

THE THEORETICAL FRAMEWORK
AND

IMPLEMENTATION OF A PROLOG INTERPRETER

Mario Camilleri B.Ed.(Hons.)

A Dissertation in
the Department of Computing

Presented in Part Fulfilment
of the Requirements for the

Degree of Bachelor of Science
(Mathematics, Logic and Computing)

at the

UNIVERSITY
OF

MALTA

JUNE 1990

 i

ABSTRACT

The present work investigates the theoretical framework and the interpretation algorithm of the
Prolog programming language. The implementation of a structure-sharing interpreter for a
subset of the language written in Modula-2 is described.

Chapter 1 introduces the concepts underlying resolution deduction procedures in general, and
the Prolog programming language in particular. The equivalence of the satisfiability and
deduction problems is demonstrated. The resolution principle is introduced as a
refutation/deduction mechanism for propositional formulae in clausal form, and a completeness
proof using semantic trees is given. It is then shown how restricting formulae to Horn clauses
results in a more efficient resolution procedure called SLD-resolution. The completeness of
SLD-resolution for Horn clause logic programs is demonstrated. Finally, it is shown how the
addition of a search strategy to SLD-resolution results in an automatic refutation procedure. An
implementation of such a procedure in Modula-2 is described.

Chapter 2 extends these refutation methods to 1st order logic. It is shown that a set S of 1st-order
clauses is unsatisfiable iff it is false under all interpretations over the Herbrand universe.
Moreover, S is unsatisfiable iff a FINITE set of ground instances of clauses in S is unsatisfiable,
iff S has a (finite) failure tree. The resolution procedure given for propositional clauses can be
LIFTED to non-ground clauses by unification. This result is used to demonstrate the
completeness of resolution refutations in the 1st order case using a proof similar to the one used
for the propositional case.

Chapter 3 outlines the implementation of Prolog. Following a brief review of the Prolog
language, the interpretation strategy is discussed. The representation of terms constructed during
unification in structure-sharing and non-structure-sharing systems is compared, and a basic
optimization technique which exploits determinism in a Prolog program (deterministic-frame
optimization, DFO) is outlined.

Chapter 4 describes the implementation of a small structure-sharing interpreter for a subset of
the Prolog language. The interpreter is only meant to demonstrate some implementation
principles and to serve as a test-bed for optimization techniques, although the design is
sufficiently open to form the kernel of a more practical implementation.

June 1990

 ii

ACKNOWLEDGEMENTS

I would like to express my gratitude to the following:

My tutors, Dr V. Nezval
and

Mr V. Riolo.

Prof A. Leone Ganado, course co-ordinator.

The Department of Artificial Intelligence at the University of Edinburgh, in
particular their documentation secretary Margaret E. Pithie.

 iii

TABLE OF CONTENTS

1 PROPOSITIONAL LOGIC ..1

1.1 Objectives .. 1
1.2 Syntax .. 1
1.3 Semantics... 1
1.4 Satisfiability... 2
1.5 Clausal Form And Conjunctive Normal Form... 3
1.6 Logical Consequence .. 3
1.7 Deduction Procedures ... 4
1.8 Semantic Trees .. 4
1.9 Resolution.. 6
1.10 The Method Of Refutation By Resolution ... 7
1.11 Completeness Of The Resolution Principle (Propositional Case) ... 8
1.12 Refutation Trees .. 9
1.13 Horn Clauses ...10
1.14 Restricting Resolution To Horn Clauses Programs - Sld-Resolution..10
1.15 Choice Of Selected Literal In SLD-Resolution..12
1.16 Search Strategies ...13
1.17 SLD-Refutation With Depth-First Search ..14
1.18 Implementation..15

Database Representation...15

2 FIRST-ORDER LOGIC ... 18

2.1 Objectives ..18
2.2 Syntax ..18
2.3 Standard Form...19
2.4 Semantics...20
2.5 The Herbrand Universe And Base..20
2.6 Herbrand Interpretations And Semantic Trees ...21
2.7 Herbrand's Theorem..22
2.8 Substitutions ..22
2.9 Unification...23
2.10 Representation Of Terms ..24
2.11 Unification Algorithm...24
2.12 Resolution In 1st Order Logic...25
2.13 Completeness of the Resolution Principle (1st Order Case) ...26
2.14 Logic Programming ..26

3 PROLOG .. 28

3.1 Objectives ..28
3.2 The Language - Syntax And Terminology...28

Program ...28
Clause ..28
Terms...28

 iv

Literals ...29
Predicates...29

3.3 Semantics...29
Declarative Semantics...29
Procedural Semantics..29

3.4 Control Mechanism...29
3.5 Activation Frames ...30

Control Vector...30
Environment Vector ..30

3.6 The Interpretation Strategy ...31
3.7 Indexing Of Clauses..32
3.8 Implementing The ! Predicate...33
3.9 The Binding Environment And The Trail ..33
3.10 Structure-Sharing And Non Structure-Sharing Systems..34

Structure Sharing...34
Non-Structure Sharing ..35

3.11 Deterministic-Frame Optimization...36
3.12 The Two-Stack Representation In SS Systems ..37
3.13 Other Optimization Techniques..38
3.14 Intelligent Backtracking And Compilation...38

4 IMPLEMENTATION... 39

4.1 Objectives ..39
4.2 The Prolog Subset ...39
4.3 Choice Of Implementation Language...40
4.4 Top-Down Design...41
4.5 The Main Data Structures ...43

The Dictionary...43
The String Store ..43
The Symbol Table ...44
The Clause Records...44
The Term Records...45

4.6 Operations On The Symbol Table And Database ..48
4.7 Symbol Modes...49
4.8 The Lexical Analyzer..49
4.9 The Parser..49
4.10 Constructing The Internal Representation Of A Clause...50
4.11 Encoding Variables ...51
4.12 Preventing Redefinition Of System Predicates By The User...52
4.13 Parsing Goal Clauses...52
4.14 The Runtime Structures ..52

Activation Frames ...52
Binding Records..52
The Stack Module ...53

4.15 The Interpreter...55
4.16 Unification...56
4.17 Enhancements To The Interpreter...57

BIBLIOGRAPHY.. 59

APPENDIX A PROPOS SOURCE CODE .. 61

 v

APPENDIX B VRP Source Code... 71

APPENDIX C VRP Predefined Predicates - PREDEF.PRO... 132

1

1 PROPOSITIONAL LOGIC

1.1 Objectives
This chapter introduces, within the context of propositional logic, the concepts underlying
resolution deduction procedures in general, and the Prolog programming language in particular.

After a brief overview of the syntax and semantics of propositional logic, the equivalence of the
satisfiability and deduction problems is demonstrated. The resolution principle is introduced as
a refutation/deduction mechanism for formulae in clausal form, and a completeness proof using
semantic trees is given. It is then shown how restricting formulae to Horn clauses results in a
more efficient resolution procedure called SLD-resolution, which is the main computational
mechanism of Prolog. The completeness of SLD-resolution for Horn clause logic programs is
demonstrated. Finally, it is shown how the addition of a search strategy to SLD-resolution
results in an automatic refutation procedure. An implementation of such a procedure in Modula-
2 is described briefly.

1.2 Syntax
The alphabet of propositional calculus

1. a countable set PS of PROPOSITIONAL SYMBOLS (or ATOMS): {pi | i ≥ 0}
2. the set of logical connectives LCON : {∧, ∨, ⇒, ⇔, ¬}
3. the set AUX of auxiliary symbols: {(,)}
Informally, the set WFF of well-formed (propositional) formulae is defined as the set of strings
over the alphabet AS ∪ LCON ∪ AUX, such that

1. every atom is in WFF
2. if X is in the set WFF, then so is ¬X
3. if X and Y are in WFF, then so are (X∨Y), (X∧Y), (X⇒Y) and (X⇔Y).
4. only strings generated from the application of rules 1-3 are in the set WFF
For convenience, we adopt the following conventions:

1. lower case letters a..z represent atoms
2. upper case letters A..Z represent arbitrary well-formed formulae (or formulae for short).
2. the brackets [and] will sometimes be used for clarity in place of (and) respectively.
4. X ≡ Y will denote the logical equivalence of formulae X and Y. Note that X ≡ Y is not a

formula but a statement about the two formulae X and Y.
5. We sometimes drop brackets from formulae where this causes no ambiguity. In particular,

outer brackets.

1.2:a DEFN: (LITERAL). A LITERAL L is an atom p (a positive literal) or its negation ¬p (a
negative literal).

1.3 Semantics
We start by defining the set BOOLEAN = {FALSE,TRUE}, where FALSE and TRUE are
called TRUTH VALUES, and a function CONJUGATE : BOOLEAN → BOOLEAN defined
as:

CONJUGATE(TRUE) = FALSE
CONJUGATE(FALSE) = TRUE

2

1.3:a DEFN: (BASE).
The BASE Bs of a finite set S of formulae is the (finite) set {p1, p2,..,pn} of atoms
pi∈PS which appear in S.

1.3:b DEFN: (TRUTH ASSIGNMENT).
A TRUTH ASSIGNMENT τ for a set of formulae S is a function τ:Bs → BOOLEAN,
We write τ(p)=TRUE to denote that τ assigns the truth-value TRUE to an atom p.

1.3:c DEFN: (INTERPRETATION).
An INTERPRETATION I for a set of formulae S is a function I:S → BOOLEAN,
defined as follows:

1. for any atom p, I(p) = τ(p)
2. for any non-atomic formula ¬A, I(¬A) = CONJUGATE(I(A))
3. for any non-atomic formula A, and formulae X and Y, A=X∗Y (∗ ∈ LCON \ {¬}),

I(A) is a function of I(X),I(Y) and ∗, as follows:

 I(X) I(Y) I(X∨Y) I(X∧Y) I(X⇒Y) I(X⇔Y)
T T T T T T

T F T F F F

F T T F T F

F F F F T T

where F and T stand for the truth values FALSE and TRUE respectively. We write
I(A)=TRUE to denote that the extended interpretation I assigns the value TRUE to the
formula A. Clearly, I is a compositional extension of the truth-assignment τ, and the term
INTERPRETATION will henceforth denote both.

An interpretation I induces a partition of Bs into two sets Bsf={p∈Bs : I(p)=FALSE}, and
Bst={p∈Bs : I(p)=TRUE}. Conversely, for every bipartition of Bs there corresponds a unique
interpretation. It is thus convenient to represent an interpretation as a set of literals I={L1,..,Ln}
such that Li=pi if pi∈Bst, and Li=¬pi if pi∈Bsf.

Since there are 2n bipartitions of Bs (where n = |Bs|), it follows that there are 2n possible distinct
interpretations of S.

1.4 Satisfiability
A interpretation I is said to SATISFY a formula A if I(A)=TRUE. We denote this by I⊨A. I is
then called a MODEL of A. The formula A is said to be SATISFIABLE (or CONSISTENT)
if there exists an interpretation which is a model of A. Otherwise, A is said to be
UNSATISFIABLE. An interpretation I cannot satisfy both A and ¬A, because
I(¬A)=CONJUGATE(I(A)). Hence (A∧¬A) is an unsatisfiable formula.

A is said to be a TAUTOLOGY (or VALID) if every interpretation of A is also a model of A,
and we denote this by ⊨A. Hence, A is a tautology iff ¬A is unsatisfiable.

Two formulae A and B are said to be LOGICALLY EQUIVALENT, denoted A≡B, if
⊨A⇔B, ie if I(A)=I(B) for all interpretations I.

An interpretation I is said to satisfy a set of formulae Γ={ß1,..,ßn} iff ∀ßi∈Γ, I⊨ßi. Thus a set of
formulae is satisfiable (or CONSISTENT) if all its members admit a common model. In this
sense, Γ ≡ ß1∧..∧ßn, ie Γ can be viewed as a conjunction of the formulae ßi.

3

1.5 Clausal Form And Conjunctive Normal Form

1.5:a DEFN: (CLAUSE).
A CLAUSE is a disjunction of a finite number of literals: (L1 ∨ .. ∨ Ln) n ≥ 0. When n =
0, the clause is called an EMPTY (or NULL) clause, denoted by □. When n=1 the clause
consists of a single literal (L) and is called a UNIT CLAUSE.

1.5:b DEFN: (CONJUNCTIVE NORMAL FORM).
A conjunctive normal form (CNF) is a conjunction of a finite number of clauses: (C1 ∧ ..
∧ Cm).

1.5:c THEOREM:
For every wff A in the propositional calculus there exists a formula A' in CNF such that
A≡A'.

A constructive proof may be found in any textbook on logic, for example [DOW86
pp22ff],[THA88 pp15ff].

Henceforth assume that all formulae are in CNF.

A clause can be represented as a set of literals {Li | i = 1,..,n}. Similarly, a CNF can be
represented as a set of clauses {Cj | j = 1,..,m}, each Cj being a clause {Lji | i = 1,..,n}.

For convenience the set-representation of clauses and conjunctive normal forms will be used
henceforth. Thus, the conjunctive formula

(A∨B) ∧ (C∨¬D) ∧ (E)

will be represented as the set of clauses

{{A,B} , {C,¬D} , {E}}.

The semantics of clauses and CNFs follow from the more general semantics of WFFs. For a
clause C = {L1,..,Ln}:

a. I(C)=TRUE iff ∃Li ∈ C such that I(Li)=TRUE.
b. Hence the empty clause □ is unsatisfiable - ie I(□)=FALSE for all possible interpretations I,

including the null interpretation I={}. □ is the only clause falsified by the null interpretation.
c. ⊨C ⇔ ∃Li,Lj ∈ C such that Li = ¬Lj

For a set of clauses (CNF) S = {C1,..,Cn}:

a. I(S)=TRUE iff ∀Ci∈S, I(C)=TRUE.
b. Since □ is unsatisfiable, a set of clauses which contains □ as a member is unsatisfiable.

1.6 Logical Consequence
A formula ∆ is said to be a LOGICAL CONSEQUENCE of a set of formulae Γ={ß1,..,ßn} if
every interpretation which satisfies Γ also satisfies ∆, denoted Γ⊨∆. If Γ is unsatisfiable, then
Γ⊨∆ for all formulae ∆.

1.6:a LEMMA:
If Γ⊨∆ and Γ⊨Ω, then Γ⊨(∆∧Ω).

PROOF: since all interpretations which satisfy Γ also satisfy ∆, and all interpretations which
satisfy Γ also satisfy Ω, all interpretations which satisfy Γ also satisfy (∆∧Ω). Hence
Γ⊨(∆∧Ω).

1.6:b COROLLARY:
Γ⊨∆ and Γ⊨¬∆ iff Γ is unsatisfiable.

4

PROOF: by lemma 1.6:a, Γ⊨∆ and Γ⊨¬∆ implies that Γ⊨(∆∧¬∆). But since no
interpretation satisfies (∆∧¬∆), then no interpretation satisfies Γ. Hence Γ is
unsatisfiable.

1.6:c THEOREM:(DEDUCTION PRINCIPLE)
Γ⊨∆ if and only if Γ∪{¬∆} is unsatisfiable.

PROOF:
(⇒) Γ⊨∆ ⇒ Γ∪{¬∆} is unsatisfiable.

For any interpretation I, either I(ß)=TRUE for all ß∈Γ and I(∆)=TRUE (hence
I(¬∆)=FALSE), or I(ß)=FALSE for some ß∈Γ. Either way, I(Γ ∪ {¬∆})=FALSE.

(⇐) Γ∪{¬∆} is unsatisfiable ⇒ Γ⊨∆.

For any interpretation I, either I(ß)=TRUE for all ß∈Γ and I(¬∆)=FALSE (hence
I(∆)=TRUE), or I(ß)=FALSE for some ß∈Γ. Thus I(∆)=TRUE whenever I(Γ)=TRUE,
and so Γ⊨∆.

1.7 Deduction Procedures
The deduction principle thus reduces the problem of inferring a goal formula A from the
hypothesis set Γ to the equivalent problem of determining whether the formula set Γ∪{¬A} is
satisfiable or not. Since much of the application of logic in mainstream AI (including Prolog)
involves automatic deduction, the development of efficient algorithms for determining the
satisfiability of a set of formulae is clearly of paramount importance.

[CHA74] presents a thorough treatment of many of the seminal work in the field of automated
theorem proving, such as that of Davis and Putnam. A review of more recent developments in
the field may be found in [LOV84].

In the context of Prolog, the most important developments were in the area of resolution
deduction. An extension of a theorem by Herbrand and of the work of Davis and Putnam, the
resolution principle was introduced by Robinson in 1965 [ROB65]. The algorithm was further
refined in subsequent years by Robinson, Kowalski and others [CHA74][GAL87] (in particular
by restricting its use to the class of Horn formulae). Kowalski's work led directly to the
development of Prolog by Colmerauer and Roussel at Marseille in the early 1970s.

In this chapter, the application of resolution to the propositional calculus will be discussed,
together with a few refinements to the basic algorithm. At the end of this section, an interpreter
for a propositional version of Prolog will be developed to illustrate implementation techniques.
In the next chapter, the resolution principle will be extended to the 1st order case.

1.8 Semantic Trees

DEFN: (SEMANTIC TREE).
Let S={C1,..,Cn} be a set of clauses and Bs={p1,..,pm} its base. A SEMANTIC TREE Ts
is a complete binary tree with m levels (with the root at level 1) such that all left/right
edges emanating from nodes at level i are labelled ¬pi/pi.

EXAMPLE:

S = { {p,¬q} , {q,r} , {¬p,¬r} }
Bs = { p, q, r }
Ts =

5

Ts

¬p

¬q

¬r ¬r ¬r ¬r

¬q

p

q

r

q

r r r

Figure 1: Semantic Tree

Let IN={L1,..,Ln}, where Li is either pi or ¬pi, be the path from the root of a semantic tree Ts to
node N. Then IN corresponds to a (partial) interpretation for S. Similarly, every root-to-leaf path
in Ts corresponds to an interpretation of S, and vice-versa.

DEFN: (FAILURE NODE).
A node N in a semantic tree is said to be a FAILURE NODE if IN falsifies some clause
in S but IM satisfies S for every ancestor node M of N. If a set of clauses S is
unsatisfiable, then every path in the semantic tree Ts must pass through a failure node.

DEFN: (FAILURE TREE).
For a set of clauses S, let T' be the tree obtained from the semantic tree Ts by truncating
all paths at failure nodes. If all leaves of T' are failure nodes for S, then T' is called a
FAILURE TREE and denoted FTs. Each leaf of FTs is labelled with the set of clauses
falsified by the corresponding interpretation.

EXAMPLE:
Let S = { {a,b} , {a,¬b} , {¬a} }

Then the following is a failure tree of S

FTS

¬a

¬b

a

b
{¬a}

{a,b} {a,¬b}

Figure 2: Failure tree

1.8:d LEMMA: A clause set S has a failure tree if and only if S is unsatisfiable.

PROOF:
(⇒) Let FTs be a failure tree for S. By definition, every path in FTs terminates in a failure
node. Hence every interpretation of S falsifies some clause in S. Hence S is unsatisfiable.

6

(⇐) Let S be unsatisfiable. Then every interpretation I falsifies some clause in S. Hence
every path in the semantic tree Ts terminates in a failure node - and therefore S has a
failure tree.

A refutation of S is a traversal of the semantic tree Ts in search of the failure tree FTs.

1.8:e LEMMA:
A set of clauses S has a failure tree of one node iff S contains the empty clause □.

PROOF:
The failure tree of one node corresponds to the null interpretation I={}. Since □ is the
only clause falsified by the null interpretation, it follows that if S is falsified by the null
interpretation it must contain the empty clause. Conversely, if S contains □, then S is
falsified by the null interpretation, and therefore its failure tree must be the one-node tree.

1.8:f DEFN: (INFERENCE NODE).
A node N in a failure tree is said to be an INFERENCE NODE if BOTH child nodes of
N are failure nodes (and therefore leaves of FTs).

1.8:g LEMMA:
Every failure tree (with the exception of the trivial one-node tree) must have at least one
inference node.

PROOF:
Assume FTs is a failure tree of more than one node which has no inference nodes. Then
every node has at least one non-failure descendant, and therefore we could find a root-to-
leaf path in FTs without failure nodes, corresponding to an interpretation which satisfies
S. But this is a contradiction, since S is unsatisfiable.

1.9 Resolution
In the propositional case, the resolution inference rule is essentially Gentzen's cut rule
[SMU68], itself a generalization of modus ponens.

1.9:a LEMMA:
[(A∨P) ∧ (B∨¬P)] ≡ [(A∨P) ∧ (B∨¬P) ∧ (A∨B)] for all formulae A,B and P.

PROOF:
a. [(A∨P) ∧ (B∨¬P) ∧ (A∨B)] ⇒ [(A∨P) ∧ (B∨¬P)]

If an interpretation I⊨[(A∨P) ∧ (B∨¬P) ∧ (A∨B)] then by definition I⊨(A∨P) and
I⊨(B∨¬P). Thus I⊨[(A∨P) ∧ (B∨¬P)]

b. [(A∨P) ∧ (B∨¬P)] ⇒ [(A∨P) ∧ (B∨¬P) ∧ (A∨B)]

This implication is of the form

X ⇒ X∧Y
→ ¬X ∨ (X∧Y)
→ (¬X∨X) ∧ (¬X∨Y)
→ (¬X∨Y)
→ X ⇒ Y

Hence, it suffices to show that

[(A∨P) ∧ (B∨¬P)] ⇒ (A∨B)]

This eventually simplifies to the CNF

(A∨B∨¬A∨¬B) ∧ (A∨B∨¬B∨¬P) ∧ (A∨B∨¬A∨P) ∧ (A∨B∨P∨¬P)

Which is a tautology, since each disjunction contains at least one conjugate pair of
formulae.

7

In particular, (1) holds for arbitrary disjunctions A,B and atomic formula P. Hence, the set of
clauses

{{A,P} , {B,¬P}}

is logically equivalent to

{{A,P} , {B,¬P} , {A,B}}

ie, we can add a new clause, {A,B}, without affecting the satisfiability of the set. In general, the
set

{C1, .., Cn, {A,P}, {B,¬P}, {A,B}}

is unsatisfiable iff

{C1, .., Cn, {A,P}, {B,¬P}}

is unsatisfiable [GAL87 p128].

The clause {A,B} is called the RESOLVENT of the clauses {A,P} and {B,¬P}, which are
called PARENT CLAUSES, and the process of adding a resolvent of two parent clauses from a
set to that set is called a RESOLUTION STEP.

1.9:b DEFN: (RESOLVENT).
The RESOLVENT of two parent clauses C1 and C2 with respect to some literal L, L∈C1
and ¬L∈C2, is a clause CR such that CR = (C1\{L}) ∪ (C2\{¬L})

In particular, if C1 = {L} and C2 = {¬L}, then CR = {} - ie the resolvent of the two clauses {P}
and {¬P} is the empty clause □. A set of clauses which has □ as a resolvent is unsatisfiable as
seen above.

1.9:c DEFN: (RESOLUTION CLOSURE).
The resolution closure S* of a set of clauses S is the closure of the set S under the
operation of resolution.

1.10 The Method Of Refutation By Resolution
Starting with some set of clauses, S, the method of refutation by resolution attempts to derive
the resolvent □ by successive application of resolution steps:

S → {S, R1,..,Rn, □}.

The procedure can be stated as
WHILE (□ ∉ S) DO
BEGIN
 Select literal L and clauses C1,C2 ∈ S such that L∈C1, ¬L∈C2
 compute their resolvent R = C1\{L} ∪ C2\{¬L}
 add the clause R to S
END

EXAMPLE:
Consider a refutation of the set

S = {{a,¬b},{c,b},{¬c},{c,¬a}}

1. {a,¬b}
2. {c,b}
3. {¬c}
4. {c,¬a}

8

5. {a,c} /* Res(1,2) */
6. {¬a} /* Res(3,4) */
7. {a} /* Res(3,5} */
8. □ /* Res(6,7) */

EXAMPLE:
Consider a deduction of ∆={a,¬b,c} from the hypothesis set Γ={ {a,d} , {c,¬d} , {¬c}}.

By the deduction principle (Theorem 1.6:c), Γ⊨∆ iff Γ∪¬∆ is unsatisfiable.

We convert ¬∆ to CNF, giving {{¬a},{b},{¬c}}, and then use the resolution procedure
to try and refute the set {{a,d} , {c,¬d} , {¬c}, {¬a}, {b}}

1. {a,d}
2. {c,¬d}
3. {¬c}
4. {¬a}
5. {b}
6. {a,c} /* Res(1,2) */
7. {a} /* Res(6,3) */
8. □ /* Res(7,4) */

Since the set Γ∪¬∆ is unsatisfiable, Γ⊨∆.

1.11 Completeness Of The Resolution Principle (Propositional Case)
To prove the completeness of resolution refutation we first demonstrate the relationship between
resolution and failure trees.

Consider an inference node i in a failure tree FTs of an unsatisfiable set of clauses S, whose
child nodes j and k falsify the two clauses Cj and Ck.

i

j k
Cj Ck

p¬p

Figure 3: Inference Node

Since Cj fails at node j, then it must contain the literal p. Similarly, Ck must contain the literal
¬p. Hence, the two clauses resolve on p to produce the resolvent clause CR = Cj\{p} ∪ Ck\{¬p}.
We note that

a. Since Cj fails at node j, then all the literals in Cj\{p} must be false at or above node i, and
similarly

b. Since Ck fails at node k, then all the literals in Ck\{¬p} must be false at or above node i.
Hence CR must fail at or above node i. Consequently, the set S∪CR has a smaller failure tree
than the set S.

9

1.11:a THEOREM: (COMPLETENESS OF THE RESOLUTION PRINCIPLE -
PROPOSITIONAL CASE).
A (finite) set of clauses S is unsatisfiable iff the empty clause □ can be deduced from S
by resolution.

PROOF:
(⇒) Proof by induction on the number of nodes in FTs, the failure tree of S. Let S be
unsatisfiable. Then S has a failure tree FTs. If FTs has only a single node, then S must
contain the empty clause □, and so the theorem is proved.

So assume FTs has more than one node. Then it must have at least one inference node (by
lemma 1.8:g), say node i. Let j and k be the failure nodes immediately below i, and let Cj
and Ck be the clauses in S which are falsified by the partial interpretations Ij and Ik. As
shown above, the resolvent CR of the clauses Cj and Ck must fail at or above node i, and
hence the failure tree FTs' of the set S'=S∪CR must have at least two fewer nodes than
FTs. Hence by induction, resolution must eventually derive the one-node failure tree, for
either FTs' contains only a single node, or FTs' contains at least one inference node.

(⇐) Assume S is satisfiable, but that there is a deduction of □ from S. Thus the resolution
closure S* of S contains □, and is therefore unsatisfiable. Which is a contradiction, since
resolution preserves satisfiability (by lemma 1.9:a)

1.12 Refutation Trees
A resolution derivation of a clause from the clause set S can be represented as an ORIENTED
BINARY TREE [KNU73 pp372ff], called a RESOLUTION TREE, in which the leaves are
labelled with clauses from the set S, and each internal node is labelled with the resolvent of its
children nodes. If the root of the tree is labelled with □, then the tree is called a REFUTATION
TREE.

For example, a refutation of the set

S = {{a,¬b},{c,b},{¬c},{c,¬a}}

can be represented by the refutation tree

{¬b} {b}

{¬b,c}

{a,¬b} {c,¬a} {¬c} {¬c} {c,b}

Figure 4: Refutation Tree
The resolution procedure attempts to construct a refutation tree from the bottom up. The
algorithm is non-deterministic since in general there is more than one choice for C1, C2 and L.
The strategy adopted in selecting which clauses and literals to resolve is crucial to the efficiency
of the algorithm. Ideally, given an unsatisfiable set of clauses S, the procedure should construct
the refutation tree with the smallest number of nodes. However, the problem is known to be NP-
complete for the class of general propositional formulae [DOW84].

10

Various refinements to the basic resolution procedure have been proposed with the aim of
improving its efficiency, sometimes at the cost of completeness [CHA74][LUK70]. Refinement
theorems attempt to restrict the search space by limiting choice in selecting parent clauses
and/or the literal to resolve upon. One such refinement restricts the algorithm to the Horn-
Clause subset of propositional formulae, making it possible to develop satisfiability tests that
run in polynomial time.

1.13 Horn Clauses
A HORN CLAUSE is a clause with at most one positive literal. We will represent the Horn
clause

{p,¬b,¬c,¬d} by p :- b,c,d.

p is called the HEAD of the clause, and b,c,d the BODY. Note that the body of a clause is a
CONJUNCTION of literals. A Horn clause which contains a positive literal is called a
DEFINITE HORN CLAUSE. A Horn clause consisting solely of negative literals is called a
NEGATIVE HORN CLAUSE. A definite clause which consists of a single (positive) literal is
called a UNIT clause, and is written p. .

A unit clause p. is TRUE if and only if p is TRUE. If b,c and d are TRUE, then the Horn clause
p :- b,c,d. is TRUE if and only if p is also TRUE.

Non-unit definite Horn clauses model RULES, the body representing a set of premises with the
head as conclusion. A unit clause, which has a null body, models a FACT. A HORN-CLAUSE
LOGIC PROGRAM consists of a set of definite horn clauses (rules and facts), called the
DATABASE, together with a NEGATIVE horn clause called the GOAL. The goal represents
a negated QUERY formula - for example, if QUERY = A∧B, then GOAL = ¬(A∧B) =
{¬A∨¬B} = :-A,B. By the deduction theorem, QUERY is a logical consequence of the
database iff DBASE ∪ GOAL is unsatisfiable, iff resolution can infer □ from DBASE ∪
GOAL.

1.14 Restricting Resolution To Horn Clauses Programs - Sld-Resolution

1.14:a LEMMA:
Horn clauses are closed under resolution.

1.14:b LEMMA:
Definite Horn clauses are closed under resolution.

Because definite Horn clauses are closed under resolution, □ can never be derived from a set
which contains no negative clauses. In a logic program, there is exactly one negative clause N0,
the goal, together with a set of definite clauses D1,..,Dn, the database.

A variant of the resolution procedure, called SLD-RESOLUTION (Selected Linear with
Definite clauses), can be used with Horn-clause logic programs to restrict the choice of clauses
for resolution.

At each step of an SLD-derivation, one of the parent clauses (the CENTRE CLAUSE) is the
resolvent of the previous step, while the second (the INPUT CLAUSE) is a member of the
database. Of necessity, the initial centre clause is the goal. Each SLD-resolution step suppresses
one literal from the centre clause (called the SELECTED LITERAL), and introduces 0 or
more literals from the input clause. The refutation terminates successfully when the centre
clause becomes empty. A derivation/refutation using SLD-resolution is called an SLD-
DERIVATION/REFUTATION.

An SLD-refutation has a linear refutation tree:

11

Pn N0

N1

N2

Nn-1

Nn

...

=

GOAL

.

.

.

=Pn-1 P2 P1

Figure 5: SLD-Refutation Tree
where the Dis are not necessarily distinct. Thus an SLD-refutation is a sequence N0,N1,N2,..,Nn
of negative clauses, where N0 is the goal, Nn is □, and Ni (i>0) is the resolvent of Ni-1 with a
definite clause from the database.

1.14:e THEOREM: (COMPLETENESS OF SLD-RESOLUTION FOR HORN LOGIC
ROGRAMS - PROPOSITIONAL CASE).

A set of propositional Horn clauses S with exactly one negative clause (a Horn program)
has a resolution refutation iff it has an SLD refutation.

PROOF:
(⇐) by definition. An SLD refutation is a resolution refutation.

(⇒) We show that a refutation tree T for the Horn set S can be transformed into a linear
refutation tree T' (the process is sometimes called LINEARIZATION, see [GAL87
pp422ff]).

a. transform T into T1 by ordering the children of each internal node of T so that the left
child contains the positive literal resolved upon, and the right the negative literal.
Because the right child clause supplies the NEGATIVE literal, each internal node in
T1 is labelled with a clause having the same head as its right child clause. In
particular, the right child clause of the root □ must be a negative clause, and therefore
clauses labelling nodes along the rightmost path of T1 must all be negative. Since all
the leaves of T1 are labelled with clauses from S (which has only one negative clause)
its rightmost leaf must be the goal.

b. The next step is to transform T1 into T' by making the left child of every internal node
a leaf while preserving the clause labelling the root of the tree. Consider the tree Tl

A :- x,y.

B :- z. A :- ...

rii

rmm n rn

B :- y. A :- B,x.

Figure 6

 where A and B are propositions, and x,y and z are proposition sets. All clauses
labelling the nodes along the rightmost path of Tl have A as their head. Similarly,
nodes along the rightmost path of subtree Tm have B as their head. Let node o, labelled
B:-z, be the rightmost leaf of Tm. Hence the net effect of Tm is to transform B:-z (a

12

member of S) into B:-y by resolving on some literal in z. Replacing the whole subtree
Tm by the leaf o, we get

A :- x,z.

A :- ...

rii

n rn

B :- z. A :- B,x.
o

Figure 7

The new root is A:-x,z, which can be transformed into A:-x,y by using the resolution
subtree Tm which changed B:-z into B:-y in the original tree:

A :- ...

rii

n rn

B :- z.
o

m rm

A :- x,y.

A :- x,z.

