
© mario camilleri 1990 - 1995

Course
Notes
For

PASCAL
Advanced Level



Table of Contents

1. Using the Network ............................................................................. 5

1.1. The Network...............................................................................................................5
1.2. Getting Started ...........................................................................................................5
1.3. Your home directory...................................................................................................6
1.4. Running programs ......................................................................................................6

2. MSDOS ............................................................................................... 7

2.1. Listing the contents of a disk ......................................................................................7
2.2. Directory structure ......................................................................................................7
2.3. Directory and filenames ..............................................................................................8
2.4. Reserved and other extensions ....................................................................................8
2.5. The directory tree........................................................................................................8
2.6. Pathnames ..................................................................................................................9
2.7. Relative pathnames.....................................................................................................9
2.8. Moving about the directory tree ..................................................................................9
2.9. Creating and deleting directories ................................................................................10
2.10.Wildcards ...................................................................................................................10
2.11.Command-line switches..............................................................................................11
2.12.Output redirection.......................................................................................................11
2.13.Copying files ..............................................................................................................12
2.14.Other common MSDOS commands ............................................................................12

3. Using the IDE ..................................................................................... 13

3.1. Running Turbo Pascal.................................................................................................13
3.2. The Turbo Pascal Environment...................................................................................13
3.3. Using the Menus.........................................................................................................14
3.4. Using the Online Help ................................................................................................15
3.5. Loading and Saving Files............................................................................................15
3.6. Compiling a Program .................................................................................................15
3.7. Running Programs......................................................................................................16
3.8. Editing Source Code ...................................................................................................17
3.9. Tracing a Program......................................................................................................17

4. The Structure of a PASCAL Program............................................... 18

4.1. Example of a Simple PASCAL Program.....................................................................18
4.2. Structure of a PASCAL Program ................................................................................20
4.3. Data Output:  WRITE and WRITELN ........................................................................20
4.4. Formatted Output........................................................................................................20
4.5. Data Input: READ and READLN ...............................................................................21
4.6. The Assignment Statement .........................................................................................21
4.7. Arithmetic Operators and Functions ...........................................................................21
4.8. Exercises - 1 ...............................................................................................................23
4.9. Exercises - 2 ...............................................................................................................23

5. Conditional and Compound Statements ......................................... 25

5.1. Boolean Values and Relational Operators ...................................................................25
5.2. Logic Operators ..........................................................................................................25
5.3. Boolean Variables.......................................................................................................26
5.4. IF...THEN...ELSE ......................................................................................................27
5.5. Compound Statements ................................................................................................27



5.6. Exercises - If..Then..Else ............................................................................................28

6. The CASE Statement ......................................................................... 30

6.1. Syntax of the CASE Statement....................................................................................30
6.2. Using Many Labels In A Single Case..........................................................................31
6.3. Simple Menus.............................................................................................................31
6.4. Exercises ....................................................................................................................32

7. Arrays and Loops .............................................................................. 33

7.1. Single Dimensional Arrays .........................................................................................33
7.2. Two Dimensional Arrays ............................................................................................34
7.3. Higher Dimensional Arrays ........................................................................................34
7.4. Exercises - Arrays.......................................................................................................34
7.5. Loops..........................................................................................................................35
7.6. The FOR..DO loop......................................................................................................35
7.7. The REPEAT..UNTIL loop.........................................................................................37
7.8. The WHILE..DO loop.................................................................................................37
7.9. Comparison of REPEAT..UNTIL and WHILE..DO loops ...........................................38
7.10.Exercises - FOR, REPEAT and WHILE loops.............................................................38

8. Strings and Text Files ....................................................................... 41

8.1. String Variables..........................................................................................................41
8.2. Operations On Strings ................................................................................................41
8.3. Reading and Writing Characters in a String................................................................42
8.4. Comparing Strings......................................................................................................42
8.5. Text Files....................................................................................................................43
8.6. File Variables .............................................................................................................43
8.7. Reading From a Text File ...........................................................................................43
8.8. Creating a New Text File............................................................................................44
8.9. Appending Data to a Text File ....................................................................................44
8.10.The Printer Text File ..................................................................................................44
8.11.Exercises - Text Files..................................................................................................45

