is proved. 

So assume FTs has more than one node. Then it must have at least one inference node (by 
lemma 1.8:g), say node i. Let j and k be the failure nodes immediately below i, and let Cj 
and Ck be the clauses in S which are falsified by the partial interpretations Ij and Ik. As 
shown above, the resolvent CR of the clauses Cj and Ck must fail at or above node i, and 
hence the failure tree FTs' of the set S'=S∪CR must have at least two fewer nodes than 
FTs. Hence by induction, resolution must eventually derive the one-node failure tree, for 
either FTs' contains only a single node, or FTs' contains at least one inference node. 

(⇐) Assume S is satisfiable, but that there is a deduction of □ from S. Thus the resolution 
closure S* of S contains □, and is therefore unsatisfiable. Which is a contradiction, since 
resolution preserves satisfiability (by lemma 1.9:a) 

1.12 Refutation Trees 
A resolution derivation of a clause from the clause set S can be represented as an ORIENTED 
BINARY TREE [KNU73 pp372ff], called a RESOLUTION TREE, in which the leaves are 
labelled with clauses from the set S, and each internal node is labelled with the resolvent of its 
children nodes. If the root of the tree is labelled with □, then the tree is called a REFUTATION 
TREE. 

For example, a refutation of the set 

S = {{a,¬b},{c,b},{¬c},{c,¬a}} 

can be represented by the refutation tree 

{¬b} {b}

{¬b,c}

{a,¬b} {c,¬a} {¬c} {¬c} {c,b}
 

Figure 4: Refutation Tree 
The resolution procedure attempts to construct a refutation tree from the bottom up. The 
algorithm is non-deterministic since in general there is more than one choice for C1, C2 and L. 
The strategy adopted in selecting which clauses and literals to resolve is crucial to the efficiency 
of the algorithm. Ideally, given an unsatisfiable set of clauses S, the procedure should construct 
the refutation tree with the smallest number of nodes. However, the problem is known to be NP-
complete for the class of general propositional formulae [DOW84]. 
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Various refinements to the basic resolution procedure have been proposed with the aim of 
improving its efficiency, sometimes at the cost of completeness [CHA74][LUK70]. Refinement 
theorems attempt to restrict the search space by limiting choice in selecting parent clauses 
and/or the literal to resolve upon. One such refinement restricts the algorithm to the Horn-
Clause subset of propositional formulae, making it possible to develop satisfiability tests that 
run in polynomial time. 

1.13 Horn Clauses 
A HORN CLAUSE is a clause with at most one positive literal. We will represent the Horn 
clause 

{p,¬b,¬c,¬d}   by   p :- b,c,d. 

p is called the HEAD of the clause, and b,c,d the BODY. Note that the body of a clause is a 
CONJUNCTION of literals. A Horn clause which contains a positive literal is called a 
DEFINITE HORN CLAUSE. A Horn clause consisting solely of negative literals is called a 
NEGATIVE HORN CLAUSE. A definite clause which consists of a single (positive) literal is 
called a UNIT clause, and is written p. . 

A unit clause p. is TRUE if and only if p is TRUE. If b,c and d are TRUE, then the Horn clause 
p :- b,c,d. is TRUE if and only if p is also TRUE. 

Non-unit definite Horn clauses model RULES, the body representing a set of premises with the 
head as conclusion. A unit clause, which has a null body, models a FACT. A HORN-CLAUSE 
LOGIC PROGRAM consists of a set of definite horn clauses (rules and facts), called the 
DATABASE, together  with a NEGATIVE horn clause called the GOAL. The goal represents 
a negated QUERY formula - for example, if QUERY = A∧B, then GOAL = ¬(A∧B) = 
{¬A∨¬B} = :-A,B. By the deduction theorem, QUERY is a logical consequence of the 
database iff DBASE ∪ GOAL is unsatisfiable, iff resolution can infer □ from DBASE ∪ 
GOAL. 

1.14 Restricting Resolution To Horn Clauses Programs - Sld-Resolution 

1.14:a LEMMA:  
Horn clauses are closed under resolution. 

1.14:b LEMMA:  
Definite Horn clauses are closed under resolution. 

Because definite Horn clauses are closed under resolution, □ can never be derived from a set 
which contains no negative clauses. In a logic program, there is exactly one negative clause N0, 
the goal, together with a set of definite clauses D1,..,Dn, the database. 

A variant of the resolution procedure, called SLD-RESOLUTION (Selected Linear with 
Definite clauses), can be used with Horn-clause logic programs to restrict the choice of clauses 
for resolution.  

At each step of an SLD-derivation, one of the parent clauses (the CENTRE CLAUSE) is the 
resolvent of the previous step, while the second (the INPUT CLAUSE) is a member of the 
database. Of necessity, the initial centre clause is the goal. Each SLD-resolution step suppresses 
one literal from the centre clause (called the SELECTED LITERAL), and introduces 0 or 
more literals from the input clause. The refutation terminates successfully when the centre 
clause becomes empty. A derivation/refutation using SLD-resolution is called an SLD-
DERIVATION/REFUTATION. 

An SLD-refutation has a linear refutation tree: 
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N1

N2

Nn-1

Nn

...
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=Pn-1 P2 P1
 

Figure 5: SLD-Refutation Tree 
where the Dis are not necessarily distinct. Thus an SLD-refutation is a sequence N0,N1,N2,..,Nn 
of negative clauses, where N0 is the goal, Nn is □, and Ni (i>0) is the resolvent of Ni-1 with a 
definite clause from the database. 

1.14:e THEOREM: (COMPLETENESS OF SLD-RESOLUTION FOR HORN LOGIC  
ROGRAMS - PROPOSITIONAL CASE).  

A set of propositional Horn clauses S with exactly one negative clause (a Horn program) 
has a resolution refutation iff it has an SLD refutation. 

PROOF:  
(⇐) by definition. An SLD refutation is a resolution refutation. 

(⇒) We show that a refutation tree T for the Horn set S can be transformed into a linear 
refutation tree T' (the process is sometimes called LINEARIZATION, see [GAL87 
pp422ff]). 

a. transform T into T1 by ordering the children of each internal node of T so that the left 
child contains the positive literal resolved upon, and the right the negative literal. 
Because the right child clause supplies the NEGATIVE literal, each internal node in 
T1 is labelled with a clause having the same head as its right child clause.  In 
particular, the right child clause of the root □ must be a negative clause, and therefore 
clauses labelling nodes along the rightmost path of T1 must all be negative. Since all 
the leaves of T1 are labelled with clauses from S (which has only one negative clause) 
its rightmost leaf must be the goal. 

b. The next step is to transform T1 into T' by making the left child of every internal node 
a leaf while preserving the clause labelling the root of the tree. Consider the tree Tl 

A :- x,y.

B :- z. A :- ...

rii

rmm n rn

B :- y. A :- B,x.

 

Figure 6 

  where A and B are propositions, and x,y and z are proposition sets. All clauses 
labelling the nodes along the rightmost path of Tl have A as their head. Similarly, 
nodes along the rightmost path of subtree Tm have B as their head. Let node o, labelled 
B:-z, be the rightmost leaf of Tm. Hence the net effect of Tm is to transform B:-z (a 
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member of S) into B:-y by resolving on some literal in z. Replacing the whole subtree 
Tm by the leaf o, we get 

A :- x,z.

A :- ...

rii

n rn

B :- z. A :- B,x.
o

 
Figure 7 

The new root is A:-x,z, which can be transformed into A:-x,y by using the resolution 
subtree Tm which changed B:-z into B:-y in the original tree: 

A :- ...

rii

n rn

B :- z.
o

m rm

A :- x,y.

A :- x,z.

A :- B,x.

 
Figure 8 

By repeating the algorithm at each internal node of T1, the tree T', in which each 
internal node has a leaf as its left child and □ at its root (since the transformation 
preserves the root node), is derived. T' is a linear SLD refutation tree as defined above. 

1.15 Choice Of Selected Literal In SLD-Resolution 
In SLD-derivation, the following choices have to be made at each step in the process of refuting 
a Horn program: 

a. choice of selected literal 
b. choice of input parent clause in the event that multiple clauses in the database have the 

selected literal as their head. 
The following theorem allows the adoption of a deterministic strategy in choosing the selected 
literal. A proof of the theorem is given in [APT82 p849]. 

1.15:a THEOREM:  
Let N0,..,Nn (=□) be an SLD-refutation for a Horn program with goal N0. Then, for each 
literal Li of Nj, there exists an SLD-refutation in which Li is the selected literal. 

The completeness of SLD-refutation is thus independent of the choice of literal at each step. We 
can arrange for a scheme which selects the literal using some deterministic strategy without 
sacrificing completeness. The scheme used in Prolog is to order the literals in the body of a 
clause from left to right, and always to select the leftmost literal in the centre clause for the next 
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resolution step. The new centre clause is constructed by concatenating the body of the input 
clause to the FRONT of the old centre clause. 

Although the strategy chosen fro selecting the literal is immaterial to the completeness of the 
SLD procedure, it may affect the size of the derivation tree in the case that the program is non-
refutable. For example, if the goal were :-a,b,c,d,e. and no clause in the database has e as the 
head, the sooner e is chosen as the selected literal, the smaller the derivation tree that has to be 
constructed before the program is known to be non-refutable. 

1.16 Search Strategies 
The set of clauses in S having the same literal L as their head is called the CANDIDATE SET 
for L. The strategy chosen to select an input clause from the set of candidates for the selected 
literal is called a SEARCH STRATEGY. 

Suppose the centre clause in a derivation is Ni = :-L,x. with L the selected literal and x the 
sequence of literals forming the tail of the clause, and assume that there are n candidates 
{C1,..,Cn} for L in the database. Each candidate Cj corresponds to the derivation tree with Cj as 
the selected input clause for Ni. The forest of all possible derivation trees for a Horn program is 
called the SEARCH SPACE. 

The search space can be considered a tree (the SEARCH TREE), each node of which is 
labelled with a centre clause (or □). The root is labelled with the goal clause. Each non-empty 
node has one descendant for every candidate input clause for the selected literal. Each path in 
the search tree corresponds to a derivation. A derivation whose end-node is □ is a refutation. 

For example, the search tree for the program 
a :- b,c. 
a :- b,d. 
b. 
d. 
:- a. 
 

is shown in figure 9. 

:- a.

:- b,c. :- b,d.

c. d.

 
Figure 9: Search Tree 

The search strategy is thus a traversal of the search tree. The search is successful (ie results in a 
refutation) when a node labelled with □ is encountered. 

Such a traversal can be performed in either a depth-first or a breadth-first order (see, for 
example, [GOO85 pp139ff]). A depth-first search follows one derivation (path) down to the 
leaf. If the leaf is not □, then an alternative derivation is considered by backtracking to the most 
recent branch node and selecting an untried path. A breadth-first search traverses the search tree 
level by level, considering all possible derivations simultaneously until a refutation (if one 
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exists) is discovered. The problem with the breadth-first search is the large amount of space 
required to store a centre clause for each possible derivation in the search space. 

The depth-first search, although more efficient to implement, is not complete. Consider the 
search tree for the following program: 

a :- c,b. 
a :- d,b. 
c :- a. 
d. 
b. 
:- a. 

:- a.

:- c,b. :-d,b.

:- a,b. b.

:- c,b. :- d,b.

b.infinite

 
Figure 10: Depth-first Search 

The program is clearly refutable, but a depth-first search which traversed the search tree in a 
left-to-right order would go into an infinite loop down the leftmost path and never discover the 
refutation in the rightmost path. Despite this, depth-first traversal is employed as the search 
strategy in most Prolog implementations. One of the few exceptions is Parlog86 [RIN88], which 
combines a depth-first search with a (guarded) breadth-first search in a parallel implementation 
of Prolog (see also [CON89]). 

Although SLD-resolution with depth-first search is not complete, it is sound - ie SLD-resolution 
only derives □ from a program S if S is unsatisfiable. 

1.17 SLD-Refutation With Depth-First Search 
The following is an SLD-refutation procedure using a depth-first search. S is a set of definite 
Horn clauses, and G the goal clause consisting of a list of (negative) literals. We use FIRST(G) 
to mean the first literal in G, REST(G) the list G - FIRST(G). We let SELECT(L) be a 
procedure which, on successive calls, returns a different clause C∈S having L as its head, or 
NIL if there are no (more) such clauses. 

PROCEDURE Satisfy (G : goal) : BOOLEAN; 
BEGIN 
   IF G=□ THEN 
      RETURN TRUE 
   END;  
   WHILE (C := SELECT(FIRST(G))) ≠ NIL 
      IF Satisfy(BODY(C)+REST(G)) THEN RETURN TRUE; 
   END; 
   RETURN FALSE; 
END Satisfy; 
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1.18 Implementation 
A propositional version of Prolog (called PROPOS) using SLD-resolution with depth-first 
search was implemented in Modula-2 for an MSDos machine (see Appendix A). The syntax of 
PROPOS is identical to that of Horn clauses as introduced above. The following CFG defines 
the syntax accepted by the PROPOS parser: 

<program> ::= <clause> , { <clause> } 
<clause>  ::= <atom> [ :- <body> ] . 
<body>    ::= <atom> { , <atom> } 
<atom>    ::= a..z { a..z } 
<goal>    ::= :- <body> . 

 

In addition, PROPOS supports the following commands, which are introduced by a period: 
.exit terminate execution. 
.listing list all clauses in database. 
.retract <atom> retract all clauses in the database having the 

symbol <atom> as head. 
 

The program is called from the operating system prompt with 
 
PROPOS [ <file specification> ] 
 

where the optional <file specification> specifies a file of clauses to be automatically loaded into 
the database at startup. The file may contain definite clauses, goal clauses and commands. 

Database Representation 
PROPOS employs a simple hashing scheme for the storage of propositional symbols (atoms), 
based on the first character of the symbol. The hash table is implemented as an array CLAUSES 
indexed by the characters 'a' .. 'z' : 

clauses : ARRAY ['a' ..  'z'] OF HeadPtr; 
 

Each entry in the array CLAUSES is a pointer to a linked list of propositional symbols starting 
with the corresponding character. Each record in the list is a HeadRec having the following 
format: 

HeadRec  =  RECORD 
            sym    : symbol name as a string (currently the maximum 

length of a symbol name is 30 characters). 
            nxt    : pointer to next propositional symbol starting 

with the same character. 
            clause : pointer to a linked list of clauses having this 

propositional symbol as their head. 
            END; 
 

Each clause is stored as a linked list of AtomRecs representing the propositional symbols in the 
body of the clause. The format of an AtomRec is as follows: 

AtomRec  =  RECORD 
            sym    : pointer to HeadRec for this symbol. 
            nxt    : pointer to next atom in the body of this 

clause. 
            END; 
 

The linked list of AtomRecs representing the clause body is linked to the HeadRec representing 
the clause head by a BodyRec, which is declared as follows: 

BodyRec  =  RECORD 
            nxt    : pointer to next clause for this head symbol. 
            first  : pointer to first AtomRec in the clause body. 
            END; 
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Figure 11 shows how the clause set 
a :- d1,d2. 
d1. 
d2 :- d1,g1,i1. 
 

is stored in the database. 

∅

∅

∅

∅

∅

∅

∅ ∅∅ ∅∅ ∅a

∅a

∅ ∅

∅d2

∅ ∅ ∅ ∅

∅ ∅g1

∅ ∅i1

d1

a
b
c
d
e
f
g
h
i
j

Clauses

KEY
HeadRec BodyRec AtomRec

symbol clause nxt nxt body sym nxt

Figure 11: PROPOS database 
The refutation algorithm is similar to the Satisfy procedure given above. The goal clause read in 
from the user is stored in a clause structure (ie HeadRec, BodyRec and AtomRecs) pointed to by 
variable goal. Procedure Prove is called with goal as parameter, and attempts to satisfy each of 
the literals in the body of the goal clause. The algorithm is given below in pseudo code. 

PROCEDURE Prove (goal : Ptr to a HeadRec); 
   PROCEDURE ProveClause(goal : Ptr to a HeadRec) : BOOLEAN; 
   VAR b : Ptr to a BodyRec; 
       t : BOOLEAN; 
 
       PROCEDURE ProveBody(body : Ptr to a BodyRec) : BOOLEAN; 
       VAR a : Ptr to an AtomRec; 
           t : BOOLEAN; 
       BEGIN 
          t := TRUE; 
          a := first atom in body; 
          WHILE (a <> NIL) AND (t) DO 
             t := ProveClause (HeadRec for atom a); 
             a := next atom in body; 
          END; 
          RETURN t; 
       END ProveBody; 
 
    BEGIN 
       t := FALSE; 
       b := first BodyRec for the goal symbol; 
       WHILE (b <> NIL) AND ( NOT t) DO 
          t := ProveBody(b); 
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          b := next BodyRec for this symbol; 
       END; 
       RETURN t; 
    END ProveClause; 
 
BEGIN 
   IF(goal=NIL)OR(NOT ProveClause(goal)) THEN WrStr('NO') 
                                         ELSE WrStr('YES'); END; 
END Prove; 
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2 FIRST-ORDER LOGIC 

2.1 Objectives 
This chapter extends the refutation methods developed in the previous chapter to 1st order logic. 

It is shown that a set S of 1st-order clauses is unsatisfiable if and only if it is false under all 
interpretations over the Herbrand universe (called Herbrand interpretations). Moreover, S is 
unsatisfiable if and only if a FINITE set of ground (ie variable-free) instances of clauses in S is 
unsatisfiable, if and only if S has a (finite) failure tree.  As before, resolution refutation attempts 
to collapse the failure tree of S into a one-node tree. The resolution procedure given for 
propositional clauses can be LIFTED to non-ground clauses by unification - if C1 and C2 are 
two clauses whose instances C1' and C2' have resolvent C3', then C1 and C2 have resolvent C3 
such that C3' is an instance of C3.  This result is used to demonstrate the completeness of 
resolution refutations in the 1st order case using a proof similar to the one used for the 
propositional case. 

2.2 Syntax 
The alphabet of a 1st order language is 

a. The set of logical connectives LCON = {∧,∨,⇒,⇔,¬} 
b. the set of quantifiers QUANT = {∃,∀} 
c. the set of auxiliary symbols AUX = {(,)} 
d. a countably infinite set of variables VAR = {v0, v1,...} 
e. a set L of non-logical symbols consisting of 

i. a countable, possibly empty, set of FUNCTION SYMBOLS, (or FUNCTORS) FS = 
{f0, f1,...} together with a rank function ℜ:FS→ℤ+. The number ℜ(fi) is called the 
ARITY of fi. 

ii. a countable, non-empty, set of PREDICATE SYMBOLS PS = {P0, P1, ... }, together 
with a rank function ℜ:PS→ℤ+. ℜ(Pi) is called the ARITY of Pi. Predicate symbols of 
arity 0 are propositional symbols. 

 

The sets FS and PS are disjoint.  

For convenience we sometimes refer to the set of constant symbols CS⊆FS, the set of function 
symbols of arity 0. 

In the sequel we let the symbols 

 u,v,w (possibly subscripted) range over the set VAR 
 f,g,h (possibly subscripted) range over the set FS 
 a,b,c (possibly subscripted) range over the set CS 
and P,Q,R (possibly subscripted) range over the set PS 

 

TERMS. The set TERM of expressions of sort TERM is informally defined by: 

a. a variable symbol v ∈ VAR is a term, 
b. if f ∈ FS is a function symbol and ℜ(f)=n, then the expression f(t1,...,tn), where t1 to tn are n 

terms, is a term. If ℜ(f)=0, ie f ∈ CS, we write f instead of f(). 
 
ATOMIC FORMULAE. The set AFORM of expressions of sort ATOMIC FORMULA is 
defined by 
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a. if P ∈ PS is a predicate symbol and ℜ(P)=n, then the expression P(t1,...,tn), where t1 to tn are 
n terms, is an atomic formula. If ℜ(P)=0, we write P instead of P(). 

 
LITERALS. The set LIT of expressions of sort LITERAL consists of all atomic formulae A 
and their negation, ¬A. 

 

WELL-FORMED (1ST ORDER) FORMULAE. The set WFF of well-formed (1ST order) 
formulae is defined by 

a. all atomic formulae are well-formed formulae, 
b. if A is a well-formed formula, then so is ¬A, 
c. if A,B are well-formed formulae, then so are (A∧B), (A∨B), (A⇒B) and (A⇔B), 
d. for any vi∈VAR and A∈WFF, ∀viA and ∃viA are well-formed formulae. 

2.3 Standard Form 

2.3:a DEFN: (PRENEX NORMAL FORM - PNF).  
A formula F is said to be in PNF iff F has the form 

Q1v1...Qnvn M[v1,...,vn] 

where Qi∈QUANT, vi∈VAR, and M is a quantifier-free formula with variables v1 to vn. 
Q1v1...Qnvn is called the PREFIX of F, M is called the MATRIX of F. 

2.3:b THEOREM:  
For every formula F there exists a formula F* in PNF such that F≡F* (ie logically 
equivalent). 

For a constructive proof see for example [CHA75 pp37ff][GAL87 pp307ff]. 

2.3:c THEOREM: (SKOLEM)  
Let F=PM be a formula in PNF, where P is a prefix of quantified variables and M is a 
matrix. Then there exists a formula SF=P'M', where P' is a prefix of universally quantified 
variables and M' is a matrix, such that F is satisfiable iff SF is satisfiable. We say SF is the 
Skolem standard form of F. 

Proof and construction given in [CHA75 pp46ff][GAL87 pp357ff] 

NOTE that F and SF are not in general equivalent. 

EXAMPLE: 
Let F = ∀x∃y (P(x) ∧ Q(y)) 
Let G = ∀x (P(x) ∧ Q(f(x)) 

Suppose G is satisfiable. Then, for all x we can find a y=f(x) such that Q(f(x)) is true, and 
therefore Q(y) is true. Hence F is also satisfiable. If G is inconsistent then there is an x for 
which no y=f(x) exists which makes Q(f(x)) true. Hence F is also inconsistent. 

Conversely, if F is satisfiable, then for all x there exists a y such that Q(y) is true. But 
then we can let f(x)=y, thus making Q(f(x)) also true. Hence G is satisfiable. On the other 
hand, if F is inconsistent, then for some x there is no y which makes Q(y) true. Therefore, 
no matter what value is assigned to f(x), Q(f(x)) cannot be true. Hence F is also 
inconsistent. 

Let W be a wff and F=PM an equivalent formula in PNF. Let SF=P'M' be its Skolem standard 
form. Since M' is a quantifier-free formula, we can transform M into clausal (conjunctive 
normal) form and write SF=P'C (see section 1.5:c). Moreover, since all variables in C are 
universally quantified, we can omit the prefix altogether and merely write C. Then the clause C 
has the property that W is satisfiable if and only if C is satisfiable. 



20 

Henceforth assume that all formulae are of the form 

F ::= L1 ∨ L2 ∨ ... ∨ Ln 

where Li are literals and all variables are universally quantified. In the sequel it will be assumed 
that clauses have disjoint variable sets.  This requirement is easily met by renaming variables.  
As for the propositional calculus, we will need to restrict our attention to (universally 
quantified) predicate Horn clauses when considering SLD resolution later on. 

2.4 Semantics 

2.4:a DEFN: (INTERPRETATION)  
An interpretation I is a triple <D,Iv,Ic>, where 

a. D, the DOMAIN OF INTERPRETATION (or simply DOMAIN), is a non-empty 
set. 

b. Iv is a function from the set VAR of variables to the set D. 

c. Ic is a function which 
 i. maps each predicate symbol P∈PS of arity n to a function Ic(P):Dn→BOOLEAN, 

and 
ii. maps each function symbol f∈FS of arity n to a function Ic(f):Dn→D. 

Let S be a 1st-order formula, and D the domain of interpretation. The BASE OF S WITH 
RESPECT TO D, BSD, is the set {P(t1,...,tn) : P∈PS, ti∈D}. 

2.5 The Herbrand Universe And Base 

2.5:a DEFN: (GROUND TERM).  
A term containing no variables is called a ground term. 

2.5:b DEFN: (GROUND LITERAL).  
A literal all of whose arguments are ground terms is called a ground literal. 

2.5:c DEFN: (GROUND CLAUSE).  
A clause C = {l1,...,ln} is said to be a ground clause if ∀li∈C, li is a ground literal. 

Let S be a finite set of clauses and H0 the set of constant symbols (0-ary function symbols) 
appearing in S (or {τ} if S has no constant symbols). Let Hi+1 (i≥0) be defined recursively by 

Hi+1 = Hi ∪ { f(t1,...,tn) : t1,...,tn ∈ Hi, ℜ(f)=n} 

2.5:d DEFN: (HERBRAND UNIVERSE).  
The set lim(i→∞) Hi of a (finite) set of clauses S is called the HERBRAND UNIVERSE 
(or Domain) of S. The Herbrand Universe of a set S is written HS, or simply H. 

EXAMPLE: 
Let S = { {P(a)} , {P(u),¬P(g(v))} } 

Then H0 = {a} 
 H1 = {a, g(a)} 
 H2 = {a, g(a), g(g(a))} 
 HS = {a, g(a), g(g(a)), g(g(g(a))), ... } 

Clearly, HS is finite iff S contains only function symbols of arity 0 (ie constants).  In that case, 
HS is merely the set of constants in S, which is finite since we are primarily interested in finite 
sets of clauses. 
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2.5:e DEFN: (HERBRAND BASE).  
Let S be a (finite) set of clauses. The set of ground atoms BS = {P(t1,...,tn) : for all 
predicates P in S and ti in HS} is called the Herbrand Base (or atom set) of S. 

EXAMPLE: 
Let S = { {P(u)} , {Q(a,f(v)} } 

Then  HS = {a, f(a), f(f(a)), f(f(f(a))), ... } 
and  BS = {P(a), Q(a,a), P(f(a)), Q(a,f(a)), P(f(f(a))), ... } 

Note that if S is finite, then Bs is enumerable 

2.5:f DEFN: (GROUND INSTANCE).  
Let S be a (finite) set of clauses. A ground instance of a clause C∈S is obtained by 
replacing variables in C by members of HS. 

2.6 Herbrand Interpretations And Semantic Trees 

2.6:a DEFN: (HERBRAND-INTERPRETATIONS).  
An interpretation IH of S is said to be a Herbrand Interpretation (H-Interpretation) if 

a. the interpretation domain is the Herbrand Universe H 
b. IH maps all constants in S onto themselves 
c. for every function symbol f of arity n in S, f is assigned a function f':Hn→H which 

maps the n-tuple (t1,...,tn)∈Hn to f(t1,...,tn)∈H. 

Let BS = {A1,A2,...} be the Herbrand base of a set of clauses S. A Herbrand interpretation IH can 
be conveniently represented by a set {m1,m2,...}, such that mi=Ai if IH(Ai)=TRUE, and mi=¬Ai 
if IH(Ai)=FALSE. Each such interpretation is a path in a semantic tree Ts of depth |Bs|. 

EXAMPLE: 

Let S = { {P(u)} , {Q(a,f(v)} } 

Then  HS = {a, f(a), f(f(a)), f(f(f(a))), ... } 
and  BS = {P(a), Q(a,a), P(f(a)), Q(a,f(a)), P(f(f(a))), ... } 

The semantic tree Ts for S is then the infinite tree 

Ts
¬P(a)

¬Q(a,a)

¬P(f(a))

P(a)

Q(a,a) ¬Q(a,a) Q(a,a)

P(f(a)) ¬P(f(a)) P(f(a)) ¬P(f(a)) P(f(a)) ¬P(f(a)) P(f(a))

 
Figure 12: Semantic Tree showing a partial interpretation 

The path shown in the diagram corresponds to the interpretation {P(a),Q(a,a),¬P(f(a)),...}. For 
some node N in Ts, a path from the root to N corresponds to a partial interpretation IN. As with 
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propositional semantic trees, we can define a FAILURE NODE in a semantic tree to be a node 
N such that the (partial) interpretation IN falsifies some ground instance of a clause of S but IM 
satisfies S for every ancestor node M of N. 

2.6:b DEFN:  
Given an interpretation I over a domain D, an H-interpretation (ie an interpretation over 
the Herbrand Universe H) I* corresponding to I can be constructed as follows: 

a. define a function ℋ:H→D, mapping each element hi in the Herbrand universe to an 
element ℋ(hi) in the domain D. 

b. define I* such that I*(P(h1,...,hn))=TRUE iff I(P(ℋ(h1),...,ℋ(hn))=TRUE for h1...hn 
elements of H.  

NOTE that if S contained no constant symbols, then the element τ in H0 must be mapped onto 
every element of D generating |D| H-interpretations corresponding to I. 

Clearly, if an interpretation I over a domain D satisfies a set of clauses S, then any H-
interpretation I* corresponding to I also satisfies S, for if P(d1,...,dn) is true under I, then 
P(h1,...,hn), where di=ℋ(hi), is by definition true under I*. 

2.6:c THEOREM: 
A set of clauses S is unsatisfiable if and only if it is false under all H-interpretations. 

PROOF: 
By definition, if S is unsatisfiable then it is false under all interpretations, including H-
interpretations. Conversely, assume S is false under all H-interpretations but is 
nevertheless satisfiable. Then there exists an interpretation I over a domain D≠H which 
satisfies S. But then the H-interpretation I* corresponding to I must satisfy S, 
contradicting our assumption that S is false under all H-interpretations. Hence, S must be 
unsatisfiable. 

2.7 Herbrand's Theorem 

2.7:a THEOREM: (HERBRAND). 
A (finite) set of clauses S is unsatisfiable if and only if some FINITE set of ground 
instances of clauses in S is unsatisfiable. 

PROOF:  
(⇒) Suppose S is unsatisfiable. Then every Herbrand interpretation falsifies S, and so 
every path in the semantic tree must terminate in a failure node and is therefore of finite 
length. Hence there exists a finite failure tree FTs of S. Since the number of failure nodes 
in FTs is finite, and the number of ground literals in FTs is finite, the set S' of ground 
instances of S falsified at each failure node must also be finite. 

(⇐) Conversely, let S' be a finite unsatisfiable set of ground instances of clauses of S. For 
each interpretation I of S, let I' be the restriction of I to S'. Since every interpretation I' 
falsifies some clause in S', then every interpretation I must also falsify some clause in S'. 
Hence every path in the semantic tree of S Ts must terminate in a failure node, and 
therefore S has a failure tree. Then by lemma 1.8:d S must be unsatisfiable. 

Herbrand's theorem has formed the basis of many automatic refutation procedures, in particular 
'level-saturation' procedures in work by Gilmore (1960), and Davis and Putnam (1960) (see 
[CHA75 pp62ff],[ROB65 p27] and [LOV84 pp7ff]). 

2.8 Substitutions 

2.8:a DEFN: (SUBSTITUTION).  
A substitution is a homomorphism θ:TERM → TERM, defined by: 

a. θ(c) = c, ∀c∈CS 
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b. θ(v) = t, ∀v∈VAR, and some t∈TERM 
c. if f∈FS and ℜ(f)=n, then θ(f(t1,...,tn)) = f(θ(t1),..., θ(tn)). 

2.8:b DEFN: (SUPPORT OF A SUBSTITUTION).  
The set V(θ) = {v∈VAR : θ(v)≠v} is called the support of the substitution θ (or the set of 
ACTIVE VARIABLES of θ). 

We will denote a substitution θ with support set {v1,v2,...} such that θ(vi)=ti for some term ti≠vi 
by {t1/v1, t2/v2,...}. We will only be interested in finite substitutions, ie substitutions with finite 
support sets {v1,...,vk}. 