A :- B,x.

Figure 8

By repeating the algorithm at each internal node of T1, the tree T', in which each
internal node has a leaf as its left child and □ at its root (since the transformation
preserves the root node), is derived. T' is a linear SLD refutation tree as defined above.

1.15 Choice Of Selected Literal In SLD-Resolution
In SLD-derivation, the following choices have to be made at each step in the process of refuting
a Horn program:

a. choice of selected literal
b. choice of input parent clause in the event that multiple clauses in the database have the

selected literal as their head.
The following theorem allows the adoption of a deterministic strategy in choosing the selected
literal. A proof of the theorem is given in [APT82 p849].

1.15:a THEOREM:
Let N0,..,Nn (=□) be an SLD-refutation for a Horn program with goal N0. Then, for each
literal Li of Nj, there exists an SLD-refutation in which Li is the selected literal.

The completeness of SLD-refutation is thus independent of the choice of literal at each step. We
can arrange for a scheme which selects the literal using some deterministic strategy without
sacrificing completeness. The scheme used in Prolog is to order the literals in the body of a
clause from left to right, and always to select the leftmost literal in the centre clause for the next

13

resolution step. The new centre clause is constructed by concatenating the body of the input
clause to the FRONT of the old centre clause.

Although the strategy chosen fro selecting the literal is immaterial to the completeness of the
SLD procedure, it may affect the size of the derivation tree in the case that the program is non-
refutable. For example, if the goal were :-a,b,c,d,e. and no clause in the database has e as the
head, the sooner e is chosen as the selected literal, the smaller the derivation tree that has to be
constructed before the program is known to be non-refutable.

1.16 Search Strategies
The set of clauses in S having the same literal L as their head is called the CANDIDATE SET
for L. The strategy chosen to select an input clause from the set of candidates for the selected
literal is called a SEARCH STRATEGY.

Suppose the centre clause in a derivation is Ni = :-L,x. with L the selected literal and x the
sequence of literals forming the tail of the clause, and assume that there are n candidates
{C1,..,Cn} for L in the database. Each candidate Cj corresponds to the derivation tree with Cj as
the selected input clause for Ni. The forest of all possible derivation trees for a Horn program is
called the SEARCH SPACE.

The search space can be considered a tree (the SEARCH TREE), each node of which is
labelled with a centre clause (or □). The root is labelled with the goal clause. Each non-empty
node has one descendant for every candidate input clause for the selected literal. Each path in
the search tree corresponds to a derivation. A derivation whose end-node is □ is a refutation.

For example, the search tree for the program
a :- b,c.
a :- b,d.
b.
d.
:- a.

is shown in figure 9.

:- a.

:- b,c. :- b,d.

c. d.

Figure 9: Search Tree

The search strategy is thus a traversal of the search tree. The search is successful (ie results in a
refutation) when a node labelled with □ is encountered.

Such a traversal can be performed in either a depth-first or a breadth-first order (see, for
example, [GOO85 pp139ff]). A depth-first search follows one derivation (path) down to the
leaf. If the leaf is not □, then an alternative derivation is considered by backtracking to the most
recent branch node and selecting an untried path. A breadth-first search traverses the search tree
level by level, considering all possible derivations simultaneously until a refutation (if one

14

exists) is discovered. The problem with the breadth-first search is the large amount of space
required to store a centre clause for each possible derivation in the search space.

The depth-first search, although more efficient to implement, is not complete. Consider the
search tree for the following program:

a :- c,b.
a :- d,b.
c :- a.
d.
b.
:- a.

:- a.

:- c,b. :-d,b.

:- a,b. b.

:- c,b. :- d,b.

b.infinite

Figure 10: Depth-first Search

The program is clearly refutable, but a depth-first search which traversed the search tree in a
left-to-right order would go into an infinite loop down the leftmost path and never discover the
refutation in the rightmost path. Despite this, depth-first traversal is employed as the search
strategy in most Prolog implementations. One of the few exceptions is Parlog86 [RIN88], which
combines a depth-first search with a (guarded) breadth-first search in a parallel implementation
of Prolog (see also [CON89]).

Although SLD-resolution with depth-first search is not complete, it is sound - ie SLD-resolution
only derives □ from a program S if S is unsatisfiable.

1.17 SLD-Refutation With Depth-First Search
The following is an SLD-refutation procedure using a depth-first search. S is a set of definite
Horn clauses, and G the goal clause consisting of a list of (negative) literals. We use FIRST(G)
to mean the first literal in G, REST(G) the list G - FIRST(G). We let SELECT(L) be a
procedure which, on successive calls, returns a different clause C∈S having L as its head, or
NIL if there are no (more) such clauses.

PROCEDURE Satisfy (G : goal) : BOOLEAN;
BEGIN
 IF G=□ THEN
 RETURN TRUE
 END;
 WHILE (C := SELECT(FIRST(G))) ≠ NIL
 IF Satisfy(BODY(C)+REST(G)) THEN RETURN TRUE;
 END;
 RETURN FALSE;
END Satisfy;

15

1.18 Implementation
A propositional version of Prolog (called PROPOS) using SLD-resolution with depth-first
search was implemented in Modula-2 for an MSDos machine (see Appendix A). The syntax of
PROPOS is identical to that of Horn clauses as introduced above. The following CFG defines
the syntax accepted by the PROPOS parser:

<program> ::= <clause> , { <clause> }
<clause> ::= <atom> [:- <body>] .
<body> ::= <atom> { , <atom> }
<atom> ::= a..z { a..z }
<goal> ::= :- <body> .

In addition, PROPOS supports the following commands, which are introduced by a period:
.exit terminate execution.
.listing list all clauses in database.
.retract <atom> retract all clauses in the database having the

symbol <atom> as head.

The program is called from the operating system prompt with

PROPOS [<file specification>]

where the optional <file specification> specifies a file of clauses to be automatically loaded into
the database at startup. The file may contain definite clauses, goal clauses and commands.

Database Representation
PROPOS employs a simple hashing scheme for the storage of propositional symbols (atoms),
based on the first character of the symbol. The hash table is implemented as an array CLAUSES
indexed by the characters 'a' .. 'z' :

clauses : ARRAY ['a' .. 'z'] OF HeadPtr;

Each entry in the array CLAUSES is a pointer to a linked list of propositional symbols starting
with the corresponding character. Each record in the list is a HeadRec having the following
format:

HeadRec = RECORD
 sym : symbol name as a string (currently the maximum

length of a symbol name is 30 characters).
 nxt : pointer to next propositional symbol starting

with the same character.
 clause : pointer to a linked list of clauses having this

propositional symbol as their head.
 END;

Each clause is stored as a linked list of AtomRecs representing the propositional symbols in the
body of the clause. The format of an AtomRec is as follows:

AtomRec = RECORD
 sym : pointer to HeadRec for this symbol.
 nxt : pointer to next atom in the body of this

clause.
 END;

The linked list of AtomRecs representing the clause body is linked to the HeadRec representing
the clause head by a BodyRec, which is declared as follows:

BodyRec = RECORD
 nxt : pointer to next clause for this head symbol.
 first : pointer to first AtomRec in the clause body.
 END;

16

Figure 11 shows how the clause set
a :- d1,d2.
d1.
d2 :- d1,g1,i1.

is stored in the database.

∅

∅

∅

∅

∅

∅

∅ ∅∅ ∅∅ ∅a

∅a

∅ ∅

∅d2

∅ ∅ ∅ ∅

∅ ∅g1

∅ ∅i1

d1

a
b
c
d
e
f
g
h
i
j

Clauses

KEY
HeadRec BodyRec AtomRec

symbol clause nxt nxt body sym nxt

Figure 11: PROPOS database
The refutation algorithm is similar to the Satisfy procedure given above. The goal clause read in
from the user is stored in a clause structure (ie HeadRec, BodyRec and AtomRecs) pointed to by
variable goal. Procedure Prove is called with goal as parameter, and attempts to satisfy each of
the literals in the body of the goal clause. The algorithm is given below in pseudo code.

PROCEDURE Prove (goal : Ptr to a HeadRec);
 PROCEDURE ProveClause(goal : Ptr to a HeadRec) : BOOLEAN;
 VAR b : Ptr to a BodyRec;
 t : BOOLEAN;

 PROCEDURE ProveBody(body : Ptr to a BodyRec) : BOOLEAN;
 VAR a : Ptr to an AtomRec;
 t : BOOLEAN;
 BEGIN
 t := TRUE;
 a := first atom in body;
 WHILE (a <> NIL) AND (t) DO
 t := ProveClause (HeadRec for atom a);
 a := next atom in body;
 END;
 RETURN t;
 END ProveBody;

 BEGIN
 t := FALSE;
 b := first BodyRec for the goal symbol;
 WHILE (b <> NIL) AND (NOT t) DO
 t := ProveBody(b);

17

 b := next BodyRec for this symbol;
 END;
 RETURN t;
 END ProveClause;

BEGIN
 IF(goal=NIL)OR(NOT ProveClause(goal)) THEN WrStr('NO')
 ELSE WrStr('YES'); END;
END Prove;

18

2 FIRST-ORDER LOGIC

2.1 Objectives
This chapter extends the refutation methods developed in the previous chapter to 1st order logic.

It is shown that a set S of 1st-order clauses is unsatisfiable if and only if it is false under all
interpretations over the Herbrand universe (called Herbrand interpretations). Moreover, S is
unsatisfiable if and only if a FINITE set of ground (ie variable-free) instances of clauses in S is
unsatisfiable, if and only if S has a (finite) failure tree. As before, resolution refutation attempts
to collapse the failure tree of S into a one-node tree. The resolution procedure given for
propositional clauses can be LIFTED to non-ground clauses by unification - if C1 and C2 are
two clauses whose instances C1' and C2' have resolvent C3', then C1 and C2 have resolvent C3
such that C3' is an instance of C3. This result is used to demonstrate the completeness of
resolution refutations in the 1st order case using a proof similar to the one used for the
propositional case.

2.2 Syntax
The alphabet of a 1st order language is

a. The set of logical connectives LCON = {∧,∨,⇒,⇔,¬}
b. the set of quantifiers QUANT = {∃,∀}
c. the set of auxiliary symbols AUX = {(,)}
d. a countably infinite set of variables VAR = {v0, v1,...}
e. a set L of non-logical symbols consisting of

i. a countable, possibly empty, set of FUNCTION SYMBOLS, (or FUNCTORS) FS =
{f0, f1,...} together with a rank function ℜ:FS→ℤ+. The number ℜ(fi) is called the
ARITY of fi.

ii. a countable, non-empty, set of PREDICATE SYMBOLS PS = {P0, P1, ... }, together
with a rank function ℜ:PS→ℤ+. ℜ(Pi) is called the ARITY of Pi. Predicate symbols of
arity 0 are propositional symbols.

The sets FS and PS are disjoint.

For convenience we sometimes refer to the set of constant symbols CS⊆FS, the set of function
symbols of arity 0.

In the sequel we let the symbols

 u,v,w (possibly subscripted) range over the set VAR
 f,g,h (possibly subscripted) range over the set FS
 a,b,c (possibly subscripted) range over the set CS
and P,Q,R (possibly subscripted) range over the set PS

TERMS. The set TERM of expressions of sort TERM is informally defined by:

a. a variable symbol v ∈ VAR is a term,
b. if f ∈ FS is a function symbol and ℜ(f)=n, then the expression f(t1,...,tn), where t1 to tn are n

terms, is a term. If ℜ(f)=0, ie f ∈ CS, we write f instead of f().

ATOMIC FORMULAE. The set AFORM of expressions of sort ATOMIC FORMULA is
defined by

19

a. if P ∈ PS is a predicate symbol and ℜ(P)=n, then the expression P(t1,...,tn), where t1 to tn are
n terms, is an atomic formula. If ℜ(P)=0, we write P instead of P().

LITERALS. The set LIT of expressions of sort LITERAL consists of all atomic formulae A
and their negation, ¬A.

WELL-FORMED (1ST ORDER) FORMULAE. The set WFF of well-formed (1ST order)
formulae is defined by

a. all atomic formulae are well-formed formulae,
b. if A is a well-formed formula, then so is ¬A,
c. if A,B are well-formed formulae, then so are (A∧B), (A∨B), (A⇒B) and (A⇔B),
d. for any vi∈VAR and A∈WFF, ∀viA and ∃viA are well-formed formulae.

2.3 Standard Form

2.3:a DEFN: (PRENEX NORMAL FORM - PNF).
A formula F is said to be in PNF iff F has the form

Q1v1...Qnvn M[v1,...,vn]

where Qi∈QUANT, vi∈VAR, and M is a quantifier-free formula with variables v1 to vn.
Q1v1...Qnvn is called the PREFIX of F, M is called the MATRIX of F.

2.3:b THEOREM:
For every formula F there exists a formula F* in PNF such that F≡F* (ie logically
equivalent).

For a constructive proof see for example [CHA75 pp37ff][GAL87 pp307ff].

2.3:c THEOREM: (SKOLEM)
Let F=PM be a formula in PNF, where P is a prefix of quantified variables and M is a
matrix. Then there exists a formula SF=P'M', where P' is a prefix of universally quantified
variables and M' is a matrix, such that F is satisfiable iff SF is satisfiable. We say SF is the
Skolem standard form of F.

Proof and construction given in [CHA75 pp46ff][GAL87 pp357ff]

NOTE that F and SF are not in general equivalent.

EXAMPLE:
Let F = ∀x∃y (P(x) ∧ Q(y))
Let G = ∀x (P(x) ∧ Q(f(x))

Suppose G is satisfiable. Then, for all x we can find a y=f(x) such that Q(f(x)) is true, and
therefore Q(y) is true. Hence F is also satisfiable. If G is inconsistent then there is an x for
which no y=f(x) exists which makes Q(f(x)) true. Hence F is also inconsistent.

Conversely, if F is satisfiable, then for all x there exists a y such that Q(y) is true. But
then we can let f(x)=y, thus making Q(f(x)) also true. Hence G is satisfiable. On the other
hand, if F is inconsistent, then for some x there is no y which makes Q(y) true. Therefore,
no matter what value is assigned to f(x), Q(f(x)) cannot be true. Hence F is also
inconsistent.

Let W be a wff and F=PM an equivalent formula in PNF. Let SF=P'M' be its Skolem standard
form. Since M' is a quantifier-free formula, we can transform M into clausal (conjunctive
normal) form and write SF=P'C (see section 1.5:c). Moreover, since all variables in C are
universally quantified, we can omit the prefix altogether and merely write C. Then the clause C
has the property that W is satisfiable if and only if C is satisfiable.

20

Henceforth assume that all formulae are of the form

F ::= L1 ∨ L2 ∨ ... ∨ Ln

where Li are literals and all variables are universally quantified. In the sequel it will be assumed
that clauses have disjoint variable sets. This requirement is easily met by renaming variables.
As for the propositional calculus, we will need to restrict our attention to (universally
quantified) predicate Horn clauses when considering SLD resolution later on.

2.4 Semantics

2.4:a DEFN: (INTERPRETATION)
An interpretation I is a triple <D,Iv,Ic>, where

a. D, the DOMAIN OF INTERPRETATION (or simply DOMAIN), is a non-empty
set.

b. Iv is a function from the set VAR of variables to the set D.

c. Ic is a function which
 i. maps each predicate symbol P∈PS of arity n to a function Ic(P):Dn→BOOLEAN,

and
ii. maps each function symbol f∈FS of arity n to a function Ic(f):Dn→D.

Let S be a 1st-order formula, and D the domain of interpretation. The BASE OF S WITH
RESPECT TO D, BSD, is the set {P(t1,...,tn) : P∈PS, ti∈D}.

2.5 The Herbrand Universe And Base

2.5:a DEFN: (GROUND TERM).
A term containing no variables is called a ground term.

2.5:b DEFN: (GROUND LITERAL).
A literal all of whose arguments are ground terms is called a ground literal.

2.5:c DEFN: (GROUND CLAUSE).
A clause C = {l1,...,ln} is said to be a ground clause if ∀li∈C, li is a ground literal.

Let S be a finite set of clauses and H0 the set of constant symbols (0-ary function symbols)
appearing in S (or {τ} if S has no constant symbols). Let Hi+1 (i≥0) be defined recursively by

Hi+1 = Hi ∪ { f(t1,...,tn) : t1,...,tn ∈ Hi, ℜ(f)=n}

2.5:d DEFN: (HERBRAND UNIVERSE).
The set lim(i→∞) Hi of a (finite) set of clauses S is called the HERBRAND UNIVERSE
(or Domain) of S. The Herbrand Universe of a set S is written HS, or simply H.

EXAMPLE:
Let S = { {P(a)} , {P(u),¬P(g(v))} }

Then H0 = {a}
 H1 = {a, g(a)}
 H2 = {a, g(a), g(g(a))}
 HS = {a, g(a), g(g(a)), g(g(g(a))), ... }

Clearly, HS is finite iff S contains only function symbols of arity 0 (ie constants). In that case,
HS is merely the set of constants in S, which is finite since we are primarily interested in finite
sets of clauses.

21

2.5:e DEFN: (HERBRAND BASE).
Let S be a (finite) set of clauses. The set of ground atoms BS = {P(t1,...,tn) : for all
predicates P in S and ti in HS} is called the Herbrand Base (or atom set) of S.

EXAMPLE:
Let S = { {P(u)} , {Q(a,f(v)} }

Then HS = {a, f(a), f(f(a)), f(f(f(a))), ... }
and BS = {P(a), Q(a,a), P(f(a)), Q(a,f(a)), P(f(f(a))), ... }

Note that if S is finite, then Bs is enumerable

2.5:f DEFN: (GROUND INSTANCE).
Let S be a (finite) set of clauses. A ground instance of a clause C∈S is obtained by
replacing variables in C by members of HS.

2.6 Herbrand Interpretations And Semantic Trees

2.6:a DEFN: (HERBRAND-INTERPRETATIONS).
An interpretation IH of S is said to be a Herbrand Interpretation (H-Interpretation) if

a. the interpretation domain is the Herbrand Universe H
b. IH maps all constants in S onto themselves
c. for every function symbol f of arity n in S, f is assigned a function f':Hn→H which

maps the n-tuple (t1,...,tn)∈Hn to f(t1,...,tn)∈H.

Let BS = {A1,A2,...} be the Herbrand base of a set of clauses S. A Herbrand interpretation IH can
be conveniently represented by a set {m1,m2,...}, such that mi=Ai if IH(Ai)=TRUE, and mi=¬Ai
if IH(Ai)=FALSE. Each such interpretation is a path in a semantic tree Ts of depth |Bs|.

EXAMPLE:

Let S = { {P(u)} , {Q(a,f(v)} }

Then HS = {a, f(a), f(f(a)), f(f(f(a))), ... }
and BS = {P(a), Q(a,a), P(f(a)), Q(a,f(a)), P(f(f(a))), ... }

The semantic tree Ts for S is then the infinite tree

Ts
¬P(a)

¬Q(a,a)

¬P(f(a))

P(a)

Q(a,a) ¬Q(a,a) Q(a,a)

P(f(a)) ¬P(f(a)) P(f(a)) ¬P(f(a)) P(f(a)) ¬P(f(a)) P(f(a))

Figure 12: Semantic Tree showing a partial interpretation

The path shown in the diagram corresponds to the interpretation {P(a),Q(a,a),¬P(f(a)),...}. For
some node N in Ts, a path from the root to N corresponds to a partial interpretation IN. As with

22

propositional semantic trees, we can define a FAILURE NODE in a semantic tree to be a node
N such that the (partial) interpretation IN falsifies some ground instance of a clause of S but IM
satisfies S for every ancestor node M of N.

2.6:b DEFN:
Given an interpretation I over a domain D, an H-interpretation (ie an interpretation over
the Herbrand Universe H) I* corresponding to I can be constructed as follows:

a. define a function ℋ:H→D, mapping each element hi in the Herbrand universe to an
element ℋ(hi) in the domain D.

b. define I* such that I*(P(h1,...,hn))=TRUE iff I(P(ℋ(h1),...,ℋ(hn))=TRUE for h1...hn
elements of H.

NOTE that if S contained no constant symbols, then the element τ in H0 must be mapped onto
every element of D generating |D| H-interpretations corresponding to I.

Clearly, if an interpretation I over a domain D satisfies a set of clauses S, then any H-
interpretation I* corresponding to I also satisfies S, for if P(d1,...,dn) is true under I, then
P(h1,...,hn), where di=ℋ(hi), is by definition true under I*.

2.6:c THEOREM:
A set of clauses S is unsatisfiable if and only if it is false under all H-interpretations.

PROOF:
By definition, if S is unsatisfiable then it is false under all interpretations, including H-
interpretations. Conversely, assume S is false under all H-interpretations but is
nevertheless satisfiable. Then there exists an interpretation I over a domain D≠H which
satisfies S. But then the H-interpretation I* corresponding to I must satisfy S,
contradicting our assumption that S is false under all H-interpretations. Hence, S must be
unsatisfiable.

2.7 Herbrand's Theorem

2.7:a THEOREM: (HERBRAND).
A (finite) set of clauses S is unsatisfiable if and only if some FINITE set of ground
instances of clauses in S is unsatisfiable.

PROOF:
(⇒) Suppose S is unsatisfiable. Then every Herbrand interpretation falsifies S, and so
every path in the semantic tree must terminate in a failure node and is therefore of finite
length. Hence there exists a finite failure tree FTs of S. Since the number of failure nodes
in FTs is finite, and the number of ground literals in FTs is finite, the set S' of ground
instances of S falsified at each failure node must also be finite.

(⇐) Conversely, let S' be a finite unsatisfiable set of ground instances of clauses of S. For
each interpretation I of S, let I' be the restriction of I to S'. Since every interpretation I'
falsifies some clause in S', then every interpretation I must also falsify some clause in S'.
Hence every path in the semantic tree of S Ts must terminate in a failure node, and
therefore S has a failure tree. Then by lemma 1.8:d S must be unsatisfiable.

Herbrand's theorem has formed the basis of many automatic refutation procedures, in particular
'level-saturation' procedures in work by Gilmore (1960), and Davis and Putnam (1960) (see
[CHA75 pp62ff],[ROB65 p27] and [LOV84 pp7ff]).

2.8 Substitutions

2.8:a DEFN: (SUBSTITUTION).
A substitution is a homomorphism θ:TERM → TERM, defined by:

a. θ(c) = c, ∀c∈CS

23

b. θ(v) = t, ∀v∈VAR, and some t∈TERM
c. if f∈FS and ℜ(f)=n, then θ(f(t1,...,tn)) = f(θ(t1),..., θ(tn)).

2.8:b DEFN: (SUPPORT OF A SUBSTITUTION).
The set V(θ) = {v∈VAR : θ(v)≠v} is called the support of the substitution θ (or the set of
ACTIVE VARIABLES of θ).

We will denote a substitution θ with support set {v1,v2,...} such that θ(vi)=ti for some term ti≠vi
by {t1/v1, t2/v2,...}. We will only be interested in finite substitutions, ie substitutions with finite
support sets {v1,...,vk}.

2.8:c DEFN: (INSTANTIATION).
Let F∈ WFF be a formula and θ={t1/v1,..., tk/vk} be a substitution. Then the
INSTANTIATION OF F BY θ, written Fθ, is the operation of applying θ to all terms in
F. Fθ is said to be an INSTANCE of F.

2.8:d DEFN: (GROUND SUBSTITUTION).
A substitution θ={t1/v1,...,tk/vk} is said to be a ground substitution if all ti are ground
terms. Fθ is then said to be a GROUND INSTANCE of formula F.

2.8:e DEFN: (COMPOSITION OF SUBSTITUTIONS).
The composition θλ of two substitutions

θ={t1/v1,...,tk/vk} and λ={s1/u1,...,sn/un}

is θ'∪λ', where

θ' = {tiλ/vi : tiλ≠vi}
λ' = {sj/uj : uj≠vi for all vi in θ}

EXAMPLE:

Let θ = {f(x)/y, z/x, a/w}
 λ = {a/x, b/y, w/z}

Then f(x)λ/y = f(a)/y
 zλ/x = w/z
 aλ/w = a/w

and so

θ' = {f(a)/y, w/z, a/w}
λ' = {w/z}
θλ = θ'∪λ' = {f(a)/y, w/z, a/w}

Note

a. composition of substitutions is associative, ie (θλ)µ = θ(λµ)
b. the empty substitution ε is both right and left identity, so that εθ = θε = θ

2.9 Unification

2.9:a DEFN: (UNIFIER).
A substitution θ is said to UNIFY a finite, non-empty set of well-formed formulae
S={S1,...,Sn} if S1θ = S2θ =...=Snθ. θ is said to be a UNIFIER of the set S, and S is stb
UNIFIABLE if there exists a unifier for it. Siθ is said to be a COMMON INSTANCE of
the set S for any Si∈S.

2.9:b DEFN: (MOST GENERAL UNIFIER).
A unifier µ for a set S={S1,...,Sn} is a MOST GENERAL UNIFIER (MGU) if, for each
unifier θ of S there exists a substitution λ (possibly ε) such that θ=µλ.

24

MGUs are unique when they exist in that, if µ and λ are two MGUs for a set S, then there exists
a bijective substitution σ such that µ=λσ and σ(v)∈VAR for all v in the support set of σ. In
other words, σ merely renames variables. (for a proof see GALLIER p.383 ff).

2.9:c THEOREM: (UNIFICATION THEOREM).
If a finite, non-empty set S of WFFs is unifiable, then S has a MGU µs. Moreover, µs is
unique down to renaming of variables and, for all unifiers θs of S, there exists a
substitution σ such that θs=µsσ.

For a proof see [ROB65 pp33-34].

2.10 Representation Of Terms
A term may be understood to be a linear representation of an oriented tree (more precisely a
directed acyclic graph, because nodes may share common subgraphs, but the tree representation
is more common and easier to handle).

The tree corresponding to a term t is defined recursively as follows:

a. the tree representation of a variable is a single node
b. if t is a function symbol f with arity n, then t is represented as a tree with root f and n

subtrees, one for each argument term of f.

EXAMPLE:
The term t = f(g(a,x), y, h(x,y,g(x))) has tree representation:

f

g hy

xa gyx

x

Figure 13: Term Tree
The boxed leaves denote variables.

2.11 Unification Algorithm
In unifying two terms T1, T2, we traverse the two term trees in parallel in pre-order, noting
disagreement at each node. A disagreement between nodes N1,N2 of T1,T2 respectively is
REPARABLE if at least one of N1,N2 (say N1) is a free variable. The substitution {N2/N1} will
repair the disagreement. The substitution must be applied to the two term trees before traversal
continues, since all occurrences of N1 must be instantiated to N2. The MGU of T1 and T2 is the
composition of all the substitutions required to repair node-disagreements. If a disagreement is
not reparable (as when N1 and N2 are different functors), then the terms are not unifiable.

It is possible for a free variable to be instantiated to a term containing the variable as a subterm,
creating infinite subtrees (or cyclic graphs in the directed graph representation of terms). For
example consider the two terms

25

T1 = f(x,x)
T2 = f(y,g(y))

Since x and y are both free variables, the substitution {x/y} is generated. For the second
subterm, x is still free (since it is bound to a free variable), and so the substitution {g(y)/x) is
generated. This gives the MGU {x/y}{g(y)/x} = {g(y)/y}, which results in the common term
instance f(g(g(g(...., g(g(g(....), which is an infinite tree (or a cyclic graph).

To avoid this, the unification algorithm should check that in a substitution {t/v}, v is not a node
of t. This check, called the OCCURS CHECK, is very expensive, and is often omitted from
implementations of unification algorithms (eg in Prolog) on the grounds that such cyclic
structures occur very rarely in practice, and so do not warrant the increased complexity
associated with the occurs check.

The following algorithm computes the MGU of two terms, returning FALSE if the terms are not
unifiable. The procedure is called with two terms and the empty substitution ε as arguments,
and returns the MGU of the terms if they are unifiable.

PROCEDURE Unify (T1,T2 : TERMS; VAR mgu : substitution) : BOOLEAN;
BEGIN
 Let N1 := root node of T1
 Let N2 := root node of T2
 IF N1≠N2 THEN
 IF IsVar(N1) OR IsVar(N2) THEN
 IF IsVar(N1) THEN RETURN Instantiate(N1,T2,mgu)
 ELSE RETURN Instantiate(N2,T1,mgu)
 ELSE RETURN FALSE;
 ELSE
 (* N1 and N2 are same functor. Unify their arguments. *)
 FOR each subtree S1,S2 of T1,T2 respectively DO
 IF NOT Unify(S1,S2,mgu) THEN RETURN FALSE
END Unify;

Procedure Instantiate attempts to instantiate the variable (v) passed as a first argument to the
term tree (t) passed as the second argument. If successful (ie if v∉t), the new substitution {t/v}
is composed with the partial MGU constructed so far, and the two term trees are updated to
remove the disagreement.

2.12 Resolution In 1st Order Logic
The only difference between a resolution refutation in propositional logic and in 1st order logic
is in the way resolvents are formed. Resolution on 1st order clauses is defined in terms of
unification. Let C1 and C2 be two clauses (with disjoint variable sets).

C1 = {L1,..,Lm}
C2 = {M1,..,Mn}

Let Li=P and Mj=¬Q such that P and Q have a most general unifier µ. Then the BINARY
RESOLVENT of C1 and C2 on Li and Mj is the clause

CR = (C1\{Li})µ ∪ (C2\{Mj})µ

EXAMPLE
Let C1 = a(Y) :- b(t(Y)).
 C2 = c(X) :- a(d(X)).

where X and Y are variables.

Then the MGU of a(Y) and a(d(X)) is

 µ = {d(X)/Y},

26

and the resolvent of C1 and C2 is

 ¬b(t(Y))µ ∪ c(X)µ, = c(X) :- b(t(d(X))).

2.13 Completeness of the Resolution Principle (1st Order Case)
The proof of the completeness of the resolution principle in 1st order case will closely follow
that for propositional logic (see section 1.11). As before, we show that if a set of clauses S has a
failure tree FTs, then resolution collapses FTs to a single-node tree □.

2.13:a LEMMA: (LIFTING LEMMA).
Let C1 and C2 be two predicate clauses (with disjoint variable sets) whose instances C1'
and C2' have resolvent C3'. Then C1 and C2 have resolvent C3 such that C3' is an instance
of C3.

For a proof see [CHA73 pp84-85][GAL87 pp400-403].

2.13:b THEOREM: (COMPLETENESS OF RESOLUTION - 1st ORDER CASE).
A set S of 1st-order clauses is unsatisfiable if and only if the empty clause □ can be
deduced from S by resolution.

PROOF:
The proof follows that of theorem 1.11:a, except that the partial interpretations Ij and Ik at
the failure nodes i and k now falsify two ground instances Cj' and Ck' of the clauses Cj and
Ck of S. Hence the resolvent CR' of Cj' and Ck' is falsified at or before the inference node i
(the parent of nodes j and k). But by the lifting lemma, CR' is an instance of CR, the
resolvent of Cj and Ck. Hence, the set S∪{CR} has a smaller failure tree than S, since an
instance of CR is falsified at or above node i.

2.14 Logic Programming
A 1st-order logic-program is a set S of definite 1st-order Horn-clauses representing FACTS and
RULES, together with a negative Horn clause G called the GOAL. The goal represents a
negated QUERY Q, which has the form

Q = ∃v1,..,vn(L1 ∧ .. ∧ Lk).

where v1,..,vn are called the OUTPUT VARIABLES.

Thus the goal is a formula

∀v1,..,vn(¬L1 ∨ .. ∨ ¬Lk)

which is a universally quantified Horn-clause

:- Ln,..,Lk.

It is required to find terms t1,..,tn such that

S ⇒ Q{t1/v1,..,tn/vn}

The substitution {t1/v1,..,tn/vn} is called the ANSWER SUBSTITUTION, and a logic interpreter
usually attempts to find all such answer substitutions.

The requirement that clauses have disjoint sets of variables is usually enforced by limiting the
scope of all variables to the clause in which they occur.

The refutation procedure for 1st-order Horn-logic programs is very similar to that for
propositional programs. Using SLD-resolution with a depth-first search strategy, the refutation
procedure is the following procedure (Satisfy) called with G and the empty substitution ε as

27

parameters. If Satisfy terminates successfully, the output substitution Θ contains the answer
substitution as a subset.

PROCEDURE Satisfy (G : goal; VAR Θ : substitution) : BOOLEAN;
VAR σ,µ : substitution;
BEGIN
 IF G=□ THEN RETURN TRUE;
 WHILE (C := SELECT(FIRST(G),µ)) ≠ NIL
 σ := θµ;
 IF Satisfy((BODY(C)+REST(G))µ,σ) THEN
 θ := σ;
 RETURN TRUE;
 END;
 END;
 RETURN FALSE;
END Satisfy;

The SELECT procedure must now perform unification in order to determine the set of
candidate clauses for a literal. The MGU µ returned by SELECT is used to instantiate the two
parent clauses C and G, producing C' and G'. The output substitution Θ is the composition of all
substitutions made in the course of the refutation.