9. Procedures - 1.................................................................................... 47

9.1. Top-Down Design.......................................................................................................47
9.2. Simple Procedures ......................................................................................................47
9.3. Procedures and the Stack ............................................................................................48
9.4. Value Parameters - Parameters for Input.....................................................................49
9.5. String Parameters - Using Type ..................................................................................50
9.6. Some More Standard Turbo Pascal Procedures............................................................51
9.7. Exercises  - Procedures 1 ............................................................................................52

10. Procedures - 2.................................................................................... 53

10.1.Variable Parameters - Parameters for Input and Output ..............................................53
10.2.Declaring Variable Parameters ...................................................................................53
10.3.Exercises - Procedures with VAR Parameters .............................................................54
10.4.Using String Types in Var Parameters - Relaxing Type Checking...............................55
10.5.Procedures Which Call Other Procedures....................................................................56
10.6.Creating a Library Unit...............................................................................................56
10.7.The Structure of a Turbo Pascal Unit (TPU)................................................................56

10.7.1. INTERFACE PART ........................................................................................................57

10.7.2. IMPLEMENTATION PART ...............................................................................................57

10.8.Example of a TPU ......................................................................................................57



10.9.Using a TPU...............................................................................................................58
10.10. Exercises - Writing a TPU ....................................................................................58

11. Functions ........................................................................................... 60

11.1.What are Functions? ...................................................................................................60
11.2.Declaring Simple Functions........................................................................................60
11.3.Exercise - Writing Functions ......................................................................................61
11.4.Passing Arrays as Parameters to Subprograms ............................................................61
11.5.Small Project - Implementing a Stack .........................................................................61
11.6.Nature of problem to be Solved ...................................................................................62
11.7.Designing the Interface...............................................................................................62
11.8.Designing the Implementation ....................................................................................62
11.9.Exercises - Stack Unit.................................................................................................63

12. Enumerated Types, Ranges and Sets.............................................. 64

12.1.Enumerated Types ......................................................................................................64
12.2.Subrange Types ..........................................................................................................65
12.3.Set Types and Sets ......................................................................................................66
12.4.Exercises - Enumerated types, Ranges and Sets...........................................................68

13. Static Records and Random Files ................................................... 69

13.1.The RECORD Type ....................................................................................................69
13.2.Files of Records ..........................................................................................................71
13.3.Opening a Record File ................................................................................................72
13.4.Reading and Writing Records .....................................................................................73
13.5.Other File Operations .................................................................................................73
13.6.File Functions.............................................................................................................73
13.7.Handling File I/O Errors.............................................................................................74
13.8.Using Random-Access Files - Some Notes ..................................................................74
13.9.Exercises - Random Access Files ................................................................................74

14. Recursion ........................................................................................... 76

14.1.A Simple Example of Recursion .................................................................................76
14.2.Recursive vs. Iterative Strategies.................................................................................76
14.3.Characteristics of Recursive Algorithms .....................................................................77
14.4.The Uses of Recursion ................................................................................................77
14.5.Examples of Recursion ...............................................................................................77
14.6.Exercises - Recursion..................................................................................................78



© mario camilleri 1990 - 1995

Using the Network Page 5 

Chapter1.
1. Using the Network

OBJECTIVES:

• In this short chapter you will learn how to work on the network - specifically how to
boot, login and out, and assign yourself a private password.

1.1. The Network

Throughout this course, you'll be working on a 5-station network.

SERVER

1 2 3 4 5

Network traffic

Stations

The network server is equipped with a large harddisk providing centralized shared storage for
the stations.  Local stations have only a single 3½ inch disk drive, used for the permanent
storage of your own work.  Each authorized user (and that includes you) has a private home
directory on the network disk.  The user has complete rights in his/her home directory, and
read-only or execute-only rights in other directories containing application software or shared
data.