2.8:c DEFN: (INSTANTIATION).  
Let F∈ WFF be a formula and θ={t1/v1,..., tk/vk} be a substitution. Then the 
INSTANTIATION OF F BY θ, written Fθ, is the operation of applying θ to all terms in 
F. Fθ is said to be an INSTANCE of F. 

2.8:d DEFN: (GROUND SUBSTITUTION).  
A substitution θ={t1/v1,...,tk/vk} is said to be a ground substitution if all ti are ground 
terms. Fθ is then said to be a GROUND INSTANCE of formula F. 

2.8:e DEFN: (COMPOSITION OF SUBSTITUTIONS).  
The composition θλ of two substitutions 

θ={t1/v1,...,tk/vk} and λ={s1/u1,...,sn/un} 

is θ'∪λ', where 

θ' = {tiλ/vi  :  tiλ≠vi} 
λ' = {sj/uj   :  uj≠vi for all vi in θ} 

 

EXAMPLE: 

Let θ = {f(x)/y, z/x, a/w} 
 λ = {a/x, b/y, w/z} 

Then f(x)λ/y =  f(a)/y 
 zλ/x =  w/z 
 aλ/w =  a/w 

and so 

θ' =  {f(a)/y, w/z, a/w} 
λ'  =  {w/z} 
θλ =  θ'∪λ'  =  {f(a)/y, w/z, a/w} 

Note 

a. composition of substitutions is associative, ie (θλ)µ = θ(λµ) 
b. the empty substitution ε is both right and left identity, so that εθ = θε = θ 

2.9 Unification 

2.9:a DEFN: (UNIFIER).  
A substitution θ is said to UNIFY a finite, non-empty set of well-formed formulae 
S={S1,...,Sn} if S1θ = S2θ =...=Snθ. θ is said to be a UNIFIER of the set S, and S is stb 
UNIFIABLE if there exists a unifier for it. Siθ is said to be a COMMON INSTANCE of 
the set S for any Si∈S. 

2.9:b DEFN: (MOST GENERAL UNIFIER).  
A unifier µ for a set S={S1,...,Sn} is a MOST GENERAL UNIFIER (MGU) if, for each 
unifier θ of S there exists a substitution λ (possibly ε) such that θ=µλ. 
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MGUs are unique when they exist in that, if µ and λ are two MGUs for a set S, then there exists 
a bijective substitution σ such that µ=λσ and σ(v)∈VAR for all v in the support set of σ. In 
other words, σ merely renames variables. (for a proof see GALLIER p.383 ff). 

2.9:c THEOREM: (UNIFICATION THEOREM).  
If a finite, non-empty set S of WFFs is unifiable, then S has a MGU µs. Moreover, µs is 
unique down to renaming of variables and, for all unifiers θs of S, there exists a 
substitution σ such that θs=µsσ. 

For a proof see [ROB65 pp33-34]. 

2.10 Representation Of Terms 
A term may be understood to be a linear representation of an oriented tree (more precisely a 
directed acyclic graph, because nodes may share common subgraphs, but the tree representation 
is more common and easier to handle). 

The tree corresponding to a term t is defined recursively as follows: 

a. the tree representation of a variable is a single node 
b. if t is a function symbol f with arity n, then t is represented as a tree with root f and n 

subtrees, one for each argument term of f. 

EXAMPLE: 
The term t = f(g(a,x), y, h(x,y,g(x))) has tree representation: 

f

g hy

xa gyx

x
 

Figure 13: Term Tree 
The boxed leaves denote variables. 

2.11 Unification Algorithm 
In unifying two terms T1, T2, we traverse the two term trees in parallel in pre-order, noting 
disagreement at each node. A disagreement between nodes N1,N2 of T1,T2 respectively is 
REPARABLE if at least one of N1,N2 (say N1) is a free variable. The substitution {N2/N1} will 
repair the disagreement. The substitution must be applied to the two term trees before traversal 
continues, since all occurrences of N1 must be instantiated to N2. The MGU of T1 and T2 is the 
composition of all the substitutions required to repair node-disagreements. If a disagreement is 
not reparable (as when N1 and N2 are different functors), then the terms are not unifiable. 

It is possible for a free variable to be instantiated to a term containing the variable as a subterm, 
creating infinite subtrees (or cyclic graphs in the directed graph representation of terms). For 
example consider the two terms 
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T1 = f(x,x) 
T2 = f(y,g(y)) 

Since x and y are both free variables, the substitution {x/y} is generated. For the second 
subterm, x is still free (since it is bound to a free variable), and so the substitution {g(y)/x) is 
generated. This gives the MGU {x/y}{g(y)/x} = {g(y)/y}, which results in the common term 
instance f(g(g(g(...., g(g(g(....), which is an infinite tree (or a cyclic graph). 

To avoid this, the unification algorithm should check that in a substitution {t/v}, v is not a node 
of t. This check, called the OCCURS CHECK, is very expensive, and is often omitted from 
implementations of unification algorithms (eg in Prolog) on the grounds that such cyclic 
structures occur very rarely in practice, and so do not warrant the increased complexity 
associated with the occurs check. 

The following algorithm computes the MGU of two terms, returning FALSE if the terms are not 
unifiable.  The procedure is called with two terms and the empty substitution ε as arguments, 
and returns the MGU of the terms if they are unifiable. 

PROCEDURE Unify (T1,T2 : TERMS; VAR mgu : substitution) : BOOLEAN; 
BEGIN 
   Let N1 := root node of T1 
   Let N2 := root node of T2 
   IF N1≠N2 THEN 
      IF IsVar(N1) OR IsVar(N2) THEN 
         IF IsVar(N1) THEN RETURN Instantiate(N1,T2,mgu) 
     ELSE              RETURN Instantiate(N2,T1,mgu) 
      ELSE RETURN FALSE; 
   ELSE 
   (* N1 and N2 are same functor. Unify their arguments. *) 
   FOR each subtree S1,S2 of T1,T2 respectively DO 
      IF NOT Unify(S1,S2,mgu) THEN RETURN FALSE 
END Unify; 
 

Procedure Instantiate attempts to instantiate the variable (v) passed as a first argument to the 
term tree (t) passed as the second argument. If successful (ie if v∉t), the new substitution {t/v} 
is composed with the partial MGU constructed so far, and the two term trees are updated to 
remove the disagreement. 

2.12 Resolution In 1st Order Logic 
The only difference between a resolution refutation in propositional logic and in 1st order logic 
is in the way resolvents are formed.  Resolution on 1st order clauses is defined in terms of 
unification. Let C1 and C2 be two clauses (with disjoint variable sets). 

C1 = {L1,..,Lm} 
C2 = {M1,..,Mn} 

Let Li=P and Mj=¬Q such that P and Q have a most general unifier µ. Then the BINARY 
RESOLVENT of C1 and C2 on Li and Mj is the clause 

CR = (C1\{Li})µ ∪ (C2\{Mj})µ 

EXAMPLE 
Let  C1 = a(Y) :- b(t(Y)). 
 C2 = c(X) :- a(d(X)). 

where X and Y are variables. 

Then the MGU of a(Y) and a(d(X)) is  

 µ = {d(X)/Y},  
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and the resolvent of C1 and C2 is 

 ¬b(t(Y))µ ∪ c(X)µ,  =  c(X) :- b(t(d(X))). 

2.13 Completeness of the Resolution Principle (1st Order Case) 
The proof of the completeness of the resolution principle in 1st order case will closely follow 
that for propositional logic (see section 1.11). As before, we show that if a set of clauses S has a 
failure tree FTs, then resolution collapses FTs to a single-node tree □. 

2.13:a LEMMA: (LIFTING LEMMA).  
Let C1 and C2 be two predicate clauses (with disjoint variable sets) whose instances C1' 
and C2' have resolvent C3'. Then C1 and C2 have resolvent C3 such that C3' is an instance 
of C3. 

For a proof see [CHA73 pp84-85][GAL87 pp400-403]. 

2.13:b THEOREM: (COMPLETENESS OF RESOLUTION - 1st ORDER CASE).  
A set S of 1st-order clauses is unsatisfiable if and only if the empty clause □ can be 
deduced from S by resolution. 

PROOF:  
The proof follows that of theorem 1.11:a, except that the partial interpretations Ij and Ik at 
the failure nodes i and k now falsify two ground instances Cj' and Ck' of the clauses Cj and 
Ck of S. Hence the resolvent CR' of Cj' and Ck' is falsified at or before the inference node i 
(the parent of nodes j and k). But by the lifting lemma, CR' is an instance of CR, the 
resolvent of Cj and Ck. Hence, the set S∪{CR} has a smaller failure tree than S, since an 
instance of CR is falsified at or above node i. 

2.14 Logic Programming 
A 1st-order logic-program is a set S of definite 1st-order Horn-clauses representing FACTS and 
RULES, together with a negative Horn clause G called the GOAL.  The goal represents a 
negated QUERY Q, which has the form 

Q  =  ∃v1,..,vn(L1 ∧ .. ∧ Lk). 

where v1,..,vn are called the OUTPUT VARIABLES. 

Thus the goal is a formula 

∀v1,..,vn(¬L1 ∨ .. ∨ ¬Lk) 

which is a universally quantified Horn-clause 

:- Ln,..,Lk. 

It is required to find terms t1,..,tn such that 

S ⇒ Q{t1/v1,..,tn/vn} 

The substitution {t1/v1,..,tn/vn} is called the ANSWER SUBSTITUTION, and a logic interpreter 
usually attempts to find all such answer substitutions. 

The requirement that clauses have disjoint sets of variables is usually enforced by limiting the 
scope of all variables to the clause in which they occur. 

The refutation procedure for 1st-order Horn-logic programs is very similar to that for 
propositional programs. Using SLD-resolution with a depth-first search strategy, the refutation 
procedure is the following procedure (Satisfy) called with G and the empty substitution ε as 
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parameters. If Satisfy terminates successfully, the output substitution Θ contains the answer 
substitution as a subset. 

PROCEDURE Satisfy (G : goal; VAR Θ : substitution) : BOOLEAN; 
VAR σ,µ : substitution; 
BEGIN 
   IF G=□ THEN RETURN TRUE; 
   WHILE (C := SELECT(FIRST(G),µ)) ≠ NIL 
      σ := θµ; 
      IF Satisfy((BODY(C)+REST(G))µ,σ) THEN  
        θ := σ; 
         RETURN TRUE; 
      END; 
   END; 
   RETURN FALSE; 
END Satisfy; 

 

The SELECT procedure must now perform unification in order to determine the set of 
candidate clauses for a literal.  The MGU µ returned by SELECT is used to instantiate the two 
parent clauses C and G, producing C' and G'. The output substitution Θ is the composition of all 
substitutions made in the course of the refutation. 
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3 PROLOG 

3.1 Objectives 
This chapter outlines the implementation of Prolog. Following a brief review of the Prolog 
language, the interpretation strategy is discussed. The representation of terms constructed during 
unification in structure-sharing and non-structure-sharing systems is compared, and a basic 
optimization technique which exploits determinism in a Prolog program (deterministic-frame 
optimization, DFO) is outlined. Two other optimization techniques based on DFO, last-call 
optimization and tail-recursion optimization, are briefly described. 

3.2 The Language - Syntax And Terminology 
The following is an overview of the syntax of the basic Prolog language. For a description of the 
full language see [CLO81]. 

Program 
A Prolog program is a sequence of clauses. 

Clause 
A clause is made up of a HEAD and a BODY. The body consists of a (possibly empty) 
sequence of GOALS. A clause is written in the form 

a :- b,c,d. 

where a is the head, and b,c,d are the goals (or PROCEDURE CALLS) making up the body of 
the clause. The head and goals of a clause are examples of TERMS. 

If the body is the empty sequence, then the clause is called is called an ASSERTION (or UNIT 
CLAUSE) and is simply written as 

a. 

A clause which does not have a head is called a GOAL STATEMENT, and is written 

:- b,c,d. 

Terms 
Terms may be SIMPLE or COMPOUND. 

a. SIMPLE TERMS 
Simple terms are either VARIABLES or CONSTANTS. 
1. variables 

A variable is an identifier beginning with an uppercase letter or the underscore 
character, _ . The identifier consisting solely of the underscore character is called the 
ANONYMOUS VARIABLE. 

2. constants 
A constant is either an ATOM or an INTEGER. An integer is any sequence of 
characters from the set {'0'..'9'}, optionally preceded by one of '+' or '-'. An atom is any 
sequence of characters not confusable with either a variable or an integer. The following 
are all valid atoms: 
name, 'Name', 'A NAME', == 
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b. COMPOUND TERMS 
A compound terms is a structure consisting of a FUNCTOR together with a list of one or 
more terms called ARGUMENTS. 
A functor is an ordered pair NAME/ARITY, where name is an atom, and arity (or RANK) 
is a positive integer denoting the number of arguments associated with the functor. A 
compound term is written as: 
f(a,b,c) 
where f/3 is the functor (or PRINCIPLE FUNCTORS), and a,b,c are its arguments. Note 
that a constant is considered to be a functor of arity 0. 

Literals 
Terms which appear as the head or goals of a clause are called LITERALS (sometimes 
BOOLEAN TERMS). In general, literals are not allowed to be variable or integer terms. 

Predicates 
The functor of a literal is called a PREDICATE. 

3.3 Semantics 

Declarative Semantics 
The declarative semantics of Prolog are the semantics of Horn-clause programs under SLD-
resolution, with the database of definite clauses modelling facts and rules, and a single negative 
clause (the goal) representing a negated query. 

Since SLD-resolution is an incomplete procedure (in that it does not specify a search strategy, as 
explained in the Chapter 2), the declarative semantics of Prolog do not fully describe the 
language. 

Procedural Semantics 
The procedural semantics of Prolog are the semantics of Horn-clause programs under SLD-
resolution with a depth-first search strategy. In this sense, the procedural semantics of Prolog 
are complete since they comprise the semantics of the search strategy.  Because the search 
strategy presupposes a sequential Von-Neumann architecture, problems have been encountered 
in preserving the procedural semantics in parallel-implementations of Prolog (see for example 
[TIC89]). 

In the procedural model of Prolog (first proposed by R.A.Kowalski [EMD76][NIL84]) the set of 
clauses whose head have the same predicate are viewed as a non-deterministic PROCEDURE 
to be INVOKED  (or ENTERED) when that predicate is encountered in a goal literal. The goal 
literals in a clause body are in this sense PROCEDURE CALLS, resolution is viewed as a 
procedure invocation, and unification as a parameter transfer mechanism. 

The clauses in a procedure are considered to be ordered from top to bottom, while goals in a 
clause body are ordered from left to right.  This ordering constitutes control information which 
is superimposed on the logic component of Prolog, and which defines the depth-first search 
strategy imposed on the SLD-resolution mechanism. 

3.4 Control Mechanism 
Prolog uses SLD-resolution with a depth-first search, and so the execution mechanism is very 
similar to the Satisfy procedure given in section 2.14, with the input goal statement as the first 
centre clause, and the leftmost literal in the goal as the first selected literal. The interpreting 
algorithm for Prolog programs was first fully described in [EMD84]. 

The main states of the interpreter are 

1. INITIALIZE - make the input goal the current procedure. 
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2. PROCEDURE ENTRY - make the body of the selected procedure the current goal list, and 
prepare to start executing the first call in this list. 

3. SELECT CALL - select the call to try next. This is the first literal in the current goal list. If 
the current goal list is empty (ie the current procedure has no body) then exit the procedure 
(goto step 5). 

4. SELECT PROCEDURE - select, from among the candidate clauses for the selected call, 
the first clause whose head unifies with the selected call (we call such a clause the 
RESPONDING PROCEDURE), and goto step 2. If no procedure responds, then the 
interpreter must backtrack (goto step 6). 

5. PROCEDURE EXIT -  If the current procedure has a parent with some calls pending, then  
make the parent goal the current goal, with the next call in the parent clause the selected call, 
and goto step 4.  
Otherwise the original (input) goal has been solved. Output solution and backtrack (goto step 
6). 

6. BACKTRACKING - find the most recent call for which some candidate clauses remain 
untried. If there is no such call, then execution terminates. Otherwise, make this the current 
call and the set of untried candidates the new candidate set, and goto step 4. 

3.5 Activation Frames 
When a procedure is entered, an ACTIVATION FRAME (FRAME for short) is created and 
pushed onto the runtime stack. Frames are similar to procedure activation records in procedural 
languages, except that frames may not be popped on exit from a procedure because of the 
possibility of backtracking. 

We can distinguish between DETERMINISTIC and NON-DETERMINISTIC frames 
[BRU84a p260]. A deterministic frame is a frame corresponding to the activation of a procedure 
for which no untried candidate clauses remain. A deterministic frame represents a call which 
cannot be reactivated, since all alternative solutions have been exhausted. A non-deterministic 
frame corresponds to the activation of a procedure for which there remain some untried 
candidates. Non-deterministic calls may be reactivated by backtracking, and for this reason are 
sometimes are called BACKTRACKPOINTS. The interpreter maintains non-deterministic 
frames on a linked list, which is implemented by threading the non-deterministic frames on the 
frame stack and maintaining a pointer to the most recent backtrackpoint. 

Each frame is made up of two sections, one for control information (the CONTROL 
VECTOR), and one for variable bindings (the ENVIRONMENT VECTOR). 

Control Vector 
Call: pointer to the selected call which invoked the procedure. 

Parent: pointer to the frame recording entry into the procedure containing the call 
which activated this procedure. 

NextCand: pointer to the next untried candidate clause for the current call, (or NIL for a 
deterministic call). 

BTPoint: Backtrack point in effect at time frame was created.  

Environment Vector 
Env: Array recording variable instantiations (or bindings) made during 

unification. Each cell of the array represents one variable in the activated 
procedure. 

The interpreter also maintains a few state variables to keep track of the execution state. These 
include: 
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CrntCall: This is analogous to the instruction pointer in a hardware processor, and 
points to the selected (or current) call. 

CrntParent: pointer to the frame for the procedure containing CrntCall as one of its 
subgoals. 

CrntProc: Pointer to the procedure responding to CrntCall. This is the procedure which 
is to be invoked next. 

CrntBTP: Current backtrack point. Pointer to the most recent non-deterministic frame. 
This corresponds to the most recent branch-node (or choice point) in the 
search tree. The contents of this variable are copied into the BTPoint field of 
the control vector of a frame. 

3.6 The Interpretation Strategy 
The introduction of frames and the four state variables makes the control mechanism more 
opaque. The control procedure outlined above can now be stated in finer detail. Following 
[KNU73 p.231] we use the notation Field(Record pointer) instead of the more cumbersome 
RecordPtr^.Field. Procedure MakeFrame creates a new procedure activation frame on the 
stack, returning a pointer to the new frame. The variable bindings in the new frame are 
initialized to the special value FREE to indicate that all variables are initially uninstantiated. 

1. INITIALIZE 
CrntCall := NIL 
Parent := NIL 
BTPoint := NIL 
CrntProc := goal 
F := MakeFrame 
 

2. PROCEDURE ENTRY 
Initialize the control vector of the frame for this procedure activation. The variable bindings 
would already have been initialized by the unification algorithm. If there are untried 
candidate clauses for this procedure (ie this is a non-deterministic procedure call), then the 
new frame becomes the most recent backtrackpoint. The first call in the procedure becomes 
the new CrntCall. 
Call(F)     := CrntCall 
BTPoint(F)  := CrntBTP 
Parent(F)   := Parent 
NextCand(F) := next candidate clause following CrntProc 
IF NextCand(F) <> NIL THEN 
   CrntTP := F 
END 
Parent   := F 
CrntCall := first call in CrntProc (NIL if CrntProc is an assertion) 
 

3. SELECT CALL AND FIRST CANDIDATE CLAUSE 
If the CrntCall is NIL, then the current procedure has no body, and may be exited 
immediately. Otherwise, set CrntProc to the first candidate clause for the current call. 
IF CrntCall = NIL THEN  
   goto step 5 (Procedure exit) 
ELSE 
   CrntProc := first clause for current call 
END 
 

4. SELECT RESPONDING PROCEDURE 
Try each candidate clause in turn until one is found which unifies with (responds to) the 
current call. If no clause responds to the call, then the interpreter must backtrack. Otherwise 
make the responding clause the CrntProc and loop back to the procedure entry step. The 
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unification algorithm creates a new frame on the stack in which any variable bindings are 
recorded. 
F := MakeFrame 
WHILE (CrntProc <> NIL) AND NOT (Unify(CrntCall, CrntProc)) DO 

Undo any instantiations made during unification (this is 
called SHALLOW BACKTRACKING) 

      CrntProc := next candidate clause 
END 
IF CrntProc = NIL THEN  
   goto step 6 (Backtrack) 
ELSE 
   goto step 2 
END 
 

5. EXIT PROCEDURE 
Exit current procedure and return to the parent procedure, which is to be resumed at its next 
(pending) call. If the current procedure has no parent, then this step represents an exit from 
the input goal clause, and so a solution is output and the interpreter backtracks in search of 
further solutions. 
IF Parent <> NIL THEN 
   Output solution and backtrack (goto step 6) 
ELSE 
   CrntCall := NextCall(Parent) 
   Parent   := Parent(Parent) 
   select responding clause for this call (goto step 3) 
END 
 

6. BACKTRACK 
Backtrack to the most recent call which still has some untried candidate clauses (the 
CrntBTP). If there is no such call left (CrntBTP=NIL) then the interpreter halts. Otherwise 
all processing since the CrntBTP is abandoned and the most recent non-deterministic call 
reactivated with the next untried candidate clause. 
IF CrntBTP = NIL THEN HALT 
ELSE 
   CrntProc := NextCand(CrntBTP) 
   CrntCall := Call(CrntBTP) 
   Parent   := Parent(CrntBTP) 
   B        := BTPoint(CrntBTP) 
   Pop all frames from CrntBTP onwards and undo all variable 

bindings made since. 
   CrntBTP  := B 
   goto step 4 
END 

3.7 Indexing Of Clauses 
Clauses in the database are usually stored as tree structures and indexed using some indexing 
scheme. The purpose of indexing is to  identify, at the time clauses are added to the database, 
those clauses which are in the candidate set of a call. Indexing attempts to preempt mismatches 
during unification (reducing shallow backtracking in step 4) by minimizing the number of 
candidate clauses which have to be tried. Reducing the number of alternative clauses which can 
respond to a call also reduces the non-determinacy of a Prolog program, since fewer choice-
points in the search tree are created. 

The simplest scheme (adopted in the original Marseille interpreter) is to index clauses on the 
head predicate. This reduces the candidate set for a call to those clauses which have the same 
functor in their head predicate as the functor in the call literal. Most Prologs also index clauses 
on the first argument of their head predicate, using the type (variable, functor, list) and arity of 
the first argument term of the predicate as a secondary key (see for example [WAR77]). More 
elaborate schemes based on static analysis of call patterns have also been suggested [DEB89a]. 
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A related idea is to have the unification algorithm apply some dynamic (and relatively 
inexpensive) test on the clauses in the candidate set in order to filter out any candidates which 
could not possibly match the current call [BRU82 p.91].  When a call is successfully unified 
with the head of a candidate clause, the test is applied sequentially to the untried clauses in the 
candidate set. The first clause (if any) which passes the test becomes the next candidate clause, 
and is recorded in the NextCand field of the activation frame. The object of this scheme is to 
identify deterministic calls as early as possible, thereby enhancing the effectiveness of some 
optimization techniques (discussed below). 

3.8 Implementing The ! Predicate 
The ! predicate controls backtracking. Specifically, it makes all procedure calls since entry to 
the current procedure deterministic. Its implementation simply requires the interpreter to reset 
the current backtrack-point to the backtrack-point in effect when the current procedure was 
entered - which is recorded in the BTPoint field of the current procedure's Parent frame: 

Cut: CrntBTP := BTPoint(Parent) 
 

The effect of the ! predicate is to unlink one or more frames from the threaded list of non-
deterministic frames on the frame stack. 

3.9 The Binding Environment And The Trail 
Variables in a clause are encoded as offsets into the environment vector within the activation 
frame for the clause. The environment records the variable instantiations made by unification in 
the course of generating a clause instance which responds to a call. All occurrences of a variable 
in a clause are mapped onto the same entry in the binding vector by the encoding scheme, so 
that they share the same binding. The binding environment within a frame will be represented as 
an array env[0..numvars-1], where numvars is the number of variables in the clause.  

A clause instance is thus a pair <skeleton,environment>, where skeleton is the clause 
representation in the database, and the environment records the assignment for each variable in 
the clause. 

Since variable bindings have to be undone on backtracking, a log of all variable instantiations 
made is kept on a stack structure called the TRAIL (or RESET LIST). Only the address of 
variables needs to be recorded (since such variables must have been free prior to instantiation). 
Each entry on the trail is a pair <frame,var>, where frame is a pointer to a frame on the stack, 
and var is the index within the frame's environment vector of the variable instantiated. 

When an activation frame is created, a pointer to the current top of trail is saved in the frame. 
Backtracking then simply has to reset all variables recorded on the trail following the trail 
pointer stored in the backtrackpoint frame. 

A new variable TrailTop is required by the interpreter to keep track of the current top of the trail 
stack. A new field in the frame structure, Trail, will be used to save the position of TrailTop at 
the time of frame creation. The backtracking algorithm can now be stated more explicitly: 

6. BACKTRACK 
IF CrntBTP = NIL THEN HALT 
ELSE 
   CrntProc := NextCand(CrntBTP) 
   CrntCall := Call(CrntBTP) 
   Parent   := Parent(CrntBTP) 
   B        := BTPoint(CrntBTP) 
   T        := Trail(CrntBTP) 
   FOR each entry <frame,var> on the trail from T to TrailTop DO 
       env[var](frame) := free 
   Pop all frames created since, and including, the frame  
   pointed to by CrntBTP. 
 
   CrntBTP  := B 
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   TrailTop := T 
   goto step 4 
END 
 

Since backtracking pops all frames created since the last backtrackpoint, only the binding of 
variables in frames preceding the current backtrack frame need be recorded on the trail. 
Instantiations made to variables in more recent frames will be automatically undone when these 
frames are popped during the backtracking. 

3.10 Structure-Sharing And Non Structure-Sharing Systems 
Consider the unification of the two terms a(f(g,h)) and a(X), which (assuming X is free) 
requires the instantiation of X to f(g,h). This instantiation can be easily effected by storing a 
pointer to the database code representing the term f(g,h) in the environment cell for variable X: 

a

f
X:0

a
Term 1 Env 1 Term 2

Env 2

g h
 

Figure 14: Unifying a(X) and  a(f(g,h,)) 
But now consider the unification of the two terms 

 a(X) 
and a(f(G,H)) 

Again assuming that X is free, the unification requires that X be instantiated to f(G,H). 
However, simply storing a pointer in the environment cell for X to the representation of the term 
f(G,H) in the database will not work, since the instantiation must take into account the current 
(or future) bindings of the variables G and H. X should be instantiated NOT to the term f(G,H), 
but to an INSTANCE of it. For example, if G is currently instantiated to g and H to h, then X 
should be bound to the term instance f(g,h). Unification thus requires a mechanism for 
representing term instances, called CONSTRUCTED TERMS. Two common solutions to this 
problem exist, STRUCTURE SHARING (SS) and NON-STRUCTURE SHARING (NSS) 
(sometimes called STRUCTURE COPYING). 

Structure Sharing 
The idea behind structure sharing is that all instances of a term share a common prototype, 
differing only in the variable assignments. The term prototypes in the source program 
completely define the structure of any given instance of the term except for the value of the 
variables. Thus a term instance can be represented as a <skeleton,environment> pair, called a 
MOLECULE. The skeleton is a pointer to the database representation of the term (called the 
SOURCE TERM), which serves as the prototype for all instances of the term, while the 
environment is a pointer to a frame containing the bindings of the variables in the skeleton. Note 
that if the source term is a constant, there is no need to provide a binding environment, so that a 
constant is both a source term and a constructed term. 

The term instance a(f(g,h)) created during unification might be represented by a pointer to the 
skeleton a(f(G,H)) and a pointer to an environment which binds G to g and H to h: 
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Figure 15: Representation of the term instance a(f(G,H)) in a structure-sharing 

system 
When a (free) variable is instantiated to a term, a molecule representing the term instance is 
stored in the variable's cell in the environment vector. In structure sharing systems, the 
unification of the two terms a(X) and a(f(G,H)) would generate the following binding for the 
variable X: 

G:2 H:1

a

f
X:0

a
Term 1

Env 1

Term 2

Env 2

 
Figure 16: Unifying a(X) and a(f,(G,H)) in a structure-sharing system 

Structure sharing economizes on space requirements for constructing complex terms since it 
adopts a lazy approach to term construction. On the other hand, accessing components of term 
instances may require considerable dereferencing. 

Non-Structure Sharing 
In non-structure sharing systems [MEL82], term instances are not represented as molecules. 
Instead, when a term is constructed during unification, a concrete (instantiated) copy of the term 
is created on the heap (called the COPY STACK, since it is organized as a stack structure). 
Variable bindings are not represented as <skeleton,environment> pairs, but as pointers to term 
instances. The scheme is very similar to that adopted for the creation of dynamic structures in 
procedural languages. 

Figure 17 illustrates the unification of the two terms a(Y,b) and a(f(X),X) in a NSS system. 
Note how the variable Y is bound to the concrete instance f(b), which is not a source term, but 
is constructed on the heap during unification.  
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Figure 17: Unification of a(Y,b) and a(f(X),X)) in NSS systems 

For comparison, Figure 18 shows the same unification in a SS system. Note how NSS systems 
avoid the need for FORWARD BINDINGS - binding a variable in one environment to a 
chronologically later environment. Bindings in NSS systems can always be oriented such that 
later frames reference earlier frames. This has important consequences for implementing 
optimization schemes discussed below. 

On the other hand, SS systems cannot avoid forward bindings. Variable Y in the example 
requires Env2 for the binding of variable X in the term skeleton f(X). Consequently, Env2 
cannot be discarded without leaving dangling references in the earlier environment Env1. This 
creates problems when implementing optimization techniques aimed at conserving stack space 
(always a prime consideration in Prolog implementations) by discarding frames as early as 
possible. 

Y b

f

f X

a

X

Y X
Env1 Env2

skeleton

environment

 
Figure 18: Unification of a(Y,b) and a(f(X),X) in a SS system 

Although NSS generally incurs more space overhead than SS, accessing constructed terms is 
faster. Also, some optimizations techniques are easier to implement in a NSS system. 

3.11 Deterministic-Frame Optimization 
Most optimization techniques are concerned with conserving memory by discarding stack 
frames at the earliest opportunity. In procedural languages, procedure activation records are 
popped immediately a procedure exits, but in Prolog frames have to be retained for two reasons: 

1. because of possible backtracking. A procedure's activation record contains information about 
the set of untried alternative candidates for the current call. If the frame is popped when the 
procedure exits, no backtracking is possible. 

2. because of possible forward references to a frame. If variables in earlier frames are bound to 
the environment vector of the frame to be popped, then it is not possible to discard the frame 
without creating dangling pointers. This problem does not arise in procedural languages, 
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since variables kept in a procedure's activation record are purely local, and hence may be 
safely deallocated when the procedure terminates. In Prolog, however, variables in one 
procedure may be exported to a parent procedure as subterms. The problem is illustrated in 
Figure 19, where discarding the frame containing Env2 will destroy the binding of Y in 
Env1. 