28

3 PROLOG

3.1 Objectives
This chapter outlines the implementation of Prolog. Following a brief review of the Prolog
language, the interpretation strategy is discussed. The representation of terms constructed during
unification in structure-sharing and non-structure-sharing systems is compared, and a basic
optimization technique which exploits determinism in a Prolog program (deterministic-frame
optimization, DFO) is outlined. Two other optimization techniques based on DFO, last-call
optimization and tail-recursion optimization, are briefly described.

3.2 The Language - Syntax And Terminology
The following is an overview of the syntax of the basic Prolog language. For a description of the
full language see [CLO81].

Program
A Prolog program is a sequence of clauses.

Clause
A clause is made up of a HEAD and a BODY. The body consists of a (possibly empty)
sequence of GOALS. A clause is written in the form

a :- b,c,d.

where a is the head, and b,c,d are the goals (or PROCEDURE CALLS) making up the body of
the clause. The head and goals of a clause are examples of TERMS.

If the body is the empty sequence, then the clause is called is called an ASSERTION (or UNIT
CLAUSE) and is simply written as

a.

A clause which does not have a head is called a GOAL STATEMENT, and is written

:- b,c,d.

Terms
Terms may be SIMPLE or COMPOUND.

a. SIMPLE TERMS
Simple terms are either VARIABLES or CONSTANTS.
1. variables

A variable is an identifier beginning with an uppercase letter or the underscore
character, _ . The identifier consisting solely of the underscore character is called the
ANONYMOUS VARIABLE.

2. constants
A constant is either an ATOM or an INTEGER. An integer is any sequence of
characters from the set {'0'..'9'}, optionally preceded by one of '+' or '-'. An atom is any
sequence of characters not confusable with either a variable or an integer. The following
are all valid atoms:
name, 'Name', 'A NAME', ==

29

b. COMPOUND TERMS
A compound terms is a structure consisting of a FUNCTOR together with a list of one or
more terms called ARGUMENTS.
A functor is an ordered pair NAME/ARITY, where name is an atom, and arity (or RANK)
is a positive integer denoting the number of arguments associated with the functor. A
compound term is written as:
f(a,b,c)
where f/3 is the functor (or PRINCIPLE FUNCTORS), and a,b,c are its arguments. Note
that a constant is considered to be a functor of arity 0.

Literals
Terms which appear as the head or goals of a clause are called LITERALS (sometimes
BOOLEAN TERMS). In general, literals are not allowed to be variable or integer terms.

Predicates
The functor of a literal is called a PREDICATE.

3.3 Semantics

Declarative Semantics
The declarative semantics of Prolog are the semantics of Horn-clause programs under SLD-
resolution, with the database of definite clauses modelling facts and rules, and a single negative
clause (the goal) representing a negated query.

Since SLD-resolution is an incomplete procedure (in that it does not specify a search strategy, as
explained in the Chapter 2), the declarative semantics of Prolog do not fully describe the
language.

Procedural Semantics
The procedural semantics of Prolog are the semantics of Horn-clause programs under SLD-
resolution with a depth-first search strategy. In this sense, the procedural semantics of Prolog
are complete since they comprise the semantics of the search strategy. Because the search
strategy presupposes a sequential Von-Neumann architecture, problems have been encountered
in preserving the procedural semantics in parallel-implementations of Prolog (see for example
[TIC89]).

In the procedural model of Prolog (first proposed by R.A.Kowalski [EMD76][NIL84]) the set of
clauses whose head have the same predicate are viewed as a non-deterministic PROCEDURE
to be INVOKED (or ENTERED) when that predicate is encountered in a goal literal. The goal
literals in a clause body are in this sense PROCEDURE CALLS, resolution is viewed as a
procedure invocation, and unification as a parameter transfer mechanism.

The clauses in a procedure are considered to be ordered from top to bottom, while goals in a
clause body are ordered from left to right. This ordering constitutes control information which
is superimposed on the logic component of Prolog, and which defines the depth-first search
strategy imposed on the SLD-resolution mechanism.

3.4 Control Mechanism
Prolog uses SLD-resolution with a depth-first search, and so the execution mechanism is very
similar to the Satisfy procedure given in section 2.14, with the input goal statement as the first
centre clause, and the leftmost literal in the goal as the first selected literal. The interpreting
algorithm for Prolog programs was first fully described in [EMD84].

The main states of the interpreter are

1. INITIALIZE - make the input goal the current procedure.

30

2. PROCEDURE ENTRY - make the body of the selected procedure the current goal list, and
prepare to start executing the first call in this list.

3. SELECT CALL - select the call to try next. This is the first literal in the current goal list. If
the current goal list is empty (ie the current procedure has no body) then exit the procedure
(goto step 5).

4. SELECT PROCEDURE - select, from among the candidate clauses for the selected call,
the first clause whose head unifies with the selected call (we call such a clause the
RESPONDING PROCEDURE), and goto step 2. If no procedure responds, then the
interpreter must backtrack (goto step 6).

5. PROCEDURE EXIT - If the current procedure has a parent with some calls pending, then
make the parent goal the current goal, with the next call in the parent clause the selected call,
and goto step 4.
Otherwise the original (input) goal has been solved. Output solution and backtrack (goto step
6).

6. BACKTRACKING - find the most recent call for which some candidate clauses remain
untried. If there is no such call, then execution terminates. Otherwise, make this the current
call and the set of untried candidates the new candidate set, and goto step 4.

3.5 Activation Frames
When a procedure is entered, an ACTIVATION FRAME (FRAME for short) is created and
pushed onto the runtime stack. Frames are similar to procedure activation records in procedural
languages, except that frames may not be popped on exit from a procedure because of the
possibility of backtracking.

We can distinguish between DETERMINISTIC and NON-DETERMINISTIC frames
[BRU84a p260]. A deterministic frame is a frame corresponding to the activation of a procedure
for which no untried candidate clauses remain. A deterministic frame represents a call which
cannot be reactivated, since all alternative solutions have been exhausted. A non-deterministic
frame corresponds to the activation of a procedure for which there remain some untried
candidates. Non-deterministic calls may be reactivated by backtracking, and for this reason are
sometimes are called BACKTRACKPOINTS. The interpreter maintains non-deterministic
frames on a linked list, which is implemented by threading the non-deterministic frames on the
frame stack and maintaining a pointer to the most recent backtrackpoint.

Each frame is made up of two sections, one for control information (the CONTROL
VECTOR), and one for variable bindings (the ENVIRONMENT VECTOR).

Control Vector
Call: pointer to the selected call which invoked the procedure.

Parent: pointer to the frame recording entry into the procedure containing the call
which activated this procedure.

NextCand: pointer to the next untried candidate clause for the current call, (or NIL for a
deterministic call).

BTPoint: Backtrack point in effect at time frame was created.

Environment Vector
Env: Array recording variable instantiations (or bindings) made during

unification. Each cell of the array represents one variable in the activated
procedure.

The interpreter also maintains a few state variables to keep track of the execution state. These
include:

31

CrntCall: This is analogous to the instruction pointer in a hardware processor, and
points to the selected (or current) call.

CrntParent: pointer to the frame for the procedure containing CrntCall as one of its
subgoals.

CrntProc: Pointer to the procedure responding to CrntCall. This is the procedure which
is to be invoked next.

CrntBTP: Current backtrack point. Pointer to the most recent non-deterministic frame.
This corresponds to the most recent branch-node (or choice point) in the
search tree. The contents of this variable are copied into the BTPoint field of
the control vector of a frame.

3.6 The Interpretation Strategy
The introduction of frames and the four state variables makes the control mechanism more
opaque. The control procedure outlined above can now be stated in finer detail. Following
[KNU73 p.231] we use the notation Field(Record pointer) instead of the more cumbersome
RecordPtr^.Field. Procedure MakeFrame creates a new procedure activation frame on the
stack, returning a pointer to the new frame. The variable bindings in the new frame are
initialized to the special value FREE to indicate that all variables are initially uninstantiated.

1. INITIALIZE
CrntCall := NIL
Parent := NIL
BTPoint := NIL
CrntProc := goal
F := MakeFrame

2. PROCEDURE ENTRY
Initialize the control vector of the frame for this procedure activation. The variable bindings
would already have been initialized by the unification algorithm. If there are untried
candidate clauses for this procedure (ie this is a non-deterministic procedure call), then the
new frame becomes the most recent backtrackpoint. The first call in the procedure becomes
the new CrntCall.
Call(F) := CrntCall
BTPoint(F) := CrntBTP
Parent(F) := Parent
NextCand(F) := next candidate clause following CrntProc
IF NextCand(F) <> NIL THEN
 CrntTP := F
END
Parent := F
CrntCall := first call in CrntProc (NIL if CrntProc is an assertion)

3. SELECT CALL AND FIRST CANDIDATE CLAUSE
If the CrntCall is NIL, then the current procedure has no body, and may be exited
immediately. Otherwise, set CrntProc to the first candidate clause for the current call.
IF CrntCall = NIL THEN
 goto step 5 (Procedure exit)
ELSE
 CrntProc := first clause for current call
END

4. SELECT RESPONDING PROCEDURE
Try each candidate clause in turn until one is found which unifies with (responds to) the
current call. If no clause responds to the call, then the interpreter must backtrack. Otherwise
make the responding clause the CrntProc and loop back to the procedure entry step. The

32

unification algorithm creates a new frame on the stack in which any variable bindings are
recorded.
F := MakeFrame
WHILE (CrntProc <> NIL) AND NOT (Unify(CrntCall, CrntProc)) DO

Undo any instantiations made during unification (this is
called SHALLOW BACKTRACKING)

 CrntProc := next candidate clause
END
IF CrntProc = NIL THEN
 goto step 6 (Backtrack)
ELSE
 goto step 2
END

5. EXIT PROCEDURE
Exit current procedure and return to the parent procedure, which is to be resumed at its next
(pending) call. If the current procedure has no parent, then this step represents an exit from
the input goal clause, and so a solution is output and the interpreter backtracks in search of
further solutions.
IF Parent <> NIL THEN
 Output solution and backtrack (goto step 6)
ELSE
 CrntCall := NextCall(Parent)
 Parent := Parent(Parent)
 select responding clause for this call (goto step 3)
END

6. BACKTRACK
Backtrack to the most recent call which still has some untried candidate clauses (the
CrntBTP). If there is no such call left (CrntBTP=NIL) then the interpreter halts. Otherwise
all processing since the CrntBTP is abandoned and the most recent non-deterministic call
reactivated with the next untried candidate clause.
IF CrntBTP = NIL THEN HALT
ELSE
 CrntProc := NextCand(CrntBTP)
 CrntCall := Call(CrntBTP)
 Parent := Parent(CrntBTP)
 B := BTPoint(CrntBTP)
 Pop all frames from CrntBTP onwards and undo all variable

bindings made since.
 CrntBTP := B
 goto step 4
END

3.7 Indexing Of Clauses
Clauses in the database are usually stored as tree structures and indexed using some indexing
scheme. The purpose of indexing is to identify, at the time clauses are added to the database,
those clauses which are in the candidate set of a call. Indexing attempts to preempt mismatches
during unification (reducing shallow backtracking in step 4) by minimizing the number of
candidate clauses which have to be tried. Reducing the number of alternative clauses which can
respond to a call also reduces the non-determinacy of a Prolog program, since fewer choice-
points in the search tree are created.

The simplest scheme (adopted in the original Marseille interpreter) is to index clauses on the
head predicate. This reduces the candidate set for a call to those clauses which have the same
functor in their head predicate as the functor in the call literal. Most Prologs also index clauses
on the first argument of their head predicate, using the type (variable, functor, list) and arity of
the first argument term of the predicate as a secondary key (see for example [WAR77]). More
elaborate schemes based on static analysis of call patterns have also been suggested [DEB89a].

33

A related idea is to have the unification algorithm apply some dynamic (and relatively
inexpensive) test on the clauses in the candidate set in order to filter out any candidates which
could not possibly match the current call [BRU82 p.91]. When a call is successfully unified
with the head of a candidate clause, the test is applied sequentially to the untried clauses in the
candidate set. The first clause (if any) which passes the test becomes the next candidate clause,
and is recorded in the NextCand field of the activation frame. The object of this scheme is to
identify deterministic calls as early as possible, thereby enhancing the effectiveness of some
optimization techniques (discussed below).

3.8 Implementing The ! Predicate
The ! predicate controls backtracking. Specifically, it makes all procedure calls since entry to
the current procedure deterministic. Its implementation simply requires the interpreter to reset
the current backtrack-point to the backtrack-point in effect when the current procedure was
entered - which is recorded in the BTPoint field of the current procedure's Parent frame:

Cut: CrntBTP := BTPoint(Parent)

The effect of the ! predicate is to unlink one or more frames from the threaded list of non-
deterministic frames on the frame stack.

3.9 The Binding Environment And The Trail
Variables in a clause are encoded as offsets into the environment vector within the activation
frame for the clause. The environment records the variable instantiations made by unification in
the course of generating a clause instance which responds to a call. All occurrences of a variable
in a clause are mapped onto the same entry in the binding vector by the encoding scheme, so
that they share the same binding. The binding environment within a frame will be represented as
an array env[0..numvars-1], where numvars is the number of variables in the clause.

A clause instance is thus a pair <skeleton,environment>, where skeleton is the clause
representation in the database, and the environment records the assignment for each variable in
the clause.

Since variable bindings have to be undone on backtracking, a log of all variable instantiations
made is kept on a stack structure called the TRAIL (or RESET LIST). Only the address of
variables needs to be recorded (since such variables must have been free prior to instantiation).
Each entry on the trail is a pair <frame,var>, where frame is a pointer to a frame on the stack,
and var is the index within the frame's environment vector of the variable instantiated.

When an activation frame is created, a pointer to the current top of trail is saved in the frame.
Backtracking then simply has to reset all variables recorded on the trail following the trail
pointer stored in the backtrackpoint frame.

A new variable TrailTop is required by the interpreter to keep track of the current top of the trail
stack. A new field in the frame structure, Trail, will be used to save the position of TrailTop at
the time of frame creation. The backtracking algorithm can now be stated more explicitly:

6. BACKTRACK
IF CrntBTP = NIL THEN HALT
ELSE
 CrntProc := NextCand(CrntBTP)
 CrntCall := Call(CrntBTP)
 Parent := Parent(CrntBTP)
 B := BTPoint(CrntBTP)
 T := Trail(CrntBTP)
 FOR each entry <frame,var> on the trail from T to TrailTop DO
 env[var](frame) := free
 Pop all frames created since, and including, the frame
 pointed to by CrntBTP.

 CrntBTP := B

34

 TrailTop := T
 goto step 4
END

Since backtracking pops all frames created since the last backtrackpoint, only the binding of
variables in frames preceding the current backtrack frame need be recorded on the trail.
Instantiations made to variables in more recent frames will be automatically undone when these
frames are popped during the backtracking.

3.10 Structure-Sharing And Non Structure-Sharing Systems
Consider the unification of the two terms a(f(g,h)) and a(X), which (assuming X is free)
requires the instantiation of X to f(g,h). This instantiation can be easily effected by storing a
pointer to the database code representing the term f(g,h) in the environment cell for variable X:

a

f
X:0

a
Term 1 Env 1 Term 2

Env 2

g h

Figure 14: Unifying a(X) and a(f(g,h,))
But now consider the unification of the two terms

 a(X)
and a(f(G,H))

Again assuming that X is free, the unification requires that X be instantiated to f(G,H).
However, simply storing a pointer in the environment cell for X to the representation of the term
f(G,H) in the database will not work, since the instantiation must take into account the current
(or future) bindings of the variables G and H. X should be instantiated NOT to the term f(G,H),
but to an INSTANCE of it. For example, if G is currently instantiated to g and H to h, then X
should be bound to the term instance f(g,h). Unification thus requires a mechanism for
representing term instances, called CONSTRUCTED TERMS. Two common solutions to this
problem exist, STRUCTURE SHARING (SS) and NON-STRUCTURE SHARING (NSS)
(sometimes called STRUCTURE COPYING).

Structure Sharing
The idea behind structure sharing is that all instances of a term share a common prototype,
differing only in the variable assignments. The term prototypes in the source program
completely define the structure of any given instance of the term except for the value of the
variables. Thus a term instance can be represented as a <skeleton,environment> pair, called a
MOLECULE. The skeleton is a pointer to the database representation of the term (called the
SOURCE TERM), which serves as the prototype for all instances of the term, while the
environment is a pointer to a frame containing the bindings of the variables in the skeleton. Note
that if the source term is a constant, there is no need to provide a binding environment, so that a
constant is both a source term and a constructed term.

The term instance a(f(g,h)) created during unification might be represented by a pointer to the
skeleton a(f(G,H)) and a pointer to an environment which binds G to g and H to h:

35

0
1
2

h
g

G:2 H:1

molecule
skeleton environment

a

f

Figure 15: Representation of the term instance a(f(G,H)) in a structure-sharing

system
When a (free) variable is instantiated to a term, a molecule representing the term instance is
stored in the variable's cell in the environment vector. In structure sharing systems, the
unification of the two terms a(X) and a(f(G,H)) would generate the following binding for the
variable X:

G:2 H:1

a

f
X:0

a
Term 1

Env 1

Term 2

Env 2

Figure 16: Unifying a(X) and a(f,(G,H)) in a structure-sharing system

Structure sharing economizes on space requirements for constructing complex terms since it
adopts a lazy approach to term construction. On the other hand, accessing components of term
instances may require considerable dereferencing.

Non-Structure Sharing
In non-structure sharing systems [MEL82], term instances are not represented as molecules.
Instead, when a term is constructed during unification, a concrete (instantiated) copy of the term
is created on the heap (called the COPY STACK, since it is organized as a stack structure).
Variable bindings are not represented as <skeleton,environment> pairs, but as pointers to term
instances. The scheme is very similar to that adopted for the creation of dynamic structures in
procedural languages.

Figure 17 illustrates the unification of the two terms a(Y,b) and a(f(X),X) in a NSS system.
Note how the variable Y is bound to the concrete instance f(b), which is not a source term, but
is constructed on the heap during unification.

36

b

f

Constructed
Term

Y b

f

f X

a

X

Y X
Env1 Env2

Figure 17: Unification of a(Y,b) and a(f(X),X)) in NSS systems

For comparison, Figure 18 shows the same unification in a SS system. Note how NSS systems
avoid the need for FORWARD BINDINGS - binding a variable in one environment to a
chronologically later environment. Bindings in NSS systems can always be oriented such that
later frames reference earlier frames. This has important consequences for implementing
optimization schemes discussed below.

On the other hand, SS systems cannot avoid forward bindings. Variable Y in the example
requires Env2 for the binding of variable X in the term skeleton f(X). Consequently, Env2
cannot be discarded without leaving dangling references in the earlier environment Env1. This
creates problems when implementing optimization techniques aimed at conserving stack space
(always a prime consideration in Prolog implementations) by discarding frames as early as
possible.

Y b

f

f X

a

X

Y X
Env1 Env2

skeleton

environment

Figure 18: Unification of a(Y,b) and a(f(X),X) in a SS system

Although NSS generally incurs more space overhead than SS, accessing constructed terms is
faster. Also, some optimizations techniques are easier to implement in a NSS system.

3.11 Deterministic-Frame Optimization
Most optimization techniques are concerned with conserving memory by discarding stack
frames at the earliest opportunity. In procedural languages, procedure activation records are
popped immediately a procedure exits, but in Prolog frames have to be retained for two reasons:

1. because of possible backtracking. A procedure's activation record contains information about
the set of untried alternative candidates for the current call. If the frame is popped when the
procedure exits, no backtracking is possible.

2. because of possible forward references to a frame. If variables in earlier frames are bound to
the environment vector of the frame to be popped, then it is not possible to discard the frame
without creating dangling pointers. This problem does not arise in procedural languages,

37

since variables kept in a procedure's activation record are purely local, and hence may be
safely deallocated when the procedure terminates. In Prolog, however, variables in one
procedure may be exported to a parent procedure as subterms. The problem is illustrated in
Figure 19, where discarding the frame containing Env2 will destroy the binding of Y in
Env1.

Thus, a frame may be discarded on procedure exit if both the following conditions hold:

1. The frame is a deterministic frame (ie not a backtrackpoint). Deterministic frames are not
targets for backtracking, and therefore do not contain any information which will be required
to effect a backtrack operation.

2. No variables in earlier frames are forward bound to the environment vector of the frame to
be discarded, either directly (ie variable to variable bindings), or as environments for
constructed terms (ie environment references in molecules).

This optimization to the basic interpretation algorithm is called DETERMINISTIC-FRAME
OPTIMIZATION (DFO), and can result in significant improvement in memory utilization.
However, as with all optimization techniques, the effectiveness of DFO is dependent on the
Prolog program being interpreted.

As explained earlier, the second constraint is easy to enforce in a NSS system, since it is always
possible to orient variable bindings from the more recent to the less recent frame. Constructed
terms are recorded on the heap in concrete term instances, making it unnecessary to consult an
environment containing the bindings of any variables in the constructed term.

In SS systems, however, it is possible to have variables which outlive the procedure in which
they occur. Such variables are referred to as GLOBAL VARIABLES. The variable X in Figure
18 is an example of a global variable - its value will be required even after the procedure
containing the predicate a(f(X),X) as head terminates. The solution to this problem is to use
what is called the TWO-STACK representation for structure sharing [WAR77][HOG84
pp.205ff][KLU85 pp.176ff].

3.12 The Two-Stack Representation In SS Systems
In a two-stack system, a distinction is made between LOCAL (or PRIVATE) and GLOBAL
(or OUTPUT) variables. Local variables are those which may be deallocated when a procedure
exits since they are not the target of any forward references in earlier environments. Global
variables, on the other hand, may need to outlive the procedure in which they occur. The
distinction between the two types of variables can be made by a static analysis of the clause
during parsing. A variable in a clause is classified as global if some occurrence of that variable
in the clause is an argument of a term. If a variable does not occur as a term argument, then it is
classified as local. This is because a variable can only outlive its clause instance if some
variable in an earlier frame is bound to the term of which it is an argument (note that the inverse
is not necessarily true).

The binding environment for a procedure activation is split into two. The environment for the
local variables is kept in the frame as before (in a two-stack system, the stack holding the
activation frames is called the LOCAL STACK), while the environment for the global
variables is kept on a second stack called the GLOBAL STACK. Since (by definition) the local
environment is not the target for forward references, deterministic frames on the local stack may
be discarded on procedure exit without creating dangling references. Records on the global
stack, however, can only be popped on backtracking.

In a two-stack structure-sharing system, the following constraints are placed on variable binding
during unification:

1. both local and global variables may be free or may be bound to a ground (ie variable free)
source term,

2. a local variable may be bound to a global variable, or to a local variable in an earlier frame,

38

3. a local variable may be bound to a constructed term provided the environment component in
the molecule representing the constructed term points either to a global environment or to the
environment in an earlier local frame, and

4. the binding of a global variable may only refer to global environments.
These constraints do not affect the unification process, while ensuring that deterministic-frame
optimization will not result in dangling references being left on the stack.

3.13 Other Optimization Techniques
Deterministic-frame optimization forms the basis for two other optimization techniques, LAST-
CALL-OPTIMIZATION (LCO) and TAIL-RECURSION OPTIMIZATION (TRO). Both
techniques enable the interpreter to overlay the (local) parent frame by the frame of the invoked
procedure under certain conditions. The global frame must, of course, be left on the stack until
popped by backtracking.

Consider the program fragment
a :- b,c.
b :- d.
d :-

Assume the interpreter has just entered procedure b, which is deterministic, and is about to enter
procedure d as a result of executing the call in b's body. Since this is the last call in d, and both b
and d are deterministic, as soon as d is exited control will return immediately to procedure a,
where the call to c is still pending. Consequently, the frame for procedure b can be discarded
even before d's frame is created. d's frame is overlaid on b's frame and given a as the parent
procedure, thus ensuring that exit from d returns directly to a, as required.

The significance of LCO lies in a refinement called tail-recursion optimization. Recursion is
notoriously memory hungry. At the same time, it is the only looping mechanism in Prolog, and
hence strategies which minimize the memory demands of recursion are important for the
efficient implementation of Prolog. Many Prolog procedures exhibit a particular form of
recursion called TAIL RECURSION - the last call of the procedure is a recursive call. The
usual implementation of the member and append predicates is a case in point. Like LCO, TRO
overlays the frames created by each recursive call in a tail-recursive procedure. With TRO, a
tail-recursive procedure requires only a single local frame instead of a frame for each recursive
invocation, although a global frame is still required for each such call. This effectively
transforms tail recursion into iteration.

3.14 Intelligent Backtracking And Compilation
Other optimization techniques are prompted by considerations of time. Compared with
procedural languages, Prolog is not particularly renowned for its execution speed. There are at
least two factors contributing to this:

1. Prolog is usually an interpretive language, and
2. the exhaustive search required in finding all possible solutions to a goal.
A Prolog compiler was first suggested and implemented by D.H.D. Warren at the University of
Edinburgh [WAR77]. Compilation is to a p-code for an abstract machine (later dubbed WAM)
supporting the primitives required to realize the interpretation model outlined above. This has
made it possible to port the compiler by implementing simulators for WAM (see for example
[DEB87]). WAM has also formed the basis for a VLSI implementation of a Prolog processor
[CIV89].

Some attempts have also been made to replace Prolog's exhaustive search of the refutation tree
by a more intelligent backtracking mechanism [BRU84b][COX84][PER82]. The idea is to have
the backtracking system "learn from previous failures and successes how to get a faster
exploration of the remaining alternatives" [BRU81 p.218]. In such systems, analysis of the
unification steps leading to a failure provides information to guide backtracking.

39

4 IMPLEMENTATION

4.1 Objectives
This chapter describes the implementation of a small structure-sharing interpreter for a subset of
the Prolog language (a source listing is given in Appendix B). The interpreter is only meant to
demonstrate some implementation principles and to serve as a test-bed for optimization
techniques, although the design is sufficiently open to form the kernel of a more practical
implementation (though not a full implementation).

4.2 The Prolog Subset
The subset of Prolog selected for this implementation was chosen to be as faithful as possible to
logic programming principles. Extralogical features were almost completely excluded from the
subset. The principle areas of simplification were:

a. ARITHMETIC. Arithmetic is completely excluded from the subset, as are numeric terms.
b. DATABASE MANAGEMENT. Dynamic assertion and retraction of clauses is not

supported, resulting in a monotonic logic system. Clause manipulation predicates, such as
name and ..= (univ) are not supported, and would be difficult to implement within the
framework of the existing design.

c. SYNTAX. The syntax has been kept as simple as possible, with all functors expressed in
prefix notation. The only exception is in the representation of lists using the [_|_] notation.
The op predicate is not supported. This would be rather difficult to implement in the
recursive-descent parser used (most Prologs employ an operator-precedence parser). Only
pure Horn clauses are allowed - the or operator (;) is not supported, although not is
implemented as a predefined Prolog procedure.

d. INBUILT PREDICATES. Only a handful of inbuilt (evaluable) predicates have been
implemented, but the mechanism required to support them is already in place, making it a
simple matter to extend the list of such predicates.
The inbuilt predicates currently supported are:
! the cut
nl the NEWLINE predicate
write the term display predicate
fail the predicate which always fails, forcing backtracking.
the lexicographic comparison operators for atoms @>, @<, @>= and
@=<.
A few predefined predicates, mostly list manipulation predicates, are implemented in Prolog
(see Appendix C).

e. INPUT/OUTPUT. Only output (via the write inbuilt predicate) is supported. Input is not
supported.

The syntax diagrams overleaf define the language accepted by the interpreter.

The interpreter also accepts commands, which are introduced by a period. The commands
currently supported are:

.LIST - list database of clauses

.LOAD - load a file

.STATS - display memory usage statistics

.DEBUG - selectively toggle debugging switches

.STACK - set stack size (in bytes)

.EXIT - exit interpreter

40

:-

Clause Literal .

Body

Program Clause

Literal Predicate
Symbol

()Argument
List

Body Literal

,

Argument
List Term

,

Term Function
Symbol

Variable
Symbol

List

()Argument
List

List [

, |

]

Term

Term

Basic Prolog
syntax diagrams

4.3 Choice Of Implementation Language
Various languages were considered for implementing the interpreter. The following features
were considered desirable in the implementation language:

1. MODULARITY
support for modular program development, with a clean interface between modules, was
required to facilitate experimentation with implementation techniques.

2. DATA ABSTRACTION AND DATA HIDING

41

data abstraction ensures that a program relies only on the data type specification, not on the
actual implementation details [MIT88].

3. LOW-LEVEL SUPPORT
in view of the extensive use of dynamic structures in a Prolog interpreter, the prospective
language had to offer reasonable access to memory management primitives. Support for
address arithmetic was also considered important to facilitate the creation and manipulation
of variable-sized records and stacks.

Modula-2 was eventually chosen as the language which offered the best overall balance of all
three features. Availability was, of course, another determining factor (Ada would have been a
better choice, but was not available). In retrospect, Modula-2 was found to be deficient in the
following areas:

1. PRIVATE and FUNCTION RESULT TYPES. Although Modula-2 supports private
types, these must be declared as pointers to another type declared in the implementation
module. Ada-style private types are not supported. Functions are only allowed to return
scalar and pointer types. Unconstrained array types are not supported.

2. POOR STRING SUPPORT. String support is restricted to a few library procedures. This
includes string comparison and concatenation, which are sufficiently elementary to warrant
incorporating into the language (as in UCSD Pascal and some versions of Fortran 77).

3. AWKWARD INPUT-OUTPUT. Having a separate input and output routine for each
different type in the language makes IO both awkward and laborious. A single routine which
accepts a variable number of parameters of different types together with formatting
information (such as printf in C, or even the Pascal Write) would have been preferable.

4. ADDRESS ARITHMETIC. Address arithmetic has to be performed using library
functions. This makes address calculations expensive because of the additional procedure-
calling overhead incurred by each calculation.

The version of Modula-2 used for the implementation (JPI version 1.02 for MsDos) has some
powerful, although non-standard, library modules. The availability of the library source code,
particularly the source code for the memory-management module Storage, proved to be of great
help in developing the program. On the other hand, the lack of a symbolic debugger made
debugging the relatively complicated dynamic data structures quite painful.

Originally it was intended to use Lex and Bison (the GNU implementation of Yacc) to generate
the scanner and parser for the Prolog interpreter. It is relatively straightforward to modify these
two programs to emit Modula-2 instead of the default C or Fortran code. Unfortunately, porting
a Unix version of Bison to Microsoft C proved to be more time-consuming than anticipated
owing to some hardware dependencies in the code, and the project was eventually shelved.

4.4 Top-Down Design
The implementation comprises 11 primary modules, as follows:

VRP:Main module
INBUILT:Definition of inbuilt predicates
PARSE:Top-down parser
LEX:Lexical analyzer
DBASE:database data-structure definitions and handler
STABLE:symbol-table handler
SSTR:string-store handler
COMMAND:command processor
PROCGOAL:the interpreter
STACK:runtime stack and trail handler
STREAMS:low-level input/output

The following is a simplified diagram of the hierarchical dependencies between the different
modules constituting the interpreter.

42

VRP

PARSE INBUILT

LEX COMMAND

STREAMS

PROCGOAL

STABLE

DBASE

STACK

SSTR

Figure 19: Module hierarchy
The main control loop of the program is shown in Figure 20.

START

DEFINE
INBUILTS

READ IN
PREDEFINED
PREDICATES

STOP EXIT

READ
INPUT

PARSE
INPUT

ERROR

QUERY

COMMAND

REPORT
ERROR

PROCESS
QUERY

EXEC
COMMAND

ADD CLAUSE
TO

DATABASE

1

2

3

4

5

6 7

8 9

10 11

12

Y
N

Y

Y

Y

N

N

N

Figure 20: Interpreter main loop

43

Box Num. Comments:

1,2 The inbuilt predicates are defined by module Inbuilt, and the predefined
predicates are read in from file PREDEF.PRO.

3 The interpreter enters a read/parse/process loop. The Exit flag is tested at
the start of the loop (this flag is set to TRUE when the user issues an .EXIT
command).

4 Input is read from the current input stream (terminal or file).

5,6,7 The input is parsed by the Parse module, which flags any errors.

8 If the input is a query (recognized by the leading :-), then procedure
ProcessGoal (in module ProcGoal) is invoked to execute the query.

9 If the input is a command (recognized by the leading .), then procedure
ProcessCommand (in module Command) is invoked to execute the
command.

10 Otherwise the input must be a Prolog definite clause, which is added to the
database of clauses.

4.5 The Main Data Structures

The Dictionary
The dictionary comprises the string-store, symbol table and internal representation of clauses
(the database).

The String Store
The string store maintained by module SStr contains the external names of Prolog functors and
variables (symbols). Strings passed to the module are stored in a string area, and a string pointer
(Sptr) is returned to the caller by which the stored string may be referenced.

The Sptr is a pointer to an array[0..MaxStrLen] of char. The string dereferenced by this pointer
is null-terminated so that it can be passed to procedures in the standard Str module and to the
library WrStr procedure, which expect strings in this format.

The module exports two procedures for accessing the string store:

Sstore : stores a string in the string store, returning a pointer of type Sptr to the stored string, or
NIL if insufficient memory remains on the heap.

Sclear : clears the string store and deallocates memory used.

It is up to the caller to impose a structure on the string buffer using the string pointers returned
by procedure Sstore. The procedure Sclear deallocates the string store. The caller must ensure
that no dangling pointers remain after a call to Sclear.

The string store is implemented as a linked list of string areas (AreaRec). Each area contains a
2-field header:

NxtArea : pointer to next area

NxtFree : index to the next free storage position in this area.

The rest of the string area is an array of AreaSiz characters. Strings are stored sequentially in the
array, and terminated by a null-character. Initially the string store consists of a single empty
area. A new area is added to the HEAD of the list when the current one becomes full (ie when
the length of the string to be stored exceeds the remaining space).

The structure of the String Store is shown in Figure 21:

44

NxtArea

NxtFree

NxtArea

NxtFree

NxtArea ∅

NxtFree
0
1
2
3
4
5
6
7

AreaSiz - 1

CrntArea
AreaRec AreaRec AreaRec

Figure 21: String Store showing linked buffers

The Symbol Table
The symbol-table imposes a structure on the string store and organizes the clause database for
fast access during the addition of new clauses. The symbol table is organized using a simple
hashing technique based on the first character of symbol names. Although simple, the scheme is
sufficient for the purpose required, and has the added benefit of maintaining the predicate
symbols sorted in lexicographic order as required by the database listing procedure (exported by
module STable).

The hashing function maps a symbol onto an entry in an array (SymTab, declared in module
STable) indexed by the first character of the symbol. Each entry in this array is a pointer to a
singly-linked list of records of type SymTabRec, one for each symbol in the database. Records
in each linked list represent symbols having the same initial character in their name. The
(simplified) format of the SymTabRec, declared in module DBase, is :

Next : Pointer to next SymTabRec in this linked list
Name : Pointer to symbol name string (in string store)
Mode : symbol mode (see section 4.7)

Count : for variable encoding (see section 4.11)
 CASE SType : SymType OF
 functor :
 Arity : Arity of functor
 FstCls : Pointer to head of clause list
 LstCls : Pointer to tail of clause list
 | variable :

In the case of functor symbols the arity is also recorded. Functors with different arity are
considered to be distinct symbols and have separate entries. Symbol-table entries for functors
also have pointers to the list of clauses (procedure) having this functor as predicate in the clause
head. A pointer to the last clause is maintained to facilitate the addition of new clauses to the
list.

Within each linked list of the symbol table, records are kept in ascending lexicographic order. In
the case of functor records with the same name, the arity is used as a secondary sorting key.

The Clause Records
A clause record (ClauseRec, declared in module DBase) is kept for each clause in the database.
Clause records for the same procedure are kept in a linked list accessed through the symbol-
table entry for the predicate in the head of the clause. Clause records are maintained in the order
of declaration, as required by the interpretation strategy. The format of a CluaseRec is as
follows:

45

Next : Pointer to next clause
CASE InBlt : BOOLEAN OF
 TRUE : Proc : code representing an inbuilt procedure
 Entry : pointer to symbol-table entry for
 the name of this inbuilt procedure
 | FALSE : Vars : Number of variables in this clause
 Head : pointer to the head of this clause
 Body : pointer to the body of the clause

Unlike user-defined and predefined procedures (which are normal Prolog clauses), clauses
representing inbuilt procedures are not written in Prolog, and so do not have a head and a body.
The Vars field is required during interpretation to calculate the amount of stack-space required
to accommodate an activation record for this clause. Again, inbuilt procedures do not (in
general) require an activation record, and so do not require this field.

The Term Records
The head and body of clauses are represented internally as linked lists of term records
(TermRec, defined in module DBase). Term here does not imply that each record represents a
term, merely that these structure are used in constructing internal term representations (source
terms). The format of a TermRec is as follows:

Next : Pointer to next TermRec in list
Entry : Pointer to symbol-table entry
CASE SType : SymType OF
 list,functor : Args : pointer to linked list
 of TermRecs representing
 arguments if any
 | variable : Ofst : variable number within clause

The SType field flags the record as representing a variable, functor, list constructor or
anonymous variable. A record representing the anonymous variable does not require any other
field.

If the term record represents a list or a functor, then a linked list of TermRecs representing the
arguments (if any) is appended. Lists are stored just like any other structure, ie [a,b,c] is
considered shorthand notation for the structure .(a,.(b,.c(,[]))), where . represents the list
constructor functor.

In the case of variables, the Ofst field records the variable's number within the clause. The
parser assigns a number, starting with 0, to each new variable encountered in parsing a clause.
This number is used during interpretation as an offset into the variable-binding area
(environment vector) of the clause's activation record. The Entry field is only used for records
representing functors and variables.

It is necessary to include the symbol type (SType) within TermRec because, although in the case
of variables and functors the type can be read from the symbol-table entry, in the case of special
terms such as list constructors and anonymous variables a symbol-table entry does not exist.
Also, including the symbol type here makes for less dereferencing when examining terms.

The examples below demonstrate term representation using records of type TermRec.

46

ENTRY STYPE ARGS NEXT

p/3 functor

ENTRY STYPE OFST NEXT

X var 0
STYPE NEXT

anon
ENTRY STYPE ARGS NEXT

a/2 functor ∅

ENTRY STYPE OFST NEXT

B var 1
ENTRY STYPE OFST NEXT

X var 0 ∅

Figure 22: Representation of the term p(X,_,a(B,X))

ENTRY STYPE ARGS NEXT

∅ list ∅

ENTRY STYPE ARGS NEXT

∅ list ∅

ENTRY STYPE ARGS NEXT

b/0 functor ∅

ENTRY STYPE ARGS NEXT

∅ list ∅

ENTRY STYPE ARGS NEXT

c/0 functor ∅

ENTRY STYPE ARGS NEXT

∅ list ∅ ∅

ENTRY STYPE OFST NEXT

A var 0

Figure 23: Representation of the term [A,b,c], equivalent to .(A,.(b,.(c,[])))

ENTRY STYPE OFST NEXT

T var 1 ∅

ENTRY STYPE OFST NEXT

H var 0

ENTRY STYPE ARGS NEXT

∅ list ∅

Figure 24: Representation of the term [H|T], equivalent to .(H,T)
Figure 25 shows how a clause is stored in the database.

47

NAME TYPE NEXT ARITY FSTCLS LSTCLS

â functor ∅ 1 ∅ ∅

ENTRY STYPE ARGS NEXT

P1/2 functor ∅

a
b
c

p
q
r
s

X
Y

∅

∅

∅

NAME TYPE NEXT ARITY FSTCLS LSTCLS

b̂ functor ∅ 0 ∅ ∅

NAME TYPE NEXT ARITY FSTCLS LSTCLS

b̂ functor ∅ 1 ∅ ∅

NAME TYPE NEXT ARITY FSTCLS LSTCLS

p̂1 functor 2
NAME TYPE NEXT ARITY FSTCLS LSTCLS

p̂2 functor ∅ 1 ∅ ∅

NAME TYPE NEXT ARITY FSTCLS LSTCLS

ŝ functor ∅ 2 ∅ ∅

NAME TYPE NEXT ARITY FSTCLS LSTCLS

X̂ var ∅ n/a n/a n/a

NAME TYPE NEXT ARITY FSTCLS LSTCLS

Ŷ var ∅ n/a n/a n/a

NEXT ∅
VARS 2
HEAD
BODY

INBUILT NO

ENTRY STYPE OFST NEXT

X var 0 ∅

ENTRY STYPE OFST NEXT

Y var 1 ∅

ENTRY STYPE OFST NEXT

X var 0

ENTRY STYPE ARGS NEXT

b/1 functor ∅

ENTRY STYPE OFST NEXT

Y var 1
ENTRY STYPE OFST NEXT

Y var 1 ∅

ENTRY STYPE ARGS NEXT

s/2 functor ∅

ENTRY STYPE ARGS NEXT

p2/1 functor
ENTRY STYPE ARGS NEXT

p1/2 functor

ENTRY STYPE ARGS NEXT

b/0 functor ∅ ∅

ENTRY STYPE ARGS NEXT

a/1 functor ∅

ENTRY STYPE OFST NEXT

X var 0

SYMBOL TABLE

SymTabRec

ClauseRec TermRec

Figure 25: Representation of p1(X,a(b)) :- p1(X,Y), p2(Y), s(Y,b(X)).
The relationship between the string store, symbol table, and database is summarized in Figure
26.

CLAUSE RECORDS

TERM RECORDS

SYMBOL TABLE
HASH
TABLE

STRING
STORE

Figure 26: Relationship between symbol table, string store, and database

48

4.6 Operations On The Symbol Table And Database
The symbol-table module STable allows insertion of new symbols into the symbol table by
means of procedure Insert, which takes as parameters the print name (as a pointer to a string in
the string store), type and (if applicable) arity of the symbol and creates a new entry in the
symbol table if one doesn't already exist. A pointer to the entry is returned.

No provision presently exists for deleting symbol-table records. Such deletions are not easy to
implement, since a check has to be made that no references to the entry to be deleted remain in
the database (otherwise dangling-pointer problems may arise).

The symbol-table module is also responsible for producing listings (ie external representations)
of terms and clauses in the database.

The database module DBase exports various functions and predicates for examining term
records, as well as constructors and destructors for records of type SymTabRec, ClauseRec and
TermRec. Note that, since a Prolog database is static in the sense that clauses can be asserted
and retracted but not changed, provision for altering database structures is neither provided nor
required.

The DBase module maintains a free list for each of the tree types of structures required by the
database. When a free list becomes exhausted, a chunk of memory is requested from the system
and divided into structure-sized units which are linked to form a new free list. This scheme is
preferable to invoking the system ALLOCATE each time a new structure is to be created
because:

1. system storage requests carry a not-insignificant time overhead. This is evident from
examination of the code for the standard Storage module, which uses a first-fit algorithm in
allocating blocks on the system heap.

2. the Storage module can only allocate memory in paragraph-sized chunks (16-bytes). Had
structures to be allocated individually from the system heap, the wastage per unit allocation
would be as follows:
Structure size (bytes) allocation (paras) wastage (bytes)
SymTabRec 20 2 12

TermRec 13 1 3

ClauseRec 15 1 1

Given an average of 20 term records, 5 symbol-table records and 1 clause record per clause, this
amounts to a hefty 121-byte overhead for each clause in the database.

Constructors for these structures merely fetch the first record on the free list (calling an
allocation procedure to create a new free list if this becomes exhausted). Similarly, destructors
return a record to the free list where it can be reused. Since the destructors never release
memory once allocated (except when the program terminates), system memory may become
tied up on the database free lists, resulting in insufficient heap-space for the interpreter stack and
trail. Although this is unlikely, a better memory management scheme than the one currently
implemented is clearly required. Such a scheme would have to be able to reallocate database
records to avoid memory fragmentation. This is not easy, given the number of pointers that will
have to be adjusted.

Another advantage of having all requests for structure creation and disposal channelled through
the constructor and destructor functions rather than go directly to the system's ALLOCATE and
DEALLOCATE procedures is that it makes collecting memory usage statistics easy. In the
course of developing the interpreter, such statistics were found useful in gauging the memory
requirements of a typical Prolog program

49

4.7 Symbol Modes
The interpreter functions in two modes, system and user. A field in the symbol-table record,
Mode, is used by the Insert procedure of module STable to record the mode under which a
symbol has been declared. Initially the interpreter is in system mode. After the inbuilt-predicates
have been declared (in module Inbuilt) and the predefined predicates in the file PREDEF.PRO
loaded, the interpreter switches to user mode and starts processing user input.

Thus all symbol-table entries for inbuilt and predefined symbols have their Mode field set to
system, while all user entries have their Mode field set to user. The parser uses the Mode
information to disallow the redefinition of system symbols by the user (see below).

4.8 The Lexical Analyzer
The parsing of clauses is handled by a simple recursive-descent parser implemented in module
Parse. The procedure which drives the parser, procedure Reader, is in fact the main loop of the
interpreter, continuously reading in and parsing input from the current input stream (file or
terminal).

The input stream is preprocessed by module Lex, which fetches tokens on demand and hands
them to the parser. A shared structure CrntTkn is used to pass tokens from the lexical analyzer
to the parser.

A token is a pair consisting of a symbol class and a symbol instance. The class describes the
type of token read in, and can be one of:

ColonHyphen :�
Comma ,
OpnBrk (
ClsBrk)
OpnSqr [
ClsSqr]
Bar |
Dot .
AnonymVar _
VarSym an identifier starting with an uppercase

NonVarSym an identifier which is not a variable symbol

FileEnd End of file on input

If the token class is either VarSym or NonVarSym, the instance field of the token contains the
identifier string read in. The instance field is not required for the other token classes (since there
is only one instance of each class).

4.9 The Parser
The parser is a straightforward implementation of the following CFG (terminal symbols are
printed in bold).

<program> ::= <clause> { <clause> }
<clause> ::= <predicate> [:- <body>] .
<predicate> ::= <predicate symbol> [(<argument list>)]
<body> ::= <literal> { , <literal> }
<literal> ::= <variable symbol> |
 <predicate>
<argument list> ::= <term> { , <term> }

50

<term> ::= <variable symbol> |
 <structure>
<structure> ::= <constant symbol> [(<argument list>)] |
 <list>
<list> ::= [{ <term> { , <term> } [| <term>] }]
<goal> ::= :- <body> .

with a separate procedure for each non-terminal, as is usual in a recursive-descent parser. Note
that, although strictly speaking a variable is NOT a literal, the grammar allows variables to take
the place of a literal in the body of a clause. Such a variable represents an indirect procedure
call, and must be bound to a 'normal' literal at runtime.

The parser takes advantage of syntactic similarities between certain non-terminals of the
language such as <structure> and <predicate>, which are collapsed into a single procedure.

4.10 Constructing The Internal Representation Of A Clause
Parsing a clause (we will for the moment ignore goal clauses) starts with procedure PrsClause
constructing a ClauseRec ready to receive the clause representation. PrsPred is then called to
parse the predicate at the head of the clause, returning a pointer to a TermRec (possibly with
linked argument terms) representing the head predicate. If a ColonHyphen token is encountered
next, PrsBody is called to parse the body of the clause, returning a pointer to a linked list of
TermRecs representing the literals in the body of the clause. Otherwise the Body field of the
ClauseRec is set to NIL.

The main work of parsing the head and body of a clause, and of creating the TermRecs to
represent these objects, is carried out by procedures PrsLiteral (with support procedure
PrsArgList) and PrsTerm (with support procedure PrsList). Each of these procedures returns (on
successful termination), a pointer to a TermRec, which is linked to the TermRec created by the
caller. This way, the parser constructs the linked lists of TermRecs representing the terms,
literals and predicates in a clause.

The following pseudo-code summarizes the process of parsing a clause. We assume that Token
always contains the next token to be parsed (in reality, this has to be fetched from the lexical
analyzer with a call to GetToken). For simplicity, PrsList is omitted. We let MakeTerm be a
constructor of TermRecs, returning a pointer to a new instance of a term record. Similarly
MakeClause. The notation Field(Pointer) is used instead of the more cumbersome
Pointer^.Field.

PROCEDURE PrsClause
 C := MakeClause;
 Head(C) := PrsPred;
 IF Token = ColonHyphen THEN
 Body(C) := PrsBody
 ELSE
 Body(C) := NIL;
 link C into the database
END PrsClause;

PROCEDURE PrsPred : TermRecPtr;
 RETURN PrsLiteral;
END PrsPred;

PROCEDURE PrsBody : TermRecPtr;
 First := T := PrsLiteral;
 WHILE Token = Comma DO
 Next(T) := PrsLiteral;
 T := Next(T);
 RETURN First;
END PrsBody;

51

PROCEDURE PrsLiteral : TermRec;
 CASE Token OF
 NonVarSym : T := MakeTerm;
 IF Token = OpnBrk THEN
 Args(T) := PrsArgList;
 RETURN T;
 VarSym : RETURN PrsTerm;
END PrsLiteral;

PROCEDURE PrsArgList : TermRec;
 First := T := PrsTerm;
 WHILE Token = Comma DO
 Next(T) := PrsTerm;
 T := Next(T);
 RETURN First;
END PrsArgList;

PROCEDURE PrsTerm : TermRec;
CASE Token OF
 VarSym : RETURN MakeTerm;
 NonVarSym : RETURN PrsLiteral;
 OpnBrk : RETURN PrsArgList;
END PrsTerm;

When a new TermRec is created, the details of the term just parsed (primarily its type and a
pointer to the symbol-table entry of its functor or variable identifer) are filled in, but this is not
shown in the pseudo code.

Linking a clause into the database involves locating the symbol-table record for the predicate at
the head of the clause. The clause is then linked following the clause pointed to by the LstCls
field of the symbol-table record, which is updated to point to the new clause. If no clauses yet
exist for this predicate (FstCls=NIL), the FstCls and LstCls fields are set to point to the new
clause.

4.11 Encoding Variables
The encoding of the variables in a clause is performed as the clause is being parsed. A numeric
field (Count) in the symbol-table record SymTabRec is used for this purpose, together with a
variable NVars.

Count is set to a distinguished value NoCount during the creation of a new symbol-table entry,
while NVars is reset to 0 at the beginning of parsing each clause. When a variable term is
encountered by PrsTerm, it looks at the Count field of the symbol-table entry for that variable
symbol. If the Count field is still NoCount it is set to the current value of NVars, which is then
incremented. The value of the Count field in the symbol-table entry of a variable is copied to
the Ofst field of the TermRec. This way, different occurrences of the same variable within a
clause are encoded with the same offset value. The following revised version of PrsTerm
includes the extra processing required to encode variables:

PROCEDURE PrsTerm : TermRec;
 CASE Token OF
 VarSym : T := MakeTerm;
 S := Symbol Table Entry of Varsym;
 IF Count(S) = NoCount THEN
 Count(S) := NVars;
 INC(NVars);
 Ofst(T) := Count(S);
 RETURN T;
 NonVarSym : RETURN PrsLiteral;
 OpnBrk : RETURN PrsList;
END PrsTerm;

52

When a clause has been successfully parsed, the final value of NVars is the number of distinct
variables in the clause, and is recorded in the Vars field of the ClauseRec. Finally, all symbol
table entries of variables within the clause have their Count field reset to NoCount in
preparation for parsing the next clause.

4.12 Preventing Redefinition Of System Predicates By The User
PrsClause prevents the user from redefining system predicates. When the head of a clause has
been parsed (by PrsPred), PrsCls checks to see whether the symbol-table record for the
predicate symbol in the head has its Mode field set to SYSTEM. If so, and the interpreter is
currently in user mode, then an error condition is raised and the current clause is abandoned.
Note that this does not prevent the user from calling system predicates, since such calls appear
as literals in the body of a clause, not as the predicate in the head.

4.13 Parsing Goal Clauses
PrsClause recognizes a goal clause by the first token, which is always ColonHyphen. In the case
of a goal clause, the head field is set to NIL, and the body is parsed by PrsBody as for a definite
clause. When the goal clause has been successfully parsed, it is not linked into the database, but
is passed to procedure ProcessGoal (in module ProcGoal) for immediate execution.

4.14 The Runtime Structures

Activation Frames
A procedure activation frame is a variable-length record (declared in module Stack) as follows:

Frame = RECORD
 Prev : pointer to start of previous frame
 Parent : pointer to parent frame
 CrntLit : pointer to current call
 NxtClause : pointer to next untried candidate clause
 CrntBTP : pointer to frame to backtrack to
 Trail : trail pointer
 Vars : size of binding array
 Binds : variable-sized array of Binding records
 END;

The first field of the frame contains a pointer to the start of the previous frame on the stack, and
is only required by the stack-handling routines (discussed below). The next five fields hold
control information required by the interpreter.

The Vars field records the number of variables in the activated clause, which is also the number
of entries in the bindings array Binds. Each variable in the clause is mapped onto an entry in this
array by the offset number (Ofst) assigned during parsing. The bindings array records the
environment (ie variable assignments) defining a clause instance.

Since Modula-2 does not support dynamically-dimensioned arrays, Binds is actually declared as
an array of size MaxVars (a constant defined in module DBase, declaring the maximum number
of distinct variables allowed in a single clause - currently 1000). However, the frame-creation
routine MAKEFrame (in module Stack) only allocates memory for Vars entries in the array, so
that the Vars field completely determines the size of a frame.

Binding Records
Each entry in array Binds records the binding of a single variable in the clause instance
represented by the frame. The binding of a variable encoded with an offset number x in a clause
is recorded in the entry Binds[x] of the frame representing an instance of the clause. Three types
of bindings are recognized by the interpreter:

free - if a variable is not currently bound
lit - if the variable is bound to a term skeleton
var - if the variable is currently bound to another variable.

53

The following schematic (Figure 27) illustrates these three types of bindings.

0
1
2

Binds

BindRec

Free
Lit
Var

a

b c

Figure 27: Three different variable bindings

Each variable binding is recorded in a record of type Binding, declared as:
Binding = RECORD
 CASE BType : (free, var, lit) OF
 var : BPtr : ptr to another binding record
 | lit : TPtr : ptr to a term skeleton
 Env : ptr to frame containing environment
 END;
 END;

If the variable is bound to another variable, then the field BPtr in its Binding record contains a
pointer to the binding record of the variable to which it is currently bound.

If the variable is bound to a term, then field TPtr contains a pointer to the term-skeleton in the
database, while field Env contains a pointer to a frame containing the environment for the
variables in the term skeleton. For example, assume that variable 0 in a clause is bound to the
term a(X:1), where the notation X:1 represents variable X encoded as offset 1. The following
diagram shows the situation, with frame 1 providing the environment for the interpretation of
variable X in the term a(X:1) to which variable 0 of frame 2 is bound. In this case, X is a free
variable.

a
Frame 2

0
1

control
LIT ENV TPTR

Frame 1
0
1

control

FREE

X:1

Figure 28: Variable 0 in Frame 2 is bound to the term a(X:1), with Frame 1 as

environment

The Stack Module
The stack module Stack manages the runtime stacks - the activation (frame) stack and the trail.
The frame stack and the trail share a common block of memory and grow towards each other
from opposite ends of the block.

While trail records are of uniform size (consisting merely of pointers to binding records), the
procedure activation frames held on the runtime stack are variable-sized. Because of this, and
because a temporary frame is needed by the unification process, the two stacks are handled very
differently. In particular, TRAILTOP points to the NEXT free location on the trail, while

54

STACKTOP points to the LAST OCCUPIED location on the stack. Also, frame records require
a pointer to the previous record on the stack.

The main pointers associated with the two stacks are:

STACKBASE

STACKTOP

NEWFRAME

STACKEND

TRAILBASE

TRAILTOP

Figure 29: The runtime stacks.

NewFrame is required by the unification procedure. At the start of a unification, a call to
MAKEFrame creates a NewFrame of the required size just beneath StackTop. If the unification
succeeds, NewFrame is pushed onto the stack and becomes the new StackTop. Otherwise it is
overwritten by the subsequent creation of a new NewFrame. StackEnd keeps track of the
location where NewFrame ends, and is required in checking for collisions between the
procedure-activation stack and the trail.

Besides exporting the frame and binding-record types, module Stack also provides frame
creation and stack operations. The main stack operations are:

MAKEFrame (Vars) : Frame Pointer
Returns a pointer to a new stack frame immediately below stacktop large enough to
accommodate Vars binding records. This is the frame that gets pushed next time
PUSHFrame is called. The Vars and Trail fields of the new frame are initialized, and all
variable bindings are set to free. NIL is returned if creating the frame would result in the
frame stack colliding with the trail.

PUSHFrame
Pushes the frame created by MAKEFrame (NewFrame) onto the stack. This entails setting
the Prev field of NewFrame to the current value of StackTop, setting StackTop to
NewFrame, and NewFrame to StackEnd.

POPFrames (Frame Pointer)
Pops all frames on stack from and including the frame pointed to by Frame Pointer. All
variables instantiated from this frame onwards are uninstantiated, and TrailTop is reset to
the value recorded in the frame referenced by Frame Pointer.

Module Stack also provides routines which record variable instantiations on the Trail
(STORETrail), dereference variables bound to other variables (DeRef), return the address of the
binding record of a variable within a frame (BindAdr) and test whether a variable is free or
instantiated.

55

4.15 The Interpreter
The interpreter starts by creating a frame representing entry into the goal, which is made the
current procedure. Processing then proceeds as shown in Figure 30. The following comments
refer to the numbered boxes in the figure.

STOP

CALL =
FIRST CALL
IN CLAUSE

CALL =
PENDING

CALL

PRINT
SOLUTION

PROC =
1ST CANDIDATE

CLAUSE

PROC =
1ST UNTRIED

CLAUSE

PUSH
FRAME

BACKTRACK

START

CAN
BACKTRACK

ASSERTION
CALL

PENDING

CAN
BACKTRACK

UNIFY

1 2

3 4 5

6 7

8 9 10

11

12

13

Y

N

N

Y

N

Y

Y
N

Y

N

Figure 30: Simplified interpreter flowchart.
Box Num. Comments:

1 If the current clause is an assertion (ie has no body), then a PROCEDURE EXIT
step is immediately executed, and the parent procedure is resumed at its next
call (boxes 2 and 4). Otherwise, a PROCEDURE ENTRY step is executed (box
3), with the first call in the body of the procedure being the new CALL.

2 On procedure exit, the frame stack is searched backwards looking for a parent
procedure which still has some pending calls. If no pending calls are left, then a
solution has been found, and the bindings of variables in the goal clause (if any)
are printed out (box 5).

3,4 CALL SELECTION. The next call selected is either the first call in the current

56

procedure (if this is not an assertion), or the next call of the most recent parent
procedure which still has some pending calls left.

5,6 After printing out a solution, the interpreter attempts to backtrack in search of
further solutions. Backtracking involves popping all frames up to and including
the most recent backtrack-point and trying a different path in the search tree. If
there is no backtrack-point, then backtracking is not possible, so execution
terminates.

9,10 PROCEDURE SELECTION. The next candidate clause to be tried is either
the first clause for the current call if no backtracking has occurred (box 9) or, in
the case of backtracking, the next untried clause for the call backtracked to (box
10).

11 UNIFICATION. An attempt is made to unify the current call with the head of
the current (candidate) clause. A record of the variables instantiated in the
course of unifying the call and the head of the candidate clause is kept on the
trail. Unification constructs a temporary frame for the candidate clause (with a
call to MAKEFrame), which is pushed onto the stack (box 8) if the unification
succeeds, but is otherwise discarded.

12,13 If unification fails, then the interpreter attempts to backtrack. Shallow
backtracking - the process of trying a different candidate clause for the current
call - is attempted first. If this fails, then deep backtracking - backtracking to a
previous call - is attempted.

8 If unification succeeds, then the temporary frame constructed during the
unification process is pushed onto the stack. The clause whose head successfully
unified with the current call becomes the procedure to be entered next. If some
untried candidate clauses remain for this call, then the frame just stacked
becomes the most recent backtrack-point.

When a call to an inbuilt procedure is encountered following the call selection process in boxes
3 and 4, the Proc field of the ClauseRec representing the inbuilt procedure is used to determine
the action to be performed. No frame is constructed for a call to an inbuilt procedure, and
interpretation passes immediately to the next call in the body of the current procedure.

A count is kept of the number of solutions output by box 5. If the interpretation procedure
terminates (box 7) without having found any solutions, then the query fails, and the message
NO is output.

4.16 Unification
The unification procedure UnifyTerm (in module ProcGoal) takes two term instances as
parameters and attempts to unify them, recursively traversing the term trees to unify the terms'
arguments. The procedure succeeds (returning TRUE) if the terms are unifiable, instantiating
variables in the process. Otherwise the procedure fails, returning FALSE.

Each term instance consists of a pointer to a term skeleton in the database, and a pointer to a
frame containing the environment. This is the usual representation of term instances in a
structure-sharing Prolog implementation. The following pseudo-code sketches the unification
algorithm. We assume that the two terms T1 and T2 are completely dereferenced - ie if either
term is a variable, then it is replaced by the term to which it is bound (which may be a free
variable).

57

PROCEDURE UnifyTerm (T1,T2 : TermPtr; E1,E2 : FramePtr) : BOOLEAN;
IF either term is the anonymous variable THEN RETURN TRUE;

IF neither term is a free variable THEN
 IF T1 and T2 do not have the same functor THEN RETURN FALSE
 ELSE FOR each argument A1,A2 of T1,T2 DO
 IF NOT UnifyTerm (A1,A2,E1,E2) THEN RETURN FALSE
 RETURN TRUE;

At this point, at least one of T1,T2 must be a free variable. This
leads to the following cases:

1. Both T1 and T2 are free variables:
 Bind T2 to T1

2. T2 is free, while T1 is a structure or a variable bound to
 a structure.
 Bind T2 to T1 with E1 as environment.

3. T1 is free, while T2 is a structure or a variable
 bound to a structure.
 Bind T1 to T2 with E2 as environment.

 RETURN TRUE;
END UnifyTerm;

Binding a free variable Ti (encoded as offset Oi) to a term Tj involves altering the binding record
indexed by Oi in the binding array of frame Ei. If Tj is a structure (or a variable instantiated to a
structure), then the binding record for Ti is made to point to the structure Tj, with Ej as
environment for any variables in Tj. If Tj is a free variable, then Ti is made to point to the
binding record of Tj within frame Ej.

When a variable is instantiated during unification, a pointer to the variable's binding record is
pushed on the trail so that all bindings can be undone on backtracking. Since backtracking pops
all frames created since the last backtrack-point, only instantiations of variables in frames earlier
than the latest backtrack-point need be recorded.

The algorithm does not perform the occur check, as is normal in Prolog. This may lead to the
construction of cyclic structures, but makes the algorithm linear in the number of subterms for
the two terms to be unified. The occur check was eliminated from the original Marseille
interpreter [COH88] for pragmatic reasons. In a way, this simplification of Robinson's
unification algorithm is what has made Prolog a viable programming language. Some
implementers have taken advantage of the potentially cyclic structures generated by the
simplified unification algorithm, and allow the construction and handling of infinite terms in
Prolog (see [FIL84][HAR84]).

4.17 Enhancements To The Interpreter
Besides the implementation of various optimization techniques, primarily deterministic-frame
optimization (which could form the basis for implementing both LAST-CALL
OPTIMIZATION and TAIL-RECURSION OPTIMIZATION), enhancements may include the
addition of arithmetic and a better parser.

The recursive-descent parser used is neither very efficient nor suitable for Prolog. Problems
would be encountered in implementing predicates like op and clause, which are easier to
implement in a bottom-up parser.

The representation of terms may also be improved - a more compact representation of lists is
possible, although this will somewhat complicate the unification algorithm. Memory
management also needs improving to control the amount of memory which currently
accumulates on the freelists maintained by the database module. This would require reallocating

58

clauses in the database, which is not a straightforward matter since a potentially large number of
pointers may need to be adjusted.

59

BIBLIOGRAPHY
KEY:
ACM TOPLAS ACM Transactions on Programming Languages and Systems
CACM Communications of the ACM
CM Contemporary Mathematics
JACM Journal of the ACM
JLP Journal of Logic Programming
LNM Lecture Notes in Mathematics

[AND76] Andreka,H. and Nemeti,I. (1976) The Genralized Completeness of Horn Predicate
Logic as a Programming Language, DAI Report No.21, University of Edinburgh.

[APT82] Apt,K.R. and van Emden,M.H. (1982) Contributions to the Theory of Logic
Programming, in JACM Vol.29/3 pp.841-862.

[BOW82] Bowen,K.A. (1982) Programming with Full First-Order Logic, in [HAY82].

[BRU81] Bruynooghe,M. (1981) Intelligent Backtracking for An Interpreter of Horn Clause
Logic Programs in [DOM81].

[BRU82] Bruynooghe,M. (1982) The Memory Management of PROLOG Implementations, in
[CLA82].

[BRU84a] Bruynooghe,M. (1984) Garbage Collection in Prolog Interpreters, in [CAM84].

[BRU84b] Bruynooghe,M. and Pereira,L.M. (1984) Deduction Revision by Intelligent
Backtracking, in [CAM84].

[CAM84] Campbell,J.A. (1984,ed.) Implementations of Prolog, Ellis Horwood.

[CHA74] Chang,C. and Lee,R. (1974) Symbolic Logic and Mechanical Theorem Proving,
Academic Press.

[CIV89] Civera,P., Piccinini,G., Zamboni,M. (1989) Implementation Studies for a VLSI Prolog
Coprocessor, in IEEE Micro, Vol.9/1 February 1989 pp.10-23.

[CLA82] Clark,K.L. and Tarnlund,S.-Å. (1982,eds.), Logic Programming, Academic Press,
London.

[CLO81] Clocksin,W.F. and Mellish,C.S. (1981) Programming in Prolog, Springer Verlag.

[COH88] Cohen,J. (1988) A View of the Origins and Development of Prolog, in CACM
Vol.31/1 pp.26-36.

[CON89] Conlon,T. (1989) Programming in Parlog, Addison-Wesley.

[COX84] Cox,P.T. (1984) Finding Backtrack Points for Intelligent Backtracking, in [CAM84].

[DEB87] Debray,S.K. (1987) The SB-Prolog System, Version 2.2, Department of Computer
Science, University of Arizona.

[DEB89a] Debray,S.K. (1989) Static Inference of Modes and Data Dependencies in Logic
Programs in ACM TOPLAS, Vol.11/3 July 1989 pp.418-450.