Thus, a frame may be discarded on procedure exit if both the following conditions hold: 

1. The frame is a deterministic frame (ie not a backtrackpoint). Deterministic frames are not 
targets for backtracking, and therefore do not contain any information which will be required 
to effect a backtrack operation. 

2. No variables in earlier frames are forward bound to the environment vector of the frame to 
be discarded, either directly (ie variable to variable bindings), or as environments for 
constructed terms (ie environment references in molecules). 

This optimization to the basic interpretation algorithm is called DETERMINISTIC-FRAME 
OPTIMIZATION (DFO), and can result in significant improvement in memory utilization. 
However, as with all optimization techniques, the effectiveness of DFO is dependent on the 
Prolog program being interpreted. 

As explained earlier, the second constraint is easy to enforce in a NSS system, since it is always 
possible to orient variable bindings from the more recent to the less recent frame. Constructed 
terms are recorded on the heap in concrete term instances, making it unnecessary to consult an 
environment containing the bindings of any variables in the constructed term.  

In SS systems, however, it is possible to have variables which outlive the procedure in which 
they occur. Such variables are referred to as GLOBAL VARIABLES. The variable X in Figure 
18 is an example of a global variable - its value will be required even after the procedure 
containing the predicate a(f(X),X) as head terminates.  The solution to this problem is to use 
what is called the TWO-STACK representation for structure sharing [WAR77][HOG84 
pp.205ff][KLU85 pp.176ff]. 

3.12 The Two-Stack Representation In SS Systems 
In a two-stack system, a distinction is made between LOCAL (or PRIVATE) and GLOBAL 
(or OUTPUT) variables. Local variables are those which may be deallocated when a procedure 
exits since they are not the target of any forward references in earlier environments. Global 
variables, on the other hand, may need to outlive the procedure in which they occur. The 
distinction between the two types of variables can be made by a static analysis of the clause 
during parsing. A variable in a clause is classified as global if some occurrence of that variable 
in the clause is an argument of a term. If a variable does not occur as a term argument, then it is 
classified as local. This is because a variable can only outlive its clause instance if some 
variable in an earlier frame is bound to the term of which it is an argument (note that the inverse 
is not necessarily true). 

The binding environment for a procedure activation is split into two. The environment for the 
local variables is kept in the frame as before (in a two-stack system, the stack holding the 
activation frames is called the LOCAL STACK), while the environment for the global 
variables is kept on a second stack called the GLOBAL STACK. Since (by definition) the local 
environment is not the target for forward references, deterministic frames on the local stack may 
be discarded on procedure exit without creating dangling references. Records on the global 
stack, however, can only be popped on backtracking. 

In a two-stack structure-sharing system, the following constraints are placed on variable binding 
during unification: 

1. both local and global variables may be free or may be bound to a ground (ie variable free) 
source term, 

2. a local variable may be bound to a global variable, or to a local variable in an earlier frame, 
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3. a local variable may be bound to a constructed term provided the environment component in 
the molecule representing the constructed term points either to a global environment or to the 
environment in an earlier local frame, and 

4. the binding of a global variable may only refer to global environments. 
These constraints do not affect the unification process, while ensuring that deterministic-frame 
optimization will not result in dangling references being left on the stack. 

3.13 Other Optimization Techniques 
Deterministic-frame optimization forms the basis for two other optimization techniques, LAST-
CALL-OPTIMIZATION (LCO) and TAIL-RECURSION OPTIMIZATION (TRO). Both 
techniques enable the interpreter to overlay the (local) parent frame by the frame of the invoked 
procedure under certain conditions. The global frame must, of course, be left on the stack until 
popped by backtracking. 

Consider the program fragment 
a :- b,c. 
b :- d. 
d :- ... . 
 

Assume the interpreter has just entered procedure b, which is deterministic, and is about to enter 
procedure d as a result of executing the call in b's body. Since this is the last call in d, and both b 
and d are deterministic, as soon as d is exited control will return immediately to procedure a, 
where the call to c is still pending. Consequently, the frame for procedure b can be discarded 
even before d's frame is created. d's frame is overlaid on b's frame and given a as the parent 
procedure, thus ensuring that exit from d returns directly to a, as required. 

The significance of LCO lies in a refinement called tail-recursion optimization. Recursion is 
notoriously memory hungry. At the same time, it is the only looping mechanism in Prolog, and 
hence strategies which minimize the memory demands of recursion are important for the 
efficient implementation of Prolog. Many Prolog procedures exhibit a particular form of 
recursion called TAIL RECURSION - the last call of the procedure is a recursive call. The 
usual implementation of the member and append predicates is a case in point. Like LCO, TRO 
overlays the frames created by each recursive call in a tail-recursive procedure. With TRO, a 
tail-recursive procedure requires only a single local frame instead of a frame for each recursive 
invocation, although a global frame is still required for each such call. This effectively 
transforms tail recursion into iteration. 

3.14 Intelligent Backtracking And Compilation 
Other optimization techniques are prompted by considerations of time. Compared with 
procedural languages, Prolog is not particularly renowned for its execution speed. There are at 
least two factors contributing to this: 

1. Prolog is usually an interpretive language, and 
2. the exhaustive search required in finding all possible solutions to a goal. 
A Prolog compiler was first suggested and implemented by D.H.D. Warren at the University of 
Edinburgh [WAR77]. Compilation is to a p-code for an abstract machine (later dubbed WAM) 
supporting the primitives required to realize the interpretation model outlined above. This has 
made it possible to port the compiler by implementing simulators for WAM (see for example 
[DEB87]).  WAM has also formed the basis for a VLSI implementation of a Prolog processor 
[CIV89]. 

Some attempts have also been made to replace Prolog's exhaustive search of the refutation tree 
by a more intelligent backtracking mechanism [BRU84b][COX84][PER82]. The idea is to have 
the backtracking system "learn from previous failures and successes how to get a faster 
exploration of the remaining alternatives" [BRU81 p.218]. In such systems, analysis of the 
unification steps leading to a failure provides information to guide backtracking. 
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4 IMPLEMENTATION 

4.1 Objectives 
This chapter describes the implementation of a small structure-sharing interpreter for a subset of 
the Prolog language (a source listing is given in Appendix B). The interpreter is only meant to 
demonstrate some implementation principles and to serve as a test-bed for optimization 
techniques, although the design is sufficiently open to form the kernel of a more practical 
implementation (though not a full implementation). 

4.2 The Prolog Subset 
The subset of Prolog selected for this implementation was chosen to be as faithful as possible to 
logic programming principles. Extralogical features were almost completely excluded from the 
subset. The principle areas of simplification were: 

a. ARITHMETIC. Arithmetic is completely excluded from the subset, as are numeric terms. 
b. DATABASE MANAGEMENT. Dynamic assertion and retraction of clauses is not 

supported, resulting in a monotonic logic system. Clause manipulation predicates, such as 
name and ..= (univ) are not supported, and would be difficult to implement within the 
framework of the existing design. 

c. SYNTAX. The syntax has been kept as simple as possible, with all functors expressed in 
prefix notation. The only exception is in the representation of lists using the [_|_] notation.  
The op predicate is not supported. This would be rather difficult to implement in the 
recursive-descent parser used (most Prologs employ an operator-precedence parser). Only 
pure Horn clauses are allowed - the or operator (;) is not supported, although not is 
implemented as a predefined Prolog procedure. 

d. INBUILT PREDICATES. Only a handful of inbuilt (evaluable) predicates have been 
implemented, but the mechanism required to support them is already in place, making it a 
simple matter to extend the list of such predicates. 
The inbuilt predicates currently supported are: 
! the cut 
nl the NEWLINE predicate 
write the term display predicate 
fail the predicate which always fails, forcing backtracking. 
the lexicographic comparison operators for atoms @>, @<, @>= and 
@=<. 
A few predefined predicates, mostly list manipulation predicates, are implemented in Prolog 
(see Appendix C). 

e. INPUT/OUTPUT. Only output (via the write inbuilt predicate) is supported. Input is not 
supported. 

The syntax diagrams overleaf define the language accepted by the interpreter. 

The interpreter also accepts commands, which are introduced by a period. The commands 
currently supported are: 

.LIST  - list database of clauses 

.LOAD  - load a file 

.STATS - display memory usage statistics 

.DEBUG - selectively toggle debugging switches 

.STACK - set stack size (in bytes) 

.EXIT  - exit interpreter 
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4.3 Choice Of Implementation Language 
Various languages were considered for implementing the interpreter. The following features 
were considered desirable in the implementation language: 

1. MODULARITY 
support for modular program development, with a clean interface between modules, was 
required to facilitate experimentation with implementation techniques. 

2. DATA ABSTRACTION AND DATA HIDING 



41 

data abstraction ensures that a program relies only on the data type specification, not on the 
actual implementation details [MIT88]. 

3. LOW-LEVEL SUPPORT 
in view of the extensive use of dynamic structures in a Prolog interpreter, the prospective 
language had to offer reasonable access to memory management primitives.  Support for 
address arithmetic was also considered important to facilitate the creation and manipulation 
of variable-sized records and stacks. 

Modula-2 was eventually chosen as the language which offered the best overall balance of all 
three features. Availability was, of course, another determining factor (Ada would have been a 
better choice, but was not available). In retrospect, Modula-2 was found to be deficient in the 
following areas: 

1. PRIVATE and FUNCTION RESULT TYPES. Although Modula-2 supports private 
types, these must be declared as pointers to another type declared in the implementation 
module. Ada-style private types are not supported. Functions are only allowed to return 
scalar and pointer types. Unconstrained array types are not supported. 

2. POOR STRING SUPPORT. String support is restricted to a few library procedures. This 
includes string comparison and concatenation, which are sufficiently elementary to warrant 
incorporating into the language (as in UCSD Pascal and some versions of Fortran 77). 

3. AWKWARD INPUT-OUTPUT. Having a separate input and output routine for each 
different type in the language makes IO both awkward and laborious. A single routine which 
accepts a variable number of parameters of different types together with formatting 
information (such as printf in C, or even the Pascal Write) would have been preferable. 

4. ADDRESS ARITHMETIC. Address arithmetic has to be performed using library 
functions. This makes address calculations expensive because of the additional procedure-
calling overhead incurred by each calculation. 

The version of Modula-2 used for the implementation (JPI version 1.02 for MsDos) has some 
powerful, although non-standard, library modules. The availability of the library source code, 
particularly the source code for the memory-management module Storage, proved to be of great 
help in developing the program. On the other hand, the lack of a symbolic debugger made 
debugging the relatively complicated dynamic data structures quite painful. 

Originally it was intended to use Lex and Bison (the GNU implementation of Yacc) to generate 
the scanner and parser for the Prolog interpreter. It is relatively straightforward to modify these 
two programs to emit Modula-2 instead of the default C or Fortran code.  Unfortunately, porting 
a Unix version of Bison to Microsoft C proved to be more time-consuming than anticipated 
owing to some hardware dependencies in the code, and the project was eventually shelved. 

4.4 Top-Down Design 
The implementation comprises 11 primary modules, as follows: 

VRP:Main module 
INBUILT:Definition of inbuilt predicates 
PARSE:Top-down parser 
LEX:Lexical analyzer 
DBASE:database data-structure definitions and handler 
STABLE:symbol-table handler 
SSTR:string-store handler 
COMMAND:command processor 
PROCGOAL:the interpreter 
STACK:runtime stack and trail handler 
STREAMS:low-level input/output 
 

The following is a simplified diagram of the hierarchical dependencies between the different 
modules constituting the interpreter. 
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Figure 19: Module hierarchy 
The main control loop of the program is shown in Figure 20. 
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Figure 20: Interpreter main loop 
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Box Num. Comments: 

1,2 The inbuilt predicates are defined by module Inbuilt, and the predefined 
predicates are read in from file PREDEF.PRO. 

3 The interpreter enters a read/parse/process loop. The Exit flag is tested at 
the start of the loop (this flag is set to TRUE when the user issues an .EXIT 
command). 

4 Input is read from the current input stream (terminal or file). 

5,6,7 The input is parsed by the Parse module, which flags any errors. 

8 If the input is a query (recognized by the leading :-), then procedure 
ProcessGoal (in module ProcGoal) is invoked to execute the query. 

9 If the input is a command (recognized by the leading .), then procedure 
ProcessCommand (in module Command) is invoked to execute the 
command. 

10 Otherwise the input must be a Prolog definite clause, which is added to the 
database of clauses. 

4.5 The Main Data Structures 

The Dictionary 
The dictionary comprises the string-store, symbol table and internal representation of clauses 
(the database). 

The String Store 
The string store maintained by module SStr contains the external names of Prolog functors and 
variables (symbols). Strings passed to the module are stored in a string area, and a string pointer 
(Sptr) is returned to the caller by which the stored string may be referenced. 

The Sptr is a pointer to an array[0..MaxStrLen] of char. The string dereferenced by this pointer 
is null-terminated so that it can be passed to procedures in the standard Str module and to the 
library WrStr procedure, which expect strings in this format. 

The module exports two procedures for accessing the string store: 

Sstore : stores a string in the string store, returning a pointer of type Sptr to the stored string, or 
NIL if insufficient memory remains on the heap. 

Sclear : clears the string store and deallocates memory used. 
 

It is up to the caller to impose a structure on the string buffer using the string pointers returned 
by procedure Sstore. The procedure Sclear deallocates the string store. The caller must ensure 
that no dangling pointers remain after a call to Sclear. 

The string store is implemented as a linked list of string areas (AreaRec). Each area contains a 
2-field header: 

NxtArea : pointer to next area 

NxtFree : index to the next free storage position in this area. 

The rest of the string area is an array of AreaSiz characters. Strings are stored sequentially in the 
array, and terminated by a null-character. Initially the string store consists of a single empty 
area. A new area is added to the HEAD of the list when the current one becomes full (ie when 
the length of the string to be stored exceeds the remaining space). 

The structure of the String Store is shown in Figure 21: 
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Figure 21: String Store showing linked buffers 

The Symbol Table 
The symbol-table imposes a structure on the string store and organizes the clause database for 
fast access during the addition of new clauses. The symbol table is organized using a simple 
hashing technique based on the first character of symbol names. Although simple, the scheme is 
sufficient for the purpose required, and has the added benefit of maintaining the predicate 
symbols sorted in lexicographic order as required by the database listing procedure (exported by 
module STable). 

The hashing function maps a symbol onto an entry in an array (SymTab, declared in module 
STable) indexed by the first character of the symbol. Each entry in this array is a pointer to a 
singly-linked list of records of type SymTabRec, one for each symbol in the database. Records 
in each linked list represent symbols having the same initial character in their name. The 
(simplified) format of the SymTabRec, declared in module DBase, is : 

 
Next    : Pointer to next SymTabRec in this linked list 
Name    : Pointer to symbol name string (in string store) 
Mode    : symbol mode (see section 4.7) 
 
Count   : for variable encoding (see section 4.11) 
         CASE SType : SymType OF 
              functor  : 
                   Arity   :  Arity of functor 
                   FstCls  :  Pointer to head of clause list 
                   LstCls  :  Pointer to tail of clause list 
           |  variable : 

 

In the case of functor symbols the arity is also recorded. Functors with different arity are 
considered to be distinct symbols and have separate entries. Symbol-table entries for functors 
also have pointers to the list of clauses (procedure) having this functor as predicate in the clause 
head. A pointer to the last clause is maintained to facilitate the addition of new clauses to the 
list. 

Within each linked list of the symbol table, records are kept in ascending lexicographic order. In 
the case of functor records with the same name, the arity is used as a secondary sorting key. 

The Clause Records 
A clause record (ClauseRec, declared in module DBase) is kept for each clause in the database. 
Clause records for the same procedure are kept in a linked list accessed through the symbol-
table entry for the predicate in the head of the clause. Clause records are maintained in the order 
of declaration, as required by the interpretation strategy. The format of a CluaseRec is as 
follows: 
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Next  :  Pointer to next clause  
CASE InBlt : BOOLEAN OF 
              TRUE  : Proc  : code representing an inbuilt procedure 
                      Entry : pointer to symbol-table entry for  
                              the name of this inbuilt procedure 
            | FALSE : Vars  : Number of variables in this clause 
                      Head  : pointer to the head of this clause 
                      Body  : pointer to the body of the clause 

 

Unlike user-defined and predefined procedures (which are normal Prolog clauses), clauses 
representing inbuilt procedures are not written in Prolog, and so do not have a head and a body. 
The Vars field is required during interpretation to calculate the amount of stack-space required 
to accommodate an activation record for this clause. Again, inbuilt procedures do not (in 
general) require an activation record, and so do not require this field. 

The Term Records 
The head and body of clauses are represented internally as linked lists of term records 
(TermRec, defined in module DBase). Term here does not imply that each record represents a 
term, merely that these structure are used in constructing internal term representations (source 
terms). The format of a TermRec is as follows: 

Next  :   Pointer to next TermRec in list 
Entry :   Pointer to symbol-table entry 
CASE SType  : SymType OF 
              list,functor : Args : pointer to linked list  
                                    of TermRecs representing 
                                    arguments if any 
           |  variable     : Ofst : variable number within clause 
 

The SType field flags the record as representing a variable, functor, list constructor or 
anonymous variable. A record representing the anonymous variable does not require any other 
field. 

If the term record represents a list or a functor, then a linked list of TermRecs representing the 
arguments (if any) is appended. Lists are stored just like any other structure, ie [a,b,c] is 
considered shorthand notation for the structure .(a,.(b,.c(,[]))), where . represents the list 
constructor functor. 

In the case of variables, the Ofst field records the variable's number within the clause. The 
parser assigns a number, starting with 0, to each new variable encountered in parsing a clause.  
This number is used during interpretation as an offset into the variable-binding area 
(environment vector) of the clause's activation record. The Entry field is only used for records 
representing functors and variables. 

It is necessary to include the symbol type (SType) within TermRec because, although in the case 
of variables and functors the type can be read from the symbol-table entry, in the case of special 
terms such as list constructors and anonymous variables a symbol-table entry does not exist. 
Also, including the symbol type here makes for less dereferencing when examining terms. 

The examples below demonstrate term representation using records of type TermRec. 
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ENTRY STYPE ARGS NEXT

p/3 functor

ENTRY STYPE OFST NEXT

X var 0
STYPE NEXT

anon
ENTRY STYPE ARGS NEXT

a/2 functor ∅

ENTRY STYPE OFST NEXT

B var 1
ENTRY STYPE OFST NEXT

X var 0 ∅

Figure 22: Representation of the term p(X,_,a(B,X)) 

ENTRY STYPE ARGS NEXT

∅ list ∅

ENTRY STYPE ARGS NEXT

∅ list ∅

ENTRY STYPE ARGS NEXT

b/0 functor ∅

ENTRY STYPE ARGS NEXT

∅ list ∅

ENTRY STYPE ARGS NEXT

c/0 functor ∅

ENTRY STYPE ARGS NEXT

∅ list ∅ ∅

ENTRY STYPE OFST NEXT

A var 0

Figure 23: Representation of the term [A,b,c], equivalent to .(A,.(b,.(c,[]))) 

ENTRY STYPE OFST NEXT

T var 1 ∅

ENTRY STYPE OFST NEXT

H var 0

ENTRY STYPE ARGS NEXT

∅ list ∅

Figure 24: Representation of the term [H|T], equivalent to .(H,T) 
Figure 25 shows how a clause is stored in the database. 
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NAME TYPE NEXT ARITY FSTCLS LSTCLS

â functor ∅ 1 ∅ ∅

ENTRY STYPE ARGS NEXT

P1/2 functor ∅

a
b
c

p
q
r
s

X
Y

∅

∅

∅

NAME TYPE NEXT ARITY FSTCLS LSTCLS

b̂ functor ∅ 0 ∅ ∅

NAME TYPE NEXT ARITY FSTCLS LSTCLS

b̂ functor ∅ 1 ∅ ∅

NAME TYPE NEXT ARITY FSTCLS LSTCLS

p̂1 functor 2
NAME TYPE NEXT ARITY FSTCLS LSTCLS

p̂2 functor ∅ 1 ∅ ∅

NAME TYPE NEXT ARITY FSTCLS LSTCLS

ŝ functor ∅ 2 ∅ ∅

NAME TYPE NEXT ARITY FSTCLS LSTCLS

X̂ var ∅ n/a n/a n/a

NAME TYPE NEXT ARITY FSTCLS LSTCLS

Ŷ var ∅ n/a n/a n/a

NEXT ∅
VARS 2
HEAD
BODY

INBUILT NO

ENTRY STYPE OFST NEXT

X var 0 ∅

ENTRY STYPE OFST NEXT

Y var 1 ∅

ENTRY STYPE OFST NEXT

X var 0

ENTRY STYPE ARGS NEXT

b/1 functor ∅

ENTRY STYPE OFST NEXT

Y var 1
ENTRY STYPE OFST NEXT

Y var 1 ∅

ENTRY STYPE ARGS NEXT

s/2 functor ∅

ENTRY STYPE ARGS NEXT

p2/1 functor
ENTRY STYPE ARGS NEXT

p1/2 functor

ENTRY STYPE ARGS NEXT

b/0 functor ∅ ∅

ENTRY STYPE ARGS NEXT

a/1 functor ∅

ENTRY STYPE OFST NEXT

X var 0

SYMBOL TABLE

SymTabRec

ClauseRec TermRec

Figure 25: Representation of p1(X,a(b)) :- p1(X,Y), p2(Y), s(Y,b(X)). 
The relationship between the string store, symbol table, and database is summarized in Figure 
26. 

CLAUSE RECORDS

TERM RECORDS

SYMBOL TABLE
HASH
TABLE

STRING
STORE

 
Figure 26: Relationship between symbol table, string store, and database 
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4.6 Operations On The Symbol Table And Database 
The symbol-table module STable allows insertion of new symbols into the symbol table by 
means of procedure Insert, which takes as parameters the print name (as a pointer to a string in 
the string store), type and (if applicable) arity of the symbol and creates a new entry in the 
symbol table if one doesn't already exist. A pointer to the entry is returned. 

No provision presently exists for deleting symbol-table records. Such deletions are not easy to 
implement, since a check has to be made that no references to the entry to be deleted remain in 
the database (otherwise dangling-pointer problems may arise). 

The symbol-table module is also responsible for producing listings (ie external representations) 
of terms and clauses in the database. 

The database module DBase exports various functions and predicates for examining term 
records, as well as constructors and destructors for records of type SymTabRec, ClauseRec and 
TermRec. Note that, since a Prolog database is static in the sense that clauses can be asserted 
and retracted but not changed, provision for altering database structures is neither provided nor 
required. 

The DBase module maintains a free list for each of the tree types of structures required by the 
database.  When a free list becomes exhausted, a chunk of memory is requested from the system 
and divided into structure-sized units which are linked to form a new free list. This scheme is 
preferable to invoking the system ALLOCATE each time a new structure is to be created 
because: 

1. system storage requests carry a not-insignificant time overhead.  This is evident from 
examination of the code for the standard Storage module, which uses a first-fit algorithm in 
allocating blocks on the system heap. 

2. the Storage module can only allocate memory in paragraph-sized chunks (16-bytes). Had 
structures to be allocated individually from the system heap, the wastage per unit allocation 
would be as follows: 
Structure size (bytes) allocation (paras) wastage (bytes) 
SymTabRec 20 2 12 

TermRec    13 1 3 

ClauseRec 15 1 1 
 

Given an average of 20 term records, 5 symbol-table records and 1 clause record per clause, this 
amounts to a hefty 121-byte overhead for each clause in the database. 

Constructors for these structures merely fetch the first record on the free list (calling an 
allocation procedure to create a new free list if this becomes exhausted). Similarly, destructors 
return a record to the free list where it can be reused. Since the destructors never release 
memory once allocated (except when the program terminates), system memory may become 
tied up on the database free lists, resulting in insufficient heap-space for the interpreter stack and 
trail. Although this is unlikely, a better memory management scheme than the one currently 
implemented is clearly required. Such a scheme would have to be able to reallocate database 
records to avoid memory fragmentation. This is not easy, given the number of pointers that will 
have to be adjusted. 

Another advantage of having all requests for structure creation and disposal channelled through 
the constructor and destructor functions rather than go directly to the system's ALLOCATE and 
DEALLOCATE procedures is that it makes collecting memory usage statistics easy. In the 
course of developing the interpreter, such statistics were found useful in gauging the memory 
requirements of a typical Prolog program 
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4.7 Symbol Modes 
The interpreter functions in two modes, system and user. A field in the symbol-table record, 
Mode, is used by the Insert procedure of module STable to record the mode under which a 
symbol has been declared. Initially the interpreter is in system mode. After the inbuilt-predicates 
have been declared (in module Inbuilt) and the predefined predicates in the file PREDEF.PRO 
loaded, the interpreter switches to user mode and starts processing user input. 

Thus all symbol-table entries for inbuilt and predefined symbols have their Mode field set to 
system, while all user entries have their Mode field set to user. The parser uses the Mode 
information to disallow the redefinition of system symbols by the user (see below). 

4.8 The Lexical Analyzer 
The parsing of clauses is handled by a simple recursive-descent parser implemented in module 
Parse. The procedure which drives the parser, procedure Reader, is in fact the main loop of the 
interpreter, continuously reading in and parsing input from the current input stream (file or 
terminal). 

The input stream is preprocessed by module Lex, which fetches tokens on demand and hands 
them to the parser. A shared structure CrntTkn is used to pass tokens from the lexical analyzer 
to the parser. 

A token is a pair consisting of a symbol class and a symbol instance. The class describes the 
type of token read in, and can be one of: 

ColonHyphen :� 
Comma , 
OpnBrk ( 
ClsBrk ) 
OpnSqr [ 
ClsSqr ] 
Bar | 
Dot . 
AnonymVar _ 
VarSym an identifier starting with an uppercase 

NonVarSym an identifier which is not a variable symbol 

FileEnd End of file on input 

If the token class is either VarSym or NonVarSym, the instance field of the token contains the 
identifier string read in. The instance field is not required for the other token classes (since there 
is only one instance of each class). 

4.9 The Parser 
The parser is a straightforward implementation of the following CFG (terminal symbols are 
printed in bold). 

<program>       ::=   <clause> { <clause> } 
<clause>        ::=   <predicate> [:- <body>] . 
<predicate>     ::=   <predicate symbol>  [ ( <argument list> ) ] 
<body>          ::=   <literal> { , <literal> } 
<literal>       ::=   <variable symbol> | 
                      <predicate> 
<argument list> ::=   <term> { , <term> } 
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<term>          ::=   <variable symbol> | 
                      <structure> 
<structure>     ::=   <constant symbol> [ ( <argument list> ) ] | 
                      <list> 
<list>          ::=   [ { <term> { , <term> } [ | <term> ] } ] 
<goal>          ::=   :- <body> . 

 

with a separate procedure for each non-terminal, as is usual in a recursive-descent parser.  Note 
that, although strictly speaking a variable is NOT a literal, the grammar allows variables to take 
the place of a literal in the body of a clause.  Such a variable represents an indirect procedure 
call, and must be bound to a 'normal' literal at runtime. 

The parser takes advantage of syntactic similarities between certain non-terminals of the 
language such as <structure> and <predicate>, which are collapsed into a single procedure. 

4.10 Constructing The Internal Representation Of A Clause 
Parsing a clause (we will for the moment ignore goal clauses) starts with procedure PrsClause 
constructing a ClauseRec ready to receive the clause representation. PrsPred is then called to 
parse the predicate at the head of the clause, returning a pointer to a TermRec (possibly with 
linked argument terms) representing the head predicate. If a ColonHyphen token is encountered 
next, PrsBody is called to parse the body of the clause, returning a pointer to a linked list of 
TermRecs representing the literals in the body of the clause. Otherwise the Body field of the 
ClauseRec is set to NIL. 

The main work of parsing the head and body of a clause, and of creating the TermRecs to 
represent these objects, is carried out by procedures PrsLiteral (with support procedure 
PrsArgList) and PrsTerm (with support procedure PrsList). Each of these procedures returns (on 
successful termination), a pointer to a TermRec, which is linked to the TermRec created by the 
caller.  This way, the parser constructs the linked lists of TermRecs representing the terms, 
literals and predicates in a clause. 

The following pseudo-code summarizes the process of parsing a clause. We assume that Token 
always contains the next token to be parsed (in reality, this has to be fetched from the lexical 
analyzer with a call to GetToken). For simplicity, PrsList is omitted. We let MakeTerm be a 
constructor of TermRecs, returning a pointer to a new instance of a term record. Similarly 
MakeClause. The notation Field(Pointer) is used instead of the more cumbersome 
Pointer^.Field. 

PROCEDURE PrsClause 
   C := MakeClause; 
   Head(C) := PrsPred; 
   IF Token = ColonHyphen THEN 
      Body(C) := PrsBody 
   ELSE 
      Body(C) := NIL; 
   link C into the database 
END PrsClause; 
 
PROCEDURE PrsPred : TermRecPtr; 
   RETURN PrsLiteral; 
END PrsPred; 
 
PROCEDURE PrsBody : TermRecPtr; 
   First := T := PrsLiteral; 
   WHILE Token = Comma DO 
      Next(T) := PrsLiteral; 
      T := Next(T); 
   RETURN First; 
END PrsBody; 
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PROCEDURE PrsLiteral : TermRec; 
   CASE Token OF 
      NonVarSym : T := MakeTerm; 
                  IF Token = OpnBrk THEN 
                     Args(T) := PrsArgList; 
                  RETURN T; 
      VarSym  : RETURN PrsTerm; 
END PrsLiteral; 
 
PROCEDURE PrsArgList : TermRec; 
   First := T := PrsTerm; 
   WHILE Token = Comma DO 
      Next(T) := PrsTerm; 
      T := Next(T); 
   RETURN First; 
END PrsArgList; 

 
PROCEDURE PrsTerm : TermRec; 
CASE Token OF 
   VarSym    : RETURN MakeTerm; 
   NonVarSym : RETURN PrsLiteral; 
   OpnBrk    : RETURN PrsArgList; 
END PrsTerm; 

 

When a new TermRec is created, the details of the term just parsed (primarily its type and a 
pointer to the symbol-table entry of its functor or variable identifer) are filled in, but this is not 
shown in the pseudo code. 

Linking a clause into the database involves locating the symbol-table record for the predicate at 
the head of the clause. The clause is then linked following the clause pointed to by the LstCls 
field of the symbol-table record, which is updated to point to the new clause.  If no clauses yet 
exist for this predicate (FstCls=NIL), the FstCls and LstCls fields are set to point to the new 
clause. 

4.11 Encoding Variables 
The encoding of the variables in a clause is performed as the clause is being parsed. A numeric 
field (Count) in the symbol-table record SymTabRec is used for this purpose, together with a 
variable NVars. 

Count is set to a distinguished value NoCount during the creation of a new symbol-table entry, 
while NVars is reset to 0 at the beginning of parsing each clause. When a variable term is 
encountered by PrsTerm, it looks at the Count field of the symbol-table entry for that variable 
symbol. If the Count field is still NoCount it is set to the current value of NVars, which is then 
incremented.  The value of the Count field in the symbol-table entry of a variable is copied to 
the Ofst field of the TermRec. This way, different occurrences of the same variable within a 
clause are encoded with the same offset value. The following revised version of PrsTerm 
includes the extra processing required to encode variables: 

PROCEDURE PrsTerm : TermRec; 
   CASE Token OF 
      VarSym    : T := MakeTerm; 
                  S := Symbol Table Entry of Varsym; 
                  IF Count(S) = NoCount THEN 
                     Count(S) := NVars; 
                     INC(NVars); 
                  Ofst(T) := Count(S); 
                  RETURN T; 
      NonVarSym : RETURN PrsLiteral; 
      OpnBrk    : RETURN PrsList; 
END PrsTerm; 
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When a clause has been successfully parsed, the final value of NVars is the number of distinct 
variables in the clause, and is recorded in the Vars field of the ClauseRec. Finally, all symbol 
table entries of variables within the clause have their Count field reset to NoCount in 
preparation for parsing the next clause. 