[DEB89b] Debray,S.K. and Warren,D.S. (1989) Functional Computations in Logic Programs, in
ACM TOPLAS Vol.11/3 July 1989 pp.451-481.

[DOM81] Domoki,B. and Gergely,T. (1981 eds) Proc. of Colloquium on Mathematical Logic
in Programming 1978, Salgotarjan, Hungary. Republished by North-Holland Publ.
Amsterdam.

60

[DOW84] Dowling,W. and Gallier,J.H. (1984) Linear-Time Algorithms for Testing the
Satisfiability of Propositional Horn Formulae, in JLP No.3 pp.267-284.

[DOW86] Dowsing,R.D., Rayward-Smith,V.J. and Walter,C.D. (1986) A First Course in
Formal Logic and its Applications in Computer Science, Blackwell Scientific
Publications.

[EMD76] van Emden,M.H. and Kowalski,R. (1976) The Semantics of predicate Logic as a
Programming Language, in JACM Vol.23/4 pp.733-742.

[EMD84] van Emden,M.H. (1984) An Interpreting Algorithm for Prolog Programs, in
[CAM84].

[FIL84] Filgueiras,M. (1984) A Prolog Interpreter working with Infinite Terms, in [CAM84].

[GAL87] Gallier,J.H. (1987) Logic for Computer Science: Foundations of Automatic
Theorem Proving, John Wiley.

[GOO85] Goodman,S.E. and Hedetniemi,S.T. (1985) Introduction to the Design and Analysis
of Algorithms (2nd printing) McGraw Hill International Student Edition.

[HAR84] Haridi,S. and Sahlin,D. (1984) Efficient Implementation of Unification of Cyclic
Structures, in [CAM84].

[HAY82] Hayes,J.E. et al (1982,eds.) Machine Intelligence 10, Ellis Horwood.

[HOG84] Hogger,J.C. (1984) Introduction to Prolog Programming, Academic Press.

[KLU85] Kluzniak,F. and Szpakowicz,S. (1985) Prolog for Programmers, Academic Press.

[KNU73] Knuth,D. (1973 2ed) The Art of Computer Programming Vol.1, Addison-Wesley.

[KOW88] Kowalski,R. (1988) The Early Years of Logic Programming, in CACM, Vol.31/1
pp.38-43.

[LOV84] Loveland,D.W. (1984) Automated Theorem Proving: A Quarter Century Review in
CM Vol.29 pp 1-42.

[LUK70] Lukham,D. (1970) Refinement Theorems in Resolution Theory in LNM Vol.125 pp
163-190.

[MEL82] Mellish,C.S. (1982) An Alternative to Structure Sharing in the Implementation of a
PROLOG Interpreter, DAI Research Paper No.150, University of Edinburgh. (An
abridged version appears under the same title in [CLA82]).

[MIT88] Mitchell,J.C. and Plotkin,G.D. (1988) Abstract Types have Existential Type in ACM
TOPLAS Vol.10/3 pp.470-502.

[NIC89] Nicholson,T and Foo,N. (1989) A Denotational Semantics for Prolog in ACM
TOPLAS Vol.11/4 October 1989 pp.650-665.

[NIL84] Nilsson, J.F. (1984) Formal Vienna-Definition-Method Models of Prolog in [CAM84].

[PER82] Pereira,L.M. and Porto,A. (1982) Selective Backtracking, in [CLA82].

[RIN88] Ringwood,G.A. (1988) Parlog86 and the Dining Logicians, in CACM Vol.31/1
pp.10-25.

[ROB65] Robinson,J.A. (1965) A Machine-oriented Logic Based on the Resolution Principle, in
JACM Vol.12/1 pp.23-41.

[SMU68] Smullyan,R.M. (1968) First-Order Logic Springer-Verlag.

[THA88] Thayse,A. (1988,ed.) From Standard Logic to Logic Programming, John Wiley.

[TIC89] Tick,E. (1989) Comparing Two Parallel Logic-Programming Architectures, in IEEE
Software Vol.6/4, pp.71-80.

[WAR77] Warren,D.H.D. (1977) Implementing Prolog - Compiling Predicate Logic
Programs, Department of A.I. University of Edinburgh, Research Report No39/40.

61

APPENDIX A
PROPOS SOURCE CODE
DEFINITION MODULE Dbase;

IMPORT Str;

CONST
 maxsymln = 30;

TYPE
 symbol = ARRAY [1..maxsymln] OF CHAR;

 HeadPtr = POINTER TO HeadRec;
 BodyPtr = POINTER TO BodyRec;
 AtomPtr = POINTER TO AtomRec;

 HeadRec = RECORD
 sym : symbol;
 nxt : HeadPtr;
 clause : BodyPtr;
 END;

 BodyRec = RECORD
 nxt : BodyPtr;
 first : AtomPtr;
 END;

 AtomRec = RECORD
 sym : HeadPtr;
 nxt : AtomPtr;
 END;

VAR goal : HeadPtr;

PROCEDURE InsertSymbol (s:symbol) : HeadPtr;

PROCEDURE listing;
PROCEDURE ListClauses (h : HeadPtr);

PROCEDURE NewHead () : HeadPtr;
PROCEDURE NewBody () : BodyPtr;
PROCEDURE NewAtom () : AtomPtr;

PROCEDURE EqStr(s1,s2: ARRAY OF CHAR) : BOOLEAN;

PROCEDURE DisposeClause(H : HeadPtr);

END Dbase.

62

IMPLEMENTATION MODULE Dbase;

FROM Storage IMPORT ALLOCATE, DEALLOCATE;
FROM SYSTEM IMPORT TSIZE;
FROM IO IMPORT WrStr, WrLn, WrChar;
FROM Str IMPORT Length;
FROM AsmLib IMPORT CompareStr;

TYPE dbase = ARRAY ['a'..'z'] OF HeadPtr;
VAR clauses : dbase;

(* Compare two strings for equality *)

 PROCEDURE EqStr(s1,s2: ARRAY OF CHAR) : BOOLEAN;
 BEGIN
 RETURN (CompareStr(s1,s2)=0);
 END EqStr;

(* Allocate size bytes on the heap, returning pointer *)

 PROCEDURE new (size : CARDINAL) : ADDRESS;
 VAR addr : ADDRESS;
 BEGIN
 ALLOCATE(addr,size);
 RETURN addr;
 END new;

(* Create a new HeadRec *)

 PROCEDURE NewHead () : HeadPtr;
 BEGIN
 RETURN (new(TSIZE(HeadRec)));
 END NewHead;

(* Create a new BodyRec *)

 PROCEDURE NewBody () : BodyPtr;
 BEGIN
 RETURN (new(TSIZE(BodyRec)));
 END NewBody;

(* Create a new AtomRec *)

 PROCEDURE NewAtom () : AtomPtr;
 BEGIN
 RETURN (new(TSIZE(AtomRec)));
 END NewAtom;

(* Dispose of all clauses associated with a HeadRec *)

 PROCEDURE DisposeClause (H : HeadPtr);
 VAR b,b1 : BodyPtr;
 a,a1 : AtomPtr;
 BEGIN
 b := H^.clause;
 WHILE b # NIL DO
 a := b^.first;
 WHILE a# NIL DO
 a1 := a^.nxt;
 DEALLOCATE(a,TSIZE(AtomRec));
 a := a1;
 END;
 b1 := b^.nxt;
 DEALLOCATE(b,TSIZE(BodyRec));
 b := b1;

63

 END;
 H^.clause := NIL;
 END DisposeClause;

(* Create and initialize a new HeadRec *)

 PROCEDURE makenode(s:symbol) : HeadPtr;
 VAR p : HeadPtr;
 BEGIN
 p := NewHead();
 p^.sym := s;
 p^.nxt := NIL;
 p^.clause := NIL;
 RETURN p;
 END makenode;

(* Search for a symbol in the symbol table, creating a new HeadRec
 for the symbol if not found. Returns pointer to found/created
 symbol table node *)

 PROCEDURE InsertSymbol (s:symbol) : HeadPtr;
 VAR p : HeadPtr;
 BEGIN
 p := clauses[s[1]];
 WHILE (p # NIL) AND (NOT EqStr(p^.sym,s)) DO p := p^.nxt; END;
 IF (p=NIL) THEN
 p := makenode(s);
 p^.nxt := clauses[s[1]];
 clauses[s[1]] := p;
 END;
 RETURN p;
 END InsertSymbol;

(* Output i space characters. For tabulation when listing the database *)

 PROCEDURE PrintSpcs (i: CARDINAL);
 VAR j : CARDINAL;
 BEGIN
 FOR j := 1 TO i DO WrChar(' '); END;
 END PrintSpcs;

(* List clauses *)

 PROCEDURE ListClauses (h : HeadPtr);
 VAR b : BodyPtr;
 a : AtomPtr;
 l : CARDINAL;
 BEGIN
 WHILE h # NIL DO
 b := h^.clause;
 WHILE b # NIL DO
 l := Length(h^.sym)+4;
 WrStr(h^.sym);
 a := b^.first;
 IF a # NIL THEN WrStr(' :- ') ELSE WrStr('.'); WrLn END;
 WHILE a # NIL DO
 WrStr(a^.sym^.sym);
 a := a^.nxt;
 IF a # NIL THEN
 WrStr(',');
 WrLn;
 PrintSpcs(l)
 ELSE WrStr('.');
 WrLn;
 END;
 END;

64

 b := b^.nxt;
 END;
 h := h^.nxt;
 END;
 END ListClauses;

(* List all clauses in the database *)

 PROCEDURE listing;
 VAR c : CHAR;
 BEGIN
 FOR c := 'a' TO 'z' DO
 ListClauses(clauses[c]);
 END;
 END listing;

(* --- module initialization -- *)

VAR c : CHAR;
BEGIN
 FOR c := 'a' TO 'z' DO clauses[c] := NIL;
 END;
 goal := makenode('[GOAL]');
END Dbase.

65

DEFINITION MODULE Lex;

IMPORT FIO;
FROM Dbase IMPORT HeadPtr;

TYPE TknCls = (dot, com, col, eop, sym, err);

VAR Token : RECORD
 Class : TknCls;
 Inst : HeadPtr;
 END;

 FPtr : FIO.File;

PROCEDURE GetToken;

END Lex.

66

IMPLEMENTATION MODULE Lex;

FROM Dbase IMPORT InsertSymbol, maxsymln, symbol;
IMPORT IO;

CONST carret = 15C;
 newln = 12C;
 tab = 11C;
 nullch = 00C;

TYPE charset = SET OF CHAR;

VAR unrd : BOOLEAN;
 c : CHAR;

(* Get one character from the current input stream, or reread the
 last character read if the unrd flag is TRUE *)

 PROCEDURE getchar;
 BEGIN
 IF unrd THEN unrd := FALSE
 ELSE
 IF FPtr = FIO.StandardInput THEN c := IO.RdChar()
 ELSE
 c := FIO.RdChar(FPtr);
 IF FIO.EOF THEN c := nullch; END;
 END;
 END;
 IF c IN charset{carret,newln,tab} THEN c := ' ' END;
 END getchar;

(* Skip space characters in the input *)

 PROCEDURE skipspcs;
 BEGIN
 REPEAT getchar; UNTIL (c # ' ');
 END skipspcs;

(* Return next token in variable Token. *)

 PROCEDURE GetToken;
 VAR i : CARDINAL;
 s : symbol;
 BEGIN
 skipspcs;
 CASE c OF
 ',' : Token.Class := com;
 | '.' : Token.Class := dot;
 | nullch :
 Token.Class := eop;
 | ':' : getchar;
 IF c='-' THEN
 Token.Class := col;
 ELSE
 Token.Class := err
 END;
 | 'a'..'z' :
 i := 1;
 WHILE (c IN charset{'a'..'z'}) AND (i<=maxsymln) DO
 s[i] := c;
 INC(i);
 getchar;
 END;
 s[i] := 00C;
 unrd := c#' ';
 Token.Class := sym;
 Token.Inst := InsertSymbol(s);

67

 ELSE Token.Class := err;
 END;
 END GetToken;

(* --- module initialization -- *)

BEGIN
 FPtr := FIO.StandardInput;
 unrd := FALSE;
END Lex.

68

MODULE PROPOS;

IMPORT FIO;
FROM IO IMPORT WrStr, WrLn, WrChar, RdStr;
FROM AsmLib IMPORT ParamCount, ParamStr, DisableBreakCheck;
FROM Dbase IMPORT symbol, HeadPtr, BodyPtr, AtomPtr, HeadRec, BodyRec,
 AtomRec, NewHead, NewBody, NewAtom, listing,
 ListClauses, DisposeClause, EqStr, goal;
FROM Lex IMPORT TknCls, Token, GetToken, FPtr;

TYPE
 filename = ARRAY [1..40] OF CHAR;
 message = ARRAY [1..70] OF CHAR;

VAR FName : filename;
 Exit : BOOLEAN;

(* Report error *)

 PROCEDURE error(m:message);
 BEGIN
 WrStr('*** ERROR: ');
 WrStr(m);
 WrLn;
 END error;

(* Attempt to prove the proposition pointed to by HeadPtr. *)

 PROCEDURE Prove (h:HeadPtr);

 PROCEDURE proveclause(h:HeadPtr) : BOOLEAN;
 VAR b : BodyPtr;
 t : BOOLEAN;

 PROCEDURE provebody(b:BodyPtr) : BOOLEAN;
 VAR a : AtomPtr;
 t : BOOLEAN;
 BEGIN
 t := TRUE;
 a := b^.first;
 WHILE (a # NIL) AND (t) DO
 t := proveclause(a^.sym);
 a := a^.nxt
 END;
 RETURN t;
 END provebody;

 BEGIN
 t := FALSE;
 b := h^.clause;
 WHILE (b # NIL) AND (NOT t) DO
 t := provebody(b);
 b := b^.nxt
 END;
 RETURN t;
 END proveclause;

 BEGIN
 ListClauses(goal);
 IF (h=NIL) OR (NOT proveclause(h)) THEN WrStr('NO')
 ELSE WrStr('YES'); END;
 WrLn;
 END Prove;

(* Process a command, introduced by a . *)

 PROCEDURE ProcessCommand () : BOOLEAN;
 VAR ok : BOOLEAN;

69

 BEGIN
 ok := TRUE;
 GetToken;
 IF EqStr (Token.Inst^.sym,'listing') THEN
 listing
 ELSIF EqStr (Token.Inst^.sym,'exit') THEN
 Exit := TRUE;
 ELSIF EqStr (Token.Inst^.sym,'retract') THEN
 GetToken;
 DisposeClause (Token.Inst);
 ELSE error('Unrecognized command');
 ok := FALSE;
 END;
 RETURN ok;
 END ProcessCommand;

(* Construct a linked list of AtomRecs representing the body
 of a clause *)

 PROCEDURE FormBody(VAR a:AtomPtr) : BOOLEAN;
 VAR a1,a2 : AtomPtr;
 BEGIN
 a := NIL;
 IF Token.Class=col THEN
 REPEAT
 GetToken;
 IF Token.Class=sym THEN
 a2 := NewAtom();
 a2^.nxt := NIL;
 a2^.sym := Token.Inst;
 IF a=NIL THEN a := a2
 ELSE a1^.nxt := a2; END;
 a1 := a2;
 GetToken;
 END;
 UNTIL Token.Class # com;
 END;
 IF Token.Class # dot THEN error('. expected'); END;
 RETURN Token.Class=dot;
 END FormBody;

(* Construct a BodyRec for a new clause *)

 PROCEDURE ReadBody(p:HeadPtr) : BOOLEAN;
 VAR c,c1 : BodyPtr;
 a : AtomPtr;
 b : BOOLEAN;
 BEGIN
 c := p^.clause;
 c1 := NewBody();
 c1^.nxt := NIL;
 IF c = NIL THEN p^.clause := c1
 ELSE
 WHILE c^.nxt # NIL DO c:=c^.nxt END;
 c^.nxt := c1
 END;
 b := FormBody(a);
 c1^.first := a;
 RETURN b;
 END ReadBody;

(* Read in and process a clause, linking definite clauses into the
 database and processing queries and commands *)

 PROCEDURE ReadClause() : BOOLEAN;
 VAR h : HeadPtr;
 BEGIN
 GetToken;

70

 CASE Token.Class OF
 eop : RETURN FALSE;
 | dot : RETURN ProcessCommand ();
 | col : IF ReadBody(goal) THEN
 Prove (goal);
 DisposeClause(goal);
 RETURN TRUE;
 ELSE
 error('Error in query');
 RETURN FALSE;
 END;
 | sym : h := Token.Inst;
 GetToken;
 RETURN ReadBody(h);
 ELSE
 error('Clause head expected');
 RETURN FALSE
 END;
 END ReadClause;

(* Read in a set of clauses from file *)

 PROCEDURE loadprog (fname : filename);
 VAR buffer : ARRAY [1..512+FIO.BufferOverhead] OF BYTE;
 BEGIN
 FPtr := FIO.Open(fname);
 FIO.AssignBuffer(FPtr,buffer);
 REPEAT UNTIL NOT ReadClause();
 FIO.Close(FPtr);
 END loadprog;

(* --- initialization and main loop --------------------------------------- *)

BEGIN
 Exit := FALSE;
 DisableBreakCheck;
 IF ParamCount() > 0 THEN
 ParamStr(FName,1);
 loadprog(FName);
 END;
 FPtr := FIO.StandardInput;
 REPEAT
 WrLn;
 WrStr('> ');
 IF ReadClause() THEN ; END;
 UNTIL Exit;
END PROPOS.

71

APPENDIX B
VRP Source Code

VRP - MAIN MODULE
MODULE VRP;

(* VERY RUDIMENTARY PROLOG -- Startup module.
 Initializes debug flags, gets any command-line arguments, and
 enters the reader.
*)

IMPORT Parse;
FROM DBase IMPORT MEMUsage;
FROM Streams IMPORT ToTerm, FromTerm, ToPrinter, WriteLn, WrLn;
FROM AsmLib IMPORT ParamCount, ParamStr;
FROM Inbuilt IMPORT DefineInbuilts;
IMPORT STable;
IMPORT Lex;
IMPORT ProcGoal;
IMPORT Stack;

(* -- *)

VAR FName : ARRAY[1..100] OF CHAR;

BEGIN
 ToTerm;
 Lex.DBG := FALSE;
 Parse.DBG := FALSE;
 STable.DBG := FALSE;
 ProcGoal.DBG := FALSE;
 Stack.DBG := FALSE;

 IF (ParamCount()=1) THEN
 ParamStr(FName,1)
 ELSE
 FName := "";
 END;
 WrLn;
 WriteLn('VRP - Very Rudimentary Prolog -- 1990');
 WrLn;
 DefineInbuilts;
 Parse.Reader (FName);
 ToTerm;
 FromTerm;
END VRP.

72

GLOBAL - DEFINITION

DEFINITION MODULE Global;

(* This module declares some global variables and types

 Exports:
 memory usage reporting
 Exit : is set to TRUE to flag an exit condition.
 Mode : is set to 'system' during the reading in of the predefined
 predicates. During user input, mode is set to 'user'.
 Predicates defined under 'system' may not be redefined in
 user mode.
*)

TYPE mode = (system, user);

VAR Exit : BOOLEAN;
 Mode : mode;

PROCEDURE MEMUsage;

END Global.

73

GLOBAL - IMPLEMENTATION

IMPLEMENTATION MODULE Global;

IMPORT DBase;
IMPORT Stack;
IMPORT Streams;
IMPORT Storage;

(* -- *)

PROCEDURE MEMUsage;
BEGIN
 DBase.MEMUsage;
 Stack.MEMUsage;
 Streams.WrStr ("Largest block on heap : ");
 Streams.WrLngCard (LONGCARD(Storage.HeapAvail(Storage.MainHeap)) * 16,0);
 Streams.WriteLn (' bytes.');
 Streams.WrStr ("Total space on heap : ");
 Streams.WrLngCard (LONGCARD(Storage.HeapTotalAvail(Storage.MainHeap)) * 16,0);
 Streams.WriteLn (' bytes.');
END MEMUsage;

(* --- Module initialization -- *)

BEGIN
 Exit := FALSE;
 Mode := system;
END Global.

74

SSTR - DEFINITION

DEFINITION MODULE Sstr;
(*---
 String-storage manager

 This module maintains a string-store. Strings passed to the module
 are stored in a string area, and a string pointer (Sptr) is returned
 to the caller.

 The Sptr is a pointer to an arry[0..MaxStrLen] of char. The string
 dereferenced by this pointer is NIL terminated so that it can be
 passed to procedures in the standard Str module, and to WrStr in IO
 module.

 It is up to the caller to impose a structure on the string buffer using
 the string pointers returned by procedure Sstore.

 The procedure Sclear deallocates the string store. The caller must
 ensure that no dangling pointers remain after a call to Sclear.
--*)

CONST MaxStrLen = 250;
TYPE Sptr = POINTER TO ARRAY [0..MaxStrLen] OF CHAR;

(* Clear string store
 FUNCTION Clears all strings in string-store and deallocates
 memory.
 CALL Sclear();
*)
PROCEDURE Sclear();

(* Store String
 FUNCTION Store string in string area, returning pointer to the
 string (Sptr), or NULL if insufficient space.
 CALL Ptr := Sstore(S);
 Ptr is of type Sptr
 S is an array of char (variable only).
*)
PROCEDURE Sstore (VAR s : ARRAY OF CHAR) : Sptr;

END Sstr.

75

 SSTR - IMPLEMENTATION

IMPLEMENTATION MODULE Sstr;

(*---
 The string store is implemented as a linked list of string areas (AreaRec).
 Each area contains a 2-field header:

 NxtArea : pointer to next area
 NxtFree : index to the next free storage position in this area.

 The rest of the string area is an array of AreaSiz characters (Area).
 Strings are stored sequentially in the array, and terminated by a NULL
 character, as required by WrStr and the string processing procedures in
 module Str.

 Initially the string store consists of a single empty area. A new area is
 added to the HEAD of the list when the current one becomes full (ie when
 the length of the string to be stored exceeds the remaining space).

 Structure of String Store:

 AreaRec AreaRec AreaRec
 ┌────────────┐ ┌────────────┐ ┌────────────┐
 CurntArea ───> │ NxtArea ──┼────> │ ──┼─...───> │ NIL │
 ├────────────┤ ├────────────┤ ├────────────┤
 │ NxtFree ──┼─┐ │ │ │ │
 ├────────────┤ │ │ │ │ │
 0 │ │ │ │ │
 1 │ │ │
 │ │ │
 NxtFree │ <┼─┘
 │ │
 AreaSiz-1 │ │
 └────────────┘

--*)

FROM Storage IMPORT ALLOCATE, DEALLOCATE;
FROM SYSTEM IMPORT TSIZE;
FROM Str IMPORT Length;

FROM Streams IMPORT ReportErr;

(*--*)

CONST AreaSiz = 1024;
(* Size for a string area. MUST EXCEED MaxStrLen BY AT LEAST 1 *)

TYPE AreaIndx = [0..AreaSiz-1];
TYPE AreaPtr = POINTER TO AreaRec;

TYPE AreaRec = RECORD
 NxtArea : AreaPtr;
 NxtFree : AreaIndx;
 Area : ARRAY AreaIndx OF CHAR;
 END;

VAR CurntArea : AreaPtr;

(* -- *)

 (* Report error and halt *)
 PROCEDURE SstrErr();
 BEGIN
 ReportErr ("SSTR - Out of Memory");
 HALT;

76

 END SstrErr;

 (* Deallocate all string areas starting from the area pointed
 to by p. *)
 PROCEDURE DeallocArea (VAR p : AreaPtr);
 BEGIN
 IF (p <> NIL) THEN
 DeallocArea(p^.NxtArea);
 DEALLOCATE(p,TSIZE(AreaRec));
 p := NIL;
 END; (* IF *)
 END DeallocArea;

 (* Create a new string area and link into list *)
 PROCEDURE CreateNewArea() : AreaPtr;
 VAR p : AreaPtr;
 BEGIN
 ALLOCATE(p,TSIZE(AreaRec));
 IF (p <> NIL) THEN
 p^.NxtArea := NIL;
 p^.NxtFree := 0;
 ELSE SstrErr
 END; (* IF *)
 RETURN p;
 END CreateNewArea;

 (* Clear all string areas forming the string store. One (empty)
 area is always retained. *)
 PROCEDURE Sclear;
 BEGIN
 CurntArea^.NxtFree := 0;
 DeallocArea(CurntArea^.NxtArea);
 END Sclear;

 (* Store a string. A pointer to the stored string is returned *)
 PROCEDURE Sstore(VAR s : ARRAY OF CHAR) : Sptr;
 VAR strlen : CARDINAL;
 INDX : CARDINAL;
 t : CARDINAL;
 p : Sptr;
 Aptr : AreaPtr;
 BEGIN
 strlen := Length(s);
 Aptr := CurntArea;
 IF ((Aptr^.NxtFree + strlen) >= AreaSiz) THEN
 Aptr := CreateNewArea();
 Aptr^.NxtArea := CurntArea;
 CurntArea := Aptr;
 END; (* IF *)
 t := Aptr^.NxtFree;
 FOR INDX := 0 TO strlen-1 DO
 Aptr^.Area[t+INDX] := s[INDX];
 END;
 Aptr^.Area[t+strlen] := CHR(0);
 INC(Aptr^.NxtFree,strlen+1);
 RETURN Sptr(ADR(Aptr^.Area[t]));
 END Sstore;

(* --- Module initialization -- *)

BEGIN
 CurntArea := CreateNewArea();
END Sstr.

77

 DBASE - DEFINITION

DEFINITION MODULE DBase;

(* Definition of database types and some operations.

 Exports:
 Symbol table, clause, and term types,
 their constructors and destructors.

 Various functions and predicates which operate on objects of the
 above type.

 NOTE that 'term' and 'term-record' refer to the basic internal structure
 used to construct the internal representation of clauses. These
 objects do not always coincide with terms as defined in the
 literature. Perhaps it would have been better had the non-committal
 terms 'object' and 'obj-record' been used.
*)

FROM Sstr IMPORT Sptr;
FROM Global IMPORT mode;
FROM Inbuilt IMPORT InBltProc;

CONST MaxVars = 1000;
 (* Max number of variables in a clause *)

TYPE SymType = (variable, functor, anon, list);
 (* Symbol types : variable, functor, anonymous variable, and
 list constructor. *)

TYPE SymTabPtr = POINTER TO SymTabRec;
 ClausePtr = POINTER TO ClauseRec;
 TermPtr = POINTER TO TermRec;

TYPE VarIndx = CARDINAL [0..MaxVars];

(* --- Symbol-Table Record --
 One record for each variable and functor symbol in the database.
 In the case of functor symbols, the arity is also recorded, and
 pointers to the head and tail of the linked-list of clause with
 this functor as head are kept. The tail pointer is required for
 appending. The head pointer for traversing.

 A protection flag (mode) is used for protecting predefined system
 predicates from being redefined by the user or retracted. The
 count field has miscellaneous uses. In particular, it is used by
 the parses for mapping variables to stack-frame offsets.
*)

TYPE SymTabRec =
 RECORD
 Name : Sptr; (* Name pointer *)
 Next : SymTabPtr; (* Ptr to next entry *)
 Mode : mode; (* system or user defined *)
 Count : CARDINAL; (* For miscellaneous uses *)
 CASE SType : SymType OF
 functor :
 Arity : SHORTCARD; (* Arity of functor *)
 FstCls : ClausePtr; (* Ptr to head of clause list *)
 LstCls : ClausePtr; (* Ptr to tail of clause list *)
 | variable :

78

 END
 END;

(* --- Term Record --
 One record for each term in a clause.
 It is necessary to include the symbol type within TermRec because, although
 in the case of variables and functors the type can be read from the
 symbol-table entry, in the case of special terms such as list constructors
 and anonymous variables a symbol-table entry does not exist. Also, including
 the symbol type here makes for less dereferncing when examining terms.
*)

TYPE TermRec =
 RECORD
 Next : TermPtr; (* Ptr to next TermRec in a terms list
*)
 Entry : SymTabPtr; (* Ptr to ST entry for this term *)
 CASE SType : SymType OF
 list,functor : Args : TermPtr; (* Ptr to argument list *)
 | variable : Ofst : VarIndx; (* Offset of var within stack frame
*)
 END
 END;

(* --- Clause Record --
 One for every clause in the database. The Head field points to the term
 record at the head of the clause, while the Body field points to a linked
 list of the terms in the body of the clause. The Vars field records the
 number of variables in the clause, required to calculate the stack frame
 size.
*)

TYPE ClauseRec =
 RECORD
 Next : ClausePtr; (* Ptr to next clause *)
 CASE InBlt : BOOLEAN OF
 TRUE : Proc : InBltProc; (* An inbuilt procedure *)
 Entry : SymTabPtr;
 | FALSE : Vars : VarIndx; (* Number of variables in clause *)
 Head : TermPtr; (* Ptr to term at head of clause *)
 Body : TermPtr; (* Ptr to term list forming body *)
 END;
 END;

(* --- Predicates & functions --

 The following predicates and functions are defined on the above data
 structures.

*)

PROCEDURE IsVar (TPtr : TermPtr) : BOOLEAN;
(* TRUE if term is a variable symbol *)

PROCEDURE IsFunctor (TPtr : TermPtr) : BOOLEAN;
(* TRUE if term is a functor, ie predicate, function or
 constant symbol *)

PROCEDURE IsConst (TPtr : TermPtr) : BOOLEAN;
(* TRUE if term is a functor of arity 0 with which
 no clauses are associated - ie does not appear as the head of any clause *)

PROCEDURE IsPred (TPtr : TermPtr) : BOOLEAN;
(* TRUE if term is a functor which appears as the head of some clause *)

79

PROCEDURE IsAnon (TPtr : TermPtr) : BOOLEAN;
(* TRUE if term is the anonymous variable *)

PROCEDURE IsList (TPtr : TermPtr) : BOOLEAN;
(* TRUE if term represents a list *)

PROCEDURE IsNulList (TPtr : TermPtr) : BOOLEAN;
(* TRUE if term represents a Null list *)

PROCEDURE IsNonNulList (TPtr : TermPtr) : BOOLEAN;
(* TRUE if term is a list but is not the Null list *)

PROCEDURE IsAssertion (CPtr : ClausePtr) : BOOLEAN;
(* TRUE if clause is an assertion, ie has a null body *)

PROCEDURE GetAry (TPtr : TermPtr) : SHORTCARD;
(* Returns arity of term if a functor. Otherwise not defined *)

PROCEDURE GetFunctor (TPtr : TermPtr) : SymTabPtr;
(* Returns pointer to symbol table entry of principle functor of a
 TermRec. Returns NIL if TermRec is not a functor. *)

PROCEDURE SameFunctor (L1,L2 : TermPtr) : BOOLEAN;
(* TRUE if L1,L2 are
 both empty lists, OR
 both non-empty lists, OR
 both structures with the same functor.
*)

(* *** OBJECT CONSTRUCTORS and DESTRUCTORS ******************************** *)

(* --- Constructors --
 Constructors return NIL if the construction of an object fails.
*)

PROCEDURE MKSymTabRec () : SymTabPtr;
PROCEDURE MKClauseRec () : ClausePtr;
PROCEDURE MKTermRec (SType : SymType) : TermPtr;

(* --- Destructors ---
 Destructors deallocate the memory used by an object and all its
 subobjects, as follows:

 RMTermRec : Removes a TermRec and all its argument records.
 RMTermList : Removes a linked list of TermRec and their argument records.
 RMClauseRec : Removes a ClauseRec, its head predicate, and all the
 terms (literals) in its body.
 RMSymTabRec : Removes a SymTabRec and all its clauses.

*)

PROCEDURE RMTermRec (TPtr : TermPtr);
PROCEDURE RMTermList (TPtr : TermPtr);
PROCEDURE RMClauseRec (CPtr : ClausePtr);
PROCEDURE RMSymTabRec (SPtr : SymTabPtr);

PROCEDURE MEMUsage;

END DBase.