4.12 Preventing Redefinition Of System Predicates By The User 
PrsClause prevents the user from redefining system predicates. When the head of a clause has 
been parsed (by PrsPred), PrsCls checks to see whether the symbol-table record for the 
predicate symbol in the head has its Mode field set to SYSTEM. If so, and the interpreter is 
currently in user mode, then an error condition is raised and the current clause is abandoned. 
Note that this does not prevent the user from calling system predicates,  since such calls appear 
as literals in the body of a clause, not as the predicate in the head. 

4.13 Parsing Goal Clauses 
PrsClause recognizes a goal clause by the first token, which is always ColonHyphen. In the case 
of a goal clause, the head field is set to NIL, and the body is parsed by PrsBody as for a definite 
clause. When the goal clause has been successfully parsed, it is not linked into the database, but 
is passed to procedure ProcessGoal (in module ProcGoal) for immediate execution. 

4.14 The Runtime Structures 

Activation Frames 
A procedure activation frame is a variable-length record (declared in module Stack) as follows: 

Frame = RECORD 
           Prev       : pointer to start of previous frame 
           Parent     : pointer to parent frame 
           CrntLit    : pointer to current call 
           NxtClause  : pointer to next untried candidate clause 
           CrntBTP    : pointer to frame to backtrack to 
           Trail      : trail pointer 
           Vars       : size of binding array 
           Binds      : variable-sized array of Binding records 
        END; 

The first field of the frame contains a pointer to the start of the previous frame on the stack, and 
is only required by the stack-handling routines (discussed below). The next five fields hold 
control information required by the interpreter. 

The Vars field records the number of variables in the activated clause, which is also the number 
of entries in the bindings array Binds. Each variable in the clause is mapped onto an entry in this 
array by the offset number (Ofst) assigned during parsing.  The bindings array records the 
environment (ie variable assignments) defining a clause instance. 

Since Modula-2 does not support dynamically-dimensioned arrays, Binds is actually declared as 
an array of size MaxVars (a constant defined in module DBase, declaring the maximum number 
of distinct variables allowed in a single clause - currently 1000). However, the frame-creation 
routine MAKEFrame (in module Stack) only allocates memory for Vars entries in the array, so 
that the Vars field completely determines the size of a frame. 

Binding Records 
Each entry in array Binds records the binding of a single variable in the clause instance 
represented by the frame. The binding of a variable encoded with an offset number x in a clause 
is recorded in the entry Binds[x] of the frame representing an instance of the clause. Three types 
of bindings are recognized by the interpreter: 

 
free -  if a variable is not currently bound 
lit  -  if the variable is bound to a term skeleton 
var  -  if the variable is currently bound to another variable. 



53 

The following schematic (Figure 27) illustrates these three types of bindings. 

0
1
2

Binds

BindRec

Free
Lit
Var

a

b c

 
Figure 27: Three different variable bindings 

Each variable binding is recorded in a record of type Binding, declared as: 
Binding  = RECORD 
           CASE BType : (free, var, lit) OF 
                var   : BPtr : ptr to another binding record 
             |  lit   : TPtr : ptr to a term skeleton 
                        Env  : ptr to frame containing environment 
           END; 
           END; 

 

If the variable is bound to another variable, then the field BPtr in its Binding record contains a 
pointer to the binding record of the variable to which it is currently bound. 

If the variable is bound to a term, then field TPtr contains a pointer to the term-skeleton in the 
database, while field Env contains a pointer to a frame containing the environment for the 
variables in the term skeleton. For example, assume that variable 0 in a clause is bound to the 
term a(X:1), where the notation X:1 represents variable X encoded as offset 1. The following 
diagram shows the situation, with frame 1 providing the environment for the interpretation of 
variable X in the term a(X:1) to which variable 0 of frame 2 is bound. In this case, X is a free 
variable. 

a
Frame 2

0
1

control
LIT ENV TPTR

Frame 1
0
1

control

FREE

X:1

 
Figure 28: Variable 0 in Frame 2 is bound to the term a(X:1), with Frame 1 as 

environment 

The Stack Module 
The stack module Stack manages the runtime stacks - the activation (frame) stack and the trail. 
The frame stack and the trail share a common block of memory and grow towards each other 
from opposite ends of the block. 

While trail records are of uniform size (consisting merely of pointers to binding records), the 
procedure activation frames held on the runtime stack are variable-sized. Because of this, and 
because a temporary frame is needed by the unification process, the two stacks are handled very 
differently. In particular, TRAILTOP points to the NEXT free location on the trail, while 
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STACKTOP points to the LAST OCCUPIED location on the stack. Also, frame records require 
a pointer to the previous record on the stack. 

The main pointers associated with the two stacks are: 

STACKBASE

STACKTOP

NEWFRAME

STACKEND

TRAILBASE

TRAILTOP

 
Figure 29: The runtime stacks. 

NewFrame is required by the unification procedure. At the start of a unification, a call to 
MAKEFrame creates a NewFrame of the required size just beneath StackTop. If the unification 
succeeds, NewFrame is pushed onto the stack and becomes the new StackTop. Otherwise it is 
overwritten by the subsequent creation of a new NewFrame. StackEnd keeps track of the 
location where NewFrame ends, and is required in checking for collisions between the 
procedure-activation stack and the trail. 

Besides exporting the frame and binding-record types, module Stack also provides frame 
creation and stack operations.  The main stack operations are: 

MAKEFrame (Vars) : Frame Pointer 
Returns a pointer to a new stack frame immediately below stacktop large enough to 
accommodate Vars binding records. This is the frame that gets pushed next time 
PUSHFrame is called. The Vars and Trail fields of the new frame are initialized, and all 
variable bindings are set to free. NIL is returned if creating the frame would result in the 
frame stack colliding with the trail. 

PUSHFrame 
Pushes the frame created by MAKEFrame (NewFrame) onto the stack. This entails setting 
the Prev field of NewFrame to the current value of StackTop, setting StackTop to 
NewFrame, and NewFrame to StackEnd. 

POPFrames  (Frame Pointer) 
Pops all frames on stack from and including the frame pointed to by Frame Pointer. All 
variables instantiated from this frame onwards are uninstantiated, and TrailTop is reset to 
the value recorded in the frame referenced by Frame Pointer. 

Module Stack also provides routines which record variable instantiations on the Trail 
(STORETrail), dereference variables bound to other variables (DeRef), return the address of the 
binding record of a variable within a frame (BindAdr) and test whether a variable is free or 
instantiated. 
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4.15 The Interpreter 
The interpreter starts by creating a frame representing entry into the goal, which is made the 
current procedure. Processing then proceeds as shown in Figure 30.  The following comments 
refer to the numbered boxes in the figure. 

STOP

CALL =
FIRST CALL
IN CLAUSE

CALL =
PENDING

CALL

PRINT
SOLUTION

PROC =
1ST CANDIDATE

CLAUSE

PROC =
1ST UNTRIED

CLAUSE

PUSH
FRAME

BACKTRACK

START

CAN
BACKTRACK

ASSERTION
CALL

PENDING

CAN
BACKTRACK

UNIFY

1 2

3 4 5

6 7

8 9 10

11

12

13

Y

N

N

Y

N

Y

Y
N

Y

N

Figure 30: Simplified interpreter flowchart. 
Box Num. Comments: 

1 If the current clause is an assertion (ie has no body), then a PROCEDURE EXIT 
step is immediately executed, and the parent procedure is resumed at its next 
call (boxes 2 and 4). Otherwise, a PROCEDURE ENTRY step is executed (box 
3), with the first call in the body of the procedure being the new CALL. 

2 On procedure exit, the frame stack is searched backwards looking for a parent 
procedure which still has some pending calls. If no pending calls are left, then a 
solution has been found, and the bindings of variables in the goal clause (if any) 
are printed out (box 5). 

3,4 CALL SELECTION. The next call selected is either the first call in the current 



56 

procedure (if this is not an assertion), or the next call of the most recent parent 
procedure which still has some pending calls left. 

5,6 After printing out a solution, the interpreter attempts to backtrack in search of 
further solutions. Backtracking involves popping all frames up to and including 
the most recent backtrack-point and trying a different path in the search tree. If 
there is no backtrack-point, then backtracking is not possible, so execution 
terminates. 

9,10 PROCEDURE SELECTION. The next candidate clause to be tried is either 
the first clause for the current call if no backtracking has occurred (box 9) or, in 
the case of backtracking, the next untried clause for the call backtracked to (box 
10). 

11 UNIFICATION. An attempt is made to unify the current call with the head of 
the current (candidate) clause. A record of the variables instantiated in the 
course of unifying the call and the head of the candidate clause is kept on the 
trail. Unification constructs a temporary frame for the candidate clause (with a 
call to MAKEFrame), which is pushed onto the stack (box 8) if the unification 
succeeds, but is otherwise discarded. 

12,13 If unification fails, then the interpreter attempts to backtrack. Shallow 
backtracking - the process of trying a different candidate clause for the current 
call - is attempted first. If this fails, then deep backtracking - backtracking to a 
previous call - is attempted. 

8 If unification succeeds, then the temporary frame constructed during the 
unification process is pushed onto the stack. The clause whose head successfully 
unified with the current call becomes the procedure to be entered next. If some 
untried candidate clauses remain for this call, then the frame just stacked 
becomes the most recent backtrack-point. 

 

When a call to an inbuilt procedure is encountered following the call selection process in boxes 
3 and 4, the Proc field of the ClauseRec representing the inbuilt procedure is used to determine 
the action to be performed. No frame is constructed for a call to an inbuilt procedure, and 
interpretation passes immediately to the next call in the body of the current procedure. 

A count is kept of the number of solutions output by box 5. If the interpretation procedure 
terminates (box 7) without having found any solutions, then the query fails, and the message 
NO is output. 

4.16 Unification 
The unification procedure UnifyTerm (in module ProcGoal) takes two term instances as 
parameters and attempts to unify them, recursively traversing the term trees to unify the terms' 
arguments. The procedure succeeds (returning TRUE) if the terms are unifiable, instantiating 
variables in the process. Otherwise the procedure fails, returning FALSE. 

Each term instance consists of a pointer to a term skeleton in the database, and a pointer to a 
frame containing the environment. This is the usual representation of term instances in a 
structure-sharing Prolog implementation. The following pseudo-code sketches the unification 
algorithm. We assume that the two terms T1 and T2 are completely dereferenced - ie if either 
term is a variable, then it is replaced by the term to which it is bound (which may be a free 
variable). 
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PROCEDURE UnifyTerm (T1,T2 : TermPtr; E1,E2 : FramePtr) : BOOLEAN; 
IF either term is the anonymous variable THEN RETURN TRUE; 
 
IF neither term is a free variable THEN 
   IF T1 and T2 do not have the same functor THEN RETURN FALSE 
   ELSE FOR each argument A1,A2 of T1,T2 DO 
      IF NOT UnifyTerm (A1,A2,E1,E2) THEN RETURN FALSE 
   RETURN TRUE; 
 
At this point, at least one of T1,T2 must be a free variable. This 
leads to the following cases: 
 
1.  Both T1 and T2 are free variables: 
    Bind T2 to T1 
 
2.  T2 is free, while T1 is a structure or a variable bound to 
    a structure. 
    Bind T2 to T1 with E1 as environment. 
 
3.  T1 is free, while T2 is a structure or a variable  
    bound to a structure. 
    Bind T1 to T2 with E2 as environment. 
 
   RETURN TRUE; 
END UnifyTerm; 

 

Binding a free variable Ti (encoded as offset Oi) to a term Tj involves altering the binding record 
indexed by Oi in the binding array of frame Ei. If Tj is a structure (or a variable instantiated to a 
structure), then the binding record for Ti is made to point to the structure Tj, with Ej as 
environment for any variables in Tj. If Tj is a free variable, then Ti is made to point to the 
binding record of Tj within frame Ej. 

When a variable is instantiated during unification, a pointer to the variable's binding record is 
pushed on the trail so that all bindings can be undone on backtracking. Since backtracking pops 
all frames created since the last backtrack-point, only instantiations of variables in frames earlier 
than the latest backtrack-point need be recorded.  

The algorithm does not perform the occur check, as is normal in Prolog. This may lead to the 
construction of cyclic structures, but makes the algorithm linear in the number of subterms for 
the two terms to be unified. The occur check was eliminated from the original Marseille 
interpreter [COH88] for pragmatic reasons. In a way, this simplification of Robinson's 
unification algorithm is what has made Prolog a viable programming language. Some 
implementers have taken advantage of the potentially cyclic structures generated by the 
simplified unification algorithm, and allow the construction and handling of infinite terms in 
Prolog (see [FIL84][HAR84]). 

4.17 Enhancements To The Interpreter 
Besides the implementation of various optimization techniques, primarily deterministic-frame 
optimization (which could form the basis for implementing both LAST-CALL 
OPTIMIZATION and TAIL-RECURSION OPTIMIZATION), enhancements may include the 
addition of arithmetic and a better parser. 

The recursive-descent parser used is neither very efficient nor suitable for Prolog. Problems 
would be encountered in implementing predicates like op and clause, which are easier to 
implement in a bottom-up parser. 

The representation of terms may also be improved - a more compact representation of lists is 
possible, although this will somewhat complicate the unification algorithm. Memory 
management also needs improving to control the amount of memory which currently 
accumulates on the freelists maintained by the database module. This would require reallocating 
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clauses in the database, which is not a straightforward matter since a potentially large number of 
pointers may need to be adjusted. 
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APPENDIX A 
PROPOS SOURCE CODE 
DEFINITION MODULE Dbase; 
 
IMPORT Str; 
 
CONST 
    maxsymln =  30; 
 
TYPE 
    symbol   =  ARRAY [1..maxsymln] OF CHAR; 
 
    HeadPtr  =  POINTER TO HeadRec; 
    BodyPtr  =  POINTER TO BodyRec; 
    AtomPtr  =  POINTER TO AtomRec; 
 
    HeadRec  =  RECORD 
                  sym    : symbol; 
                  nxt    : HeadPtr; 
                  clause : BodyPtr; 
                END; 
 
    BodyRec  =  RECORD 
                  nxt    : BodyPtr; 
                  first  : AtomPtr; 
                END; 
 
    AtomRec  =  RECORD 
                  sym    : HeadPtr; 
                  nxt    : AtomPtr; 
                END; 
 
VAR goal : HeadPtr; 
 
PROCEDURE InsertSymbol (s:symbol) : HeadPtr; 
 
PROCEDURE listing; 
PROCEDURE ListClauses (h : HeadPtr); 
 
PROCEDURE NewHead () : HeadPtr; 
PROCEDURE NewBody () : BodyPtr; 
PROCEDURE NewAtom () : AtomPtr; 
 
PROCEDURE EqStr(s1,s2: ARRAY OF CHAR) : BOOLEAN; 
 
PROCEDURE DisposeClause(H : HeadPtr); 
 
END Dbase. 
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IMPLEMENTATION MODULE Dbase; 
 
FROM Storage IMPORT ALLOCATE, DEALLOCATE; 
FROM SYSTEM  IMPORT TSIZE; 
FROM IO      IMPORT WrStr, WrLn, WrChar; 
FROM Str     IMPORT Length; 
FROM AsmLib  IMPORT CompareStr; 
 
TYPE dbase    =  ARRAY ['a'..'z'] OF HeadPtr; 
VAR  clauses : dbase; 
 
 
(* Compare two strings for equality *) 
 
        PROCEDURE EqStr(s1,s2: ARRAY OF CHAR) : BOOLEAN; 
        BEGIN 
           RETURN (CompareStr(s1,s2)=0); 
        END EqStr; 
 
 
(* Allocate size bytes on the heap, returning pointer *) 
 
        PROCEDURE new (size : CARDINAL) : ADDRESS; 
        VAR addr : ADDRESS; 
        BEGIN 
           ALLOCATE(addr,size); 
           RETURN addr; 
        END new; 
 
 
(* Create a new HeadRec *) 
 
        PROCEDURE NewHead () : HeadPtr; 
        BEGIN 
           RETURN (new(TSIZE(HeadRec))); 
        END NewHead; 
 
 
(* Create a new BodyRec *) 
 
        PROCEDURE NewBody () : BodyPtr; 
        BEGIN 
           RETURN (new(TSIZE(BodyRec))); 
        END NewBody; 
 
 
(* Create a new AtomRec *) 
 
        PROCEDURE NewAtom () : AtomPtr; 
        BEGIN 
           RETURN (new(TSIZE(AtomRec))); 
        END NewAtom; 
 
 
(* Dispose of all clauses associated with a HeadRec *) 
 
        PROCEDURE DisposeClause (H : HeadPtr); 
        VAR b,b1 : BodyPtr; 
            a,a1 : AtomPtr; 
        BEGIN 
           b := H^.clause; 
           WHILE b # NIL DO 
              a := b^.first; 
              WHILE a# NIL DO 
                 a1 := a^.nxt; 
                 DEALLOCATE(a,TSIZE(AtomRec)); 
                 a := a1; 
              END; 
              b1 := b^.nxt; 
              DEALLOCATE(b,TSIZE(BodyRec)); 
              b := b1; 
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           END; 
           H^.clause := NIL; 
        END DisposeClause; 
 
 
 
(* Create and initialize a new HeadRec *) 
 
        PROCEDURE makenode(s:symbol) : HeadPtr; 
        VAR p : HeadPtr; 
        BEGIN 
           p := NewHead(); 
           p^.sym := s; 
           p^.nxt := NIL; 
           p^.clause := NIL; 
           RETURN p; 
        END makenode; 
 
 
(* Search for a symbol in the symbol table, creating a new HeadRec 
   for the symbol if not found. Returns pointer to found/created 
   symbol table node *) 
 
        PROCEDURE InsertSymbol (s:symbol) : HeadPtr; 
        VAR p : HeadPtr; 
        BEGIN 
           p := clauses[s[1]]; 
           WHILE (p # NIL) AND (NOT EqStr(p^.sym,s)) DO p := p^.nxt; END; 
           IF (p=NIL) THEN 
              p := makenode(s); 
              p^.nxt := clauses[s[1]]; 
              clauses[s[1]] := p; 
           END; 
           RETURN p; 
        END InsertSymbol; 
 
 
(* Output i space characters. For tabulation when listing the database *) 
 
        PROCEDURE PrintSpcs (i: CARDINAL); 
        VAR j : CARDINAL; 
        BEGIN 
           FOR j := 1 TO i DO WrChar(' '); END; 
        END PrintSpcs; 
 
 
(* List clauses *) 
 
        PROCEDURE ListClauses (h : HeadPtr); 
        VAR b : BodyPtr; 
            a : AtomPtr; 
            l : CARDINAL; 
        BEGIN 
        WHILE h # NIL DO 
           b := h^.clause; 
           WHILE b # NIL DO 
              l := Length(h^.sym)+4; 
              WrStr(h^.sym); 
              a := b^.first; 
              IF a # NIL THEN WrStr(' :- ') ELSE WrStr('.'); WrLn END; 
              WHILE a # NIL DO 
                 WrStr(a^.sym^.sym); 
                 a := a^.nxt; 
                 IF a # NIL THEN 
                    WrStr(','); 
                    WrLn; 
                    PrintSpcs(l) 
                 ELSE WrStr('.'); 
                      WrLn; 
                 END; 
              END; 
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              b := b^.nxt; 
           END; 
           h := h^.nxt; 
        END; 
        END ListClauses; 
 
 
(* List all clauses in the database *) 
 
        PROCEDURE listing; 
        VAR  c : CHAR; 
        BEGIN 
           FOR c := 'a' TO 'z' DO 
              ListClauses(clauses[c]); 
           END; 
        END listing; 
 
 
(* --- module initialization ---------------------------------------------- *) 
 
VAR c : CHAR; 
BEGIN 
   FOR c := 'a' TO 'z' DO clauses[c] := NIL; 
   END; 
   goal := makenode('[GOAL]'); 
END Dbase. 



65 

DEFINITION MODULE Lex; 
 
IMPORT FIO; 
FROM   Dbase IMPORT HeadPtr; 
 
TYPE TknCls = (dot, com, col, eop, sym, err); 
 
VAR Token : RECORD 
               Class : TknCls; 
               Inst  : HeadPtr; 
            END; 
 
    FPtr : FIO.File; 
 
PROCEDURE GetToken; 
 
END Lex. 



66 

IMPLEMENTATION MODULE Lex; 
 
 
FROM Dbase IMPORT InsertSymbol, maxsymln, symbol; 
IMPORT IO; 
 
CONST   carret  = 15C; 
        newln   = 12C; 
        tab     = 11C; 
        nullch  = 00C; 
 
TYPE    charset = SET OF CHAR; 
 
VAR unrd : BOOLEAN; 
    c    : CHAR; 
 
 
(* Get one character from the current input stream, or reread the 
   last character read if the unrd flag is TRUE *) 
 
        PROCEDURE getchar; 
        BEGIN 
           IF unrd THEN unrd := FALSE 
           ELSE 
              IF FPtr = FIO.StandardInput THEN c := IO.RdChar() 
              ELSE 
                 c := FIO.RdChar(FPtr); 
                 IF FIO.EOF THEN c := nullch; END; 
              END; 
           END; 
           IF c IN charset{carret,newln,tab} THEN c := ' ' END; 
        END getchar; 
 
 
(* Skip space characters in the input *) 
 
        PROCEDURE skipspcs; 
        BEGIN 
              REPEAT getchar; UNTIL (c # ' '); 
        END skipspcs; 
 
 
(* Return next token in variable Token. *) 
 
        PROCEDURE GetToken; 
        VAR i : CARDINAL; 
            s : symbol; 
        BEGIN 
           skipspcs; 
           CASE c OF 
              ',' : Token.Class := com; 
           |  '.' : Token.Class := dot; 
           |  nullch : 
                    Token.Class := eop; 
           |  ':' : getchar; 
                    IF c='-' THEN 
                       Token.Class := col; 
                    ELSE 
                       Token.Class := err 
                    END; 
           | 'a'..'z' : 
                    i := 1; 
                    WHILE (c IN charset{'a'..'z'}) AND (i<=maxsymln) DO 
                       s[i] := c; 
                       INC(i); 
                       getchar; 
                    END; 
                    s[i] := 00C; 
                    unrd := c#' '; 
                    Token.Class := sym; 
                    Token.Inst  := InsertSymbol(s); 
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            ELSE    Token.Class := err; 
            END; 
        END GetToken; 
 
(* --- module initialization ---------------------------------------------- *) 
 
BEGIN 
   FPtr := FIO.StandardInput; 
   unrd := FALSE; 
END Lex. 
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MODULE PROPOS; 
 
IMPORT FIO; 
FROM IO     IMPORT WrStr, WrLn, WrChar, RdStr; 
FROM AsmLib IMPORT ParamCount, ParamStr, DisableBreakCheck; 
FROM Dbase  IMPORT symbol, HeadPtr, BodyPtr, AtomPtr, HeadRec, BodyRec, 
                   AtomRec, NewHead, NewBody, NewAtom, listing, 
                   ListClauses, DisposeClause, EqStr, goal; 
FROM Lex    IMPORT TknCls, Token, GetToken, FPtr; 
 
TYPE 
    filename  =  ARRAY [1..40] OF CHAR; 
    message   =  ARRAY [1..70] OF CHAR; 
 
VAR FName : filename; 
    Exit  : BOOLEAN; 
 
 
(* Report error *) 
 
        PROCEDURE error(m:message); 
        BEGIN 
           WrStr('*** ERROR: '); 
           WrStr(m); 
           WrLn; 
        END error; 
 
 
(* Attempt to prove the proposition pointed to by HeadPtr. *) 
 
        PROCEDURE Prove (h:HeadPtr); 
 
             PROCEDURE proveclause(h:HeadPtr) : BOOLEAN; 
             VAR b : BodyPtr; 
                 t : BOOLEAN; 
 
                 PROCEDURE provebody(b:BodyPtr) : BOOLEAN; 
                 VAR a : AtomPtr; 
                     t : BOOLEAN; 
                 BEGIN 
                    t := TRUE; 
                    a := b^.first; 
                    WHILE (a # NIL) AND (t) DO 
                       t := proveclause(a^.sym); 
                       a := a^.nxt 
                    END; 
                    RETURN t; 
                 END provebody; 
 
             BEGIN 
                t := FALSE; 
                b := h^.clause; 
                WHILE (b # NIL) AND ( NOT t) DO 
                   t := provebody(b); 
                   b := b^.nxt 
                END; 
                RETURN t; 
             END proveclause; 
 
        BEGIN 
           ListClauses(goal); 
           IF (h=NIL) OR (NOT proveclause(h)) THEN WrStr('NO') 
                                              ELSE WrStr('YES'); END; 
           WrLn; 
        END Prove; 
 
 
(* Process a command, introduced by a . *) 
 
        PROCEDURE ProcessCommand () : BOOLEAN; 
        VAR ok : BOOLEAN; 
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        BEGIN 
           ok := TRUE; 
           GetToken; 
           IF    EqStr (Token.Inst^.sym,'listing') THEN 
                 listing 
           ELSIF EqStr (Token.Inst^.sym,'exit') THEN 
                 Exit := TRUE; 
           ELSIF EqStr (Token.Inst^.sym,'retract') THEN 
                 GetToken; 
                 DisposeClause (Token.Inst); 
           ELSE  error('Unrecognized command'); 
                 ok := FALSE; 
           END; 
           RETURN ok; 
        END ProcessCommand; 
 
 
(* Construct a linked list of AtomRecs representing the body 
   of a clause *) 
 
        PROCEDURE FormBody(VAR a:AtomPtr) : BOOLEAN; 
        VAR a1,a2 : AtomPtr; 
        BEGIN 
           a  := NIL; 
           IF Token.Class=col THEN 
           REPEAT 
              GetToken; 
              IF Token.Class=sym THEN 
                 a2      := NewAtom(); 
                 a2^.nxt := NIL; 
                 a2^.sym := Token.Inst; 
                   IF a=NIL THEN a := a2 
                   ELSE a1^.nxt := a2; END; 
                 a1 := a2; 
                 GetToken; 
              END; 
           UNTIL Token.Class # com; 
           END; 
           IF Token.Class # dot THEN error('. expected'); END; 
           RETURN Token.Class=dot; 
        END FormBody; 
 
 
(* Construct a BodyRec for a new clause *) 
 
        PROCEDURE ReadBody(p:HeadPtr) : BOOLEAN; 
        VAR c,c1 : BodyPtr; 
            a    : AtomPtr; 
            b    : BOOLEAN; 
        BEGIN 
           c := p^.clause; 
           c1 := NewBody(); 
           c1^.nxt := NIL; 
           IF c = NIL THEN p^.clause := c1 
           ELSE 
              WHILE c^.nxt # NIL DO c:=c^.nxt END; 
              c^.nxt := c1 
           END; 
           b := FormBody(a); 
           c1^.first := a; 
           RETURN b; 
        END ReadBody; 
 
 
(* Read in and process a clause, linking definite clauses into the 
   database and processing queries and commands *) 
 
        PROCEDURE ReadClause() : BOOLEAN; 
        VAR h : HeadPtr; 
        BEGIN 
           GetToken; 
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           CASE Token.Class OF 
             eop  :  RETURN FALSE; 
           | dot  :  RETURN ProcessCommand (); 
           | col  :  IF ReadBody(goal) THEN 
                        Prove (goal); 
                        DisposeClause(goal); 
                        RETURN TRUE; 
                     ELSE 
                        error('Error in query'); 
                        RETURN FALSE; 
                     END; 
           | sym  :  h := Token.Inst; 
                     GetToken; 
                     RETURN ReadBody(h); 
             ELSE 
               error('Clause head expected'); 
               RETURN FALSE 
             END; 
        END ReadClause; 
 
 
(* Read in a set of clauses from file *) 
 
        PROCEDURE loadprog (fname : filename); 
        VAR buffer : ARRAY [1..512+FIO.BufferOverhead] OF BYTE; 
        BEGIN 
           FPtr := FIO.Open(fname); 
           FIO.AssignBuffer(FPtr,buffer); 
           REPEAT UNTIL NOT ReadClause(); 
           FIO.Close(FPtr); 
        END loadprog; 
 
 
(* --- initialization and main loop --------------------------------------- *) 
 
BEGIN 
   Exit := FALSE; 
   DisableBreakCheck; 
   IF ParamCount() > 0 THEN 
      ParamStr(FName,1); 
      loadprog(FName); 
   END; 
   FPtr := FIO.StandardInput; 
   REPEAT 
      WrLn; 
      WrStr('> '); 
      IF ReadClause() THEN ; END; 
   UNTIL Exit; 
END PROPOS. 
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APPENDIX B 
VRP Source Code 

VRP - MAIN MODULE 
MODULE VRP; 
 
(* VERY RUDIMENTARY PROLOG -- Startup module. 
   Initializes debug flags, gets any command-line arguments, and 
   enters the reader. 
*) 
 
IMPORT Parse; 
FROM   DBase    IMPORT MEMUsage; 
FROM   Streams  IMPORT ToTerm, FromTerm, ToPrinter, WriteLn, WrLn; 
FROM   AsmLib   IMPORT ParamCount, ParamStr; 
FROM   Inbuilt  IMPORT DefineInbuilts; 
IMPORT STable; 
IMPORT Lex; 
IMPORT ProcGoal; 
IMPORT Stack; 
 
 
(* ------------------------------------------------------------------------ *) 
 
 
VAR FName : ARRAY[1..100] OF CHAR; 
 
BEGIN 
   ToTerm; 
   Lex.DBG        := FALSE; 
   Parse.DBG      := FALSE; 
   STable.DBG     := FALSE; 
   ProcGoal.DBG   := FALSE; 
   Stack.DBG      := FALSE; 
 
   IF (ParamCount()=1) THEN 
      ParamStr(FName,1) 
   ELSE 
      FName := ""; 
   END; 
   WrLn; 
   WriteLn('VRP - Very Rudimentary Prolog -- 1990'); 
   WrLn; 
   DefineInbuilts; 
   Parse.Reader (FName); 
   ToTerm; 
   FromTerm; 
END VRP. 



72 

GLOBAL - DEFINITION 
 
DEFINITION MODULE Global; 
 
(* This module declares some global variables and types 
 
   Exports: 
        memory usage reporting 
        Exit : is set to TRUE to flag an exit condition. 
        Mode : is set to 'system' during the reading in of the predefined 
               predicates. During user input, mode is set to 'user'. 
               Predicates defined under 'system' may not be redefined in 
               user mode. 
*) 
 
 
TYPE  mode = (system, user); 
 
VAR   Exit : BOOLEAN; 
      Mode : mode; 
 
 
PROCEDURE MEMUsage; 
 
 
END Global. 
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GLOBAL - IMPLEMENTATION 
 
IMPLEMENTATION MODULE Global; 
 
IMPORT DBase; 
IMPORT Stack; 
IMPORT Streams; 
IMPORT Storage; 
 
 
(* ------------------------------------------------------------------------ *) 
 
 
PROCEDURE MEMUsage; 
BEGIN 
   DBase.MEMUsage; 
   Stack.MEMUsage; 
   Streams.WrStr     ("Largest block on heap : "); 
   Streams.WrLngCard (LONGCARD(Storage.HeapAvail(Storage.MainHeap)) * 16,0); 
   Streams.WriteLn   (' bytes.'); 
   Streams.WrStr     ("Total space on heap   : "); 
   Streams.WrLngCard (LONGCARD(Storage.HeapTotalAvail(Storage.MainHeap)) * 16,0); 
   Streams.WriteLn   (' bytes.'); 
END MEMUsage; 
 
 
(* --- Module initialization ---------------------------------------------- *) 
 
 
BEGIN 
   Exit := FALSE; 
   Mode := system; 
END Global. 
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SSTR - DEFINITION 
 
DEFINITION MODULE Sstr; 
(*--------------------------------------------------------------------------- 
   String-storage manager 
   ---------------------- 
   This module maintains a string-store. Strings passed to the module 
   are stored in a string area, and a string pointer (Sptr) is returned 
   to the caller. 
 
   The Sptr is a pointer to an arry[0..MaxStrLen] of char. The string 
   dereferenced by this pointer is NIL terminated so that it can be 
   passed to procedures in the standard Str module, and to WrStr in IO 
   module. 
 
   It is up to the caller to impose a structure on the string buffer using 
   the string pointers returned by procedure Sstore. 
 
   The procedure Sclear deallocates the string store. The caller must 
   ensure that no dangling pointers remain after a call to Sclear. 
----------------------------------------------------------------------------*) 
 
CONST MaxStrLen = 250; 
TYPE  Sptr      = POINTER TO ARRAY [0..MaxStrLen] OF CHAR; 
 
 
(* Clear string store 
   FUNCTION     Clears all strings in string-store and deallocates 
                memory. 
   CALL         Sclear(); 
*) 
PROCEDURE Sclear(); 
 
 
 
(* Store String 
   FUNCTION    Store string in string area, returning pointer to the 
               string (Sptr), or NULL if insufficient space. 
   CALL        Ptr := Sstore(S); 
               Ptr is of type Sptr 
               S is an array of char (variable only). 
*) 
PROCEDURE Sstore (VAR s : ARRAY OF CHAR) : Sptr; 
 
 
END Sstr. 



75 

 SSTR - IMPLEMENTATION 
 
IMPLEMENTATION MODULE Sstr; 
 
(*--------------------------------------------------------------------------- 
 The string store is implemented as a linked list of string areas (AreaRec). 
 Each area contains a 2-field header: 
 
          NxtArea : pointer to next area 
          NxtFree : index to the next free storage position in this area. 
 
 The rest of the string area is an array of AreaSiz characters (Area). 
 Strings are stored sequentially in the array, and terminated by a NULL 
 character, as required by WrStr and the string processing procedures in 
 module Str. 
 
 Initially the string store consists of a single empty area. A new area is 
 added to the HEAD of the list when the current one becomes full (ie when 
 the length of the string to be stored exceeds the remaining space). 
 
 Structure of String Store: 
 
                AreaRec             AreaRec                AreaRec 
                ┌────────────┐      ┌────────────┐         ┌────────────┐ 
 CurntArea ───> │  NxtArea ──┼────> │          ──┼─...───> │    NIL     │ 
                ├────────────┤      ├────────────┤         ├────────────┤ 
                │  NxtFree ──┼─┐    │            │         │            │ 
                ├────────────┤ │    │            │         │            │ 
              0 │            │ │                 │                      │ 
              1 │            │ │ 
                │            │ │ 
        NxtFree │           <┼─┘ 
                │            │ 
      AreaSiz-1 │            │ 
                └────────────┘ 
 
----------------------------------------------------------------------------*) 
 
FROM   Storage IMPORT ALLOCATE, DEALLOCATE; 
FROM   SYSTEM  IMPORT TSIZE; 
FROM   Str     IMPORT Length; 
 
FROM   Streams IMPORT ReportErr; 
 
(*--------------------------------------------------------------------------*) 
 
CONST AreaSiz = 1024; 
(* Size for a string area. MUST EXCEED MaxStrLen BY AT LEAST 1 *) 
 
TYPE AreaIndx = [0..AreaSiz-1]; 
TYPE AreaPtr = POINTER TO AreaRec; 
 
TYPE AreaRec = RECORD 
        NxtArea  : AreaPtr; 
        NxtFree  : AreaIndx; 
        Area     : ARRAY AreaIndx OF CHAR; 
     END; 
 
VAR CurntArea : AreaPtr; 
 
 
(* ------------------------------------------------------------------------ *) 
 
 
     (* Report error and halt *) 
        PROCEDURE SstrErr(); 
        BEGIN 
           ReportErr ("SSTR - Out of Memory"); 
           HALT; 
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        END SstrErr; 
 
 
     (* Deallocate all string areas starting from the area pointed 
        to by p. *) 
        PROCEDURE DeallocArea (VAR p : AreaPtr); 
        BEGIN 
           IF (p <> NIL) THEN 
              DeallocArea(p^.NxtArea); 
              DEALLOCATE(p,TSIZE(AreaRec)); 
              p := NIL; 
           END; (* IF *) 
        END DeallocArea; 
 
 
     (* Create a new string area and link into list *) 
        PROCEDURE CreateNewArea() : AreaPtr; 
        VAR p : AreaPtr; 
        BEGIN 
           ALLOCATE(p,TSIZE(AreaRec)); 
           IF (p <> NIL) THEN 
              p^.NxtArea := NIL; 
              p^.NxtFree  := 0; 
           ELSE SstrErr 
           END; (* IF *) 
           RETURN p; 
        END CreateNewArea; 
 
 
     (* Clear all string areas forming the string store. One (empty) 
        area is always retained. *) 
        PROCEDURE Sclear; 
        BEGIN 
           CurntArea^.NxtFree := 0; 
           DeallocArea(CurntArea^.NxtArea); 
        END Sclear; 
 
 
     (* Store a string. A pointer to the stored string is returned *) 
        PROCEDURE Sstore(VAR s : ARRAY OF CHAR) : Sptr; 
        VAR strlen : CARDINAL; 
            INDX   : CARDINAL; 
            t      : CARDINAL; 
            p      : Sptr; 
            Aptr   : AreaPtr; 
        BEGIN 
           strlen := Length(s); 
           Aptr   := CurntArea; 
           IF ((Aptr^.NxtFree + strlen) >= AreaSiz) THEN 
              Aptr := CreateNewArea(); 
              Aptr^.NxtArea := CurntArea; 
              CurntArea := Aptr; 
           END; (* IF *) 
           t := Aptr^.NxtFree; 
           FOR INDX := 0 TO strlen-1 DO 
               Aptr^.Area[t+INDX] := s[INDX]; 
           END; 
           Aptr^.Area[t+strlen] := CHR(0); 
           INC(Aptr^.NxtFree,strlen+1); 
           RETURN Sptr(ADR(Aptr^.Area[t])); 
        END Sstore; 
 
 
(* --- Module initialization ---------------------------------------------- *) 
 
BEGIN 
   CurntArea := CreateNewArea(); 
END Sstr. 
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 DBASE - DEFINITION 
 
DEFINITION MODULE DBase; 
 
(* Definition of database types and some operations. 
 
   Exports: 
        Symbol table, clause, and term types, 
        their constructors and destructors. 
 
        Various functions and predicates which operate on objects of the 
        above type. 
 
   NOTE that 'term' and 'term-record' refer to the basic internal structure 
        used to construct the internal representation of clauses. These 
        objects do not always coincide with terms as defined in the 
        literature. Perhaps it would have been better had the non-committal 
        terms 'object' and 'obj-record' been used. 
*) 
 
 
FROM Sstr    IMPORT Sptr; 
FROM Global  IMPORT mode; 
FROM Inbuilt IMPORT InBltProc; 
 
 
CONST MaxVars = 1000; 
      (* Max number of variables in a clause *) 
 
 
TYPE SymType       = (variable, functor, anon, list); 
     (* Symbol types : variable, functor, anonymous variable, and 
        list constructor. *) 
 
 
TYPE SymTabPtr     = POINTER TO SymTabRec; 
     ClausePtr     = POINTER TO ClauseRec; 
     TermPtr       = POINTER TO TermRec; 
 
 
TYPE VarIndx       = CARDINAL [0..MaxVars]; 
 
 
 
(* --- Symbol-Table Record -------------------------------------------------- 
   One record for each variable and functor symbol in the database. 
   In the case of functor symbols, the arity is also recorded, and 
   pointers to the head and tail of the linked-list of clause with 
   this functor as head are kept. The tail pointer is required for 
   appending. The head pointer for traversing. 
 
   A protection flag (mode) is used for protecting predefined system 
   predicates from being redefined by the user or retracted. The 
   count field has miscellaneous uses. In particular, it is used by 
   the parses for mapping variables to stack-frame offsets. 
*) 
 
TYPE SymTabRec = 
          RECORD 
            Name    : Sptr;                (* Name pointer *) 
            Next    : SymTabPtr;           (* Ptr to next entry *) 
            Mode    : mode;                (* system or user defined *) 
            Count   : CARDINAL;            (* For miscellaneous uses *) 
            CASE SType : SymType OF 
               functor  : 
                  Arity   : SHORTCARD;     (* Arity of functor *) 
                  FstCls  : ClausePtr;     (* Ptr to head of clause list *) 
                  LstCls  : ClausePtr;     (* Ptr to tail of clause list *) 
            |  variable : 
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            END 
          END; 
 
 
 
(* --- Term Record -------------------------------------------------------- 
   One record for each term in a clause. 
   It is necessary to include the symbol type within TermRec because, although 
   in the case of variables and functors the type can be read from the 
   symbol-table entry, in the case of special terms such as list constructors 
   and anonymous variables a symbol-table entry does not exist. Also, including 
   the symbol type here makes for less dereferncing when examining terms. 
*) 
 
TYPE TermRec  = 
          RECORD 
            Next  : TermPtr;               (* Ptr to next TermRec in a terms list 
*) 
            Entry : SymTabPtr;             (* Ptr to ST entry for this term *) 
            CASE  SType  : SymType OF 
               list,functor : Args : TermPtr;  (* Ptr to argument list *) 
            |  variable     : Ofst : VarIndx;  (* Offset of var within stack frame 
*) 
            END 
          END; 
 
 
 
(* --- Clause Record -------------------------------------------------------- 
   One for every clause in the database. The Head field points to the term 
   record at the head of the clause, while the Body field points to a linked 
   list of the terms in the body of the clause. The Vars field records the 
   number of variables in the clause, required to calculate the stack frame 
   size. 
*) 
 
TYPE ClauseRec = 
          RECORD 
            Next  : ClausePtr;             (* Ptr to next clause *) 
            CASE InBlt : BOOLEAN OF 
              TRUE  : Proc  : InBltProc;   (* An inbuilt procedure *) 
                      Entry : SymTabPtr; 
            | FALSE : Vars  : VarIndx;     (* Number of variables in clause *) 
                      Head  : TermPtr;     (* Ptr to term at head of clause *) 
                      Body  : TermPtr;     (* Ptr to term list forming body *) 
            END; 
          END; 
 
 
 
(* --- Predicates & functions ------------------------------------------------ 
 
   The following predicates and functions are defined on the above data 
   structures. 
 
*) 
 
 
PROCEDURE IsVar   (TPtr : TermPtr) : BOOLEAN; 
(* TRUE if term is a variable symbol *) 
 
PROCEDURE IsFunctor  (TPtr : TermPtr) : BOOLEAN; 
(* TRUE if term is a functor, ie predicate, function or 
   constant symbol *) 
 
PROCEDURE IsConst (TPtr : TermPtr) : BOOLEAN; 
(* TRUE if term is a functor of arity 0 with which 
   no clauses are associated - ie does not appear as the head of any clause *) 
 
PROCEDURE IsPred (TPtr : TermPtr) : BOOLEAN; 
(* TRUE if term is a functor which appears as the head of some clause *) 
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PROCEDURE IsAnon (TPtr : TermPtr) : BOOLEAN; 
(* TRUE if term is the anonymous variable *) 
 
PROCEDURE IsList (TPtr : TermPtr) : BOOLEAN; 
(* TRUE if term represents a list *) 
 
PROCEDURE IsNulList (TPtr : TermPtr) : BOOLEAN; 
(* TRUE if term represents a Null list *) 
 
PROCEDURE IsNonNulList (TPtr : TermPtr) : BOOLEAN; 
(* TRUE if term is a list but is not the Null list *) 
 
 
 
PROCEDURE IsAssertion (CPtr : ClausePtr) : BOOLEAN; 
(* TRUE if clause is an assertion, ie has a null body *) 
 
PROCEDURE GetAry  (TPtr : TermPtr) : SHORTCARD; 
(* Returns arity of term if a functor. Otherwise not defined *) 
 
PROCEDURE GetFunctor (TPtr : TermPtr) : SymTabPtr; 
(* Returns pointer to symbol table entry of principle functor of a 
   TermRec. Returns NIL if TermRec is not a functor. *) 
 
PROCEDURE SameFunctor (L1,L2 : TermPtr) : BOOLEAN; 
(* TRUE if L1,L2 are 
        both empty lists, OR 
        both non-empty lists, OR 
        both structures with the same functor. 
*) 
 
 
 
(* *** OBJECT CONSTRUCTORS and DESTRUCTORS ******************************** *) 
 
(* --- Constructors ---------------------------------------------------------- 
   Constructors return NIL if the construction of an object fails. 
*) 
 
PROCEDURE MKSymTabRec () : SymTabPtr; 
PROCEDURE MKClauseRec () : ClausePtr; 
PROCEDURE MKTermRec   (SType : SymType) : TermPtr; 
 
 
 
(* --- Destructors ----------------------------------------------------------- 
   Destructors deallocate the memory used by an object and all its 
   subobjects, as follows: 
 
   RMTermRec    :  Removes a TermRec and all its argument records. 
   RMTermList   :  Removes a linked list of TermRec and their argument records. 
   RMClauseRec  :  Removes a ClauseRec, its head predicate, and all the 
                   terms (literals) in its body. 
   RMSymTabRec  :  Removes a SymTabRec and all its clauses. 
 
*) 
 
PROCEDURE RMTermRec   (TPtr : TermPtr); 
PROCEDURE RMTermList  (TPtr : TermPtr); 
PROCEDURE RMClauseRec (CPtr : ClausePtr); 
PROCEDURE RMSymTabRec (SPtr : SymTabPtr); 
 
 
PROCEDURE MEMUsage; 
 
END DBase. 
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 DBASE - IMPLEMENTATION 
 
IMPLEMENTATION MODULE DBase; 
 
FROM Storage IMPORT ALLOCATE, Available; 
FROM SYSTEM  IMPORT TSIZE; 
FROM AsmLib  IMPORT AddAddr; 
FROM Streams IMPORT WrStr, WrCard, WrLn, ReportErr; 
 
TYPE MemUsage = RECORD 
                  FreeList : ADDRESS; 
                  Used     : CARDINAL; 
                  Free     : CARDINAL; 
                END; 
 
 
 
CONST SZSymTabRec = TSIZE (SymTabRec); 
      SZClauseRec = TSIZE (ClauseRec); 
      SZTermRec    = TSIZE (TermRec); 
 
VAR   MEMSymTab    : MemUsage; 
      MEMClause    : MemUsage; 
      MEMTerm       : MemUsage; 
 
 
(* ------------------------------------------------------------------------ *) 
 
(* Term predicates - test class of a TermRec, returning BOOLEAN. 
      IsVar          - variable object 
      IsFunctor      - functor object (could be predicate, function or constant 
      IsConst        - functor of arity 0 and not head of a clause list 
      IsPred         - functor, head of a clause list 
      IsAnon         - object representing the anonymous variable 
      IsList         - object representing the list constructor 
      IsNulList      - object representing the null list 
      IsNonNulList   - list object, but not representing the null list 
*) 
 
        PROCEDURE IsVar   (TPtr : TermPtr) : BOOLEAN; 
        BEGIN 
           RETURN TPtr^.SType = variable; 
        END IsVar; 
 
 
        PROCEDURE IsFunctor  (TPtr : TermPtr) : BOOLEAN; 
        BEGIN 
           RETURN TPtr^.SType = functor; 
        END IsFunctor; 
 
 
        PROCEDURE IsConst (TPtr : TermPtr) : BOOLEAN; 
        BEGIN 
           RETURN (TPtr^.SType = functor)    AND 
                  (TPtr^.Entry^.Arity = 0)   AND 
                  (TPtr^.Entry^.FstCls = NIL); 
        END IsConst; 
 
 
        PROCEDURE IsPred (TPtr : TermPtr) : BOOLEAN; 
        BEGIN 
           RETURN (TPtr^.SType = functor)      AND 
                  (TPtr^.Entry^.FstCls # NIL); 
        END IsPred; 
 
 
        PROCEDURE IsAnon (TPtr : TermPtr) : BOOLEAN; 
        BEGIN 
           RETURN (TPtr^.SType = anon); 
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        END IsAnon; 
 
 
        PROCEDURE IsList (TPtr : TermPtr) : BOOLEAN; 
        BEGIN 
            RETURN TPtr^.SType = list; 
        END IsList; 
 
 
        PROCEDURE IsNulList (TPtr : TermPtr) : BOOLEAN; 
        BEGIN 
           RETURN IsList(TPtr) AND (TPtr^.Args = NIL); 
        END IsNulList; 
 
 
        PROCEDURE IsNonNulList (TPtr : TermPtr) : BOOLEAN; 
        BEGIN 
           RETURN IsList(TPtr) AND (TPtr^.Args # NIL); 
        END IsNonNulList; 
 
 
 
(* ------------ Miscellaneous predicates and functions -------------------- *) 
 
(* Tests whether a definite clause is a unit clause. 
   TRUE if clause has a NULL body 
*) 
 
        PROCEDURE IsAssertion (CPtr : ClausePtr) : BOOLEAN; 
        BEGIN 
           RETURN CPtr^.Body = NIL; 
        END IsAssertion; 
 
 
 
(* Returns the arity of a term if the term represents a functor. 
   Otherwise undefined. 
*) 
 
        PROCEDURE GetAry  (TPtr : TermPtr) : SHORTCARD; 
        BEGIN 
           RETURN TPtr^.Entry^.Arity; 
        END GetAry; 
 
 
 
(* Returns pointer to symbol table entry of principle functor of a 
   TermRec. Returns NIL if TermRec is not a functor. *) 
 
        PROCEDURE GetFunctor (TPtr : TermPtr) : SymTabPtr; 
        BEGIN 
           IF IsFunctor(TPtr) THEN 
              RETURN TPtr^.Entry; 
           ELSE RETURN NIL; 
           END; 
        END GetFunctor; 
 
 
 
(* TRUE if L1,L2 are 
        both empty lists, OR 
        both non-empty lists, OR 
        both structures with the same functor. 
*) 
 
        PROCEDURE SameFunctor (L1,L2 : TermPtr) : BOOLEAN; 
        BEGIN 
           RETURN 
              (IsNulList(L1) AND IsNulList(L2)) OR 
              (IsNonNulList(L1) AND IsNonNulList(L2)) OR 
              (   (L1^.SType = functor) AND (L2^.SType = functor) AND 
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                  (L1^.Entry = L2^.Entry) 
              ) 
        END SameFunctor; 
 
 
(* ------------- INTERNAL MEMORY ALLOCATION PRIMITIVES -------------------- *) 
 
(* The module maintains a free list of each of the tree types of structures 
   required by the database.  When a freelist becomes exhausted, a chunk of 
   memory is requested from the system and divided into structure-sized 
   units which are linked to form a new free list. This is done because: 
   1.  system storage requests carry a not-insignificant time overhead. 
       This is evident from examination of the code for the Storage module. 
   2.  the Storage module can only allocate memory in paragraph-sized chunks 
       (16-bytes). Had structures to be allocated individually from the system 
       heap, the wastage per unit allocation would be as follows: 
 
       Structure    size (bytes)   allocation (paras)   wastage (bytes) 
       SymTabRec    20             2                    12 
       TermRec      13             1                    3 
       ClauseRec    15             1                    1 
*) 
 
        PROCEDURE AllocSymTab (Qty : CARDINAL) : BOOLEAN; 
        VAR SPtr  : SymTabPtr; 
            I     : CARDINAL; 
        BEGIN 
           I := SZSymTabRec * Qty; 
           IF NOT Available(I) THEN 
              RETURN FALSE; 
           END; 
           ALLOCATE (SPtr, I); 
           MEMSymTab.FreeList := SPtr; 
           MEMSymTab.Free     := Qty; 
           FOR I := 1 TO Qty-1 DO 
               SPtr^.Next := AddAddr(SPtr,SZSymTabRec); 
               SPtr := SPtr^.Next; 
           END; (*FOR*) 
           SPtr^.Next := NIL; 
           RETURN TRUE; 
        END AllocSymTab; 
 
 
 
        PROCEDURE AllocClause (Qty : CARDINAL) : BOOLEAN; 
        VAR CPtr  : ClausePtr; 
            I     : CARDINAL; 
        BEGIN 
           I := SZClauseRec * Qty; 
           IF NOT Available(I) THEN 
              RETURN FALSE; 
           END; 
           ALLOCATE (CPtr, I); 
           MEMClause.FreeList := CPtr; 
           MEMClause.Free     := Qty; 
           FOR I := 1 TO Qty-1 DO 
               CPtr^.Next := AddAddr(CPtr,SZClauseRec); 
               CPtr := CPtr^.Next; 
           END; (*FOR*) 
           CPtr^.Next := NIL; 
           RETURN TRUE; 
        END AllocClause; 
 
 
 
        PROCEDURE AllocTerm (Qty : CARDINAL) : BOOLEAN; 
        VAR TPtr  : TermPtr; 
            I     : CARDINAL; 
        BEGIN 
           I := SZTermRec * Qty; 
           IF NOT Available(I) THEN 
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              RETURN FALSE; 
           END; 
           ALLOCATE (TPtr, I); 
           MEMTerm.FreeList := TPtr; 
           MEMTerm.Free     := Qty; 
           FOR I := 1 TO Qty-1 DO 
               TPtr^.Next := AddAddr(TPtr,SZTermRec); 
               TPtr := TPtr^.Next; 
           END; (*FOR*) 
           TPtr^.Next := NIL; 
           RETURN TRUE; 
        END AllocTerm; 
 
 
 
(* --------- STRUCTURE CONSTRUCTORS and DESTRUCTORS ----------------------- *) 
 
(* 
   Constructors return NIL if the construction of a structure fails. 
 
   Destructors deallocate the memory used by an object and all its 
   subobjects, as follows: 
 
   RMTermRec    :  Removes a TermRec and all its argument records. 
   RMTermList   :  Removes a linked list of TermRec and their argument records. 
   RMClauseRec  :  Removes a ClauseRec, its head predicate, and all the 
                   terms (literals) in its body. 
   RMSymTabRec  :  Removes a SymTabRec and all its clauses. 
 
*) 
 
        PROCEDURE MKSymTabRec () : SymTabPtr; 
        VAR SPtr : SymTabPtr; 
        BEGIN 
           IF MEMSymTab.Free=0 THEN 
              IF NOT AllocSymTab (20) 
              THEN RETURN NIL 
              END 
           END; 
           SPtr := MEMSymTab.FreeList; 
           MEMSymTab.FreeList := SPtr^.Next; 
           INC (MEMSymTab.Used); 
           DEC (MEMSymTab.Free); 
           RETURN SPtr; 
        END MKSymTabRec; 
 
 
        PROCEDURE MKClauseRec () : ClausePtr; 
        VAR CPtr : ClausePtr; 
        BEGIN 
           IF MEMClause.Free=0 THEN 
              IF NOT AllocClause (10) 
              THEN RETURN NIL 
              END 
           END; 
           CPtr := MEMClause.FreeList; 
           MEMClause.FreeList := CPtr^.Next; 
           INC (MEMClause.Used); 
           DEC (MEMClause.Free); 
           RETURN CPtr; 
        END MKClauseRec; 
 
 
        PROCEDURE MKTermRec (SType : SymType) : TermPtr; 
        VAR TPtr : TermPtr; 
        BEGIN 
           IF MEMTerm.Free=0 THEN 
              IF NOT AllocTerm (50) 
              THEN RETURN NIL 
              END 
           END; 
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           TPtr := MEMTerm.FreeList; 
           MEMTerm.FreeList := TPtr^.Next; 
           TPtr^.SType := SType; 
           INC (MEMTerm.Used); 
           DEC (MEMTerm.Free); 
           RETURN TPtr; 
        END MKTermRec; 
 
 
        PROCEDURE RMTermList (TPtr : TermPtr); 
        VAR TPtr2 : TermPtr; 
        BEGIN 
           WHILE TPtr # NIL DO 
              TPtr2 := TPtr^.Next; 
              RMTermRec (TPtr); 
              TPtr := TPtr2; 
           END; 
        END RMTermList; 
 
 
        PROCEDURE RMTermRec (TPtr : TermPtr); 
        BEGIN 
           IF (TPtr^.SType = functor) OR (TPtr^.SType = list) THEN 
              RMTermList (TPtr^.Args); 
           END; 
           TPtr^.Next := MEMTerm.FreeList; 
           MEMTerm.FreeList := TPtr; 
           INC (MEMTerm.Free); 
           DEC (MEMTerm.Used); 
        END RMTermRec; 
 
 
        PROCEDURE RMClauseRec (CPtr : ClausePtr); 
        VAR TPtr : TermPtr; 
        BEGIN 
           RMTermRec(CPtr^.Head); 
           RMTermList(CPtr^.Body); 
           TPtr^.Next := MEMClause.FreeList; 
           MEMClause.FreeList := CPtr; 
           INC(MEMClause.Free); 
           DEC(MEMClause.Used); 
        END RMClauseRec; 
 
 
(* Since no provision currently exists in the interpreter to clear the 
   database, this procedure has not yet been implemented. 
 
   Note that, while deallocating a single symbol-table entry is easy, 
   ensuring that the database contains no references to the entry is 
   far from straightforward. It may be prefereable to retain a few 
   redundant entries than implement the check for dangling pointers. 
*) 
 
        PROCEDURE RMSymTabRec (SPtr : SymTabPtr); 
        BEGIN 
        END RMSymTabRec; 
 
 
 
(* ------------------------------------------------------------------------ *) 
 
(* Report on database memory usage *) 
 
        PROCEDURE MEMUsage; 
        BEGIN 
           WrStr ('SymTab : Used=') ; WrCard (MEMSymTab.Used,0); 
           WrStr ('  Free=')        ; WrCard (MEMSymTab.Free,0)  ; WrLn ; 
           WrStr ('Clause : Used=') ; WrCard (MEMClause.Used,0); 
           WrStr ('  Free=')        ; WrCard (MEMClause.Free,0)  ; WrLn ; 
           WrStr ('Term   : Used=') ; WrCard (MEMTerm.Used,0); 
           WrStr ('  Free=')        ; WrCard (MEMTerm.Free,0)    ; WrLn ; 
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        END MEMUsage; 
 
 
 
(* --- module initialization ---------------------------------------------- *) 
 
(* Allocates free lists for the database structures. 
   If insufficient memory, then program halts, since it is pointless 
   to continue if no database can be allocated. 
*) 
 
BEGIN 
   IF AllocSymTab (100) AND 
      AllocClause (50)  AND 
      AllocTerm   (200) 
   THEN 
      MEMSymTab.Used := 0; 
      MEMClause.Used := 0; 
      MEMTerm.Used   := 0; 
   ELSE 
      ReportErr ('Insufficient memory to run'); 
      HALT; 
   END; 
END DBase. 
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 STABLE - DEFINITION 
 
DEFINITION MODULE STable; 
 
(* Symbol table module. 
 
   Exports: 
        Symbol table insertion routine 
        lexicographic order between symbol table entries 
        Database listing utilities. 
*) 
 
 
FROM DBase IMPORT SymType, SymTabPtr, TermPtr, ClausePtr; 
 
 
(* ------------------------------------------------------------------------ *) 
 
CONST NoCount = MAX(SHORTCARD);         (* Default value of count field *) 
 
TYPE  order   = (lt,gt,le,ge); 
 
VAR   DBG     : BOOLEAN; 
 
 
 
(* Insert a new Symbol-Table Record for the object described by the parameters 
   parameters if one does not already exist. (if SType is 'variable', arity is 
   ignored). 
 
   A pointer to the SymTabRec for the object is returned. 
*) 
 
PROCEDURE Insert    ( Name  : ARRAY OF CHAR; 
                      SType : SymType; 
                      Arity : SHORTCARD) : SymTabPtr; 
 
 
 
(* Tests whether the two symbol-table entries pointed to by SP1 and SP1 
   are in the lexicographic order SP1 Ord SP2 
*) 
 
PROCEDURE Test (SP1,SP2 : SymTabPtr; 
                Ord     : order) : BOOLEAN; 
 
 
 
(* Symbol table dump utility *) 
 
PROCEDURE DumpST; 
 
 
(* Term, clause, and database listing utilities *) 
 
PROCEDURE ListTerm (TPtr : TermPtr); 
PROCEDURE ListClause (CPtr : ClausePtr); 
PROCEDURE ListDBase; 
 
 
END STable. 
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 STABLE - IMPLEMENTATION 
 
IMPLEMENTATION MODULE STable; 
 
FROM Sstr    IMPORT Sptr, Sstore; 
FROM DBase   IMPORT SymTabRec, IsFunctor, IsConst, IsList, IsNonNulList, 
                    IsNulList, MKSymTabRec; 
FROM SYSTEM  IMPORT TSIZE; 
FROM Str     IMPORT Compare; 
FROM Streams IMPORT WrStr, WrCharRep, WrCard, WrShtCard, WrLn, WriteLn; 
FROM Global  IMPORT Mode, mode; 
 
 
(* ------------------------------------------------------------------------ *) 
 
CONST LoChar = ' '; 
      HiChar = '~'; 
 
VAR SymTab : ARRAY [LoChar..HiChar] OF SymTabPtr; 
 
 
(* ------------------------------------------------------------------------ *) 
 
 
 
(* --- InitST --------------------------------------------------------------- 
   This procedure resets all the base pointers in the SymTab array 
   to NUL. It does not deallocate the memory occupied by any currently 
   resident database. 
*) 
 
        PROCEDURE InitST; 
        VAR C : CHAR; 
        BEGIN 
           FOR C := LoChar TO HiChar DO 
              SymTab [C] := NIL; 
           END; 
        END InitST; 
 
 
 
(* --- Search --------------------------------------------------------------- 
   Searches for a ST entry of the required name, type and (if applicable) 
   arity. 
   RETURNS: 
      TRUE  if a match was found. Ptr is set to point to the matching entry. 
      FALSE if no match found. In this case, Ptr points to the entry at which 
            the search failed, ie the entry which should have preceeded the 
            entry required. If the new record is to be inserted, then it 
            should follow the record pointed to by Ptr. If Ptr is NIL, then 
            the record should be inserted at the head of the list. If the 
            Name is already in the string store, then NmPtr is set to 
            point to the stored string. Otherwise NmPtr is set to NIL. In 
            this case, the insertion routine should call Sstore to insert 
            the new name in the string store. 
*) 
 
        PROCEDURE  Search   (    Name  : ARRAY OF CHAR; 
                                 SType : SymType; 
                                 Arity : SHORTCARD; 
                             VAR NmPtr : Sptr; 
                             VAR Ptr   : SymTabPtr) : BOOLEAN; 
         
        CONST Equal   =  0; 
              FstSmlr = -1; 
              FstGrtr =  1; 
         
        VAR SPtr   : SymTabPtr; 
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        BEGIN 
           Ptr   := NIL; 
           SPtr  := SymTab[Name[0]]; 
           NmPtr := NIL; 
         
           LOOP 
             IF SPtr = NIL THEN RETURN FALSE; END; 
             CASE Compare(Name,SPtr^.Name^) OF 
               Equal   :  NmPtr := SPtr^.Name; 
                          IF (SType=variable) OR 
                             ((SType=functor) AND (Arity=SPtr^.Arity)) THEN 
                             Ptr := SPtr; 
                             RETURN TRUE; 
                          ELSIF (Arity < SPtr^.Arity) THEN 
                             RETURN FALSE; 
                          END; 
             | FstSmlr :  RETURN FALSE; 
             END; (*CASE*) 
             Ptr  := SPtr; 
             SPtr := SPtr^.Next; 
          END; (*LOOP*) 
         
        END Search; 
         
 
 
 
(* --- Insert --------------------------------------------------------------- 
   If not already in symbol table, insert a new Symbol-Table Record with the 
   details passed as parameters (if SType is 'variable', arity is ignored). 
 