80

 DBASE - IMPLEMENTATION

IMPLEMENTATION MODULE DBase;

FROM Storage IMPORT ALLOCATE, Available;
FROM SYSTEM IMPORT TSIZE;
FROM AsmLib IMPORT AddAddr;
FROM Streams IMPORT WrStr, WrCard, WrLn, ReportErr;

TYPE MemUsage = RECORD
 FreeList : ADDRESS;
 Used : CARDINAL;
 Free : CARDINAL;
 END;

CONST SZSymTabRec = TSIZE (SymTabRec);
 SZClauseRec = TSIZE (ClauseRec);
 SZTermRec = TSIZE (TermRec);

VAR MEMSymTab : MemUsage;
 MEMClause : MemUsage;
 MEMTerm : MemUsage;

(* -- *)

(* Term predicates - test class of a TermRec, returning BOOLEAN.
 IsVar - variable object
 IsFunctor - functor object (could be predicate, function or constant
 IsConst - functor of arity 0 and not head of a clause list
 IsPred - functor, head of a clause list
 IsAnon - object representing the anonymous variable
 IsList - object representing the list constructor
 IsNulList - object representing the null list
 IsNonNulList - list object, but not representing the null list
*)

 PROCEDURE IsVar (TPtr : TermPtr) : BOOLEAN;
 BEGIN
 RETURN TPtr^.SType = variable;
 END IsVar;

 PROCEDURE IsFunctor (TPtr : TermPtr) : BOOLEAN;
 BEGIN
 RETURN TPtr^.SType = functor;
 END IsFunctor;

 PROCEDURE IsConst (TPtr : TermPtr) : BOOLEAN;
 BEGIN
 RETURN (TPtr^.SType = functor) AND
 (TPtr^.Entry^.Arity = 0) AND
 (TPtr^.Entry^.FstCls = NIL);
 END IsConst;

 PROCEDURE IsPred (TPtr : TermPtr) : BOOLEAN;
 BEGIN
 RETURN (TPtr^.SType = functor) AND
 (TPtr^.Entry^.FstCls # NIL);
 END IsPred;

 PROCEDURE IsAnon (TPtr : TermPtr) : BOOLEAN;
 BEGIN
 RETURN (TPtr^.SType = anon);

81

 END IsAnon;

 PROCEDURE IsList (TPtr : TermPtr) : BOOLEAN;
 BEGIN
 RETURN TPtr^.SType = list;
 END IsList;

 PROCEDURE IsNulList (TPtr : TermPtr) : BOOLEAN;
 BEGIN
 RETURN IsList(TPtr) AND (TPtr^.Args = NIL);
 END IsNulList;

 PROCEDURE IsNonNulList (TPtr : TermPtr) : BOOLEAN;
 BEGIN
 RETURN IsList(TPtr) AND (TPtr^.Args # NIL);
 END IsNonNulList;

(* ------------ Miscellaneous predicates and functions -------------------- *)

(* Tests whether a definite clause is a unit clause.
 TRUE if clause has a NULL body
*)

 PROCEDURE IsAssertion (CPtr : ClausePtr) : BOOLEAN;
 BEGIN
 RETURN CPtr^.Body = NIL;
 END IsAssertion;

(* Returns the arity of a term if the term represents a functor.
 Otherwise undefined.
*)

 PROCEDURE GetAry (TPtr : TermPtr) : SHORTCARD;
 BEGIN
 RETURN TPtr^.Entry^.Arity;
 END GetAry;

(* Returns pointer to symbol table entry of principle functor of a
 TermRec. Returns NIL if TermRec is not a functor. *)

 PROCEDURE GetFunctor (TPtr : TermPtr) : SymTabPtr;
 BEGIN
 IF IsFunctor(TPtr) THEN
 RETURN TPtr^.Entry;
 ELSE RETURN NIL;
 END;
 END GetFunctor;

(* TRUE if L1,L2 are
 both empty lists, OR
 both non-empty lists, OR
 both structures with the same functor.
*)

 PROCEDURE SameFunctor (L1,L2 : TermPtr) : BOOLEAN;
 BEGIN
 RETURN
 (IsNulList(L1) AND IsNulList(L2)) OR
 (IsNonNulList(L1) AND IsNonNulList(L2)) OR
 ((L1^.SType = functor) AND (L2^.SType = functor) AND

82

 (L1^.Entry = L2^.Entry)
)
 END SameFunctor;

(* ------------- INTERNAL MEMORY ALLOCATION PRIMITIVES -------------------- *)

(* The module maintains a free list of each of the tree types of structures
 required by the database. When a freelist becomes exhausted, a chunk of
 memory is requested from the system and divided into structure-sized
 units which are linked to form a new free list. This is done because:
 1. system storage requests carry a not-insignificant time overhead.
 This is evident from examination of the code for the Storage module.
 2. the Storage module can only allocate memory in paragraph-sized chunks
 (16-bytes). Had structures to be allocated individually from the system
 heap, the wastage per unit allocation would be as follows:

 Structure size (bytes) allocation (paras) wastage (bytes)
 SymTabRec 20 2 12
 TermRec 13 1 3
 ClauseRec 15 1 1
*)

 PROCEDURE AllocSymTab (Qty : CARDINAL) : BOOLEAN;
 VAR SPtr : SymTabPtr;
 I : CARDINAL;
 BEGIN
 I := SZSymTabRec * Qty;
 IF NOT Available(I) THEN
 RETURN FALSE;
 END;
 ALLOCATE (SPtr, I);
 MEMSymTab.FreeList := SPtr;
 MEMSymTab.Free := Qty;
 FOR I := 1 TO Qty-1 DO
 SPtr^.Next := AddAddr(SPtr,SZSymTabRec);
 SPtr := SPtr^.Next;
 END; (*FOR*)
 SPtr^.Next := NIL;
 RETURN TRUE;
 END AllocSymTab;

 PROCEDURE AllocClause (Qty : CARDINAL) : BOOLEAN;
 VAR CPtr : ClausePtr;
 I : CARDINAL;
 BEGIN
 I := SZClauseRec * Qty;
 IF NOT Available(I) THEN
 RETURN FALSE;
 END;
 ALLOCATE (CPtr, I);
 MEMClause.FreeList := CPtr;
 MEMClause.Free := Qty;
 FOR I := 1 TO Qty-1 DO
 CPtr^.Next := AddAddr(CPtr,SZClauseRec);
 CPtr := CPtr^.Next;
 END; (*FOR*)
 CPtr^.Next := NIL;
 RETURN TRUE;
 END AllocClause;

 PROCEDURE AllocTerm (Qty : CARDINAL) : BOOLEAN;
 VAR TPtr : TermPtr;
 I : CARDINAL;
 BEGIN
 I := SZTermRec * Qty;
 IF NOT Available(I) THEN

83

 RETURN FALSE;
 END;
 ALLOCATE (TPtr, I);
 MEMTerm.FreeList := TPtr;
 MEMTerm.Free := Qty;
 FOR I := 1 TO Qty-1 DO
 TPtr^.Next := AddAddr(TPtr,SZTermRec);
 TPtr := TPtr^.Next;
 END; (*FOR*)
 TPtr^.Next := NIL;
 RETURN TRUE;
 END AllocTerm;

(* --------- STRUCTURE CONSTRUCTORS and DESTRUCTORS ----------------------- *)

(*
 Constructors return NIL if the construction of a structure fails.

 Destructors deallocate the memory used by an object and all its
 subobjects, as follows:

 RMTermRec : Removes a TermRec and all its argument records.
 RMTermList : Removes a linked list of TermRec and their argument records.
 RMClauseRec : Removes a ClauseRec, its head predicate, and all the
 terms (literals) in its body.
 RMSymTabRec : Removes a SymTabRec and all its clauses.

*)

 PROCEDURE MKSymTabRec () : SymTabPtr;
 VAR SPtr : SymTabPtr;
 BEGIN
 IF MEMSymTab.Free=0 THEN
 IF NOT AllocSymTab (20)
 THEN RETURN NIL
 END
 END;
 SPtr := MEMSymTab.FreeList;
 MEMSymTab.FreeList := SPtr^.Next;
 INC (MEMSymTab.Used);
 DEC (MEMSymTab.Free);
 RETURN SPtr;
 END MKSymTabRec;

 PROCEDURE MKClauseRec () : ClausePtr;
 VAR CPtr : ClausePtr;
 BEGIN
 IF MEMClause.Free=0 THEN
 IF NOT AllocClause (10)
 THEN RETURN NIL
 END
 END;
 CPtr := MEMClause.FreeList;
 MEMClause.FreeList := CPtr^.Next;
 INC (MEMClause.Used);
 DEC (MEMClause.Free);
 RETURN CPtr;
 END MKClauseRec;

 PROCEDURE MKTermRec (SType : SymType) : TermPtr;
 VAR TPtr : TermPtr;
 BEGIN
 IF MEMTerm.Free=0 THEN
 IF NOT AllocTerm (50)
 THEN RETURN NIL
 END
 END;

84

 TPtr := MEMTerm.FreeList;
 MEMTerm.FreeList := TPtr^.Next;
 TPtr^.SType := SType;
 INC (MEMTerm.Used);
 DEC (MEMTerm.Free);
 RETURN TPtr;
 END MKTermRec;

 PROCEDURE RMTermList (TPtr : TermPtr);
 VAR TPtr2 : TermPtr;
 BEGIN
 WHILE TPtr # NIL DO
 TPtr2 := TPtr^.Next;
 RMTermRec (TPtr);
 TPtr := TPtr2;
 END;
 END RMTermList;

 PROCEDURE RMTermRec (TPtr : TermPtr);
 BEGIN
 IF (TPtr^.SType = functor) OR (TPtr^.SType = list) THEN
 RMTermList (TPtr^.Args);
 END;
 TPtr^.Next := MEMTerm.FreeList;
 MEMTerm.FreeList := TPtr;
 INC (MEMTerm.Free);
 DEC (MEMTerm.Used);
 END RMTermRec;

 PROCEDURE RMClauseRec (CPtr : ClausePtr);
 VAR TPtr : TermPtr;
 BEGIN
 RMTermRec(CPtr^.Head);
 RMTermList(CPtr^.Body);
 TPtr^.Next := MEMClause.FreeList;
 MEMClause.FreeList := CPtr;
 INC(MEMClause.Free);
 DEC(MEMClause.Used);
 END RMClauseRec;

(* Since no provision currently exists in the interpreter to clear the
 database, this procedure has not yet been implemented.

 Note that, while deallocating a single symbol-table entry is easy,
 ensuring that the database contains no references to the entry is
 far from straightforward. It may be prefereable to retain a few
 redundant entries than implement the check for dangling pointers.
*)

 PROCEDURE RMSymTabRec (SPtr : SymTabPtr);
 BEGIN
 END RMSymTabRec;

(* -- *)

(* Report on database memory usage *)

 PROCEDURE MEMUsage;
 BEGIN
 WrStr ('SymTab : Used=') ; WrCard (MEMSymTab.Used,0);
 WrStr (' Free=') ; WrCard (MEMSymTab.Free,0) ; WrLn ;
 WrStr ('Clause : Used=') ; WrCard (MEMClause.Used,0);
 WrStr (' Free=') ; WrCard (MEMClause.Free,0) ; WrLn ;
 WrStr ('Term : Used=') ; WrCard (MEMTerm.Used,0);
 WrStr (' Free=') ; WrCard (MEMTerm.Free,0) ; WrLn ;

85

 END MEMUsage;

(* --- module initialization -- *)

(* Allocates free lists for the database structures.
 If insufficient memory, then program halts, since it is pointless
 to continue if no database can be allocated.
*)

BEGIN
 IF AllocSymTab (100) AND
 AllocClause (50) AND
 AllocTerm (200)
 THEN
 MEMSymTab.Used := 0;
 MEMClause.Used := 0;
 MEMTerm.Used := 0;
 ELSE
 ReportErr ('Insufficient memory to run');
 HALT;
 END;
END DBase.

86

 STABLE - DEFINITION

DEFINITION MODULE STable;

(* Symbol table module.

 Exports:
 Symbol table insertion routine
 lexicographic order between symbol table entries
 Database listing utilities.
*)

FROM DBase IMPORT SymType, SymTabPtr, TermPtr, ClausePtr;

(* -- *)

CONST NoCount = MAX(SHORTCARD); (* Default value of count field *)

TYPE order = (lt,gt,le,ge);

VAR DBG : BOOLEAN;

(* Insert a new Symbol-Table Record for the object described by the parameters
 parameters if one does not already exist. (if SType is 'variable', arity is
 ignored).

 A pointer to the SymTabRec for the object is returned.
*)

PROCEDURE Insert (Name : ARRAY OF CHAR;
 SType : SymType;
 Arity : SHORTCARD) : SymTabPtr;

(* Tests whether the two symbol-table entries pointed to by SP1 and SP1
 are in the lexicographic order SP1 Ord SP2
*)

PROCEDURE Test (SP1,SP2 : SymTabPtr;
 Ord : order) : BOOLEAN;

(* Symbol table dump utility *)

PROCEDURE DumpST;

(* Term, clause, and database listing utilities *)

PROCEDURE ListTerm (TPtr : TermPtr);
PROCEDURE ListClause (CPtr : ClausePtr);
PROCEDURE ListDBase;

END STable.

87

 STABLE - IMPLEMENTATION

IMPLEMENTATION MODULE STable;

FROM Sstr IMPORT Sptr, Sstore;
FROM DBase IMPORT SymTabRec, IsFunctor, IsConst, IsList, IsNonNulList,
 IsNulList, MKSymTabRec;
FROM SYSTEM IMPORT TSIZE;
FROM Str IMPORT Compare;
FROM Streams IMPORT WrStr, WrCharRep, WrCard, WrShtCard, WrLn, WriteLn;
FROM Global IMPORT Mode, mode;

(* -- *)

CONST LoChar = ' ';
 HiChar = '~';

VAR SymTab : ARRAY [LoChar..HiChar] OF SymTabPtr;

(* -- *)

(* --- InitST ---
 This procedure resets all the base pointers in the SymTab array
 to NUL. It does not deallocate the memory occupied by any currently
 resident database.
*)

 PROCEDURE InitST;
 VAR C : CHAR;
 BEGIN
 FOR C := LoChar TO HiChar DO
 SymTab [C] := NIL;
 END;
 END InitST;

(* --- Search ---
 Searches for a ST entry of the required name, type and (if applicable)
 arity.
 RETURNS:
 TRUE if a match was found. Ptr is set to point to the matching entry.
 FALSE if no match found. In this case, Ptr points to the entry at which
 the search failed, ie the entry which should have preceeded the
 entry required. If the new record is to be inserted, then it
 should follow the record pointed to by Ptr. If Ptr is NIL, then
 the record should be inserted at the head of the list. If the
 Name is already in the string store, then NmPtr is set to
 point to the stored string. Otherwise NmPtr is set to NIL. In
 this case, the insertion routine should call Sstore to insert
 the new name in the string store.
*)

 PROCEDURE Search (Name : ARRAY OF CHAR;
 SType : SymType;
 Arity : SHORTCARD;
 VAR NmPtr : Sptr;
 VAR Ptr : SymTabPtr) : BOOLEAN;

 CONST Equal = 0;
 FstSmlr = -1;
 FstGrtr = 1;

 VAR SPtr : SymTabPtr;

88

 BEGIN
 Ptr := NIL;
 SPtr := SymTab[Name[0]];
 NmPtr := NIL;

 LOOP
 IF SPtr = NIL THEN RETURN FALSE; END;
 CASE Compare(Name,SPtr^.Name^) OF
 Equal : NmPtr := SPtr^.Name;
 IF (SType=variable) OR
 ((SType=functor) AND (Arity=SPtr^.Arity)) THEN
 Ptr := SPtr;
 RETURN TRUE;
 ELSIF (Arity < SPtr^.Arity) THEN
 RETURN FALSE;
 END;
 | FstSmlr : RETURN FALSE;
 END; (*CASE*)
 Ptr := SPtr;
 SPtr := SPtr^.Next;
 END; (*LOOP*)

 END Search;

(* --- Insert ---
 If not already in symbol table, insert a new Symbol-Table Record with the
 details passed as parameters (if SType is 'variable', arity is ignored).

 RETURNS Pointer to symbol table entry.

 The routine uses Search to determine whether a new record needs to be
 added to the symbol table. If a new record needs to be created, Search
 also indicates where the record has to be inserted to keep the table
 sorted, as well as whether the name string needs to be stored in the
 string store.

 The new record has its Mode field set to the current mode (system or
 user). The count field is initialized to NoCount.
*)

 PROCEDURE Insert (Name : ARRAY OF CHAR;
 SType : SymType;
 Arity : SHORTCARD) : SymTabPtr;

 VAR Ptr,P : SymTabPtr;
 NmPtr : Sptr;

 BEGIN
 IF Search(Name,SType,Arity,NmPtr,Ptr) THEN
 RETURN Ptr;
 END;

 (* If Search found no record with the same name, then the name must be
 saved in the string store *)
 IF NmPtr = NIL THEN
 NmPtr := Sstore(Name);
 END;

 (* Create a new record and initialize it *)
 P := MKSymTabRec ();
 P^.Name := NmPtr;
 P^.SType := SType;
 P^.Mode := Mode;
 P^.Count := NoCount;

 IF (SType=functor) THEN
 P^.Arity := Arity;
 P^.FstCls := NIL;

89

 P^.LstCls := NIL;
 END;

 (* Link in the new record at the position indicated by Search in
 the variable Ptr.
 If Ptr is NIL, then the record is to be inserted at the head
 of the list for this hash group. Otherwise, the record is to
 be inserted following the record pointed to by Ptr.
 *)
 IF Ptr = NIL THEN
 P^.Next := SymTab[Name[0]];
 SymTab[Name[0]] := P;
 ELSE
 P^.Next := Ptr^.Next;
 Ptr^.Next := P;
 END;

 RETURN P;
 END Insert;

(* --- Test --
 Tests whether the two symbol-table entries pointed to by SP1 and SP2
 are in the lexicographic order SP1 Ord SP2
*)

 PROCEDURE Test (SP1,SP2 : SymTabPtr;
 Ord : order) : BOOLEAN;
 BEGIN
 CASE Ord OF
 lt : RETURN Compare(SP1^.Name^,SP2^.Name^) = -1;
 | gt : RETURN Compare(SP1^.Name^,SP2^.Name^) = 1;
 | le : RETURN Compare(SP1^.Name^,SP2^.Name^) < 1;
 | ge : RETURN Compare(SP1^.Name^,SP2^.Name^) > -1;
 END;
 END Test;

(* --- DumpST ---
 Dumps contents of symbol table to screen.
*)

 PROCEDURE DumpST;
 VAR C : CHAR;
 P : SymTabPtr;
 BEGIN
 FOR C := LoChar TO HiChar DO
 P := SymTab[C];
 WHILE P # NIL DO
 WrStr(P^.Name^);
 IF P^.SType = functor THEN
 WrStr('(fnctr)');
 WrShtCard(P^.Arity,4);
 ELSE WrStr('(vrbl)');
 END;
 WrLn ;
 P := P^.Next;
 END;
 END;
 END DumpST;

(* --- DATABASE LISTING ROUTINES --

 Comprising:
 ListTerm - recursively lists a term and its arguments
 ListClause - lists a clause (head and body).
 ListDBase - lists the database of clauses.

90

*)

 PROCEDURE ListTerm (TPtr : TermPtr);

 PROCEDURE ListArgs (TPtr : TermPtr);
 BEGIN
 TPtr := TPtr^.Args;
 IF TPtr=NIL THEN RETURN END;
 WrStr('(');
 WHILE TPtr#NIL DO
 ListTerm(TPtr);
 TPtr := TPtr^.Next;
 IF TPtr#NIL THEN WrStr(',') END;
 END;
 WrStr(')');
 END ListArgs;

 BEGIN
 CASE TPtr^.SType OF
 variable : WrStr(TPtr^.Entry^.Name^);
 IF DBG THEN
 WrStr('(_');
 WrCard(TPtr^.Ofst,1);
 WrStr(')');
 END;
 | anon : WrStr('_');
 | functor : WrStr(TPtr^.Entry^.Name^);
 ListArgs (TPtr);
 | list : WrStr('[');
 WHILE IsNonNulList(TPtr) DO
 TPtr := TPtr^.Args;
 ListTerm (TPtr);
 TPtr := TPtr^.Next;
 IF IsNonNulList (TPtr) THEN
 WrStr (',');
 END; (*IF*)
 END; (*WHILE*)
 IF IsNulList(TPtr) THEN
 WrStr (']')
 ELSE
 WrStr('|');
 ListTerm(TPtr);
 WrStr(']');
 END; (*IF*)
 END; (*CASE*)
 END ListTerm;

(* -- *)

 PROCEDURE ListClause (CPtr : ClausePtr);
 VAR TPtr : TermPtr;
 BEGIN

 IF CPtr^.InBlt THEN
 WrStr('* ');
 WrStr(CPtr^.Entry^.Name^);
 WrStr('/');
 WrShtCard (CPtr^.Entry^.Arity,0);
 WrLn;
 RETURN;
 END;

 IF DBG THEN
 WrStr('Vars = '); WrCard(CPtr^.Vars,2);WrLn;
 END;
 IF CPtr^.Head = NIL THEN
 WrStr('GOAL ')
 ELSE
 IF CPtr^.Head^.Entry^.Mode = system THEN WrStr('# '); END;
 ListTerm(CPtr^.Head);

91

 END; (*IF*)
 TPtr := CPtr^.Body;
 IF TPtr # NIL THEN
 WrStr(' :- ');
 REPEAT
 ListTerm(TPtr);
 TPtr := TPtr^.Next;
 IF TPtr # NIL THEN
 WriteLn(' ,'); WrCharRep(' ',10);
 END;
 UNTIL TPtr = NIL;
 END;
 WriteLn(' .');
 END ListClause;

(* -- *)

 PROCEDURE ListDBase;
 VAR C : CHAR;
 CPtr : ClausePtr;
 SPtr : SymTabPtr;

 BEGIN
 FOR C := LoChar TO HiChar DO
 SPtr := SymTab[C];
 WHILE SPtr # NIL DO
 IF (SPtr^.SType = functor) AND (SPtr^.FstCls # NIL) THEN
 CPtr := SPtr^.FstCls;
 REPEAT
 ListClause (CPtr);
 CPtr := CPtr^.Next;
 UNTIL CPtr = NIL;
 WrLn ;
 END;
 SPtr := SPtr^.Next;
 END;
 END;
 END ListDBase;

(* --- Module initialization -- *)

BEGIN
 InitST;
 DBG := FALSE;
END STable.

92

 STACK - DEFINITION

DEFINITION MODULE Stack;

(* Runtime stack and trail manager.

 Exports:
 Frame type.
 Procedures to open stack, push and pop frames, record
 variable bindings on trail, reset bindings during
 backtracking, dereferencing bindings.
*)

FROM DBase IMPORT ClausePtr, TermPtr, MaxVars, VarIndx;

(* -- *)

CONST DefaultStkSz = 100000;

TYPE FramePtr = POINTER TO Frame;
 BindPtr = POINTER TO Binding;
 TrailPtr = POINTER TO BindPtr;
 BindType = (free,var,lit);

 Binding = RECORD
 CASE BType : BindType OF
 var : BPtr : BindPtr;
 | lit : TPtr : TermPtr;
 Env : FramePtr;
 END;
 END;

 Frame = RECORD
 Num : CARDINAL; (* Frame number. For debugging *)
 CrntCls : ClausePtr; (* Current clause. " " *)

 Prev : FramePtr;
 Vars : VarIndx;
 Parent : FramePtr;
 CrntLit : TermPtr;
 NxtClause : ClausePtr;
 CrntBTP : FramePtr;
 Trail : TrailPtr;
 Binds : ARRAY [0..MaxVars-1] OF Binding;
 END;

VAR DBG : BOOLEAN;

 PROCEDURE MAKEFrame (Vars : VarIndx) : FramePtr;
 PROCEDURE PUSHFrame ;
 PROCEDURE POPFrames (FPtr : FramePtr);
 PROCEDURE STORETrail (BPtr : BindPtr) : BOOLEAN;
 PROCEDURE RESTORETrail (TPtr : TrailPtr);

 PROCEDURE GetStkTop () : FramePtr;

 PROCEDURE BindAdr (FPtr : FramePtr; TPtr : TermPtr) : BindPtr;
 PROCEDURE IsFree (BPtr : BindPtr) : BOOLEAN;
 PROCEDURE DeRef (BPtr : BindPtr) : BindPtr;
 PROCEDURE NextCall (FPtr : FramePtr) : TermPtr;

 (* Given a TermPtr, return the TermPtr to which it is bound. A
 non-variable term is bound to itself. A variable-term is

93

 dereferenced, and the term to which it is bound is returned,
 or a NIL if the variable is free
 *)
 PROCEDURE GetBoundTerm (TPtr : TermPtr; FPtr : FramePtr) : TermPtr;

 PROCEDURE SetStackSize (InBytes : LONGCARD);
 PROCEDURE OPENStack;
 PROCEDURE CLOSEStack;
 (* Free all records on the stack and on the trail *)

 PROCEDURE Before(A1,A2 : ADDRESS) : BOOLEAN;
 (* Returns true if stack address A1 preceeds stack address A2 *)

 PROCEDURE MEMUsage;
 (* Report on memory usage *)

END Stack.

94

 STACK - IMPLEMENTATION

IMPLEMENTATION MODULE Stack;

(* Stack manager - manages the procedure activation and trail stacks.
 These two stacks share a common block of memory and grow towards
 each other from opposite ends of the block.

 While trail records are of uniform size, the procedure activation
 frames held on the runtime stack are variable-sized. Because of this,
 and because a temporary frame is needed by the unification process,
 the two stacks are handled very differently. In particular, trailtop
 points to the NEXT free location on the trail, while stacktop points
 to the LAST OCCUPIED location on the stack. Also, frame records
 require a pointer to the previous record on the stack.

 The main pointers associated with the two stacks are:

 +--------+ <-- TrailBase
 +--------+
 +--------+ <-- TrailTop
 | |
 | |
 +........+ <-- StackEnd
 +--------+ <-- NewFrame
 +--------+ <-- StackTop
 +--------+
 +--------+ <-- StackBase

 NewFrame is required by the unification procedure. At the start of
 a unification, a NewFrame of the required size is allocated just
 beneath StackTop. If the unification succeeds, NewFrame is pushed
 onto the stack and becomes the new StackTop. Otherwise it is
 overwritten by the subsequent creation of a new NewFrame. StackEnd
 keeps track of the location where NewFrame ends, and is required
 in checking for collisions between the procedure-activation stack
 and the trail.

*)

FROM Storage IMPORT MainHeap, HeapAllocate, HeapDeallocate, HeapAvail;
FROM SYSTEM IMPORT TSIZE,Seg,Ofs;
FROM AsmLib IMPORT AddAddr,DecAddr;
FROM Streams IMPORT WrStr, WrCard, WrLn, WriteLn, WrLngCard, WrAddr;
FROM DBase IMPORT IsVar;

IMPORT IO;

(* -- *)

CONST SZBind = TSIZE(Binding);
 (* Size of a variable binding record *)

 SZFullFrame = TSIZE(Frame);
 (* Size of a frame with MaxVars variable bindings *)

 SZFrame0 = SZFullFrame - (SZBind * MaxVars);
 (* Size of a frame record with 0 variable bindings *)

 SZTrail = TSIZE(BindPtr);
 (* Size of a trail record *)

VAR SZStack : CARDINAL; (* Stack size in paragraphs *)
 StackBase : FramePtr; (* Base address of stack *)
 TrailBase : TrailPtr; (* Base address of trail *)
 TrailTop : TrailPtr; (* Address of next free location on trail *)

95

 StackTop : FramePtr; (* Address of frame on top of stack *)
 NewFrame : FramePtr; (* Frame following stacktop *)
 StackEnd : ADDRESS; (* Address following NewFrame *)

 StackOpen : BOOLEAN; (* TRUE if stack currently allocated *)

(* -- *)

(* Return the number of bytes between two addresses, A2 >= A1 *)

 PROCEDURE DiffAddr (A1,A2 : ADDRESS) : LONGCARD;
 BEGIN
 RETURN LONGCARD(Seg(A2^) - Seg(A1^)) * 16 +
 LONGCARD(Ofs(A2^)) - LONGCARD(Ofs(A1^)) + 1;
 END DiffAddr;

(* Returns true if stack address A1 preceeds stack address A2 *)

 PROCEDURE Before (A1,A2 : ADDRESS) : BOOLEAN;
 BEGIN
 RETURN (Seg(A1^) < Seg(A2^)) OR
 ((Seg(A1^) = Seg(A2^)) AND
 (Ofs(A1^) < Ofs(A2^))
)
 END Before;

(* Allocates a block of SZStack bytes on the heap and sets StackBase
 pointing to the start address of the block and TrailBase to the
 end address of the block.

 TrailBase should really be set to [Seg(Ptr^)+SZStack-1:15] so that
 it points to the last byte of the last paragraph in the allocated
 block. However, for some reason this corrupts the heap. So TrailBase
 is set one paragraph lower than the top of block, wasting 16 bytes.
*)

 PROCEDURE OPENStack ();
 VAR Ptr : ADDRESS;
 BEGIN
 (* Can't open an open stack *)
 IF StackOpen THEN RETURN END;

 (* If insufficient memory remains to allocate a stack of SZStack
 bytes, reduce the size of the stack to 2/3 of what is available
 *)

 IF HeapAvail(MainHeap) < SZStack THEN
 SZStack := (HeapAvail(MainHeap) DIV 3) * 2;
 END;

 HeapAllocate (MainHeap,Ptr,SZStack);
 StackBase := Ptr;
 TrailBase := [Seg(Ptr^)+SZStack-2:15];
 TrailTop := TrailBase;
 NewFrame := StackBase;
 StackEnd := StackBase;
 StackTop := NIL;
 StackOpen := TRUE;
 END OPENStack;

(* Deallocate stack. Stack may not be used until reopened *)

 PROCEDURE CLOSEStack;
 BEGIN
 (* Can't close a closed stack *)
 IF NOT StackOpen THEN RETURN END;

96

 HeapDeallocate (MainHeap, StackBase, SZStack);
 StackOpen := FALSE;
 END CLOSEStack;

(* Return the number of bytes between stackend and trailtop *)

 PROCEDURE StackFree () : LONGCARD;
 BEGIN
 RETURN DiffAddr(StackEnd,TrailTop);
 END StackFree;

(* Pushes a record of a variable instantiation onto the trail.
 Returns FALSE if the operation would result in the trail colliding
 with the stack. Else performs operation and returns TRUE.
*)

 PROCEDURE STORETrail (BPtr : BindPtr) : BOOLEAN;
 VAR TPtr : TrailPtr;
 BEGIN
 IF NOT StackOpen THEN RETURN FALSE; END;
 IF DBG THEN WrStr ('Trail push '); END;
 IF StackFree() < SZTrail THEN
 IF DBG THEN WriteLn ('failed.'); END;
 RETURN FALSE;
 END;
 IF DBG THEN WrAddr(TrailTop); END;
 TrailTop^ := BPtr;
 DecAddr (TrailTop,SZTrail);
 IF DBG THEN WrStr(' -> '); WrAddr(TrailTop); WrLn; END;
 RETURN TRUE;
 END STORETrail;

(* Restore all bindings recorded on the trail from TPtr to trailtop, and
 then pop all trail records from TPtr onwards.
*)

 PROCEDURE RESTORETrail (TPtr : TrailPtr);
 VAR TempPtr : TrailPtr;
 BEGIN
 IF NOT StackOpen THEN RETURN; END;
 TempPtr := TPtr;
 WHILE TempPtr # TrailTop DO
 TempPtr^^.BType := free;
 DecAddr(TempPtr,SZTrail);
 END;
 TrailTop := TPtr;
 END RESTORETrail;

(* Returns the size (in bytes) of a stack frame required to accommodate
 NumVars variable bindings
*)

 PROCEDURE SizeOfFrame (NumVars : CARDINAL) : CARDINAL;
 BEGIN
 RETURN SZFrame0 + NumVars * SZBind;
 END SizeOfFrame;

(* Returns a pointer to a new stack frame immediately below stacktop.
 This is the frame that gets pushed next time PUSHFrame is called.
 The Num, Vars and Trail fields are set, and the variable
 bindings are initialized to free.

97

 NIL is returned if creating the frame would cause a collision with
 trailtop.
*)

 PROCEDURE MAKEFrame (Vars : VarIndx) : FramePtr;
 VAR FRMSize : CARDINAL;
 BEGIN
 FRMSize := SizeOfFrame (Vars);
 IF (NOT StackOpen) OR (StackFree() < LONGCARD(FRMSize)) THEN
 RETURN NIL;
 END;
 StackEnd := AddAddr (NewFrame,FRMSize);
 NewFrame^.Vars := Vars;
 NewFrame^.Trail := TrailTop;

 (* Set frame number to 1 more than previous frame number,
 or to 0 if this is the first frame on the stack. *)
 IF StackTop # NIL THEN
 NewFrame^.Num := StackTop^.Num + 1;
 ELSE
 NewFrame^.Num := 0;
 END;

 (* Initialize variable-binding records to free *)
 WHILE Vars # 0 DO
 DEC(Vars);
 NewFrame^.Binds[Vars].BType := free;
 END;

 RETURN NewFrame;
 END MAKEFrame;

(* Pushes NewFrame onto the stack *)

 PROCEDURE PUSHFrame ;
 BEGIN
 (* If stack is closed or there is no NewFrame to push,
 then do nothing
 *)
 IF (NOT StackOpen) OR (NewFrame = StackEnd) THEN
 RETURN;
 END;

 NewFrame^.Prev := StackTop;
 StackTop := NewFrame;
 NewFrame := StackEnd;
 END PUSHFrame;

(* Pops all frames on stack from and including FPtr. All variables
 instantiated from this frame onwards are uninstantiated
*)

 PROCEDURE POPFrames (FPtr : FramePtr);
 BEGIN
 IF NOT StackOpen THEN RETURN; END;
 RESTORETrail (FPtr^.Trail);
 StackTop := FPtr^.Prev;
 NewFrame := FPtr;
 StackEnd := FPtr;
 END POPFrames;

(* Return pointer to frame at top of stack *)

 PROCEDURE GetStkTop () : FramePtr;
 BEGIN
 RETURN StackTop;
 END GetStkTop;

98

(* -- *)

(* Given a frame ptr and a pointer to a variable, returns pointer to
 binding record of variable within frame.
*)

 PROCEDURE BindAdr (FPtr : FramePtr;
 TPtr : TermPtr) : BindPtr;
 BEGIN
 RETURN ADR(FPtr^.Binds[TPtr^.Ofst]);
 END BindAdr;

(* Given a pointer to a binding record, returns true if the record
 represents a free variable.
*)

 PROCEDURE IsFree (BPtr : BindPtr) : BOOLEAN;
 BEGIN
 RETURN (BPtr^.BType=free);
 END IsFree;

(* De-reference a variable binding. If the variable is bound to another
 variable, then a pointer to the binding record of the second variable
 is returned. Otherwise the variable is dereferenced to itself.
*)

 PROCEDURE DeRef(BPtr : BindPtr) : BindPtr;
 BEGIN
 IF BPtr^.BType = var THEN RETURN BPtr^.BPtr
 ELSE RETURN BPtr ;
 END;
 END DeRef;

(* Given a TermPtr, return the TermPtr to which it is bound. A non-variable
 term is bound to itself. A variable-term is dereferenced, and the term
 to which it is bound is returned, or a NIL if the variable is free
*)
 PROCEDURE GetBoundTerm (TPtr : TermPtr; FPtr : FramePtr) : TermPtr;
 VAR BPtr : BindPtr;
 BEGIN
 IF IsVar(TPtr) THEN
 BPtr := DeRef(BindAdr(FPtr,TPtr));
 IF IsFree(BPtr) THEN TPtr := NIL
 ELSE TPtr := BPtr^.TPtr;
 END;
 END;
 RETURN TPtr;
 END GetBoundTerm;

(* Returns a pointer to the next literal to be called following
 the literal last called by a frame.
*)

 PROCEDURE NextCall (FPtr : FramePtr) : TermPtr;
 BEGIN
 RETURN FPtr^.CrntLit^.Next;
 END NextCall;

(* -- *)

(* Set stack size to InBytes bytes. The stack size may only be set when the
 stack is closed, and takes effect next time the stack is opened. The
 stack size is rounded up to the nearest whole paragraph (16 bytes), and

99

 the OpenStack procedure may override the value set if insufficient
 memory remains on the heap.
*)

 PROCEDURE SetStackSize (InBytes : LONGCARD);
 BEGIN
 IF StackOpen THEN RETURN; END;
 SZStack := CARDINAL ((InBytes + 15) DIV 16);
 END SetStackSize;

(* Report on the stack and trail memory usage. The number of records
 on the trail can be calculated since trail records are of uniform
 size.
*)

 PROCEDURE MEMUsage;
 BEGIN
 WrStr ('Stack size : '); WrLngCard(LONGCARD(SZStack) * 16,0); WrLn;
 WrStr ('Stack free : '); WrLngCard (StackFree(),0); WrLn;
 WrStr ('Trail : ');
 WrLngCard (DiffAddr (TrailTop,TrailBase) DIV SZTrail,0);
 WriteLn (' records');
 WrStr ('Stack : ');
 WrLngCard (DiffAddr (StackBase,StackEnd),0);
 WrStr (' bytes used, ');
 IF StackEnd # NewFrame THEN
 WrCard (NewFrame^.Num+1,0);
 ELSE
 WrCard (StackTop^.Num+1,0);
 END;
 WriteLn (' frames.');
 END MEMUsage;

(* --- Module initialization -- *)

BEGIN
 DBG := FALSE;
 StackOpen := FALSE;
 SetStackSize (DefaultStkSz);
END Stack.

100

 STREAMS - DEFINITION

DEFINITION MODULE Streams;

(* This module implements input and output streams.

 Exports:
 Stream (strm) type, EOF condition and line counter.
 Stream redirection procedures.
 Stream I/O routines to substitute those in standard module IO.
*)

TYPE strm = (file, printer, terminal);

VAR PromptStr : ARRAY [1..3] OF CHAR; (* Prompt when reading from terminal *)

 Line : CARDINAL; (* line no. when reading from file *)
 EOF : BOOLEAN; (* eof condition when reading from file *)

(* These procedures redirect input and output *)

PROCEDURE ToTerm;
PROCEDURE FromTerm;
PROCEDURE ToPrinter;
PROCEDURE ToFile (FName : ARRAY OF CHAR);
PROCEDURE FromFile (FName : ARRAY OF CHAR) : BOOLEAN;

PROCEDURE CrntIn () : strm;
PROCEDURE CrntOut () : strm;

(* (Mostly) substitutes for procedures in module IO *)

PROCEDURE RdStr (VAR Buffer : ARRAY OF CHAR);
PROCEDURE WrStr (Str : ARRAY OF CHAR);
PROCEDURE WriteLn (Str : ARRAY OF CHAR);
PROCEDURE WrLn;
PROCEDURE WrCard (C : CARDINAL; L : INTEGER);
PROCEDURE WrChar (C : CHAR);
PROCEDURE WrShtCard (C : SHORTCARD; L : INTEGER);
PROCEDURE WrLngCard (C : LONGCARD; L : INTEGER);
PROCEDURE WrCharRep (C : CHAR; Cnt : CARDINAL);

PROCEDURE WrAddr (C : ADDRESS);
PROCEDURE ReportErr (m : ARRAY OF CHAR);

PROCEDURE GetKey;
(* Waits for a keypress if current stream is terminal.
 Else returns immediately *)

PROCEDURE RdChar () : CHAR;
(* Reads a character from input (without buffering and echo) if current
 input stream is terminal. Otherwise returns NULL character *)

END Streams.

101

 STREAMS - IMPLEMENTATION

IMPLEMENTATION MODULE Streams;

IMPORT FIO;
IMPORT IO;
IMPORT ASCII;

FROM SYSTEM IMPORT Seg, Ofs;

VAR StrmIn, StrmOut : strm;
 In, Out : FIO.File;

(* -- *)

(* Identify current input and output streams *)

 PROCEDURE CrntIn () : strm;
 BEGIN
 RETURN StrmIn;
 END CrntIn;

 PROCEDURE CrntOut () : strm;
 BEGIN
 RETURN StrmOut;
 END CrntOut;

(* --- Stream Redirecting --- *)

 PROCEDURE CloseStrm (s:strm; f:FIO.File);
 BEGIN
 IF s=file THEN FIO.Close(f) END;
 END CloseStrm;

(* Make the terminal the current output stream.
 If the current output stream is a file, then the file is closed
 before the output is directed to the terminal.
*)

 PROCEDURE ToTerm;
 BEGIN
 CloseStrm (StrmOut,Out);
 Out := FIO.StandardOutput;
 StrmOut := terminal;
 END ToTerm;

(* Make the terminal the current input stream.
 If the current input stream is a file, then the file is closed
 before the input stream is directed to the terminal. EOF is
 not accepted from the terminal.
*)

 PROCEDURE FromTerm;
 BEGIN
 EOF := FALSE;
 CloseStrm (StrmIn,In);
 In := FIO.StandardInput;
 StrmIn := terminal;
 END FromTerm;

(* Redirect output to the printer, closing any output file.
*)

102

 PROCEDURE ToPrinter;
 BEGIN
 CloseStrm (StrmOut,Out);
 Out := FIO.PrinterDevice;
 StrmOut := printer;
 END ToPrinter;

(* Redirect output to named file.
 This procedure is not currently used by the program and has
 not been implemented yet.
*)
 PROCEDURE ToFile (FName : ARRAY OF CHAR);
 BEGIN
 END ToFile;

(* Redirect input from file.
 Returns FALSE if file could not be opened.
 Otherwise closes any input file currently open and opens the named
 file for input, returning TRUE. The line counter is reset to 0, and
 the EOF condition is set to FALSE.
*)

 PROCEDURE FromFile (FName : ARRAY OF CHAR) : BOOLEAN;
 BEGIN
 IF FIO.Exists (FName) THEN
 CloseStrm (StrmIn,In);
 EOF := FALSE;
 Line := 0;
 In := FIO.Open (FName);
 StrmIn := file;
 RETURN TRUE;
 ELSE
 RETURN FALSE;
 END;
 END FromFile;

(* --- Input/Output --- *)

(* Read a string from the current input stream.

 NOTE that if current input is from the terminal, IO.RdStr is used
 instead of FIO.RdStr. Since IO.RdStr uses the DOS read string (0Ah)
 interrupt 21h, the user gets all the benefits of shell-enhancers such as
 the pd CED, which has history and line editting capabilities.
*)

 PROCEDURE RdStr (VAR Buffer : ARRAY OF CHAR);
 BEGIN
 IF StrmIn = terminal THEN
 IO.WrStr (PromptStr);
 IO.RdStr (Buffer);
 ELSE
 FIO.RdStr (In,Buffer);
 EOF := FIO.EOF;
 INC(Line);
 END;
 END RdStr;

(* The following output routines substitute the routines with the same
 name in the standard IO module.
 The only exception is WriteLn, which is a WrStr followed by a WrLn.
*)

 PROCEDURE WrStr (Str : ARRAY OF CHAR);

103

 BEGIN
 FIO.WrStr (Out, Str);
 END WrStr;

 PROCEDURE WriteLn (Str : ARRAY OF CHAR);
 BEGIN
 FIO.WrStr (Out,Str);
 FIO.WrLn (Out);
 END WriteLn;

 PROCEDURE WrLn;
 BEGIN
 FIO.WrLn (Out);
 END WrLn;

 PROCEDURE WrCard (C : CARDINAL; L : INTEGER);
 BEGIN
 FIO.WrCard (Out,C,L);
 END WrCard;

 PROCEDURE WrChar (C : CHAR);
 BEGIN
 FIO.WrChar (Out,C);
 END WrChar;

 PROCEDURE WrShtCard (C : SHORTCARD; L : INTEGER);
 BEGIN
 FIO.WrShtCard (Out,C,L);
 END WrShtCard;

 PROCEDURE WrLngCard (C : LONGCARD; L : INTEGER);
 BEGIN
 FIO.WrLngCard (Out,C,L);
 END WrLngCard;

 PROCEDURE WrCharRep (C : CHAR; Cnt : CARDINAL);
 BEGIN
 FIO.WrCharRep (Out,C,Cnt);
 END WrCharRep;

(* Report a simple error message *)

 PROCEDURE ReportErr (m:ARRAY OF CHAR);
 BEGIN
 WrLn;WrLn;
 WrStr('*** ERROR: ');
 WriteLn(m);
 WrLn;
 END ReportErr;

(* The following displays an address in Segment:Offset format.
 It is only meant for debugging purposes.
*)

 PROCEDURE WrAddr (C : ADDRESS);
 BEGIN
 WrStr('[');
 WrCard(Seg(C^),0);
 WrStr(':');
 WrCard(Ofs(C^),0);
 WrStr(']');

104

 END WrAddr;

(* If the terminal is the current input stream, this procedure waits
 for a key press. Otherwise it does nothing.
 It is used primarily by the debugging code, to give the user time
 to read the carnival-streamer trace.
*)

 PROCEDURE GetKey;
 VAR C : CHAR;
 BEGIN
 IF StrmIn = terminal THEN
 C := IO.RdCharDirect();
 END;
 END GetKey;

(* Reads a character from input (without buffering and echo) if current
 input stream is terminal. Otherwise returns NULL character *)

 PROCEDURE RdChar () : CHAR;
 BEGIN
 IF StrmIn = terminal THEN
 RETURN IO.RdCharDirect();
 ELSE
 RETURN ASCII.nul;
 END;
 END RdChar;

(* --- Module initialization -- *)

BEGIN
 FIO.IOcheck := FALSE;
 IO.Prompt := FALSE;
 PromptStr := '> ';
 StrmIn := terminal;
 StrmOut := terminal;
 ToTerm;
 FromTerm;
END Streams.

105

 LEX - DEFINITION

DEFINITION MODULE Lex;

(* Lexical Analyser.

 Exports.
 The token object.
 Procedures to fetch next token from the input buffer, flush
 input buffer, get current line and column position.

*)

FROM Sstr IMPORT MaxStrLen;

(* -- *)

TYPE TknCls = (ColonHyphen, (* :- *)
 Comma, (* , *)
 OpnBrk, (* (*)
 ClsBrk, (*) *)
 OpnSqr, (* [*)
 ClsSqr, (*] *)
 Bar, (* | *)
 Dot, (* . *)
 AnonymVar, (* _ *)
 VarSym, (* UpperCase|_ {UpperCase | LowerCase | Digit } *)
 NonVarSym, (* LowerCase {UpperCase | LowerCase | Digit } *)
 Err, (* unrecognized token *)
 FileEnd (* End of file on input *)
);

 Token = RECORD
 Class : TknCls;
 Inst : ARRAY [1..MaxStrLen] OF CHAR;
 END;

VAR CrntTkn : Token;
 DBG : BOOLEAN;

PROCEDURE GetToken ;
(* Returns the next token from the input buffer in CrntTkn.
 CrntTkn.Class is set to the TknCls of the fetched token.
 If TknCls is VarSym or NonVarSym, TknInst contains the identifier
 string read in.
*)

PROCEDURE GetPos (VAR line,char : CARDINAL) ;
(* Returns the line and column position last read from. The line position
 is only meaningful if currently reading from a file. *)

PROCEDURE FlushBuffer;
(* Flush the input buffer *)

PROCEDURE GetItem () : BOOLEAN;
(* Gets next item from the input buffer (skipping any leading spaces) and
 returns it in CrntTkn.Inst.
 Returns TRUE if an item was found, FALSE if at end of line. *)

END Lex.

106

 LEX - IMPLEMENTATION

IMPLEMENTATION MODULE Lex;

FROM Str IMPORT CHARSET, Length;
FROM Streams IMPORT Line, EOF, RdStr, WrStr, WriteLn, WrLn, CrntIn, strm;
IMPORT ASCII;

CONST ComChar = '%'; (* comment introducer *)
 MaxBuff = 255; (* input buffer size *)
 Eof = ASCII.nul; (* character to signal end-of-file on input *)

 Separators
 = CHARSET {' ','(',')','.',',','[',']','|',':',"'",ComChar};

VAR Buffer : ARRAY [1..MaxBuff] OF CHAR; (* Input buffer *)
 BufLen : CARDINAL; (* Number of characters in buffer *)
 BufPos : CARDINAL; (* Current reading position in buffer *)

(* -- *)

(* Return line and column position.
 The line position is only defined if currently reading from a file,
 and is maintained by the Streams module.
 The column position is the position in the input buffer currently
 being read from, and is defined irrespective of the current input
 stream.
*)

 PROCEDURE GetPos (VAR line,char : CARDINAL) ;
 BEGIN
 line := Line;
 char := BufPos;
 END GetPos;

(* Flush the input buffer.
 This procedure forces procedure GetChar to read in a new line
 the next time it is called to fetch a character from the current
 input stream.
*)

 PROCEDURE FlushBuffer;
 BEGIN
 BufLen := 0;
 BufPos := 0;
 END FlushBuffer;

(* Get next character from the input buffer.
 If the input buffer is exhausted (ie Bufos >= BufLen), then
 a new line is read into the input buffer, and BufPos reset to 0.
 BufPos is incremented, and the character at position BufPos in the
 input buffer is returned.
*)

 PROCEDURE GetChar () : CHAR;
 BEGIN
 IF (BufPos >= BufLen) THEN
 REPEAT
 RdStr (Buffer);
 IF EOF THEN RETURN Eof END;
 BufLen := Length(Buffer);
 UNTIL BufLen > 0;

107

 BufPos := 0;
 END;
 INC (BufPos);
 RETURN Buffer[BufPos];
 END GetChar;

(* Unread last character read.
 This procedure is only required by procedure GetToken when reading in an
 identifier. Consequently, it is not a general-purpose unread procedure.
 All it does is to decrement the current BufPos.
*)

 PROCEDURE UnGet;
 BEGIN
 DEC (BufPos);
 END UnGet;

(* A comment introducer has been found. Move the reading position
 past the end of the comment.
 Since Prolog comments are terminated by the end-of-line character,
 all the procedure does is to flush the input buffer, thus forcing
 GetChar to start reading from the next line the next time it is
 called.
*)

 PROCEDURE SkipComment;
 BEGIN
 FlushBuffer;
 END SkipComment;

(* Get the first non-space character from the input buffer.
 Characters are read in until a non-space character is found.
*)

 PROCEDURE GetFirstNonSpace () : CHAR;
 VAR C : CHAR;
 BEGIN
 REPEAT
 C := GetChar();
 IF C=ComChar THEN
 SkipComment;
 C := ' ';
 END;
 UNTIL (C # ' ');
 RETURN C;
 END GetFirstNonSpace;

(* Gets next item from the input buffer (skipping any leading spaces) and
 returns it in CrntTkn.Inst. An item is defined as a sequence of
 non-space characters delimited by a space character or the end-of-line.
 Returns TRUE if an item was found, FALSE if at end of line.
*)

 PROCEDURE GetItem () : BOOLEAN;
 VAR C : CHAR;
 Cnt : CARDINAL;
 BEGIN
 INC(BufPos);
 WHILE (BufPos <= BufLen) AND (Buffer[BufPos]=' ') DO

 INC(BufPos);
 END;
 IF BufPos > BufLen THEN

108

 RETURN FALSE;
 ELSE
 Cnt := 1;
 REPEAT
 CrntTkn.Inst[Cnt] := Buffer[BufPos];
 INC(BufPos);
 INC(Cnt);
 UNTIL (BufPos > BufLen) OR (Buffer[BufPos]=' ');
 CrntTkn.Inst[Cnt] := 0C;
 RETURN TRUE;
 END; (*IF*)
 END GetItem;

(* If in debug mode, produce a wall-paper listing of each token fetched.
*)

 PROCEDURE DEBUG ;
 BEGIN
 IF NOT DBG THEN RETURN END;

 CASE CrntTkn.Class OF
 ColonHyphen : WrStr (":-");
 | Dot : WriteLn (".");
 | Comma : WrStr (",");
 | OpnBrk : WrStr ("(");
 | ClsBrk : WrStr (")");
 | OpnSqr : WrStr ("[");
 | ClsSqr : WrStr ("]");
 | Bar : WrStr ("|");
 | Err : WriteLn (" ERROR");
 | FileEnd : WriteLn (" EOF");
 | VarSym : WrStr (" Var:");
 WrStr (CrntTkn.Inst);
 | AnonymVar : WrStr ('_');
 | NonVarSym : WrStr (" F/P:");
 WrStr (CrntTkn.Inst);
 END;
 END DEBUG;

(* Returns the next token from the input buffer in CrntTkn.
 CrntTkn.Class is set to the TknCls of the fetched token.
 If TknCls is VarSym or NonVarSym, TknInst contains the identifier
 string read in.
*)

 PROCEDURE GetToken ;
 VAR C : CHAR;

 (* Read in an identifier. The first character has already been read
 in and is passed to the procedure as a parameter. The identifier
 is read into the string CrntTkn.Inst. If the identifier is _ then
 CrntTkn.Class is set to AnonymVar.
 *)

 PROCEDURE GetId (C : CHAR) ;
 VAR Indx : CARDINAL;
 Quote : BOOLEAN;
 BEGIN
 Indx := 1;
 IF C="'" THEN
 Quote := TRUE
 ELSE
 CrntTkn.Inst[1] := C;
 Quote := FALSE;
 INC(Indx);
 END;
 C := GetChar ();
 WHILE ((NOT Quote) AND (NOT (C IN Separators)) OR

109

 (Quote AND (C#"'"))) DO
 CrntTkn.Inst [Indx] := C;
 INC (Indx);
 C := GetChar();
 END;
 CrntTkn.Inst [Indx] := 0C;
 IF Quote THEN RETURN; END;
 IF C # ' ' THEN UnGet END;
 IF (Indx=2) AND (CrntTkn.Inst[1]='_') THEN
 CrntTkn.Class := AnonymVar;
 END;
 END GetId;

 BEGIN (* GetToken *)

 C := GetFirstNonSpace ();
 CASE C OF
 Eof : CrntTkn.Class := FileEnd
 | ',' : CrntTkn.Class := Comma
 | '.' : CrntTkn.Class := Dot
 | '(' : CrntTkn.Class := OpnBrk
 | ')' : CrntTkn.Class := ClsBrk
 | '[' : CrntTkn.Class := OpnSqr
 | ']' : CrntTkn.Class := ClsSqr
 | '|' : CrntTkn.Class := Bar
 | ':' : C := GetChar();
 IF C='-' THEN CrntTkn.Class := ColonHyphen
 ELSE CrntTkn.Class := Err;
 END
 | '_','A'..'Z'
 : CrntTkn.Class := VarSym;
 GetId (C)
 ELSE CrntTkn.Class := NonVarSym;
 GetId (C)
 END;
 DEBUG ;
 END GetToken;

(* --- module initialization -- *)

BEGIN
 CrntTkn.Class := FileEnd;
 CrntTkn.Inst := '';
 FlushBuffer;
 DBG := FALSE;
END Lex.

110

 PARSE - DEFINITION

DEFINITION MODULE Parse;

(* The parser and main interpreter loop.

 Exports:
 ReadInFile, which parses a file.
 Reader, which is the main interpreter loop, reading in and parsing
 user input. The reader first loads the predefined predicates
 from file 'predef.pro', then the file passed as argument (if
 any) - which is the filename given by the user as command-line
 argument, and finally enters the read/parse loop.
*)

VAR DBG : BOOLEAN;

PROCEDURE Reader (FileName : ARRAY OF CHAR);

PROCEDURE ReadInFile (FileName : ARRAY OF CHAR) : BOOLEAN;

END Parse.

111

 PARSE - IMPLEMENTATION

IMPLEMENTATION MODULE Parse;

(*
 The following CFG is recognised by the parser:
 <program> ::= <clause> { <clause> }
 <clause> ::= <predicate> [':-' <body>] '.'
 <predicate> ::= <predicate symbol> ['(' <argument list> ')']
 <body> ::= <literal> {',' <literal> }
 <literal> ::= <variable symbol> |
 <predicate>
 <argument list> ::= <term> { ',' <term> }
 <term> ::= <variable symbol> |
 <structure>
 <structure> ::= <constant symbol> ['(' <argument list> ')'] |
 <list>
 <list> ::= '[' { <term> { ','<term> } ['|' <term>] } ']'
 <goal> ::= ':-' <body> .

 <predicate symbol> and <constant symbol> are lexically identical
 and are grouped under the class <NonVarSym> by the lexical analyser.

 <literal> and <structure> are syntactically identical, and are parsed
 by the same procedure Literal(). In the symbol table they differ in that
 an entry for a <literal> has a list of clauses associated with it,
 while an entry for a <structure> does not.

 The structure TermRec is used in the representation of both <literals>
 and <terms>.

*)

FROM Streams IMPORT ToTerm, FromTerm, FromFile, WrStr, WriteLn, WrLn,
 WrCard, WrShtCard, WrChar, WrCharRep, CrntIn, strm,
 ReportErr;
FROM Sstr IMPORT Sptr;
FROM Str IMPORT Length;
FROM Lex IMPORT Token, CrntTkn, TknCls, MaxStrLen, GetToken, GetPos,
 FlushBuffer, GetItem;

FROM DBase IMPORT TermPtr, TermRec, SymTabPtr, SymTabRec,
 ClausePtr, ClauseRec, SymType, IsVar, MKClauseRec,
 MKTermRec, VarIndx, RMTermList, RMClauseRec;
FROM STable IMPORT Insert, NoCount;

FROM Command IMPORT ProcessCommand;

FROM Global IMPORT Exit, Mode, mode;

FROM SYSTEM IMPORT TSIZE;

FROM ProcGoal IMPORT ProcessGoal;

FROM Inbuilt IMPORT DefineInbuilts;

VAR PrsErr : BOOLEAN;
 Goal : ClausePtr;

(* -- *)

(* ----------------------- Token.Class Predicate ---------------------------
 Checks class of current token.
 IF (PrsErr) OR (Current token is not of class Class)
 Returns FALSE
 ELSE Gets next token

112

 Returns TRUE
*)

 PROCEDURE Is (Class : TknCls) : BOOLEAN;
 BEGIN
 IF (PrsErr) OR (CrntTkn.Class # Class) THEN RETURN FALSE
 ELSE GetToken;
 RETURN TRUE
 END (*IF*);
 END Is;

(* ------------------------ TermRec constructor ------------------------------
 Constructs a new TermRec, and returns a pointer to it. The constructed
 record is initialized as follows

 Entry - as parameter
 Next - NIL
 SType - as parameter
 If SType is functor, Args is set to NIL.
 If SType is variable, Ofst is set to the value in the Count field
 of the ST-entry pointed to by Entry.

*)

 PROCEDURE MakeTermRec (Entry : SymTabPtr; SType : SymType) : TermPtr;
 VAR Ptr : TermPtr;
 BEGIN
 Ptr := MKTermRec (SType);
 Ptr^.Entry := Entry;
 Ptr^.Next := NIL;
 CASE SType OF
 functor : Ptr^.Args := NIL;
 | variable : Ptr^.Ofst := Entry^.Count;
 END; (*CASE*)
 RETURN Ptr;
 END MakeTermRec;

(*--*)

 (*
 <literal> ::= <variable symbol> | <predicate>
 *)

 PROCEDURE PrsLiteral (VAR Vars : VarIndx) : TermPtr;

 (*
 <term> ::= <variable symbol> | <structure>
 *)

 PROCEDURE PrsTerm () : TermPtr;

 (*
 <list> ::= '[' { <term> {',' <term> } ['|' <term>] } ']'
 *)

 PROCEDURE PrsList () : TermPtr;
 VAR FrstPtr, Ptr : TermPtr;
 BEGIN
 FrstPtr := MakeTermRec (NIL, list);
 Ptr := FrstPtr;
 IF NOT Is(ClsSqr) THEN
 REPEAT
 Ptr^.Args := PrsTerm();
 Ptr := Ptr^.Args;
 IF (NOT PrsErr) AND

113

 ((CrntTkn.Class = Comma) OR (CrntTkn.Class = ClsSqr))
THEN
 Ptr^.Next := MakeTermRec(NIL,list);
 Ptr := Ptr^.Next;
 END; (*IF*)
 UNTIL NOT Is (Comma);
 CASE CrntTkn.Class OF
 ClsSqr : Ptr^.Args := NIL;
 GetToken;
 | Bar : GetToken;
 Ptr^.Next := PrsTerm();
 IF NOT Is(ClsSqr) THEN PrsErr := TRUE END;
 ELSE PrsErr := TRUE;
 END; (*CASE*)
 ELSE
 Ptr^.Args := NIL;
 END; (*IF*)
 RETURN FrstPtr;
 END PrsList;

 VAR TPtr : TermPtr;
 SPtr : SymTabPtr;

 BEGIN
 CASE CrntTkn.Class OF
 VarSym : SPtr := Insert(CrntTkn.Inst,variable,0);
 IF SPtr^.Count = NoCount THEN
 SPtr^.Count := Vars;
 INC(Vars);
 END; (*IF*)
 TPtr := MakeTermRec (SPtr,variable);
 GetToken;
 | NonVarSym : TPtr := PrsLiteral (Vars);
 | AnonymVar : TPtr := MakeTermRec (NIL,anon);
 GetToken;
 | OpnSqr : GetToken;
 TPtr := PrsList();
 ELSE TPtr := NIL;
 PrsErr := TRUE;
 END; (*CASE*)
 RETURN TPtr;
 END PrsTerm;

 (*
 <argument list> ::= <term> {, <term> }
 *)

 PROCEDURE PrsArgList (VAR Arity : SHORTCARD) : TermPtr;
 VAR FrstPtr, Ptr : TermPtr;
 BEGIN
 FrstPtr := PrsTerm();
 Ptr := FrstPtr;
 INC(Arity);
 WHILE Is(Comma) DO
 Ptr^.Next := PrsTerm ();
 Ptr := Ptr^.Next;
 INC (Arity);
 END;
 RETURN FrstPtr;
 END PrsArgList;

 VAR Arity : SHORTCARD;
 Tkn : Token;
 Ptr : TermPtr;

 BEGIN
 Arity := 0;
 CASE CrntTkn.Class OF

114

 NonVarSym : Tkn := CrntTkn;
 Ptr := MakeTermRec(NIL,functor);
 GetToken;
 IF Is (OpnBrk) THEN
 Ptr^.Args := PrsArgList(Arity);
 IF NOT Is (ClsBrk) THEN PrsErr := TRUE; END;
 END; (*IF*)
 IF NOT PrsErr THEN
 Ptr^.Entry := Insert(Tkn.Inst,functor,Arity);
 END;
 | VarSym : Ptr := PrsTerm ();
 ELSE PrsErr := TRUE;
 Ptr := NIL;
 END; (*CASE*)
 IF DBG THEN
 WrStr (" /");
 WrShtCard (Arity,0);
 END;
 RETURN Ptr;
 END PrsLiteral;

(*
 <predicate> ::= <predicate symbol> ['(' <argument list> ')']
*)

 PROCEDURE PrsPred (VAR Vars : VarIndx) : TermPtr;
 BEGIN
 IF (CrntTkn.Class = NonVarSym) THEN
 RETURN PrsLiteral (Vars);
 ELSE
 PrsErr := TRUE;
 RETURN NIL;
 END; (*IF*)
 END PrsPred;

(*
 <body> ::= <literal> {',' <literal> }
*)

 PROCEDURE PrsBody (VAR Vars : VarIndx) : TermPtr;
 VAR TPtr : TermPtr;
 Ptr : TermPtr;
 BEGIN
 TPtr := PrsLiteral(Vars);
 Ptr := TPtr;
 WHILE Is (Comma) DO
 Ptr^.Next := PrsLiteral(Vars);
 Ptr := Ptr^.Next;
 END;
 RETURN TPtr;
 END PrsBody;

(* Parse a clause. This parses

 1. definite clauses (assertions and rules).
 2. goal clauses (introduced by :-).
 3. commands (introduced by |).

 Goal clauses are not inserted in the database, but are passed to the
 ProcessGoal procedure in module ProcGoal.

 Commands are passed to the ProcessCommand procedure.

*)

 PROCEDURE PrsClause;
 VAR CPtr : ClausePtr;

115

 SPtr : SymTabPtr;
 NVars : VarIndx;
 IsGoal : BOOLEAN;

 (* Procedure to reset the Count fields of ST entries to NoCount
 after a clause has been compiled
 *)

 PROCEDURE ResetVarCounts (TPtr : TermPtr);
 BEGIN
 WHILE (TPtr # NIL) DO
 CASE TPtr^.SType OF
 variable : TPtr^.Entry^.Count := NoCount;
 | list,functor : ResetVarCounts(TPtr^.Args);
 END; (*CASE*)
 TPtr := TPtr^.Next;
 END; (*WHILE*)
 END ResetVarCounts;

 BEGIN

 IF DBG THEN WrLn END;
 IsGoal := FALSE;

 (* Command? *)
 IF CrntTkn.Class = Dot THEN
 PrsErr := NOT ProcessCommand ();
 FlushBuffer;
 IF (NOT PrsErr) AND (CrntIn()=file) THEN
 GetToken;
 END;
 RETURN;
 END;

 (* Initialize variables counter. The counter is incremented with
 every new variable encountered in the clause by the Literal
 parsing routine.
 *)

 NVars := 0;

 (* Allocate a clause record from the heap and set the Head field
 pointing to the literal at the head of the clause. If a :- token
 is found, then set the Body field to the list of literals making
 up the body of the clause, else the Body is NIL.
 *)

 IF Is (ColonHyphen) THEN
 IsGoal := TRUE;
 CPtr := Goal;
 CPtr^.Head := NIL;
 CPtr^.Body := PrsBody(NVars);
 ELSE
 IsGoal := FALSE;
 CPtr := MKClauseRec ();
 CPtr^.InBlt := FALSE;
 CPtr^.Next := NIL;
 CPtr^.Body := NIL;
 CPtr^.Head := PrsPred(NVars);

 (* Attempt to redefine a system-defined predicate by user ? *)

 IF (Mode=user) AND (CPtr^.Head^.Entry^.Mode=system) THEN
 PrsErr := TRUE;
 ELSIF Is (ColonHyphen) THEN
 CPtr^.Body := PrsBody(NVars);
 END; (*IF*)

116

 END; (*IF*)

 (* Reset all the Count fields of ST-entries for variables in this
 clause to NoCount.
 *)

 ResetVarCounts (CPtr^.Head);
 ResetVarCounts (CPtr^.Body);

 (* IF no error was reported while parsing THEN
 a. if the clause is a definite clause, then link it into the
 clause database. The new clause is to be linked to the end of the list
 of clauses for this predicate, pointed to by the literal pointed
 to by the Head field.
 b. if a goal, then pass it to ProcessGoal.
 *)

 IF (CrntTkn.Class = Dot) AND NOT PrsErr THEN
 IF CrntIn() = file THEN
 GetToken;
 END;
 CPtr^.Vars := NVars;
 IF NOT IsGoal THEN
 SPtr := CPtr^.Head^.Entry;
 IF SPtr^.FstCls = NIL THEN
 SPtr^.FstCls := CPtr
 ELSE SPtr^.LstCls^.Next := CPtr;
 END; (*IF*)
 SPtr^.LstCls := CPtr;
 ELSE
 ProcessGoal (CPtr);
 RMTermList (Goal^.Body);
 END; (*IF*)

 ELSE

 (* An error has occured. If parsing a goal, then deallocate the
 body, else deallocate the whole clause.
 *)

 PrsErr := TRUE;
 IF IsGoal THEN RMTermList (Goal^.Body)
 ELSE RMClauseRec (CPtr);
 END;

 END; (*IF*)

 END PrsClause;

(* Parses a file.
 Returns TRUE if file parsed correctly.
 Otherwise outputs an error message (together with the line and column
 position of the error in the file, if applicable), and returns FALSE.
*)

 PROCEDURE ReadInFile (FileName : ARRAY OF CHAR) : BOOLEAN;
 VAR ok : BOOLEAN;
 L,C : CARDINAL;
 BEGIN
 ok := (FromFile (FileName));
 IF ok THEN
 GetToken;
 WHILE NOT (PrsErr) AND (CrntTkn.Class # FileEnd) DO
 PrsClause;
 END; (*WHILE*)
 IF PrsErr THEN
 GetPos(L,C);
 WrStr ('Error in ');
 WrStr (FileName);

117

 WrStr (' at line ');
 WrCard (L,0);
 WrStr (' column ');
 WrCard (C,0);
 WrLn;
 ok := FALSE;
 END;
 ELSE
 WrStr (FileName);
 WrStr (' not found.');
 WrLn;
 END;
 FromTerm;
 PrsErr := FALSE;
 RETURN ok;
 END ReadInFile;

(* This is the main loop of the interpreter.
 It reads in user input and passes it to the parser until the Exit
 flag becomes TRUE.