   RETURNS  Pointer to symbol table entry. 
 
   The routine uses Search to determine whether a new record needs to be 
   added to the symbol table. If a new record needs to be created, Search 
   also indicates where the record has to be inserted to keep the table 
   sorted, as well as whether the name string needs to be stored in the 
   string store. 
 
   The new record has its Mode field set to the current mode (system or 
   user). The count field is initialized to NoCount. 
*) 
 
        PROCEDURE Insert    (Name  : ARRAY OF CHAR; 
                             SType : SymType; 
                             Arity : SHORTCARD) : SymTabPtr; 
         
        VAR Ptr,P : SymTabPtr; 
            NmPtr : Sptr; 
         
        BEGIN 
            IF Search(Name,SType,Arity,NmPtr,Ptr) THEN 
               RETURN Ptr; 
            END; 
         
            (* If Search found no record with the same name, then the name must be 
               saved in the string store *) 
            IF NmPtr = NIL THEN 
               NmPtr := Sstore(Name); 
            END; 
         
            (* Create a new record and initialize it *) 
            P := MKSymTabRec (); 
            P^.Name  := NmPtr; 
            P^.SType := SType; 
            P^.Mode  := Mode; 
            P^.Count := NoCount; 
         
            IF (SType=functor) THEN 
               P^.Arity  := Arity; 
               P^.FstCls := NIL; 
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               P^.LstCls := NIL; 
            END; 
         
            (* Link in the new record at the position indicated by Search in 
               the variable Ptr. 
               If Ptr is NIL, then the record is to be inserted at the head 
               of the list for this hash group. Otherwise, the record is to 
               be inserted following the record pointed to by Ptr. 
            *) 
            IF Ptr = NIL THEN 
               P^.Next := SymTab[Name[0]]; 
               SymTab[Name[0]] := P; 
            ELSE 
               P^.Next := Ptr^.Next; 
               Ptr^.Next := P; 
            END; 
         
          RETURN P; 
        END Insert; 
 
 
(* --- Test ---------------------------------------------------------------- 
   Tests whether the two symbol-table entries pointed to by SP1 and SP2 
   are in the lexicographic order SP1 Ord SP2 
*) 
 
        PROCEDURE Test (SP1,SP2 : SymTabPtr; 
                        Ord     : order) : BOOLEAN; 
        BEGIN 
           CASE Ord OF 
              lt : RETURN Compare(SP1^.Name^,SP2^.Name^) = -1; 
           |  gt : RETURN Compare(SP1^.Name^,SP2^.Name^) =  1; 
           |  le : RETURN Compare(SP1^.Name^,SP2^.Name^) <  1; 
           |  ge : RETURN Compare(SP1^.Name^,SP2^.Name^) > -1; 
           END; 
        END Test; 
 
 
 
(* --- DumpST --------------------------------------------------------------- 
   Dumps contents of symbol table to screen. 
*) 
 
 
        PROCEDURE DumpST; 
        VAR C : CHAR; 
            P : SymTabPtr; 
        BEGIN 
           FOR C := LoChar TO HiChar DO 
           P := SymTab[C]; 
           WHILE P # NIL DO 
             WrStr( P^.Name^); 
             IF P^.SType = functor THEN 
                WrStr( '(fnctr)'); 
                WrShtCard( P^.Arity,4); 
             ELSE WrStr( '(vrbl)'); 
             END; 
             WrLn ; 
             P := P^.Next; 
           END; 
           END; 
        END DumpST; 
 
 
 
(* --- DATABASE LISTING ROUTINES ------------------------------------------ 
 
   Comprising: 
        ListTerm   -  recursively lists a term and its arguments 
        ListClause -  lists a clause (head and body). 
        ListDBase  -  lists the database of clauses. 
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*) 
 
        PROCEDURE ListTerm (TPtr : TermPtr); 
 
             PROCEDURE ListArgs (TPtr : TermPtr); 
             BEGIN 
                TPtr := TPtr^.Args; 
                IF TPtr=NIL THEN RETURN END; 
                WrStr('('); 
                WHILE TPtr#NIL DO 
                   ListTerm(TPtr); 
                   TPtr := TPtr^.Next; 
                   IF TPtr#NIL THEN WrStr(',') END; 
                END; 
                WrStr(')'); 
             END ListArgs; 
 
        BEGIN 
           CASE TPtr^.SType OF 
              variable  :  WrStr(TPtr^.Entry^.Name^); 
                           IF DBG THEN 
                              WrStr('(_'); 
                              WrCard(TPtr^.Ofst,1); 
                              WrStr(')'); 
                           END; 
           |  anon      :  WrStr('_'); 
           |  functor   :  WrStr(TPtr^.Entry^.Name^); 
                           ListArgs (TPtr); 
           |  list      :  WrStr('['); 
                           WHILE IsNonNulList(TPtr) DO 
                              TPtr := TPtr^.Args; 
                              ListTerm (TPtr); 
                              TPtr := TPtr^.Next; 
                              IF IsNonNulList (TPtr) THEN 
                                 WrStr (','); 
                              END; (*IF*) 
                           END; (*WHILE*) 
                           IF IsNulList(TPtr) THEN 
                              WrStr (']') 
                           ELSE 
                              WrStr('|'); 
                              ListTerm(TPtr); 
                              WrStr(']'); 
                           END; (*IF*) 
           END; (*CASE*) 
        END ListTerm; 
 
(* ------------------------------------------------------------------------ *) 
 
 
        PROCEDURE ListClause (CPtr : ClausePtr); 
        VAR TPtr : TermPtr; 
        BEGIN 
 
           IF CPtr^.InBlt THEN 
              WrStr('* '); 
              WrStr(CPtr^.Entry^.Name^); 
              WrStr('/'); 
              WrShtCard (CPtr^.Entry^.Arity,0); 
              WrLn; 
              RETURN; 
           END; 
 
           IF DBG THEN 
              WrStr('Vars = '); WrCard(CPtr^.Vars,2);WrLn; 
           END; 
           IF CPtr^.Head = NIL THEN 
              WrStr('GOAL ') 
           ELSE 
              IF CPtr^.Head^.Entry^.Mode = system THEN WrStr('# '); END; 
              ListTerm(CPtr^.Head); 
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           END; (*IF*) 
           TPtr := CPtr^.Body; 
           IF TPtr # NIL THEN 
              WrStr(' :- '); 
              REPEAT 
                 ListTerm(TPtr); 
                 TPtr := TPtr^.Next; 
                 IF TPtr # NIL THEN 
                    WriteLn(' ,'); WrCharRep(' ',10); 
                 END; 
              UNTIL TPtr = NIL; 
           END; 
           WriteLn(' .'); 
        END ListClause; 
 
(* ------------------------------------------------------------------------ *) 
 
 
        PROCEDURE ListDBase; 
        VAR C : CHAR; 
            CPtr : ClausePtr; 
            SPtr : SymTabPtr; 
 
        BEGIN 
           FOR C := LoChar TO HiChar DO 
              SPtr := SymTab[C]; 
              WHILE SPtr # NIL DO 
                 IF (SPtr^.SType = functor) AND (SPtr^.FstCls # NIL) THEN 
                 CPtr := SPtr^.FstCls; 
                 REPEAT 
                    ListClause (CPtr); 
                    CPtr := CPtr^.Next; 
                 UNTIL CPtr = NIL; 
                 WrLn ; 
                 END; 
                 SPtr := SPtr^.Next; 
              END; 
           END; 
        END ListDBase; 
 
 
(* --- Module initialization ---------------------------------------------- *) 
 
 
BEGIN 
   InitST; 
   DBG     := FALSE; 
END STable. 
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 STACK - DEFINITION 
 
DEFINITION MODULE Stack; 
 
(* Runtime stack and trail manager. 
 
   Exports: 
        Frame type. 
        Procedures to open stack, push and pop frames, record 
        variable bindings on trail, reset bindings during 
        backtracking, dereferencing bindings. 
*) 
 
 
FROM DBase IMPORT ClausePtr, TermPtr, MaxVars, VarIndx; 
 
 
(* ------------------------------------------------------------------------ *) 
 
 
CONST DefaultStkSz = 100000; 
 
TYPE FramePtr  = POINTER TO Frame; 
     BindPtr   = POINTER TO Binding; 
     TrailPtr  = POINTER TO BindPtr; 
     BindType  = (free,var,lit); 
 
 
     Binding  = RECORD 
                  CASE BType   : BindType OF 
                       var     : BPtr : BindPtr; 
                  |    lit     : TPtr : TermPtr; 
                                 Env  : FramePtr; 
                  END; 
                END; 
 
     Frame    = RECORD 
                  Num        : CARDINAL;     (* Frame number. For debugging *) 
                  CrntCls    : ClausePtr;    (* Current clause. "    "      *) 
 
                  Prev       : FramePtr; 
                  Vars       : VarIndx; 
                  Parent     : FramePtr; 
                  CrntLit    : TermPtr; 
                  NxtClause  : ClausePtr; 
                  CrntBTP    : FramePtr; 
                  Trail      : TrailPtr; 
                  Binds      : ARRAY [0..MaxVars-1] OF Binding; 
                END; 
 
 
VAR DBG       : BOOLEAN; 
 
        PROCEDURE MAKEFrame    (Vars : VarIndx) : FramePtr; 
        PROCEDURE PUSHFrame ; 
        PROCEDURE POPFrames    (FPtr : FramePtr); 
        PROCEDURE STORETrail   (BPtr : BindPtr) : BOOLEAN; 
        PROCEDURE RESTORETrail (TPtr : TrailPtr); 
 
        PROCEDURE GetStkTop () : FramePtr; 
 
        PROCEDURE BindAdr  (FPtr : FramePtr; TPtr : TermPtr) : BindPtr; 
        PROCEDURE IsFree   (BPtr : BindPtr)  : BOOLEAN; 
        PROCEDURE DeRef    (BPtr : BindPtr)  : BindPtr; 
        PROCEDURE NextCall (FPtr : FramePtr) : TermPtr; 
 
 
        (* Given a TermPtr, return the TermPtr to which it is bound. A 
           non-variable term is bound to itself. A variable-term is 
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           dereferenced, and the term to which it is bound is returned, 
           or a NIL if the variable is free 
        *) 
        PROCEDURE GetBoundTerm (TPtr : TermPtr; FPtr : FramePtr) : TermPtr; 
 
 
        PROCEDURE SetStackSize (InBytes : LONGCARD); 
        PROCEDURE OPENStack; 
        PROCEDURE CLOSEStack; 
        (* Free all records on the stack and on the trail *) 
 
        PROCEDURE Before(A1,A2 : ADDRESS) : BOOLEAN; 
        (* Returns true if stack address A1 preceeds stack address A2 *) 
 
 
        PROCEDURE MEMUsage; 
        (* Report on memory usage *) 
 
END Stack. 
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 STACK - IMPLEMENTATION 
 
IMPLEMENTATION MODULE Stack; 
 
(* Stack manager - manages the procedure activation and trail stacks. 
   These two stacks share a common block of memory and grow towards 
   each other from opposite ends of the block. 
 
   While trail records are of uniform size, the procedure activation 
   frames held on the runtime stack are variable-sized. Because of this, 
   and because a temporary frame is needed by the unification process, 
   the two stacks are handled very differently. In particular, trailtop 
   points to the NEXT free location on the trail, while stacktop points 
   to the LAST OCCUPIED location on the stack. Also, frame records 
   require a pointer to the previous record on the stack. 
 
   The main pointers associated with the two stacks are: 
 
                        +--------+ <-- TrailBase 
                        +--------+ 
                        +--------+ <-- TrailTop 
                        |        | 
                        |        | 
                        +........+ <-- StackEnd 
                        +--------+ <-- NewFrame 
                        +--------+ <-- StackTop 
                        +--------+ 
                        +--------+ <-- StackBase 
 
   NewFrame is required by the unification procedure. At the start of 
   a unification, a NewFrame of the required size is allocated just 
   beneath StackTop. If the unification succeeds, NewFrame is pushed 
   onto the stack and becomes the new StackTop. Otherwise it is 
   overwritten by the subsequent creation of a new NewFrame. StackEnd 
   keeps track of the location where NewFrame ends, and is required 
   in checking for collisions between the procedure-activation stack 
   and the trail. 
 
*) 
 
 
FROM Storage IMPORT MainHeap, HeapAllocate, HeapDeallocate, HeapAvail; 
FROM SYSTEM  IMPORT TSIZE,Seg,Ofs; 
FROM AsmLib  IMPORT AddAddr,DecAddr; 
FROM Streams IMPORT WrStr, WrCard, WrLn, WriteLn, WrLngCard, WrAddr; 
FROM DBase   IMPORT IsVar; 
 
IMPORT IO; 
 
 
(* ------------------------------------------------------------------------ *) 
 
CONST SZBind   = TSIZE(Binding); 
      (* Size of a variable binding record *) 
 
      SZFullFrame = TSIZE(Frame); 
      (* Size of a frame with MaxVars variable bindings *) 
 
      SZFrame0 = SZFullFrame - (SZBind * MaxVars); 
      (* Size of a frame record with 0 variable bindings *) 
 
      SZTrail  = TSIZE(BindPtr); 
      (* Size of a trail record *) 
 
 
VAR   SZStack   : CARDINAL; (* Stack size in paragraphs *) 
      StackBase : FramePtr; (* Base address of stack *) 
      TrailBase : TrailPtr; (* Base address of trail *) 
      TrailTop  : TrailPtr; (* Address of next free location on trail *) 
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      StackTop  : FramePtr; (* Address of frame on top of stack *) 
      NewFrame  : FramePtr; (* Frame following stacktop *) 
      StackEnd  : ADDRESS;  (* Address following NewFrame *) 
 
      StackOpen : BOOLEAN;  (* TRUE if stack currently allocated *) 
 
 
(* ------------------------------------------------------------------------ *) 
 
 
(* Return the number of bytes between two addresses, A2 >= A1 *) 
 
        PROCEDURE DiffAddr (A1,A2 : ADDRESS) : LONGCARD; 
        BEGIN 
            RETURN LONGCARD(Seg(A2^) - Seg(A1^) ) * 16  + 
                   LONGCARD(Ofs(A2^)) - LONGCARD(Ofs(A1^)) + 1; 
        END DiffAddr; 
 
 
(* Returns true if stack address A1 preceeds stack address A2 *) 
 
        PROCEDURE Before (A1,A2 : ADDRESS) : BOOLEAN; 
        BEGIN 
           RETURN ( Seg(A1^) < Seg(A2^) ) OR 
                  ( ( Seg(A1^) = Seg(A2^) ) AND 
                    ( Ofs(A1^) < Ofs(A2^) ) 
                  ) 
        END Before; 
 
 
(* Allocates a block of SZStack bytes on the heap and sets StackBase 
   pointing to the start address of the block and TrailBase to the 
   end address of the block. 
 
   TrailBase should really be set to [Seg(Ptr^)+SZStack-1:15] so that 
   it points to the last byte of the last paragraph in the allocated 
   block. However, for some reason this corrupts the heap. So TrailBase 
   is set one paragraph lower than the top of block, wasting 16 bytes. 
*) 
 
        PROCEDURE OPENStack (); 
        VAR Ptr : ADDRESS; 
        BEGIN 
           (* Can't open an open stack *) 
           IF StackOpen THEN RETURN END; 
 
           (* If insufficient memory remains to allocate a stack of SZStack 
              bytes, reduce the size of the stack to 2/3 of what is available 
           *) 
 
           IF HeapAvail(MainHeap) < SZStack THEN 
              SZStack := (HeapAvail(MainHeap) DIV 3) * 2; 
           END; 
 
           HeapAllocate (MainHeap,Ptr,SZStack); 
           StackBase := Ptr; 
           TrailBase := [Seg(Ptr^)+SZStack-2:15]; 
           TrailTop  := TrailBase; 
           NewFrame  := StackBase; 
           StackEnd  := StackBase; 
           StackTop  := NIL; 
           StackOpen := TRUE; 
        END OPENStack; 
 
 
(* Deallocate stack. Stack may not be used until reopened *) 
 
        PROCEDURE CLOSEStack; 
        BEGIN 
           (* Can't close a closed stack *) 
           IF NOT StackOpen THEN RETURN END; 
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           HeapDeallocate (MainHeap, StackBase, SZStack); 
           StackOpen := FALSE; 
        END CLOSEStack; 
 
 
 
(* Return the number of bytes between stackend and trailtop *) 
 
        PROCEDURE StackFree () : LONGCARD; 
        BEGIN 
            RETURN DiffAddr(StackEnd,TrailTop); 
        END StackFree; 
 
 
(* Pushes a record of a variable instantiation onto the trail. 
   Returns FALSE if the operation would result in the trail colliding 
   with the stack. Else performs operation and returns TRUE. 
*) 
 
        PROCEDURE STORETrail   (BPtr : BindPtr) : BOOLEAN; 
        VAR TPtr : TrailPtr; 
        BEGIN 
           IF NOT StackOpen THEN RETURN FALSE; END; 
           IF DBG THEN WrStr ('Trail push '); END; 
           IF StackFree() < SZTrail THEN 
              IF DBG THEN WriteLn ('failed.'); END; 
              RETURN FALSE; 
           END; 
           IF DBG THEN WrAddr(TrailTop); END; 
           TrailTop^ := BPtr; 
           DecAddr (TrailTop,SZTrail); 
           IF DBG THEN WrStr(' -> '); WrAddr(TrailTop); WrLn; END; 
           RETURN TRUE; 
        END STORETrail; 
 
 
(* Restore all bindings recorded on the trail from TPtr to trailtop, and 
   then pop all trail records from TPtr onwards. 
*) 
 
        PROCEDURE RESTORETrail (TPtr : TrailPtr); 
        VAR TempPtr : TrailPtr; 
        BEGIN 
           IF NOT StackOpen THEN RETURN; END; 
           TempPtr := TPtr; 
           WHILE TempPtr # TrailTop DO 
              TempPtr^^.BType := free; 
              DecAddr(TempPtr,SZTrail); 
           END; 
           TrailTop := TPtr; 
        END RESTORETrail; 
 
 
 
(* Returns the size (in bytes) of a stack frame required to accommodate 
   NumVars variable bindings 
*) 
 
        PROCEDURE SizeOfFrame (NumVars : CARDINAL) : CARDINAL; 
        BEGIN 
           RETURN SZFrame0 + NumVars * SZBind; 
        END SizeOfFrame; 
 
 
 
(* Returns a pointer to a new stack frame immediately below stacktop. 
   This is the frame that gets pushed next time PUSHFrame is called. 
   The Num, Vars and Trail fields are set, and the variable 
   bindings are initialized to free. 
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   NIL is returned if creating the frame would cause a collision with 
   trailtop. 
*) 
 
        PROCEDURE MAKEFrame (Vars : VarIndx) : FramePtr; 
        VAR FRMSize : CARDINAL; 
        BEGIN 
           FRMSize := SizeOfFrame (Vars); 
           IF (NOT StackOpen) OR (StackFree() < LONGCARD(FRMSize)) THEN 
              RETURN NIL; 
           END; 
           StackEnd := AddAddr (NewFrame,FRMSize); 
           NewFrame^.Vars  := Vars; 
           NewFrame^.Trail := TrailTop; 
 
           (* Set frame number to 1 more than previous frame number, 
              or to 0 if this is the first frame on the stack. *) 
           IF StackTop # NIL THEN 
              NewFrame^.Num   := StackTop^.Num + 1; 
           ELSE 
              NewFrame^.Num   := 0; 
           END; 
 
           (* Initialize variable-binding records to free *) 
           WHILE Vars # 0 DO 
              DEC(Vars); 
              NewFrame^.Binds[Vars].BType := free; 
           END; 
 
           RETURN NewFrame; 
        END MAKEFrame; 
 
 
(* Pushes NewFrame onto the stack *) 
 
        PROCEDURE PUSHFrame ; 
        BEGIN 
           (* If stack is closed or there is no NewFrame to push, 
              then do nothing 
           *) 
           IF (NOT StackOpen) OR (NewFrame = StackEnd) THEN 
              RETURN; 
           END; 
 
           NewFrame^.Prev := StackTop; 
           StackTop       := NewFrame; 
           NewFrame       := StackEnd; 
        END PUSHFrame; 
 
 
(* Pops all frames on stack from and including FPtr. All variables 
   instantiated from this frame onwards are uninstantiated 
*) 
 
        PROCEDURE POPFrames (FPtr : FramePtr); 
        BEGIN 
           IF NOT StackOpen THEN RETURN; END; 
           RESTORETrail (FPtr^.Trail); 
           StackTop := FPtr^.Prev; 
           NewFrame := FPtr; 
           StackEnd := FPtr; 
        END POPFrames; 
 
 
(* Return pointer to frame at top of stack *) 
 
        PROCEDURE GetStkTop () : FramePtr; 
        BEGIN 
           RETURN StackTop; 
        END GetStkTop; 
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(* ------------------------------------------------------------------------ *) 
 
(* Given a frame ptr and a pointer to a variable, returns pointer to 
   binding record of variable within frame. 
*) 
 
        PROCEDURE BindAdr (FPtr : FramePtr; 
                           TPtr : TermPtr) : BindPtr; 
        BEGIN 
           RETURN ADR(FPtr^.Binds[TPtr^.Ofst]); 
        END BindAdr; 
 
 
(* Given a pointer to a binding record, returns true if the record 
   represents a free variable. 
*) 
 
        PROCEDURE IsFree (BPtr : BindPtr) : BOOLEAN; 
        BEGIN 
           RETURN (BPtr^.BType=free); 
        END IsFree; 
 
 
(* De-reference a variable binding. If the variable is bound to another 
   variable, then a pointer to the binding record of the second variable 
   is returned. Otherwise the variable is dereferenced to itself. 
*) 
 
        PROCEDURE DeRef(BPtr : BindPtr) : BindPtr; 
        BEGIN 
           IF BPtr^.BType = var THEN RETURN BPtr^.BPtr 
           ELSE RETURN BPtr ; 
           END; 
        END DeRef; 
 
 
(* Given a TermPtr, return the TermPtr to which it is bound. A non-variable 
   term is bound to itself. A variable-term is dereferenced, and the term 
   to which it is bound is returned, or a NIL if the variable is free 
*) 
        PROCEDURE GetBoundTerm (TPtr : TermPtr; FPtr : FramePtr) : TermPtr; 
        VAR BPtr : BindPtr; 
        BEGIN 
           IF IsVar(TPtr) THEN 
              BPtr := DeRef(BindAdr(FPtr,TPtr)); 
              IF IsFree(BPtr) THEN TPtr := NIL 
              ELSE TPtr := BPtr^.TPtr; 
              END; 
           END; 
           RETURN TPtr; 
        END GetBoundTerm; 
 
 
 
(* Returns a pointer to the next literal to be called following 
   the literal last called by a frame. 
*) 
 
        PROCEDURE NextCall (FPtr : FramePtr) : TermPtr; 
        BEGIN 
           RETURN FPtr^.CrntLit^.Next; 
        END NextCall; 
 
 
 
(* ------------------------------------------------------------------------ *) 
 
(* Set stack size to InBytes bytes. The stack size may only be set when the 
   stack is closed, and takes effect next time the stack is opened. The 
   stack size is rounded up to the nearest whole paragraph (16 bytes), and 
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   the OpenStack procedure may override the value set if insufficient 
   memory remains on the heap. 
*) 
 
        PROCEDURE SetStackSize (InBytes : LONGCARD); 
        BEGIN 
           IF StackOpen THEN RETURN; END; 
           SZStack := CARDINAL ((InBytes + 15) DIV 16); 
        END SetStackSize; 
 
 
(* Report on the stack and trail memory usage. The number of records 
   on the trail can be calculated since trail records are of uniform 
   size. 
*) 
 
        PROCEDURE MEMUsage; 
        BEGIN 
           WrStr   ('Stack size : '); WrLngCard(LONGCARD(SZStack) * 16,0); WrLn; 
           WrStr   ('Stack free : '); WrLngCard (StackFree(),0); WrLn; 
           WrStr   ('Trail      : '); 
           WrLngCard (DiffAddr (TrailTop,TrailBase) DIV SZTrail,0); 
           WriteLn (' records'); 
           WrStr   ('Stack      : '); 
           WrLngCard (DiffAddr (StackBase,StackEnd),0); 
           WrStr (' bytes used, '); 
           IF StackEnd # NewFrame THEN 
              WrCard (NewFrame^.Num+1,0); 
           ELSE 
              WrCard (StackTop^.Num+1,0); 
           END; 
           WriteLn (' frames.'); 
        END MEMUsage; 
 
 
 
(* --- Module initialization ---------------------------------------------- *) 
 
 
BEGIN 
   DBG             := FALSE; 
   StackOpen       := FALSE; 
   SetStackSize (DefaultStkSz); 
END Stack. 
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 STREAMS - DEFINITION 
 
DEFINITION MODULE Streams; 
 
(* This module implements input and output streams. 
 
   Exports: 
        Stream (strm) type, EOF condition and line counter. 
        Stream redirection procedures. 
        Stream I/O routines to substitute those in standard module IO. 
*) 
 
 
TYPE strm = (file, printer, terminal); 
 
VAR PromptStr : ARRAY [1..3] OF CHAR;  (* Prompt when reading from terminal *) 
 
    Line      : CARDINAL;              (* line no. when reading from file *) 
    EOF       : BOOLEAN;               (* eof condition when reading from file *) 
 
 
(* These procedures redirect input and output *) 
 
PROCEDURE ToTerm; 
PROCEDURE FromTerm; 
PROCEDURE ToPrinter; 
PROCEDURE ToFile   (FName : ARRAY OF CHAR); 
PROCEDURE FromFile (FName : ARRAY OF CHAR) : BOOLEAN; 
 
PROCEDURE CrntIn  () : strm; 
PROCEDURE CrntOut () : strm; 
 
 
(* (Mostly) substitutes for procedures in module IO *) 
 
PROCEDURE RdStr     (VAR Buffer : ARRAY OF CHAR); 
PROCEDURE WrStr     (Str : ARRAY OF CHAR); 
PROCEDURE WriteLn   (Str : ARRAY OF CHAR); 
PROCEDURE WrLn; 
PROCEDURE WrCard    (C : CARDINAL; L : INTEGER); 
PROCEDURE WrChar    (C : CHAR); 
PROCEDURE WrShtCard (C : SHORTCARD; L : INTEGER); 
PROCEDURE WrLngCard (C : LONGCARD; L : INTEGER); 
PROCEDURE WrCharRep (C : CHAR; Cnt : CARDINAL); 
 
PROCEDURE WrAddr    (C : ADDRESS); 
PROCEDURE ReportErr (m : ARRAY OF CHAR); 
 
PROCEDURE GetKey; 
(* Waits for a keypress if current stream is terminal. 
   Else returns immediately *) 
 
PROCEDURE RdChar () : CHAR; 
(* Reads a character from input (without buffering and echo) if current 
   input stream is terminal. Otherwise returns NULL character *) 
 
END Streams. 



101 

 STREAMS - IMPLEMENTATION 
 
IMPLEMENTATION MODULE Streams; 
 
IMPORT FIO; 
IMPORT IO; 
IMPORT ASCII; 
 
FROM SYSTEM IMPORT Seg, Ofs; 
 
VAR StrmIn, StrmOut : strm; 
    In, Out         : FIO.File; 
 
 
(* ------------------------------------------------------------------------ *) 
 
 
(* Identify current input and output streams *) 
 
        PROCEDURE CrntIn () : strm; 
        BEGIN 
           RETURN StrmIn; 
        END CrntIn; 
 
 
        PROCEDURE CrntOut () : strm; 
        BEGIN 
           RETURN StrmOut; 
        END CrntOut; 
 
 
(* --- Stream Redirecting ------------------------------------------------- *) 
 
        PROCEDURE CloseStrm (s:strm; f:FIO.File); 
        BEGIN 
           IF s=file THEN FIO.Close(f) END; 
        END CloseStrm; 
 
 
(* Make the terminal the current output stream. 
   If the current output stream is a file, then the file is closed 
   before the output is directed to the terminal. 
*) 
 
      PROCEDURE ToTerm; 
        BEGIN 
           CloseStrm (StrmOut,Out); 
           Out := FIO.StandardOutput; 
           StrmOut := terminal; 
        END ToTerm; 
 
 
(* Make the terminal the current input stream. 
   If the current input stream is a file, then the file is closed 
   before the input stream is directed to the terminal. EOF is 
   not accepted from the terminal. 
*) 
 
        PROCEDURE FromTerm; 
        BEGIN 
           EOF := FALSE; 
           CloseStrm (StrmIn,In); 
           In := FIO.StandardInput; 
           StrmIn := terminal; 
        END FromTerm; 
 
 
(* Redirect output to the printer, closing any output file. 
*) 
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        PROCEDURE ToPrinter; 
        BEGIN 
           CloseStrm (StrmOut,Out); 
           Out := FIO.PrinterDevice; 
           StrmOut := printer; 
        END ToPrinter; 
 
 
(*  Redirect output to named file. 
    This procedure is not currently used by the program and has 
    not been implemented yet. 
*) 
        PROCEDURE ToFile   (FName : ARRAY OF CHAR); 
        BEGIN 
        END ToFile; 
 
 
(* Redirect input from file. 
   Returns FALSE if file could not be opened. 
   Otherwise closes any input file currently open and opens the named 
   file for input, returning TRUE. The line counter is reset to 0, and 
   the EOF condition is set to FALSE. 
*) 
 
        PROCEDURE FromFile (FName : ARRAY OF CHAR) : BOOLEAN; 
        BEGIN 
            IF FIO.Exists (FName) THEN 
               CloseStrm (StrmIn,In); 
               EOF := FALSE; 
               Line := 0; 
               In := FIO.Open (FName); 
               StrmIn := file; 
               RETURN TRUE; 
            ELSE 
               RETURN FALSE; 
            END; 
        END FromFile; 
 
 
(* --- Input/Output ------------------------------------------------------- *) 
 
 
(* Read a string from the current input stream. 
 