 The reader does the following:
 1. Reads in the file 'predef.pro' containing the predefined
 predicates.
 2. Reads in the file (if any) whose name is passed as an
 input parameter. This is the command-line argument given
 by the user when the interpreter is invoked at the DOS prompt.
 3. Enters a loop - get input, parse input.
*)

 PROCEDURE Reader (FileName : ARRAY OF CHAR);
 VAR L,P : CARDINAL;
 BEGIN
 PrsErr := FALSE;
 Goal := MKClauseRec();
 Goal^.InBlt := FALSE;
 Goal^.Next := NIL;
 IF NOT ReadInFile('predef.pro') THEN
 ReportErr ('Bad or missing PREDEF.PRO');
 RETURN
 END;

 Mode := user;

 IF Length (FileName) # 0 THEN
 IF ReadInFile(FileName) THEN END;
 END;

 REPEAT
 FlushBuffer;
 PrsErr := FALSE;
 GetToken;
 PrsClause;
 IF PrsErr THEN
 ReportErr ('Parse error in user input');
 END;
 UNTIL Exit;

 END Reader;

(* --- Module initialization -- *)

BEGIN
 DBG := FALSE;
END Parse.

118

 COMMAND - DEFINITION

DEFINITION MODULE Command;

(* Command processor.
 Processes user commands (introduced by a '.')

 Exports:
 the command processor.

*)

(* Command processor: takes input directly from the input buffer.
 Returns FALSE to indicate an error.
 TRUE otherwise.
 Flushes input buffer on exit.
*)

PROCEDURE ProcessCommand() : BOOLEAN;

END Command.

119

 COMMAND - IMPLEMENTATION

IMPLEMENTATION MODULE Command;

(* Commands implemented
 .LIST - list database
 .LOAD - load a file
 .STATS - display memory usage statistics
 .DEBUG - selectively toggle debugging switches
 .STACK - set stack size (in bytes)
 .EXIT - exit program
*)

FROM Lex IMPORT CrntTkn, GetItem;
FROM STable IMPORT ListDBase;
FROM Parse IMPORT ReadInFile;
FROM Str IMPORT Caps, Compare, StrToCard;
FROM Streams IMPORT WrStr, WriteLn, WrLngCard, WrLn, RdChar;
FROM Storage IMPORT HeapAvail, HeapTotalAvail, MainHeap;
FROM Global IMPORT Exit;

IMPORT Stack;
IMPORT DBase;
IMPORT Lex;
IMPORT STable;
IMPORT Parse;
IMPORT ProcGoal;

(* -- *)

 (* Support procedure for printing out DEBUG switch
 settings.
 *)

 PROCEDURE WrDBG (S : ARRAY OF CHAR; B : BOOLEAN);
 BEGIN
 WrStr(S);
 IF B THEN
 WriteLn (' - ON');
 ELSE
 WriteLn (' - OFF');
 END;
 END WrDBG;

(* -- *)

 PROCEDURE ProcessCommand () : BOOLEAN;
 VAR ok : BOOLEAN;
 C : LONGCARD;

 BEGIN
 ok := TRUE;

 IF GetItem() THEN
 Caps(CrntTkn.Inst);

 IF Compare (CrntTkn.Inst,"LIST")=0 THEN
 ListDBase;

 ELSIF Compare (CrntTkn.Inst,"LOAD")=0 THEN
 IF GetItem() THEN
 ok := ReadInFile (CrntTkn.Inst);
 ELSE
 WriteLn ("Filename expected.");
 ok := FALSE;
 END;

120

 ELSIF Compare (CrntTkn.Inst, "DEBUG")=0 THEN
 WrDBG ('1: Lexical analyser',Lex.DBG);
 WrDBG ('2: Syntax analyser',Parse.DBG);
 WrDBG ('3: Symbol table ',STable.DBG);
 WrDBG ('4: Interpreter ',ProcGoal.DBG);
 WrDBG ('5: Stack and trail ',Stack.DBG);
 CASE RdChar() OF
 '1' : Lex.DBG := NOT Lex.DBG;
 | '2' : Parse.DBG := NOT Parse.DBG;
 | '3' : STable.DBG := NOT STable.DBG;
 | '4' : ProcGoal.DBG := NOT ProcGoal.DBG;
 | '5' : Stack.DBG := NOT Stack.DBG;
 END; (*CASE*)

 ELSIF Compare (CrntTkn.Inst, "STACK")=0 THEN
 IF GetItem() THEN
 C := StrToCard (CrntTkn.Inst,10,ok);
 IF ok THEN
 Stack.SetStackSize(C);
 END;
 ELSE ok := FALSE;
 END;
 IF NOT ok THEN
 WriteLn('Size in bytes expected.');
 END;

 ELSIF Compare (CrntTkn.Inst, "EXIT")=0 THEN
 Exit := TRUE;

 ELSE ok := FALSE;
 END;

 ELSE ok := FALSE;
 END;

 RETURN ok;
 END ProcessCommand;

END Command.

121

 PROCGOAL - DEFINITION

DEFINITION MODULE ProcGoal;

(* The interpreter.

 Exports:
 The interpreter ProcessGoal.
 A (runtime) error indicator.

*)

FROM DBase IMPORT ClausePtr;

VAR DBG : BOOLEAN;
 Err : BOOLEAN;

PROCEDURE ProcessGoal (Goal : ClausePtr);

END ProcGoal.

122

 PROCGOAL - IMPLEMENTATION

IMPLEMENTATION MODULE ProcGoal;

FROM Stack IMPORT Frame, FramePtr, MAKEFrame, PUSHFrame,
 BindPtr, BindType, OPENStack, CLOSEStack,
 STORETrail, RESTORETrail, POPFrames, Before,
 DeRef, BindAdr, GetBoundTerm, IsFree, NextCall, GetStkTop;

FROM DBase IMPORT ClauseRec, TermRec, TermPtr, SymTabRec, SymTabPtr, IsVar,
 GetFunctor, IsFunctor, IsAssertion, IsAnon,
 IsList, IsNulList, IsNonNulList, SameFunctor,
 VarIndx;

FROM STable IMPORT ListTerm, ListClause, SymType, Test, order;

FROM Streams IMPORT WrStr, WrLn, WrCard, WrCharRep, WrShtCard, WriteLn,
 GetKey, ReportErr;
FROM Storage IMPORT HeapTotalAvail, MainHeap;
FROM Inbuilt IMPORT InBltProc;
FROM Global IMPORT MEMUsage;

(* -- *)

 (* Lists out a term instance. This is analogous to ListTerm in module
 STable, except that it outputs a constructed term using the variable
 bindings.
 *)

 PROCEDURE ListBTerm (TPtr : TermPtr; FPtr : FramePtr);
 VAR BPtr : BindPtr;

 PROCEDURE ListArgs (TPtr : TermPtr; FPtr : FramePtr);
 BEGIN
 TPtr := TPtr^.Args;
 IF TPtr=NIL THEN RETURN END;
 WrStr('(');
 WHILE TPtr#NIL DO
 ListBTerm(TPtr, FPtr);
 TPtr := TPtr^.Next;
 IF TPtr#NIL THEN WrStr(',') END;
 END;
 WrStr(')');
 END ListArgs;

 BEGIN
 CASE TPtr^.SType OF
 variable : BPtr := DeRef(BindAdr(FPtr,TPtr));
 IF IsFree(BPtr) THEN WrStr('*')
 ELSE
 IF DBG THEN
 WrStr('{'); WrCard(BPtr^.Env^.Num,0); WrStr('} ');
 END;
 ListBTerm (BPtr^.TPtr, BPtr^.Env);
 END;
 | functor : WrStr(TPtr^.Entry^.Name^);
 ListArgs (TPtr,FPtr);
 | anon : WrStr ('_');
 | list : WrStr('[');
 WHILE IsNonNulList(TPtr) DO
 TPtr := TPtr^.Args;
 ListBTerm (TPtr,FPtr);
 TPtr := TPtr^.Next;
 IF IsVar(TPtr) THEN
 BPtr := DeRef(BindAdr(FPtr,TPtr));
 TPtr := BPtr^.TPtr;
 FPtr := BPtr^.Env;
 END; (*IF*)

123

 IF IsNonNulList (TPtr) THEN
 WrStr (',');
 END; (*IF*)
 END; (*WHILE*)
 IF IsNulList(TPtr) THEN
 WrStr (']')
 ELSE
 WrStr('|');
 ListBTerm (TPtr,FPtr);
 WrStr(']');
 END; (*IF*)
 END; (*CASE*)
 END ListBTerm;

(* Prints out all the bindings of the variables in a clause instance.

 INPUT Clause - pointer to clause prototype;
 Frame - pointer containing bindings for this instance;

 OUTPUT Displays the bindings of all the variables in the clause
 in the form <var> = <binding>. If clause contains no
 variables, outputs 'YES'.

 Since the representation of a clause prototype does not contain a
 list of the variables in the clause, the procedure has to traverse
 the prototype looking for each variable in turn. The traversal is
 performed by the auxiliary procedure FindVar. The bindings are output
 by the procedure ListTerm.
*)

PROCEDURE OutPutBindings (Clause : ClausePtr; Frame : FramePtr);
VAR Dummy : VarIndx;

 PROCEDURE FindVar (TPtr : TermPtr; Num : VarIndx) : VarIndx;
 BEGIN
 WHILE (TPtr # NIL) DO
 IF IsFunctor (TPtr) OR IsList(TPtr) THEN
 Num := FindVar (TPtr^.Args,Num)
 ELSIF (IsVar(TPtr) AND (TPtr^.Ofst = Num)) THEN
 WrStr (' ');
 WrStr (TPtr^.Entry^.Name^);
 WrStr (' = ');
 ListBTerm (TPtr, Frame);
 WrLn ;
 INC (Num);
 END;
 TPtr := TPtr^.Next;
 END; (*WHILE*)
 RETURN Num;
 END FindVar;

BEGIN
 IF (Clause^.Vars # 0) THEN
 Dummy := FindVar (Clause^.Body, FindVar(Clause^.Head,0));
 END;
END OutPutBindings;

(* ---- debugging -- *)

 (* Wallpaper-dump of stackframe pointed to by FPtr. Logically the
 procedure should belong to module Stack, but because it requires
 ListTerm to list the variable bindings recorded in the frame
 it was shifted to this module
 *)

 PROCEDURE DumpFrame (FPtr : FramePtr);
 VAR J : SHORTCARD;
 BEGIN

124

 IF NOT DBG THEN RETURN END;
 WrCharRep ('-',79);
 WrLn ;
 WrStr ('FRAME : ') ; WrCard (FPtr^.Num,0) ; WrLn ;
 WrStr ('VARS : ') ; WrCard (FPtr^.Vars,0) ; WrLn ;
 WrStr ('PARENT : ') ;
 IF (FPtr^.Parent = NIL) THEN
 WrStr ('None');
 ELSE
 WrStr ('Frame #');
 WrCard (FPtr^.Parent^.Num,0);
 END;
 WrLn ;
 WrStr ('CrntLit : ');
 IF (FPtr^.CrntLit = NIL) THEN
 WrStr ('-'); WrLn;
 ELSE ListTerm (FPtr^.CrntLit); WrLn;
 END;
 WrStr ('CrntCls : ');
 ListClause (FPtr^.CrntCls);
 WrStr ('NxtClause : ');
 IF (FPtr^.NxtClause = NIL) THEN WrStr('-')
 ELSE ListClause (FPtr^.NxtClause)
 END;
 WrLn ;
 OutPutBindings (FPtr^.CrntCls,FPtr);
 WrLn ; WrLn ;
 END DumpFrame;

(* -- *)

(* This is the main interpreter routine.

 This routine should really be a module by itself, with the procedures
 above forming a separate support module.

 The procedure is divided into 5 main sections

 1. initialization
 2. main control loop
 3. procedure selection and unification
 4. backtracking
 5. processing of inbuilt predicates

*)

PROCEDURE ProcessGoal (Goal : ClausePtr);
VAR Root : FramePtr;
 Parent : FramePtr;
 BKTrackPoint : FramePtr;
 NewFrame : FramePtr;
 CrntCall : TermPtr;
 CrntProc : ClausePtr;
 Solutions : CARDINAL;
 BPtr : BindPtr;

 (* --- inbuilt predicates --- *)

 PROCEDURE ExecInBlt (Proc : InBltProc) : BOOLEAN;

 PROCEDURE TestLex(Ord : order) : BOOLEAN;
 VAR T1,T2 : TermPtr;
 B : BindPtr;
 BEGIN
 T1 := GetBoundTerm(CrntCall^.Args,Parent);
 T2 := GetBoundTerm(CrntCall^.Args^.Next,Parent);
 IF (T1=NIL) OR (T2=NIL) THEN RETURN FALSE END;
 IF NOT((T1^.SType = functor) AND (T2^.SType = functor)) THEN

125

 RETURN FALSE
 ELSE RETURN Test(T1^.Entry,T2^.Entry,Ord);
 END;
 END TestLex;

 VAR ok : BOOLEAN;
 BEGIN
 ok := TRUE;
 CASE Proc OF
 cut : BKTrackPoint := Parent^.CrntBTP;
 | isvar : ok := IsVar (CrntCall^.Args) AND
 IsFree (DeRef(BindAdr(Parent,CrntCall^.Args)));
 | nl : WrLn;
 | write : ListBTerm(CrntCall^.Args,Parent);
 | fail : ok := FALSE;
 | stats : MEMUsage;
 | lexlt : ok := TestLex(lt);
 | lexgt : ok := TestLex(gt);
 | lexle : ok := TestLex(le);
 | lexge : ok := TestLex(ge);
 END;
 IF ok THEN CrntCall := CrntCall^.Next; END;
 RETURN ok;
 END ExecInBlt;

 (* --- unification -- *)

 PROCEDURE UnifyTerm (LP1, LP2 : TermPtr;
 EN1, EN2 : FramePtr) : BOOLEAN;

 VAR BPtr1, BPtr2 : BindPtr;
 Var1, Var2 : BOOLEAN;
 Success : BOOLEAN;

 BEGIN
 IF Err THEN RETURN FALSE; END;
 IF DBG THEN
 WrStr('UNIFYING: '); WrStr('{'); WrCard(EN1^.Num,0); WrStr('} ');
 ListTerm (LP1); WrLn;
 WrStr('AND : '); WrStr('{'); WrCard(EN2^.Num,0); WrStr('} ');
 ListTerm (LP2); WrLn;
 GetKey;
 END;

 Success := TRUE;
 IF (IsAnon(LP1) OR IsAnon(LP2)) THEN RETURN Success END;
 Var1 := IsVar(LP1);
 Var2 := IsVar(LP2);
 IF Var1 THEN BPtr1 := DeRef(BindAdr(EN1,LP1)) END;
 IF Var2 THEN BPtr2 := DeRef(BindAdr(EN2,LP2)) END;

 IF NOT (Var1 OR Var2) THEN
 Success := SameFunctor(LP1,LP2);
 LP1 := LP1^.Args;
 LP2 := LP2^.Args;
 WHILE (Success) AND (LP1 # NIL) DO
 Success := UnifyTerm (LP1,LP2,EN1,EN2);
 LP1 := LP1^.Next;
 LP2 := LP2^.Next;
 END; (*WHILE*);

 (* At least one of LP1 and LP2 must be variables.
 This leads to the following cases:

 1. var LP1, var LP2
 let D1 and D2 be the dereferences of LP1 and LP2 respectively.
 If D1 = D2 then succeed (since both are instantiated to the

126

 same thing).
 If both D1 and D2 are bound, then UnifyTerm Lit(D1), Lit(D2)
 with environments Env(D1), Env(D2).
 If D2 is free then bind D2 to D1.
 If D1 is free then copy D2 to D1 and set trail

 2. literal LP1, var LP2
 let D2 be the dereference of LP2.
 if D2 is free then bind D2 to LP1 with EN1 as environment
 else UnifyTerm LP1, Lit(D2) with environments EN1, Env(D2)

 3. var LP1, literal LP2
 let D1 be the dereference of LP1
 if D1 is free then bind D1 to LP2 with EN2 as environment
 else UnifyTerm Lit(D1), LP2 with environments Env(D1), EN2
 *)

 ELSIF (Var1 AND Var2) THEN
 IF BPtr1 # BPtr2 THEN
 IF NOT (IsFree(BPtr1) OR IsFree(BPtr2)) THEN
 Success := UnifyTerm (BPtr1^.TPtr, BPtr2^.TPtr,
 BPtr1^.Env, BPtr2^.Env);
 ELSIF IsFree(BPtr2) THEN
 BPtr2^.BType := var;
 BPtr2^.BPtr := BPtr1;
 IF Before(BPtr2,BKTrackPoint) THEN
 Err := NOT STORETrail (BPtr2);
 END;
 ELSE BPtr1^ := BPtr2^;
 IF Before(BPtr1,BKTrackPoint) THEN
 Err := NOT STORETrail (BPtr1)
 END;
 END;
 END;

 ELSIF (Var2) THEN
 IF IsFree(BPtr2) THEN
 BPtr2^.BType := lit;
 BPtr2^.TPtr := LP1;
 BPtr2^.Env := EN1;
 IF Before(BPtr2,BKTrackPoint) THEN
 Err := NOT STORETrail (BPtr2);
 END;
 ELSE
 Success := UnifyTerm (LP1, BPtr2^.TPtr,
 EN1, BPtr2^.Env);
 END;

 ELSIF (Var1) THEN
 IF IsFree(BPtr1) THEN
 BPtr1^.BType := lit;
 BPtr1^.TPtr := LP2;
 BPtr1^.Env := EN2;
 IF Before(BPtr1,BKTrackPoint) THEN
 Err := NOT STORETrail (BPtr1);
 END;
 ELSE
 Success := UnifyTerm (BPtr1^.TPtr, LP2,
 BPtr1^.Env, EN2);
 END;
 END; (*IF*)
 RETURN Success;
 END UnifyTerm;

 (* Attempts to resolve CrntCall with the head of a clause starting
 from CrntProc.
 INPUTS - none;
 OUTPUTS - exits with CrntProc pointing to the clause whose head
 successfully resolved with the CrntLit, or NIL if no
 clause responded to the call. NewFrame contains any
 bindings for the variables in the clause CrntProc.

127

 *)

 PROCEDURE SelectProc () : BOOLEAN;
 BEGIN
 IF (CrntProc # NIL) AND (CrntProc^.InBlt) THEN
 RETURN ExecInBlt(CrntProc^.Proc);
 END;
 WHILE (CrntProc # NIL) AND NOT Err DO
 NewFrame := MAKEFrame(CrntProc^.Vars);
 IF NewFrame # NIL THEN

 (* Is this a backtrack point ? *)

 NewFrame^.CrntBTP := BKTrackPoint;
 IF CrntProc^.Next # NIL THEN
 BKTrackPoint := NewFrame;
 END;

 IF UnifyTerm(CrntCall,CrntProc^.Head,Parent,NewFrame) THEN

 (* Complete activation record and push it *)

 NewFrame^.Parent := Parent;
 NewFrame^.CrntLit := CrntCall;
 NewFrame^.CrntCls := CrntProc;
 NewFrame^.NxtClause := CrntProc^.Next;
 Parent := NewFrame;
 PUSHFrame();
 CrntCall := CrntProc^.Body;
 RETURN TRUE;

 ELSE

 (* Backtrack one frame - shallow backtracking *)

 RESTORETrail (NewFrame^.Trail);
 CrntProc := CrntProc^.Next;
 BKTrackPoint := NewFrame^.CrntBTP;

 END; (*IF*)

 ELSE Err := TRUE;
 END; (*IF*)

 END; (*WHILE*)
 RETURN FALSE;
 END SelectProc;

 (* --- backtracking ---
 Deep backtracking - resume interpretation from the call indicated
 by the current BKTrackPoint, if any.
 *)

 PROCEDURE BackTrack () : BOOLEAN;
 VAR NewBTP : FramePtr;
 BEGIN
 IF DBG THEN
 WrStr('Backtracking ');
 END;
 IF BKTrackPoint = NIL THEN
 IF DBG THEN
 WrStr(' failed');
 WrLn ;
 END;
 RETURN FALSE;
 ELSE
 IF DBG THEN
 WrStr ('to : ');
 WrCard(BKTrackPoint^.Num,0);

128

 WrLn ;
 END;
 CrntProc := BKTrackPoint^.NxtClause;
 CrntCall := BKTrackPoint^.CrntLit;
 Parent := BKTrackPoint^.Parent;
 NewBTP := BKTrackPoint^.CrntBTP;
 POPFrames (BKTrackPoint);
 BKTrackPoint := NewBTP;
 RETURN TRUE;
 END;
 END BackTrack;

 (* --- main control loop -- *)

 PROCEDURE Run;
 BEGIN
 LOOP

 (* Quit if an error has occured *)

 IF Err THEN RETURN; END;

 (* Select Call:
 CrntProc points to clause selected by previous call to SelectProc.

 IF current procedure is an assertion (ie has no calls) then we have
 arrived at a leaf of the search tree, so go up to the first parent
 procedure which still has some calls pending.

 IF no parent has pending calls, then we have found a solution.
 Output solution and force backtracking to search for further
 solutions.

 OTHERWISE prepare to enter the procedure CrntProc at its first
 call.

 *)

 WHILE (CrntCall=NIL) AND (Parent # Root) DO
 CrntCall := NextCall(Parent);
 Parent := Parent^.Parent;
 END;

 (* CrntCall is NIL iff no parent node has pending calls. In this
 case we have found a solution, and backtracking is required
 to search for further solutions. If backtracking fails, then
 quit. Note that inbuilt predicates are never backtracked to since
 all such predicates are deterministic.
 *)

 IF CrntCall = NIL THEN
 INC (Solutions);
 IF Goal^.Vars > 0 THEN
 WrStr ('-- solution ');
 WrCard (Solutions,0);
 WrLn;
 OutPutBindings (Goal, Root);
 END; (*IF*)
 IF NOT BackTrack() THEN RETURN; END;

 ELSE

 (* Otherwise, CrntCall points to the next call to be executed.
 The call may be a variable, in which case the literal
 dereferenced by the variable is the actual call. If the variable
 is unbound, or bound to a free variable, then an error occurs.
 *)

129

 IF IsVar(CrntCall) THEN
 BPtr := DeRef(BindAdr(Parent,CrntCall));
 IF IsFree(BPtr) THEN
 Err := TRUE;
 ELSE
 CrntProc := BPtr^.TPtr^.Entry^.FstCls;
 END;
 ELSIF IsFunctor (CrntCall) THEN
 CrntProc := CrntCall^.Entry^.FstCls;
 END;
 END;

 (* Select procedure to respond to this call. If no procedure responds,
 then we have met a failure node, so backtracking is required. If
 backtracking fails, then quit.
 *)

 WHILE NOT SelectProc() DO
 IF Err THEN RETURN; END;
 IF NOT BackTrack() THEN RETURN; END;
 END; (*LOOP*)

 DumpFrame (GetStkTop());

 END; (*LOOP*)
 END Run;

(* --- control initialization --- *)

BEGIN
 Err := FALSE;
 OPENStack;
 Solutions := 0;
 BKTrackPoint := NIL;
 Root := MAKEFrame(Goal^.Vars);
 Root^.CrntBTP := NIL;
 Root^.CrntLit := NIL;
 Root^.NxtClause := NIL;
 Root^.CrntCls := Goal;
 Root^.Parent := NIL;
 Parent := Root;
 CrntCall := Goal^.Body;
 PUSHFrame;
 DumpFrame (Root);
 Run;

 IF NOT Err THEN
 IF (Solutions=0) THEN
 WrStr ('NO');
 WrLn;
 ELSIF (Goal^.Vars = 0) THEN
 WrStr ('YES');
 WrLn ;
 END; (*IF*)
 ELSE
 ReportErr ('Run-time error');
 END;

 CLOSEStack;

END ProcessGoal;

(* ---- module initialization --- *)

BEGIN
 DBG := FALSE;
END ProcGoal.

130

 INBUILT - DEFINITION

DEFINITION MODULE Inbuilt;

(* Definition of inbuilt predicates - interface module.

 Exports:
 inbuilt-predicate identifiers.
 definition procedure.

*)

TYPE InBltProc = (isvar, cut, write, nl, fail, stats,
 lexlt, lexgt, lexle, lexge);

PROCEDURE DefineInbuilts;

END Inbuilt.

131

 INBUILT - IMPLEMENTATION

IMPLEMENTATION MODULE Inbuilt;

FROM DBase IMPORT SymTabRec, ClauseRec,
 SymTabPtr, ClausePtr,
 SymType, MKClauseRec;

FROM STable IMPORT Insert;

(* -- *)

 PROCEDURE DefineInbuilts;

 (* Make a symbol-table entry and one clause record for
 each inbuilt predicate.
 *)

 PROCEDURE Make(ID : ARRAY OF CHAR; (* name *)
 Proc : InBltProc; (* procedure identifier *)
 Arity : SHORTCARD); (* arity *)

 VAR CPtr : ClausePtr;
 SPtr : SymTabPtr;
 BEGIN
 SPtr := Insert(ID,functor,Arity);
 CPtr := MKClauseRec();
 SPtr^.FstCls := CPtr;
 SPtr^.LstCls := CPtr;
 CPtr^.Next := NIL;
 CPtr^.InBlt := TRUE;
 CPtr^.Proc := Proc;
 CPtr^.Entry := SPtr;
 END Make;

 BEGIN
 Make ('var',isvar,1);
 Make ('!',cut,0);
 Make ('nl',nl,0);
 Make ('fail',fail,0);
 Make ('write',write,1);
 Make ('stats',stats,0);
 Make ('@<',lexlt,2);
 Make ('@>',lexgt,2);
 Make ('@>=',lexge,2);
 Make ('@=<',lexle,2);
 END DefineInbuilts;

END Inbuilt.

132

APPENDIX C
VRP Predefined Predicates - PREDEF.PRO
% --- predef.pro --- predefined prolog predicates for VRP ---
% 24.3.90

% --- true --- always succeeds.
 true.

% --- not (X) --- fails if X succeeds, succeeds if X fails. X must be
% instantiated or an error occurs.
 not (X) :- X,!,fail.
 not (X).

% --- nonvar(X) --- succeeds if argument is not a free variable.
 nonvar(X) :- var(X),!,fail.
 nonvar(X).

% --- = (A,B) --- succeeds if A and B are instantiated to the same term
 instance. Otherwise fails.
 = (A,A).

% --- \=(A,B) --- not(=(A,B)).
 \= (A,A) :- !,fail.
 \= (A,B).

% --- call(X) --- executes X as a goal. X must be instantiated.
 call(X) :- X.

% --- repeat --- creates a bactrack point which succeeds infinitely.
 repeat.
 repeat :- repeat.

% --- a predicate (non-generative) version of member.
 memberp (H, [H|_]) :- !.
 memberp (X, [H|T]) :- memberp (X, T).

% --- the generative version of member.
 member (H, [H|_]).
 member (X, [H|T]) :- member (X, T).

% --- last element of a list.
 last (X,[X]).
 last (X,[_|Y]) :- last(X,Y).

% --- append second argument to first (list) giving third (list).
 append ([],L,L).
 append ([X|L1],L2,[X|L3]) :- append (L1,L2,L3).

% --- reverse first argument (list) giving second argument (list).
 reverse(L1,L2) :- rev2 (L1,[],L2).
 rev2 ([X|L],L2,L3) :- rev2 (L, [X|L2], L3).
 rev2 ([],L,L).

133

% --- return third argument (list) consisting of second argument (list)
% without all occurences of first argument.
 delete (_,[],[]).
 delete (H,[H|T],X) :- !, delete (H,T,X).
 delete (X, [Y|T1],[Y|T2]) :- delete (X,T1,T2).

% --- subst (A1,L1,A2,L2) -- replace all occurences of A1 in list L1
 by A2 to give list L2
 subst (_,[],_,[]).
 subst (H1,[H1|T1],H2,[H2|T2]) :- !, subst (H1,T1,H2,T2).
 subst (X, [H|T1],Y,[H|T2]) :- subst (X,T1,Y,T2).

% --- write X followed by a CR/LF
 writeln(X) :- write(X), nl.

% --- write contents of a list as a string (ie without [] and separators)
 writestr([]).
 writestr([H|T]) :- write(H), writestr(T).

% --- premute(List1,List2) --- permute list1 returning result in list2.
 permute(L,[H|T]) :- append(V,[H|U],L),
 append(V,U,W),
 permute(W,T).
 permute([],[]).

% --- sort(List1, List2) --- sort the first list in ascending order,
% returning result in second. A quicksort
% is used (see [CLO81 p.157]).
 sort(L1,L2) :- qs(L1,L2,[]).
 split (H,[A|X],[A|Y],Z) :- @=<(A,H), split(H,X,Y,Z).
 split (H,[A|X],Y,[A|Z]) :- @>(A,H), split(H,X,Y,Z).
 split(_,[],[],[]).
 qs([H|T],S,X) :- split(H,T,A,B),
 qs(A,S,[H|Y]),
 qs(B,Y,X).
 qs([],X,X).

	PROPOSITIONAL LOGIC
	Objectives
	Syntax
	Semantics
	Satisfiability
	Clausal Form And Conjunctive Normal Form
	Logical Consequence
	Deduction Procedures
	Semantic Trees
	Resolution
	The Method Of Refutation By Resolution
	Completeness Of The Resolution Principle (Propositional Case)
	Refutation Trees
	Horn Clauses
	Restricting Resolution To Horn Clauses Programs - Sld-Resolution
	Choice Of Selected Literal In SLD-Resolution
	Search Strategies
	SLD-Refutation With Depth-First Search
	Implementation
	Database Representation

	FIRST-ORDER LOGIC
	Objectives
	Syntax
	Standard Form
	Semantics
	The Herbrand Universe And Base
	Herbrand Interpretations And Semantic Trees
	Herbrand's Theorem
	Substitutions
	Unification
	Representation Of Terms
	Unification Algorithm
	Resolution In 1st Order Logic
	Completeness of the Resolution Principle (1st Order Case)
	Logic Programming

	PROLOG
	Objectives
	The Language - Syntax And Terminology
	Program
	Clause
	Terms
	Literals
	Predicates

	Semantics
	Declarative Semantics
	Procedural Semantics

	Control Mechanism
	Activation Frames
	Control Vector
	Environment Vector

	The Interpretation Strategy
	Indexing Of Clauses
	Implementing The ! Predicate
	The Binding Environment And The Trail
	Structure-Sharing And Non Structure-Sharing Systems
	Structure Sharing
	Non-Structure Sharing

	Deterministic-Frame Optimization
	The Two-Stack Representation In SS Systems
	Other Optimization Techniques
	Intelligent Backtracking And Compilation

	IMPLEMENTATION
	Objectives
	The Prolog Subset
	Choice Of Implementation Language
	Top-Down Design
	The Main Data Structures
	The Dictionary
	The String Store
	The Symbol Table
	The Clause Records
	The Term Records

	Operations On The Symbol Table And Database
	Symbol Modes
	The Lexical Analyzer
	The Parser
	Constructing The Internal Representation Of A Clause
	Encoding Variables
	Preventing Redefinition Of System Predicates By The User
	Parsing Goal Clauses
	The Runtime Structures
	Activation Frames
	Binding Records
	The Stack Module

	The Interpreter
	Unification
	Enhancements To The Interpreter

	BIBLIOGRAPHY
	APPENDIX A�PROPOS SOURCE CODE
	APPENDIX B�VRP Source Code
	APPENDIX C�VRP Predefined Predicates - PREDEF.PRO