   NOTE that if current input is from the terminal, IO.RdStr is used 
   instead of FIO.RdStr.  Since IO.RdStr uses the DOS read string (0Ah) 
   interrupt 21h, the user gets all the benefits of shell-enhancers such as 
   the pd CED, which has history and line editting capabilities. 
*) 
 
        PROCEDURE RdStr (VAR Buffer : ARRAY OF CHAR); 
        BEGIN 
           IF StrmIn = terminal THEN 
              IO.WrStr (PromptStr); 
              IO.RdStr (Buffer); 
           ELSE 
              FIO.RdStr (In,Buffer); 
              EOF := FIO.EOF; 
              INC(Line); 
           END; 
        END RdStr; 
 
 
 
(* The following output routines substitute the routines with the same 
   name in the standard IO module. 
   The only exception is WriteLn, which is a WrStr followed by a WrLn. 
*) 
 
        PROCEDURE WrStr (Str : ARRAY OF CHAR); 
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        BEGIN 
           FIO.WrStr (Out, Str); 
        END WrStr; 
 
 
        PROCEDURE WriteLn (Str : ARRAY OF CHAR); 
        BEGIN 
           FIO.WrStr (Out,Str); 
           FIO.WrLn  (Out); 
        END WriteLn; 
 
 
        PROCEDURE WrLn; 
        BEGIN 
           FIO.WrLn (Out); 
        END WrLn; 
 
 
        PROCEDURE WrCard (C : CARDINAL; L : INTEGER); 
        BEGIN 
           FIO.WrCard (Out,C,L); 
        END WrCard; 
 
 
        PROCEDURE WrChar (C : CHAR); 
        BEGIN 
           FIO.WrChar (Out,C); 
        END WrChar; 
 
 
        PROCEDURE WrShtCard (C : SHORTCARD; L : INTEGER); 
        BEGIN 
           FIO.WrShtCard (Out,C,L); 
        END WrShtCard; 
 
 
        PROCEDURE WrLngCard (C : LONGCARD; L : INTEGER); 
        BEGIN 
           FIO.WrLngCard (Out,C,L); 
        END WrLngCard; 
 
 
        PROCEDURE WrCharRep (C : CHAR; Cnt : CARDINAL); 
        BEGIN 
           FIO.WrCharRep (Out,C,Cnt); 
        END WrCharRep; 
 
 
(* Report a simple error message *) 
 
        PROCEDURE ReportErr (m:ARRAY OF CHAR); 
        BEGIN 
           WrLn;WrLn; 
           WrStr('*** ERROR: '); 
           WriteLn(m); 
           WrLn; 
        END ReportErr; 
 
 
 
(* The following displays an address in Segment:Offset format. 
   It is only meant for debugging purposes. 
*) 
 
        PROCEDURE WrAddr (C : ADDRESS); 
        BEGIN 
           WrStr('['); 
           WrCard(Seg(C^),0); 
           WrStr(':'); 
           WrCard(Ofs(C^),0); 
           WrStr(']'); 
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        END WrAddr; 
 
 
(* If the terminal is the current input stream, this procedure waits 
   for a key press. Otherwise it does nothing. 
   It is used primarily by the debugging code, to give the user time 
   to read the carnival-streamer trace. 
*) 
 
        PROCEDURE GetKey; 
        VAR C : CHAR; 
        BEGIN 
           IF StrmIn = terminal THEN 
              C := IO.RdCharDirect(); 
           END; 
        END GetKey; 
 
 
 
(* Reads a character from input (without buffering and echo) if current 
   input stream is terminal. Otherwise returns NULL character *) 
 
        PROCEDURE RdChar () : CHAR; 
        BEGIN 
           IF StrmIn = terminal THEN 
              RETURN IO.RdCharDirect(); 
           ELSE 
              RETURN ASCII.nul; 
           END; 
        END RdChar; 
 
 
 
(* --- Module initialization ---------------------------------------------- *) 
 
 
BEGIN 
  FIO.IOcheck := FALSE; 
  IO.Prompt   := FALSE; 
  PromptStr   := '> '; 
  StrmIn  := terminal; 
  StrmOut := terminal; 
  ToTerm; 
  FromTerm; 
END Streams. 
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 LEX - DEFINITION 
 
DEFINITION MODULE Lex; 
 
(* Lexical Analyser. 
 
   Exports. 
        The token object. 
        Procedures to fetch next token from the input buffer, flush 
           input buffer, get current line and column position. 
 
*) 
 
FROM Sstr IMPORT MaxStrLen; 
 
(* ------------------------------------------------------------------------ *) 
 
TYPE TknCls = (ColonHyphen,  (*  :-  *) 
               Comma,        (*  ,   *) 
               OpnBrk,       (*  (   *) 
               ClsBrk,       (*  )   *) 
               OpnSqr,       (*  [   *) 
               ClsSqr,       (*  ]   *) 
               Bar,          (*  |   *) 
               Dot,          (*  .   *) 
               AnonymVar,    (*  _   *) 
               VarSym,       (* UpperCase|_ {UpperCase | LowerCase | Digit } *) 
               NonVarSym,    (* LowerCase {UpperCase | LowerCase | Digit }   *) 
               Err,          (* unrecognized token *) 
               FileEnd       (* End of file on input *) 
              ); 
 
     Token = RECORD 
               Class : TknCls; 
               Inst  : ARRAY [1..MaxStrLen] OF CHAR; 
             END; 
 
 
VAR CrntTkn : Token; 
    DBG     : BOOLEAN; 
 
 
PROCEDURE GetToken ; 
(* Returns the next token from the input buffer in CrntTkn. 
   CrntTkn.Class is set to the TknCls of the fetched token. 
   If TknCls is VarSym or NonVarSym, TknInst contains the identifier 
      string read in. 
*) 
 
 
PROCEDURE GetPos   (VAR line,char : CARDINAL) ; 
(* Returns the line and column position last read from. The line position 
   is only meaningful if currently reading from a file. *) 
 
 
PROCEDURE FlushBuffer; 
(* Flush the input buffer *) 
 
 
PROCEDURE GetItem () : BOOLEAN; 
(* Gets next item from the input buffer (skipping any leading spaces) and 
   returns it in CrntTkn.Inst. 
   Returns TRUE if an item was found, FALSE if at end of line. *) 
 
END Lex. 
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 LEX - IMPLEMENTATION 
 
IMPLEMENTATION MODULE Lex; 
 
FROM Str     IMPORT CHARSET, Length; 
FROM Streams IMPORT Line, EOF, RdStr, WrStr, WriteLn, WrLn, CrntIn, strm; 
IMPORT ASCII; 
 
 
CONST ComChar = '%';            (* comment introducer *) 
      MaxBuff = 255;            (* input buffer size *) 
      Eof     = ASCII.nul;      (* character to signal end-of-file on input *) 
 
      Separators 
              = CHARSET {' ','(',')','.',',','[',']','|',':',"'",ComChar}; 
 
 
VAR Buffer : ARRAY [1..MaxBuff] OF CHAR;  (* Input buffer *) 
    BufLen : CARDINAL;                    (* Number of characters in buffer *) 
    BufPos : CARDINAL;                    (* Current reading position in buffer *) 
 
 
(* ------------------------------------------------------------------------ *) 
 
 
(* Return line and column position. 
   The line position is only defined if currently reading from a file, 
       and is maintained by the Streams module. 
   The column position is the position in the input buffer currently 
       being read from, and is defined irrespective of the current input 
       stream. 
*) 
 
        PROCEDURE GetPos (VAR line,char : CARDINAL) ; 
        BEGIN 
           line := Line; 
           char := BufPos; 
        END GetPos; 
 
 
 
(* Flush the input buffer. 
   This procedure forces procedure GetChar to read in a new line 
   the next time it is called to fetch a character from the current 
   input stream. 
*) 
 
        PROCEDURE FlushBuffer; 
        BEGIN 
           BufLen := 0; 
           BufPos := 0; 
        END FlushBuffer; 
 
 
(* Get next character from the input buffer. 
   If the input buffer is exhausted (ie Bufos >= BufLen), then 
   a new line is read into the input buffer, and BufPos reset to 0. 
   BufPos is incremented, and the character at position BufPos in the 
   input buffer is returned. 
*) 
 
        PROCEDURE GetChar () : CHAR; 
        BEGIN 
           IF (BufPos >= BufLen) THEN 
           REPEAT 
              RdStr (Buffer); 
              IF EOF THEN RETURN Eof END; 
              BufLen := Length(Buffer); 
           UNTIL BufLen > 0; 
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           BufPos := 0; 
           END; 
           INC (BufPos); 
           RETURN Buffer[BufPos]; 
        END GetChar; 
 
 
 
(* Unread last character read. 
   This procedure is only required by procedure GetToken when reading in an 
   identifier. Consequently, it is not a general-purpose unread procedure. 
   All it does is to decrement the current BufPos. 
*) 
 
        PROCEDURE UnGet; 
        BEGIN 
           DEC (BufPos); 
        END UnGet; 
 
 
 
(* A comment introducer has been found. Move the reading position 
   past the end of the comment. 
   Since Prolog comments are terminated by the end-of-line character, 
   all the procedure does is to flush the input buffer, thus forcing 
   GetChar to start reading from the next line the next time it is 
   called. 
*) 
 
        PROCEDURE SkipComment; 
        BEGIN 
           FlushBuffer; 
        END SkipComment; 
 
 
 
(* Get the first non-space character from the input buffer. 
   Characters are read in until a non-space character is found. 
*) 
 
        PROCEDURE GetFirstNonSpace () : CHAR; 
        VAR C : CHAR; 
        BEGIN 
           REPEAT 
              C := GetChar(); 
              IF C=ComChar THEN 
                 SkipComment; 
                 C := ' '; 
              END; 
           UNTIL (C # ' '); 
           RETURN C; 
        END GetFirstNonSpace; 
 
 
 
(* Gets next item from the input buffer (skipping any leading spaces) and 
   returns it in CrntTkn.Inst.  An item is defined as a sequence of 
   non-space characters delimited by a space character or the end-of-line. 
   Returns TRUE if an item was found, FALSE if at end of line. 
*) 
 
        PROCEDURE GetItem () : BOOLEAN; 
        VAR C   : CHAR; 
            Cnt : CARDINAL; 
        BEGIN 
           INC(BufPos); 
           WHILE (BufPos <= BufLen) AND (Buffer[BufPos]=' ') DO 
 
              INC(BufPos); 
           END; 
           IF BufPos > BufLen THEN 
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              RETURN FALSE; 
           ELSE 
              Cnt := 1; 
              REPEAT 
                 CrntTkn.Inst[Cnt] := Buffer[BufPos]; 
                 INC(BufPos); 
                 INC(Cnt); 
              UNTIL (BufPos > BufLen) OR (Buffer[BufPos]=' '); 
              CrntTkn.Inst[Cnt] := 0C; 
              RETURN TRUE; 
           END; (*IF*) 
        END GetItem; 
 
 
(* If in debug mode, produce a wall-paper listing of each token fetched. 
*) 
 
        PROCEDURE DEBUG ; 
        BEGIN 
            IF NOT DBG THEN RETURN END; 
 
            CASE CrntTkn.Class OF 
               ColonHyphen  :  WrStr (":-"); 
            |  Dot          :  WriteLn ("."); 
            |  Comma        :  WrStr (","); 
            |  OpnBrk       :  WrStr ("("); 
            |  ClsBrk       :  WrStr (")"); 
            |  OpnSqr       :  WrStr ("["); 
            |  ClsSqr       :  WrStr ("]"); 
            |  Bar          :  WrStr ("|"); 
            |  Err          :  WriteLn (" ERROR"); 
            |  FileEnd      :  WriteLn (" EOF"); 
            |  VarSym       :  WrStr (" Var:"); 
                               WrStr (CrntTkn.Inst); 
            |  AnonymVar    :  WrStr ('_'); 
            |  NonVarSym    :  WrStr (" F/P:"); 
                               WrStr (CrntTkn.Inst); 
            END; 
        END DEBUG; 
 
 
 
(* Returns the next token from the input buffer in CrntTkn. 
   CrntTkn.Class is set to the TknCls of the fetched token. 
   If TknCls is VarSym or NonVarSym, TknInst contains the identifier 
      string read in. 
*) 
 
        PROCEDURE GetToken ; 
        VAR C : CHAR; 
 
        (* Read in an identifier. The first character has already been read 
           in and is passed to the procedure as a parameter. The identifier 
           is read into the string CrntTkn.Inst. If the identifier is _ then 
           CrntTkn.Class is set to AnonymVar. 
        *) 
 
              PROCEDURE GetId (C : CHAR) ; 
              VAR Indx   : CARDINAL; 
                  Quote  : BOOLEAN; 
              BEGIN 
                 Indx := 1; 
                 IF C="'" THEN 
                    Quote := TRUE 
                 ELSE 
                    CrntTkn.Inst[1] := C; 
                    Quote := FALSE; 
                    INC(Indx); 
                 END; 
                 C := GetChar (); 
                 WHILE ((NOT Quote) AND (NOT (C IN Separators)) OR 
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                       (Quote AND (C#"'"))) DO 
                       CrntTkn.Inst [Indx] := C; 
                       INC (Indx); 
                       C := GetChar(); 
                 END; 
                 CrntTkn.Inst [Indx] := 0C; 
                 IF Quote THEN RETURN; END; 
                 IF C # ' ' THEN UnGet END; 
                 IF (Indx=2) AND (CrntTkn.Inst[1]='_') THEN 
                    CrntTkn.Class := AnonymVar; 
                 END; 
              END GetId; 
 
        BEGIN   (* GetToken *) 
 
           C := GetFirstNonSpace (); 
           CASE C OF 
              Eof : CrntTkn.Class := FileEnd 
            | ',' : CrntTkn.Class := Comma 
            | '.' : CrntTkn.Class := Dot 
            | '(' : CrntTkn.Class := OpnBrk 
            | ')' : CrntTkn.Class := ClsBrk 
            | '[' : CrntTkn.Class := OpnSqr 
            | ']' : CrntTkn.Class := ClsSqr 
            | '|' : CrntTkn.Class := Bar 
            | ':' : C := GetChar(); 
                    IF C='-' THEN CrntTkn.Class := ColonHyphen 
                    ELSE          CrntTkn.Class := Err; 
                    END 
            | '_','A'..'Z' 
                  : CrntTkn.Class := VarSym; 
                    GetId (C) 
            ELSE    CrntTkn.Class := NonVarSym; 
                    GetId (C) 
           END; 
           DEBUG ; 
        END GetToken; 
 
 
(* --- module initialization ---------------------------------------------- *) 
 
 
BEGIN 
   CrntTkn.Class := FileEnd; 
   CrntTkn.Inst  := ''; 
   FlushBuffer; 
   DBG           := FALSE; 
END Lex. 
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 PARSE - DEFINITION 
 
DEFINITION MODULE Parse; 
 
(* The parser and main interpreter loop. 
 
   Exports: 
        ReadInFile, which parses a file. 
        Reader, which is the main interpreter loop, reading in and parsing 
            user input. The reader first loads the predefined predicates 
            from file 'predef.pro', then the file passed as argument (if 
            any) - which is the filename given by the user as command-line 
            argument, and finally enters the read/parse loop. 
*) 
 
VAR DBG : BOOLEAN; 
 
PROCEDURE Reader (FileName : ARRAY OF CHAR); 
 
PROCEDURE ReadInFile (FileName : ARRAY OF CHAR) : BOOLEAN; 
 
END Parse. 



111 

 PARSE - IMPLEMENTATION 
 
IMPLEMENTATION MODULE Parse; 
 
(* 
    The following CFG is recognised by the parser: 
    <program>       ::=   <clause> { <clause> } 
    <clause>        ::=   <predicate> [':-' <body>] '.' 
    <predicate>     ::=   <predicate symbol>  [ '(' <argument list> ')' ] 
    <body>          ::=   <literal> {',' <literal> } 
    <literal>       ::=   <variable symbol> | 
                          <predicate> 
    <argument list> ::=   <term> { ',' <term> } 
    <term>          ::=   <variable symbol> | 
                          <structure> 
    <structure>     ::=   <constant symbol> [ '(' <argument list> ')' ] | 
                          <list> 
    <list>          ::=   '[' { <term> { ','<term> } [ '|' <term> ] } ']' 
    <goal>          ::=   ':-' <body> . 
 
    <predicate symbol> and <constant symbol> are lexically identical 
    and are grouped under the class <NonVarSym> by the lexical analyser. 
 
    <literal> and <structure> are syntactically identical, and are parsed 
    by the same procedure Literal(). In the symbol table they differ in that 
    an entry for a <literal> has a list of clauses associated with it, 
    while an entry for a <structure> does not. 
 
    The structure TermRec is used in the representation of both <literals> 
    and <terms>. 
 
*) 
 
FROM Streams   IMPORT ToTerm, FromTerm, FromFile, WrStr, WriteLn, WrLn, 
                      WrCard, WrShtCard, WrChar, WrCharRep, CrntIn, strm, 
                      ReportErr; 
FROM Sstr      IMPORT Sptr; 
FROM Str       IMPORT Length; 
FROM Lex       IMPORT Token, CrntTkn, TknCls, MaxStrLen, GetToken, GetPos, 
                      FlushBuffer, GetItem; 
 
FROM DBase     IMPORT TermPtr, TermRec, SymTabPtr, SymTabRec, 
                      ClausePtr, ClauseRec, SymType, IsVar, MKClauseRec, 
                      MKTermRec, VarIndx, RMTermList, RMClauseRec; 
FROM STable    IMPORT Insert, NoCount; 
 
FROM Command   IMPORT ProcessCommand; 
 
FROM Global    IMPORT Exit, Mode, mode; 
 
FROM SYSTEM    IMPORT TSIZE; 
 
FROM ProcGoal  IMPORT ProcessGoal; 
 
FROM Inbuilt   IMPORT DefineInbuilts; 
 
 
VAR PrsErr   : BOOLEAN; 
    Goal     : ClausePtr; 
 
 
(* ------------------------------------------------------------------------ *) 
 
 
(* ----------------------- Token.Class Predicate --------------------------- 
   Checks class of current token. 
   IF    (PrsErr) OR (Current token is not of class Class) 
         Returns FALSE 
   ELSE  Gets next token 
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         Returns TRUE 
*) 
 
        PROCEDURE Is (Class : TknCls) : BOOLEAN; 
        BEGIN 
           IF (PrsErr) OR (CrntTkn.Class # Class) THEN RETURN FALSE 
           ELSE   GetToken; 
                  RETURN TRUE 
           END (*IF*); 
        END Is; 
 
 
(* ------------------------ TermRec constructor ------------------------------ 
   Constructs a new TermRec, and returns a pointer to it. The constructed 
   record is initialized as follows 
 
   Entry - as parameter 
   Next  - NIL 
   SType - as parameter 
   If SType is functor,  Args is set to NIL. 
   If SType is variable, Ofst is set to the value in the Count field 
      of the ST-entry pointed to by Entry. 
 
*) 
 
        PROCEDURE MakeTermRec (Entry : SymTabPtr; SType : SymType) : TermPtr; 
        VAR Ptr : TermPtr; 
        BEGIN 
           Ptr        := MKTermRec (SType); 
           Ptr^.Entry := Entry; 
           Ptr^.Next  := NIL; 
           CASE SType OF 
              functor  :  Ptr^.Args := NIL; 
           |  variable :  Ptr^.Ofst := Entry^.Count; 
           END; (*CASE*) 
           RETURN Ptr; 
        END MakeTermRec; 
 
 
 
 
 
(*--------------------------------------------------------------------------*) 
 
    (* 
        <literal>  ::=   <variable symbol> | <predicate> 
    *) 
 
        PROCEDURE PrsLiteral (VAR Vars : VarIndx) : TermPtr; 
 
 
             (* 
                 <term>  ::=   <variable symbol> | <structure> 
             *) 
 
              PROCEDURE PrsTerm () : TermPtr; 
 
                  (* 
                      <list>  ::=  '[' { <term> {',' <term> } [ '|' <term> ] } ']' 
                  *) 
 
                  PROCEDURE PrsList () : TermPtr; 
                  VAR FrstPtr, Ptr : TermPtr; 
                  BEGIN 
                     FrstPtr := MakeTermRec (NIL, list); 
                     Ptr     := FrstPtr; 
                     IF NOT Is(ClsSqr) THEN 
                        REPEAT 
                        Ptr^.Args := PrsTerm(); 
                        Ptr       := Ptr^.Args; 
                        IF (NOT PrsErr) AND 
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                           ((CrntTkn.Class = Comma) OR (CrntTkn.Class = ClsSqr)) 
THEN 
                           Ptr^.Next := MakeTermRec(NIL,list); 
                           Ptr := Ptr^.Next; 
                        END; (*IF*) 
                        UNTIL NOT Is (Comma); 
                        CASE CrntTkn.Class OF 
                           ClsSqr : Ptr^.Args := NIL; 
                                    GetToken; 
                        |  Bar    : GetToken; 
                                    Ptr^.Next := PrsTerm(); 
                                    IF NOT Is(ClsSqr) THEN PrsErr := TRUE END; 
                           ELSE PrsErr := TRUE; 
                        END; (*CASE*) 
                     ELSE 
                        Ptr^.Args := NIL; 
                     END; (*IF*) 
                     RETURN FrstPtr; 
                  END PrsList; 
 
 
              VAR TPtr : TermPtr; 
                  SPtr : SymTabPtr; 
 
              BEGIN 
              CASE CrntTkn.Class OF 
                 VarSym    : SPtr := Insert(CrntTkn.Inst,variable,0); 
                             IF SPtr^.Count = NoCount THEN 
                                SPtr^.Count := Vars; 
                                INC(Vars); 
                             END; (*IF*) 
                             TPtr := MakeTermRec (SPtr,variable); 
                             GetToken; 
              |  NonVarSym : TPtr := PrsLiteral (Vars); 
              |  AnonymVar : TPtr := MakeTermRec (NIL,anon); 
                             GetToken; 
              |  OpnSqr    : GetToken; 
                             TPtr   := PrsList(); 
                 ELSE        TPtr   := NIL; 
                             PrsErr := TRUE; 
              END; (*CASE*) 
              RETURN TPtr; 
              END PrsTerm; 
 
 
              (* 
                  <argument list> ::= <term> {, <term> } 
              *) 
 
              PROCEDURE PrsArgList (VAR Arity : SHORTCARD) : TermPtr; 
              VAR FrstPtr, Ptr : TermPtr; 
              BEGIN 
                 FrstPtr := PrsTerm(); 
                 Ptr     := FrstPtr; 
                 INC(Arity); 
                 WHILE Is(Comma) DO 
                    Ptr^.Next := PrsTerm (); 
                    Ptr       := Ptr^.Next; 
                    INC (Arity); 
                 END; 
                 RETURN FrstPtr; 
              END PrsArgList; 
 
 
        VAR Arity : SHORTCARD; 
            Tkn   : Token; 
            Ptr   : TermPtr; 
 
        BEGIN 
           Arity  := 0; 
           CASE CrntTkn.Class OF 
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                NonVarSym     :  Tkn  := CrntTkn; 
                                 Ptr  := MakeTermRec(NIL,functor); 
                                 GetToken; 
                                 IF Is (OpnBrk) THEN 
                                    Ptr^.Args := PrsArgList(Arity); 
                                    IF NOT Is (ClsBrk) THEN PrsErr := TRUE; END; 
                                 END; (*IF*) 
                                 IF NOT PrsErr THEN 
                                    Ptr^.Entry := Insert(Tkn.Inst,functor,Arity); 
                                 END; 
           |    VarSym        :  Ptr  := PrsTerm (); 
                ELSE             PrsErr := TRUE; 
                                 Ptr    := NIL; 
           END; (*CASE*) 
           IF DBG THEN 
              WrStr   (" /"); 
              WrShtCard  (Arity,0); 
           END; 
           RETURN Ptr; 
        END PrsLiteral; 
 
 
 
(* 
    <predicate>     ::=   <predicate symbol>  [ '(' <argument list> ')' ] 
*) 
 
        PROCEDURE PrsPred (VAR Vars : VarIndx) : TermPtr; 
        BEGIN 
           IF (CrntTkn.Class = NonVarSym) THEN 
              RETURN PrsLiteral (Vars); 
           ELSE 
              PrsErr := TRUE; 
              RETURN NIL; 
           END; (*IF*) 
        END PrsPred; 
 
 
(* 
    <body>          ::=   <literal> {',' <literal> } 
*) 
 
        PROCEDURE PrsBody (VAR Vars : VarIndx) : TermPtr; 
        VAR TPtr : TermPtr; 
            Ptr  : TermPtr; 
        BEGIN 
           TPtr := PrsLiteral(Vars); 
           Ptr  := TPtr; 
           WHILE Is (Comma) DO 
              Ptr^.Next := PrsLiteral(Vars); 
              Ptr       := Ptr^.Next; 
           END; 
           RETURN TPtr; 
        END PrsBody; 
 
 
(* Parse a clause. This parses 
 
     1. definite clauses (assertions and rules). 
     2. goal clauses (introduced by :- ). 
     3. commands (introduced by |). 
 
   Goal clauses are not inserted in the database, but are passed to the 
   ProcessGoal procedure in module ProcGoal. 
 
   Commands are passed to the ProcessCommand procedure. 
 
*) 
 
        PROCEDURE PrsClause; 
        VAR  CPtr   : ClausePtr; 
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             SPtr   : SymTabPtr; 
             NVars  : VarIndx; 
             IsGoal : BOOLEAN; 
 
 
         (* Procedure to reset the Count fields of ST entries to NoCount 
            after a clause has been compiled 
         *) 
 
             PROCEDURE ResetVarCounts (TPtr : TermPtr); 
             BEGIN 
                WHILE (TPtr # NIL) DO 
                  CASE TPtr^.SType OF 
                     variable : TPtr^.Entry^.Count := NoCount; 
                  |  list,functor  : ResetVarCounts(TPtr^.Args); 
                  END; (*CASE*) 
                  TPtr := TPtr^.Next; 
                END; (*WHILE*) 
             END ResetVarCounts; 
 
 
        BEGIN 
 
           IF DBG THEN WrLn END; 
           IsGoal := FALSE; 
 
           (* Command? *) 
           IF CrntTkn.Class = Dot THEN 
              PrsErr := NOT ProcessCommand (); 
              FlushBuffer; 
              IF (NOT PrsErr) AND (CrntIn()=file) THEN 
                 GetToken; 
              END; 
              RETURN; 
           END; 
 
       (* Initialize variables counter. The counter is incremented with 
          every new variable encountered in the clause by the Literal 
          parsing routine. 
       *) 
 
 
           NVars := 0; 
 
 
       (* Allocate a clause record from the heap and set the Head field 
          pointing to the literal at the head of the clause. If a :- token 
          is found, then set the Body field to the list of literals making 
          up the body of the clause, else the Body is NIL. 
       *) 
 
           IF Is (ColonHyphen) THEN 
              IsGoal := TRUE; 
              CPtr := Goal; 
              CPtr^.Head := NIL; 
              CPtr^.Body := PrsBody(NVars); 
           ELSE 
              IsGoal := FALSE; 
              CPtr := MKClauseRec (); 
              CPtr^.InBlt := FALSE; 
              CPtr^.Next  := NIL; 
              CPtr^.Body  := NIL; 
              CPtr^.Head  := PrsPred(NVars); 
 
          (* Attempt to redefine a system-defined predicate by user ? *) 
 
              IF (Mode=user) AND (CPtr^.Head^.Entry^.Mode=system) THEN 
                 PrsErr := TRUE; 
              ELSIF Is (ColonHyphen) THEN 
                 CPtr^.Body   := PrsBody(NVars); 
              END; (*IF*) 
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           END; (*IF*) 
 
        (* Reset all the Count fields of ST-entries for variables in this 
           clause to NoCount. 
        *) 
 
 
            ResetVarCounts (CPtr^.Head); 
            ResetVarCounts (CPtr^.Body); 
 
       (* IF no error was reported while parsing THEN 
          a. if the clause is a definite clause, then link it into the 
             clause database. The new clause is to be linked to the end of the list 
             of clauses for this predicate, pointed to by the literal pointed 
             to by the Head field. 
          b. if a goal, then pass it to ProcessGoal. 
       *) 
 
           IF (CrntTkn.Class = Dot) AND NOT PrsErr THEN 
              IF CrntIn() = file THEN 
                 GetToken; 
              END; 
              CPtr^.Vars := NVars; 
              IF NOT IsGoal THEN 
                 SPtr := CPtr^.Head^.Entry; 
                 IF   SPtr^.FstCls  = NIL THEN 
                      SPtr^.FstCls := CPtr 
                 ELSE SPtr^.LstCls^.Next := CPtr; 
                 END; (*IF*) 
                 SPtr^.LstCls      := CPtr; 
              ELSE 
                 ProcessGoal (CPtr); 
                 RMTermList (Goal^.Body); 
              END; (*IF*) 
 
           ELSE 
 
          (* An error has occured. If parsing a goal, then deallocate the 
             body, else deallocate the whole clause. 
          *) 
 
              PrsErr := TRUE; 
              IF IsGoal THEN RMTermList (Goal^.Body) 
              ELSE RMClauseRec (CPtr); 
              END; 
 
           END; (*IF*) 
 
        END PrsClause; 
 
 
(* Parses a file. 
   Returns TRUE if file parsed correctly. 
   Otherwise outputs an error message (together with the line and column 
   position of the error in the file, if applicable), and returns FALSE. 
*) 
 
        PROCEDURE ReadInFile (FileName : ARRAY OF CHAR) : BOOLEAN; 
        VAR ok  : BOOLEAN; 
            L,C : CARDINAL; 
        BEGIN 
           ok := (FromFile (FileName)); 
           IF ok THEN 
              GetToken; 
              WHILE NOT (PrsErr) AND (CrntTkn.Class # FileEnd) DO 
                 PrsClause; 
              END; (*WHILE*) 
              IF PrsErr THEN 
                 GetPos(L,C); 
                 WrStr  ('Error in '); 
                 WrStr  (FileName); 
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                 WrStr  (' at line '); 
                 WrCard (L,0); 
                 WrStr  (' column '); 
                 WrCard (C,0); 
                 WrLn; 
                 ok := FALSE; 
              END; 
           ELSE 
              WrStr (FileName); 
              WrStr (' not found.'); 
              WrLn; 
           END; 
           FromTerm; 
           PrsErr := FALSE; 
           RETURN ok; 
        END ReadInFile; 
 
 
(* This is the main loop of the interpreter. 
   It reads in user input and passes it to the parser until the Exit 
   flag becomes TRUE. 
 
   The reader does the following: 
   1.   Reads in the file 'predef.pro' containing the predefined 
        predicates. 
   2.   Reads in the file (if any) whose name is passed as an 
        input parameter. This is the command-line argument given 
        by the user when the interpreter is invoked at the DOS prompt. 
   3.   Enters a loop - get input, parse input. 
*) 
 
        PROCEDURE Reader (FileName : ARRAY OF CHAR); 
        VAR L,P : CARDINAL; 
        BEGIN 
           PrsErr := FALSE; 
           Goal   := MKClauseRec(); 
           Goal^.InBlt := FALSE; 
           Goal^.Next := NIL; 
           IF NOT ReadInFile('predef.pro') THEN 
              ReportErr ('Bad or missing PREDEF.PRO'); 
              RETURN 
           END; 
 
           Mode := user; 
 
           IF Length (FileName) # 0 THEN 
              IF ReadInFile(FileName) THEN END; 
           END; 
 
           REPEAT 
              FlushBuffer; 
              PrsErr := FALSE; 
              GetToken; 
              PrsClause; 
              IF PrsErr THEN 
                 ReportErr ('Parse error in user input'); 
              END; 
           UNTIL Exit; 
 
        END Reader; 
 
 
(* --- Module initialization ---------------------------------------------- *) 
 
 
BEGIN 
   DBG := FALSE; 
END Parse. 
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 COMMAND - DEFINITION 
 
DEFINITION MODULE Command; 
 
(* Command processor. 
   Processes user commands (introduced by a '.') 
 
   Exports: 
        the command processor. 
 
*) 
 
 
(* Command processor: takes input directly from the input buffer. 
   Returns FALSE to indicate an error. 
           TRUE  otherwise. 
   Flushes input buffer on exit. 
*) 
 
PROCEDURE ProcessCommand() : BOOLEAN; 
 
END Command. 
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 COMMAND - IMPLEMENTATION 
 
IMPLEMENTATION MODULE Command; 
 
(* Commands implemented 
   .LIST  - list database 
   .LOAD  - load a file 
   .STATS - display memory usage statistics 
   .DEBUG - selectively toggle debugging switches 
   .STACK - set stack size (in bytes) 
   .EXIT  - exit program 
*) 
 
FROM Lex     IMPORT CrntTkn, GetItem; 
FROM STable  IMPORT ListDBase; 
FROM Parse   IMPORT ReadInFile; 
FROM Str     IMPORT Caps, Compare, StrToCard; 
FROM Streams IMPORT WrStr, WriteLn, WrLngCard, WrLn, RdChar; 
FROM Storage IMPORT HeapAvail, HeapTotalAvail, MainHeap; 
FROM Global  IMPORT Exit; 
 
IMPORT Stack; 
IMPORT DBase; 
IMPORT Lex; 
IMPORT STable; 
IMPORT Parse; 
IMPORT ProcGoal; 
 
(* ------------------------------------------------------------------------ *) 
 
        (* Support procedure for printing out DEBUG switch 
           settings. 
        *) 
 
        PROCEDURE WrDBG (S : ARRAY OF CHAR; B : BOOLEAN); 
        BEGIN 
           WrStr(S); 
           IF B THEN 
              WriteLn (' - ON'); 
           ELSE 
              WriteLn (' - OFF'); 
           END; 
        END WrDBG; 
 
 
(* ------------------------------------------------------------------------ *) 
 
 
        PROCEDURE ProcessCommand () : BOOLEAN; 
        VAR ok : BOOLEAN; 
            C  : LONGCARD; 
 
        BEGIN 
           ok := TRUE; 
 
           IF GetItem() THEN 
              Caps(CrntTkn.Inst); 
 
              IF     Compare (CrntTkn.Inst,"LIST")=0 THEN 
                     ListDBase; 
 
              ELSIF  Compare (CrntTkn.Inst,"LOAD")=0 THEN 
                     IF GetItem() THEN 
                        ok :=  ReadInFile (CrntTkn.Inst); 
                     ELSE 
                        WriteLn ("Filename expected."); 
                        ok := FALSE; 
                     END; 
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              ELSIF  Compare (CrntTkn.Inst, "DEBUG")=0 THEN 
                        WrDBG ('1: Lexical analyser',Lex.DBG); 
                        WrDBG ('2: Syntax  analyser',Parse.DBG); 
                        WrDBG ('3: Symbol table    ',STable.DBG); 
                        WrDBG ('4: Interpreter     ',ProcGoal.DBG); 
                        WrDBG ('5: Stack and trail ',Stack.DBG); 
                        CASE RdChar() OF 
                             '1' : Lex.DBG := NOT Lex.DBG; 
                        |    '2' : Parse.DBG := NOT Parse.DBG; 
                        |    '3' : STable.DBG := NOT STable.DBG; 
                        |    '4' : ProcGoal.DBG := NOT ProcGoal.DBG; 
                        |    '5' : Stack.DBG := NOT Stack.DBG; 
                        END; (*CASE*) 
 
              ELSIF  Compare (CrntTkn.Inst, "STACK")=0 THEN 
                        IF GetItem() THEN 
                           C := StrToCard (CrntTkn.Inst,10,ok); 
                           IF ok THEN 
                              Stack.SetStackSize(C); 
                           END; 
                        ELSE ok := FALSE; 
                        END; 
                        IF NOT ok THEN 
                           WriteLn('Size in bytes expected.'); 
                        END; 
 
              ELSIF  Compare (CrntTkn.Inst, "EXIT")=0 THEN 
                        Exit := TRUE; 
 
              ELSE ok := FALSE; 
              END; 
 
           ELSE ok := FALSE; 
           END; 
 
           RETURN ok; 
        END ProcessCommand; 
 
END Command. 
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 PROCGOAL - DEFINITION 
 
DEFINITION MODULE ProcGoal; 
 
(* The interpreter. 
 
   Exports: 
        The interpreter ProcessGoal. 
        A (runtime) error indicator. 
 
*) 
 
 
FROM DBase IMPORT ClausePtr; 
 
VAR DBG : BOOLEAN; 
    Err : BOOLEAN; 
 
PROCEDURE ProcessGoal (Goal : ClausePtr); 
 
END ProcGoal. 
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 PROCGOAL - IMPLEMENTATION 
 
IMPLEMENTATION MODULE ProcGoal; 
 
FROM Stack   IMPORT Frame, FramePtr, MAKEFrame, PUSHFrame, 
                    BindPtr, BindType, OPENStack, CLOSEStack, 
                    STORETrail, RESTORETrail, POPFrames, Before, 
                    DeRef, BindAdr, GetBoundTerm, IsFree, NextCall, GetStkTop; 
 
FROM DBase  IMPORT  ClauseRec, TermRec, TermPtr, SymTabRec, SymTabPtr, IsVar, 
                    GetFunctor, IsFunctor, IsAssertion, IsAnon, 
                    IsList, IsNulList, IsNonNulList, SameFunctor, 
                    VarIndx; 
 
FROM STable  IMPORT ListTerm, ListClause, SymType, Test, order; 
 
FROM Streams IMPORT WrStr, WrLn, WrCard, WrCharRep, WrShtCard, WriteLn, 
                    GetKey, ReportErr; 
FROM Storage IMPORT HeapTotalAvail, MainHeap; 
FROM Inbuilt IMPORT InBltProc; 
FROM Global  IMPORT MEMUsage; 
 
 
(* ------------------------------------------------------------------------ *) 
 
    (* Lists out a term instance. This is analogous to ListTerm in module 
       STable, except that it outputs a constructed term using the variable 
       bindings. 
    *) 
 
    PROCEDURE ListBTerm (TPtr : TermPtr; FPtr : FramePtr); 
    VAR BPtr : BindPtr; 
 
         PROCEDURE ListArgs (TPtr : TermPtr; FPtr : FramePtr); 
         BEGIN 
            TPtr := TPtr^.Args; 
            IF TPtr=NIL THEN RETURN END; 
            WrStr('('); 
            WHILE TPtr#NIL DO 
               ListBTerm(TPtr, FPtr); 
               TPtr := TPtr^.Next; 
               IF TPtr#NIL THEN WrStr(',') END; 
            END; 
            WrStr(')'); 
         END ListArgs; 
 
    BEGIN 
       CASE TPtr^.SType OF 
          variable : BPtr := DeRef(BindAdr(FPtr,TPtr)); 
                     IF IsFree(BPtr) THEN WrStr('*') 
                     ELSE 
                       IF DBG THEN 
                          WrStr('{'); WrCard(BPtr^.Env^.Num,0); WrStr('} '); 
                       END; 
                       ListBTerm (BPtr^.TPtr, BPtr^.Env); 
                     END; 
       |  functor  : WrStr(TPtr^.Entry^.Name^); 
                     ListArgs (TPtr,FPtr); 
       |  anon     : WrStr ('_'); 
       |  list     : WrStr('['); 
                     WHILE IsNonNulList(TPtr) DO 
                        TPtr := TPtr^.Args; 
                        ListBTerm (TPtr,FPtr); 
                        TPtr := TPtr^.Next; 
                        IF IsVar(TPtr) THEN 
                           BPtr := DeRef(BindAdr(FPtr,TPtr)); 
                           TPtr := BPtr^.TPtr; 
                           FPtr := BPtr^.Env; 
                        END; (*IF*) 
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                        IF IsNonNulList (TPtr) THEN 
                           WrStr (','); 
                        END; (*IF*) 
                     END; (*WHILE*) 
                     IF IsNulList(TPtr) THEN 
                        WrStr (']') 
                     ELSE 
                        WrStr('|'); 
                        ListBTerm (TPtr,FPtr); 
                        WrStr(']'); 
                     END; (*IF*) 
       END; (*CASE*) 
    END ListBTerm; 
 
 
(* Prints out all the bindings of the variables in a clause instance. 
 
   INPUT   Clause - pointer to clause prototype; 
           Frame  - pointer containing bindings for this instance; 
 
   OUTPUT  Displays the bindings of all the variables in the clause 
           in the form <var> = <binding>. If clause contains no 
           variables, outputs 'YES'. 
 
   Since the representation of a clause prototype does not contain a 
   list of the variables in the clause, the procedure has to traverse 
   the prototype looking for each variable in turn. The traversal is 
   performed by the auxiliary procedure FindVar. The bindings are output 
   by the procedure ListTerm. 
*) 
 
PROCEDURE OutPutBindings (Clause : ClausePtr; Frame : FramePtr); 
VAR Dummy : VarIndx; 
 
    PROCEDURE FindVar (TPtr : TermPtr; Num : VarIndx) : VarIndx; 
    BEGIN 
       WHILE (TPtr # NIL) DO 
          IF IsFunctor (TPtr) OR IsList(TPtr) THEN 
             Num := FindVar (TPtr^.Args,Num) 
          ELSIF (IsVar(TPtr) AND (TPtr^.Ofst = Num)) THEN 
             WrStr ( '   '); 
             WrStr ( TPtr^.Entry^.Name^); 
             WrStr ( ' = '); 
             ListBTerm (TPtr, Frame); 
             WrLn  ; 
             INC (Num); 
          END; 
          TPtr := TPtr^.Next; 
       END; (*WHILE*) 
       RETURN Num; 
    END FindVar; 
 
BEGIN 
   IF (Clause^.Vars # 0) THEN 
      Dummy := FindVar (Clause^.Body, FindVar(Clause^.Head,0)); 
   END; 
END OutPutBindings; 
 
 
 
(* ---- debugging -------------------------------------------------------- *) 
 
    (* Wallpaper-dump of stackframe pointed to by FPtr. Logically the 
       procedure should belong to module Stack, but because it requires 
       ListTerm to list the variable bindings recorded in the frame 
       it was shifted to this module 
    *) 
 
    PROCEDURE DumpFrame (FPtr : FramePtr); 
    VAR J : SHORTCARD; 
    BEGIN 
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        IF NOT DBG THEN RETURN END; 
          WrCharRep ('-',79); 
          WrLn      ; 
          WrStr     ('FRAME     : ') ; WrCard    (FPtr^.Num,0)  ; WrLn ; 
          WrStr     ('VARS      : ') ; WrCard    (FPtr^.Vars,0) ; WrLn ; 
          WrStr     ('PARENT    : ') ; 
          IF (FPtr^.Parent = NIL) THEN 
             WrStr  ('None'); 
          ELSE 
             WrStr  ('Frame #'); 
             WrCard (FPtr^.Parent^.Num,0); 
          END; 
          WrLn  ; 
          WrStr ('CrntLit   : '); 
          IF (FPtr^.CrntLit = NIL) THEN 
               WrStr ('-'); WrLn; 
          ELSE ListTerm (FPtr^.CrntLit); WrLn; 
          END; 
          WrStr ('CrntCls   : '); 
          ListClause (FPtr^.CrntCls); 
          WrStr ('NxtClause : '); 
          IF (FPtr^.NxtClause = NIL) THEN WrStr('-') 
          ELSE ListClause (FPtr^.NxtClause) 
          END; 
          WrLn ; 
          OutPutBindings (FPtr^.CrntCls,FPtr); 
          WrLn ; WrLn ; 
      END DumpFrame; 
 
 
(* ------------------------------------------------------------------------ *) 
 
(* This is the main interpreter routine. 
 
   This routine should really be a module by itself,  with the procedures 
   above forming a separate support module. 
 
   The procedure is divided into 5 main sections 
 
   1.   initialization 
   2.   main control loop 
   3.   procedure selection and unification 
   4.   backtracking 
   5.   processing of inbuilt predicates 
 
*) 
 
PROCEDURE ProcessGoal (Goal : ClausePtr); 
VAR Root         : FramePtr; 
    Parent       : FramePtr; 
    BKTrackPoint : FramePtr; 
    NewFrame     : FramePtr; 
    CrntCall     : TermPtr; 
    CrntProc     : ClausePtr; 
    Solutions    : CARDINAL; 
    BPtr         : BindPtr; 
 
 
    (* --- inbuilt predicates ----------------------------------------- *) 
 
 
    PROCEDURE ExecInBlt (Proc : InBltProc) : BOOLEAN; 
 
          PROCEDURE TestLex(Ord : order) : BOOLEAN; 
          VAR T1,T2 : TermPtr; 
              B     : BindPtr; 
          BEGIN 
             T1 := GetBoundTerm(CrntCall^.Args,Parent); 
             T2 := GetBoundTerm(CrntCall^.Args^.Next,Parent); 
             IF (T1=NIL) OR (T2=NIL) THEN RETURN FALSE END; 
             IF NOT((T1^.SType = functor) AND (T2^.SType = functor)) THEN 
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                RETURN FALSE 
             ELSE RETURN Test(T1^.Entry,T2^.Entry,Ord); 
             END; 
          END TestLex; 
 
 
    VAR ok : BOOLEAN; 
    BEGIN 
        ok := TRUE; 
        CASE Proc OF 
             cut     : BKTrackPoint := Parent^.CrntBTP; 
          |  isvar   : ok := IsVar  (CrntCall^.Args) AND 
                             IsFree (DeRef(BindAdr(Parent,CrntCall^.Args))); 
          |  nl      : WrLn; 
          |  write   : ListBTerm(CrntCall^.Args,Parent); 
          |  fail    : ok := FALSE; 
          |  stats   : MEMUsage; 
          |  lexlt   : ok := TestLex(lt); 
          |  lexgt   : ok := TestLex(gt); 
          |  lexle   : ok := TestLex(le); 
          |  lexge   : ok := TestLex(ge); 
        END; 
        IF ok THEN CrntCall := CrntCall^.Next; END; 
        RETURN ok; 
    END ExecInBlt; 
 
 
 
    (* --- unification ------------------------------------------------ *) 
 
 
     PROCEDURE UnifyTerm (LP1, LP2 : TermPtr; 
                         EN1, EN2 : FramePtr) : BOOLEAN; 
 
     VAR BPtr1, BPtr2 : BindPtr; 
         Var1,  Var2  : BOOLEAN; 
         Success      : BOOLEAN; 
 
     BEGIN 
        IF Err THEN RETURN FALSE; END; 
        IF DBG THEN 
           WrStr('UNIFYING: '); WrStr('{'); WrCard(EN1^.Num,0); WrStr('} '); 
                                    ListTerm (LP1); WrLn; 
           WrStr('AND     : '); WrStr('{'); WrCard(EN2^.Num,0); WrStr('} '); 
                                    ListTerm (LP2); WrLn; 
           GetKey; 
        END; 
 
        Success := TRUE; 
        IF (IsAnon(LP1) OR IsAnon(LP2)) THEN RETURN Success END; 
        Var1    := IsVar(LP1); 
        Var2    := IsVar(LP2); 
        IF Var1 THEN BPtr1 := DeRef(BindAdr(EN1,LP1)) END; 
        IF Var2 THEN BPtr2 := DeRef(BindAdr(EN2,LP2)) END; 
 
        IF NOT (Var1 OR Var2) THEN 
           Success := SameFunctor(LP1,LP2); 
           LP1     := LP1^.Args; 
           LP2     := LP2^.Args; 
           WHILE (Success) AND (LP1 # NIL) DO 
              Success := UnifyTerm (LP1,LP2,EN1,EN2); 
              LP1     := LP1^.Next; 
              LP2     := LP2^.Next; 
           END; (*WHILE*); 
 
        (* At least one of LP1 and LP2 must be variables. 
           This leads to the following cases: 
 
           1. var LP1, var LP2 
              let D1 and D2 be the dereferences of LP1 and LP2 respectively. 
              If D1 = D2 then succeed (since both are instantiated to the 
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                 same thing). 
              If both D1 and D2 are bound, then UnifyTerm Lit(D1), Lit(D2) 
                 with environments Env(D1), Env(D2). 
              If D2 is free then bind D2 to D1. 
              If D1 is free then copy D2 to D1 and set trail 
 
           2. literal LP1, var LP2 
              let D2 be the dereference of LP2. 
              if D2 is free then bind D2 to LP1 with EN1 as environment 
              else UnifyTerm LP1, Lit(D2) with environments EN1, Env(D2) 
 
           3. var LP1, literal LP2 
              let D1 be the dereference of LP1 
              if D1 is free then bind D1 to LP2 with EN2 as environment 
              else UnifyTerm Lit(D1), LP2 with environments Env(D1), EN2 
        *) 
 
        ELSIF (Var1 AND Var2) THEN 
           IF BPtr1 # BPtr2 THEN 
              IF NOT (IsFree(BPtr1) OR IsFree(BPtr2)) THEN 
                 Success := UnifyTerm (BPtr1^.TPtr, BPtr2^.TPtr, 
                                      BPtr1^.Env,  BPtr2^.Env); 
              ELSIF IsFree(BPtr2) THEN 
                    BPtr2^.BType := var; 
                    BPtr2^.BPtr := BPtr1; 
                    IF Before(BPtr2,BKTrackPoint) THEN 
                       Err := NOT STORETrail (BPtr2); 
                    END; 
              ELSE  BPtr1^ := BPtr2^; 
                    IF Before(BPtr1,BKTrackPoint) THEN 
                       Err := NOT STORETrail (BPtr1) 
                    END; 
              END; 
           END; 
 
        ELSIF (Var2) THEN 
           IF IsFree(BPtr2) THEN 
              BPtr2^.BType     := lit; 
              BPtr2^.TPtr      := LP1; 
              BPtr2^.Env       := EN1; 
              IF Before(BPtr2,BKTrackPoint) THEN 
                 Err := NOT STORETrail (BPtr2); 
              END; 
           ELSE 
              Success := UnifyTerm (LP1, BPtr2^.TPtr, 
                                   EN1, BPtr2^.Env); 
           END; 
 
        ELSIF (Var1) THEN 
           IF IsFree(BPtr1) THEN 
              BPtr1^.BType     := lit; 
              BPtr1^.TPtr      := LP2; 
              BPtr1^.Env       := EN2; 
              IF Before(BPtr1,BKTrackPoint) THEN 
                 Err := NOT STORETrail (BPtr1); 
              END; 
           ELSE 
              Success := UnifyTerm (BPtr1^.TPtr, LP2, 
                                   BPtr1^.Env,  EN2); 
           END; 
        END; (*IF*) 
        RETURN Success; 
    END UnifyTerm; 
 
    (* Attempts to resolve CrntCall with the head of a clause starting 
       from CrntProc. 
       INPUTS   - none; 
       OUTPUTS  - exits with CrntProc pointing to the clause whose head 
                  successfully resolved with the CrntLit, or NIL if no 
                  clause responded to the call. NewFrame contains any 
                  bindings for the variables in the clause CrntProc. 
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    *) 
 
    PROCEDURE SelectProc () : BOOLEAN; 
    BEGIN 
       IF (CrntProc # NIL) AND (CrntProc^.InBlt) THEN 
          RETURN ExecInBlt(CrntProc^.Proc); 
       END; 
       WHILE (CrntProc # NIL) AND NOT Err DO 
          NewFrame := MAKEFrame(CrntProc^.Vars); 
          IF NewFrame # NIL THEN 
 
             (* Is this a backtrack point ? *) 
 
             NewFrame^.CrntBTP := BKTrackPoint; 
             IF CrntProc^.Next # NIL THEN 
                BKTrackPoint := NewFrame; 
             END; 
 
             IF UnifyTerm(CrntCall,CrntProc^.Head,Parent,NewFrame) THEN 
 
                (* Complete activation record and push it *) 
 
                NewFrame^.Parent    := Parent; 
                NewFrame^.CrntLit   := CrntCall; 
                NewFrame^.CrntCls   := CrntProc; 
                NewFrame^.NxtClause := CrntProc^.Next; 
                Parent              := NewFrame; 
                PUSHFrame(); 
                CrntCall            := CrntProc^.Body; 
                RETURN TRUE; 
 
             ELSE 
 
                (* Backtrack one frame - shallow backtracking *) 
 
                RESTORETrail (NewFrame^.Trail); 
                CrntProc := CrntProc^.Next; 
                BKTrackPoint := NewFrame^.CrntBTP; 
 
             END; (*IF*) 
 
         ELSE Err := TRUE; 
         END; (*IF*) 
 
       END; (*WHILE*) 
       RETURN FALSE; 
    END SelectProc; 
 
 
 
    (* --- backtracking ----------------------------------------------- 
       Deep backtracking - resume interpretation from the call indicated 
            by the current BKTrackPoint, if any. 
    *) 
 
    PROCEDURE BackTrack () : BOOLEAN; 
    VAR NewBTP : FramePtr; 
    BEGIN 
       IF DBG THEN 
          WrStr('Backtracking '); 
       END; 
       IF BKTrackPoint = NIL THEN 
          IF DBG THEN 
             WrStr(' failed'); 
             WrLn ; 
          END; 
          RETURN FALSE; 
       ELSE 
          IF DBG THEN 
             WrStr ('to : '); 
             WrCard(BKTrackPoint^.Num,0); 
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             WrLn ; 
          END; 
          CrntProc     := BKTrackPoint^.NxtClause; 
          CrntCall     := BKTrackPoint^.CrntLit; 
          Parent       := BKTrackPoint^.Parent; 
          NewBTP       := BKTrackPoint^.CrntBTP; 
          POPFrames    (BKTrackPoint); 
          BKTrackPoint := NewBTP; 
          RETURN TRUE; 
       END; 
    END BackTrack; 
 
 
    (* --- main control loop ------------------------------------------ *) 
 
 
    PROCEDURE Run; 
    BEGIN 
    LOOP 
 
    (* Quit if an error has occured *) 
 
       IF Err THEN RETURN; END; 
 
    (* Select Call: 
       CrntProc points to clause selected by previous call to SelectProc. 
 
       IF current procedure is an assertion (ie has no calls) then we have 
          arrived at a leaf of the search tree, so go up to the first parent 
          procedure which still has some calls pending. 
 
          IF no parent has pending calls, then we have found a solution. 
          Output solution and force backtracking to search for further 
          solutions. 
 
       OTHERWISE prepare to enter the procedure CrntProc at its first 
                 call. 
 
    *) 
 
        WHILE (CrntCall=NIL) AND (Parent # Root) DO 
             CrntCall := NextCall(Parent); 
             Parent   := Parent^.Parent; 
        END; 
 
 
       (* CrntCall is NIL iff no parent node has pending calls. In this 
          case we have found a solution, and backtracking is required 
          to search for further solutions. If backtracking fails, then 
          quit. Note that inbuilt predicates are never backtracked to since 
          all such predicates are deterministic. 
       *) 
 
       IF CrntCall = NIL THEN 
          INC (Solutions); 
          IF Goal^.Vars > 0 THEN 
             WrStr  ( '-- solution '); 
             WrCard ( Solutions,0); 
             WrLn; 
             OutPutBindings (Goal, Root); 
          END; (*IF*) 
          IF NOT BackTrack() THEN RETURN; END; 
 
       ELSE 
 
       (* Otherwise, CrntCall points to the next call to be executed. 
          The call may be a variable, in which case the literal 
          dereferenced by the variable is the actual call. If the variable 
          is unbound, or bound to a free variable, then an error occurs. 
       *) 
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          IF IsVar(CrntCall) THEN 
             BPtr := DeRef(BindAdr(Parent,CrntCall)); 
             IF IsFree(BPtr) THEN 
                Err := TRUE; 
             ELSE 
                CrntProc := BPtr^.TPtr^.Entry^.FstCls; 
             END; 
          ELSIF IsFunctor (CrntCall) THEN 
             CrntProc    := CrntCall^.Entry^.FstCls; 
          END; 
       END; 
 
    (* Select procedure to respond to this call. If no procedure responds, 
       then we have met a failure node, so backtracking is required. If 
       backtracking fails, then quit. 
    *) 
 
       WHILE NOT SelectProc() DO 
          IF Err THEN RETURN; END; 
          IF NOT BackTrack() THEN RETURN; END; 
       END; (*LOOP*) 
 
       DumpFrame (GetStkTop()); 
 
    END; (*LOOP*) 
    END Run; 
 
(* --- control initialization --------------------------------------------- *) 
 
 
BEGIN 
   Err := FALSE; 
   OPENStack; 
   Solutions       := 0; 
   BKTrackPoint    := NIL; 
   Root            := MAKEFrame(Goal^.Vars); 
   Root^.CrntBTP   := NIL; 
   Root^.CrntLit   := NIL; 
   Root^.NxtClause := NIL; 
   Root^.CrntCls   := Goal; 
   Root^.Parent    := NIL; 
   Parent          := Root; 
   CrntCall        := Goal^.Body; 
   PUSHFrame; 
   DumpFrame (Root); 
   Run; 
 
   IF NOT Err THEN 
      IF (Solutions=0) THEN 
         WrStr ('NO'); 
         WrLn; 
      ELSIF (Goal^.Vars = 0) THEN 
         WrStr ('YES'); 
         WrLn ; 
      END; (*IF*) 
   ELSE 
      ReportErr ('Run-time error'); 
   END; 
 
   CLOSEStack; 
 
END ProcessGoal; 
 
 
 
(* ---- module initialization --------------------------------------------- *) 
 
 
BEGIN 
  DBG := FALSE; 
END ProcGoal. 
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 INBUILT - DEFINITION 
 
DEFINITION MODULE Inbuilt; 
 
(* Definition of inbuilt predicates - interface module. 
 
   Exports: 
        inbuilt-predicate identifiers. 
        definition procedure. 
 
*) 
 
TYPE InBltProc = (isvar, cut, write, nl, fail, stats, 
                  lexlt, lexgt, lexle, lexge); 
 
PROCEDURE DefineInbuilts; 
 
END Inbuilt. 
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 INBUILT - IMPLEMENTATION 
 
IMPLEMENTATION MODULE Inbuilt; 
 
FROM DBase  IMPORT SymTabRec, ClauseRec, 
                   SymTabPtr, ClausePtr, 
                   SymType,   MKClauseRec; 
 
FROM STable IMPORT Insert; 
 
 
(* ------------------------------------------------------------------------ *) 
 
 
        PROCEDURE DefineInbuilts; 
 
           (* Make a symbol-table entry and one clause record for 
              each inbuilt predicate. 
           *) 
 
           PROCEDURE Make( ID    : ARRAY OF CHAR;  (* name *) 
                           Proc  : InBltProc;      (* procedure identifier *) 
                           Arity : SHORTCARD);     (* arity *) 
 
           VAR CPtr : ClausePtr; 
               SPtr : SymTabPtr; 
           BEGIN 
               SPtr := Insert(ID,functor,Arity); 
               CPtr := MKClauseRec(); 
               SPtr^.FstCls := CPtr; 
               SPtr^.LstCls := CPtr; 
               CPtr^.Next   := NIL; 
               CPtr^.InBlt  := TRUE; 
               CPtr^.Proc   := Proc; 
               CPtr^.Entry  := SPtr; 
           END Make; 
 
        BEGIN 
           Make ('var',isvar,1); 
           Make ('!',cut,0); 
           Make ('nl',nl,0); 
           Make ('fail',fail,0); 
           Make ('write',write,1); 
           Make ('stats',stats,0); 
           Make ('@<',lexlt,2); 
           Make ('@>',lexgt,2); 
           Make ('@>=',lexge,2); 
           Make ('@=<',lexle,2); 
        END DefineInbuilts; 
 
END Inbuilt. 
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APPENDIX C 
VRP Predefined Predicates - PREDEF.PRO 
% --- predef.pro --- predefined prolog predicates for VRP --- 
%     24.3.90 
 
 
% --- true --- always succeeds. 
      true. 
 
 
% --- not (X) --- fails if X succeeds, succeeds if X fails. X must be 
%                 instantiated or an error occurs. 
      not (X) :- X,!,fail. 
      not (X). 
 
 
% --- nonvar(X) --- succeeds if argument is not a free variable. 
      nonvar(X) :- var(X),!,fail. 
      nonvar(X). 
 
 
% --- = (A,B) --- succeeds if A and B are instantiated to the same term 
   instance. Otherwise fails. 
      = (A,A). 
 
 
% --- \=(A,B) --- not(=(A,B)). 
      \= (A,A) :- !,fail. 
      \= (A,B). 
 
 
% --- call(X) --- executes X as a goal. X must be instantiated. 
      call(X) :- X. 
 
 
% --- repeat --- creates a bactrack point which succeeds infinitely. 
      repeat. 
      repeat :- repeat. 
 
 
% --- a predicate (non-generative) version of member. 
      memberp (H, [H|_]) :- !. 
      memberp (X, [H|T]) :- memberp (X, T). 
 
 
% --- the generative version of member. 
      member (H, [H|_]). 
      member (X, [H|T]) :- member (X, T). 
 
 
% --- last element of a list. 
      last (X,[X]). 
      last (X,[_|Y]) :- last(X,Y). 
 
 
% --- append second argument to first (list) giving third (list). 
      append ([],L,L). 
      append ([X|L1],L2,[X|L3]) :- append (L1,L2,L3). 
 
 
% --- reverse first argument (list) giving second argument (list). 
      reverse(L1,L2) :- rev2 (L1,[],L2). 
      rev2 ([X|L],L2,L3) :- rev2 (L, [X|L2], L3). 
      rev2 ([],L,L). 
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% --- return third argument (list) consisting of second argument (list) 
%     without all occurences of first argument. 
      delete (_,[],[]). 
      delete (H,[H|T],X) :- !, delete (H,T,X). 
      delete (X, [Y|T1],[Y|T2]) :- delete (X,T1,T2). 
 
 
% --- subst (A1,L1,A2,L2) -- replace all occurences of A1 in list L1 
        by A2 to give list L2 
      subst (_,[],_,[]). 
      subst (H1,[H1|T1],H2,[H2|T2]) :- !, subst (H1,T1,H2,T2). 
      subst (X, [H|T1],Y,[H|T2]) :- subst (X,T1,Y,T2). 
 
 
% --- write X followed by a CR/LF 
      writeln(X) :- write(X), nl. 
 
 
% --- write contents of a list as a string (ie without [] and separators) 
      writestr([]). 
      writestr([H|T]) :- write(H), writestr(T). 
 
 
% --- premute(List1,List2) --- permute list1 returning result in list2. 
      permute(L,[H|T]) :- append(V,[H|U],L), 
                          append(V,U,W), 
                          permute(W,T). 
      permute([],[]). 
 
 
% --- sort(List1, List2) --- sort the first list in ascending order, 
%                            returning result in second. A quicksort 
%                            is used (see [CLO81 p.157]). 
      sort(L1,L2)        :- qs(L1,L2,[]). 
      split (H,[A|X],[A|Y],Z) :- @=<(A,H), split(H,X,Y,Z). 
      split (H,[A|X],Y,[A|Z]) :- @>(A,H), split(H,X,Y,Z). 
      split(_,[],[],[]). 
      qs([H|T],S,X)      :- split(H,T,A,B), 
                            qs(A,S,[H|Y]), 
                            qs(B,Y,X). 
      qs([],X,X). 
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