1.2. Getting Started

To use the network, follow these instructions:

1. If the station is switched off, switch it on.  The stations boot from an internal boot rom,
but if something goes wrong you may have to use a network bootdisk obtainable from
your teacher or from the administration personnel in the office, otherwise



© mario camilleri 1990 - 1995

Using the Network Page 6 

2. Type LOGIN at the keyboard.

3. You will be asked for your user's name.  This is a public name assigned by the network
administrator to each authorized user, and usually consists of an 8-character code as
follows:

AC95<first three letters of your surname><first letter of your name>

Thus for example, if your name is Mark Borg, your user name would be AC95BORM.
The AC95 prefix indicates that you are a member of the Advanced-level Computing
1995 group.

At this point you should receive a login message.  Check the system prompt to make sure that
you are in your home directory (which has the same name as your user name).   You should
now assign yourself a private password.  This password is known only to yourself, and
ensures that nobody else has access to your private directory.  Do this by using the network
SETPASS command.  Since the password you type in is not echoed to the screen, you will be
asked to enter it twice for validation.  Make sure you choose a password which is easy to
remember.  The next time you log in, you will be asked BOTH your user name AND your
password - if you forget either of them you cannot use the network (and probably you'll be the
laughing stock of the class!).

When you have finished using the network, do not switch off - instead use the LOGOUT
command to sign off.

1.3. Your home directory

You can think of your home directory as an area of the server's disk which has been set aside
exclusively for your own use.  This is the directory where you start when you log in, and this
is where you save all your files.  Nobody else can use this directory, and therefore your files
are safe from other users.  However,

I YOU ARE EXPECTED TO COPY ALL YOUR FILES ONTO YOUR
OWN FLOPPY DISKETTE AT THE END OF EACH LESSON.

You must do this not only as a safety precaution (in case of a hardware fault on the network
drive), but also because you are expected to continue working at home.  Note that each user's
home directory has a maximum capacity of 2M.

1.4. Running programs

All the programs you will need for this course are already installed on the network.  You are
expected to use these installed programs, not your own.  We must emphasize that

I NO ONE IS ALLOWED TO RUN ANY SOFTWARE FROM A FLOPPY
DISKETTE, OR TO INSTALL ANY SOFTWARE ON THE NETWORK.



© mario camilleri 1990 - 1995

MSDOS Page 7 

CHAPTER 2.
2. MSDOS

An Operating System provides the interface between the user and the raw hardware.  Most
IBM-compatible PCs run under the Microsoft Disk Operating System - MSDOS.  This is a
very simple single-user, single-programming operating system.  These notes give a very brief
introduction to MSDOS 5.0.  Most of what we say here applies equally well to other versions
of MSDOS.

In what follows, computer output is shown in bold, while user input is shown in normal
text.  MSDOS is case insensitive, which means that user input may be in either
UPPERCASE or lowercase - no distinction is made. REMEMBER to press the ENTER
KEY to terminate your input.

Your computer will come equipped with one or more disk drives. Each disk drive has a
single letter name.  The first drive is called A:, the second B:, and so on.  Drives C: onwards
usually represent hard-disk drives.  On networked systems, drives F: onwards usually
represent network drives (non-local drives) - i.e. drives which are shared among users.

The letter shown in the MSDOS prompt is the letter of the CURRENTLY LOGGED
DRIVE - A>, B>, etc.  To log onto a different drive (assuming your computer has more than
one drive), type the drive name:

A> u:
U>

2.1. Listing the contents of a disk

The list of contents of a disk is called a DIRECTORY LISTING.  You can get a directory
listing by issuing a DIR command.   For example, you would use

U> dir A:

to list the contents of the disk in drive A:.   If you do not specify a drive letter, DIR will list
the contents of the currently logged drive.

2.2. Directory structure

Files on a disk are stored in DIRECTORIES.  You may think of directories as FOLDERS.
Directories may be nested, forming a DIRECTORY HIERARCHY - i.e. directories may not
only contain files, but also SUB-DIRECTORIES.

Every disk has at least one directory, called the ROOT, which is the parent of all files and
directories on that disk.  This directory is automatically created for you when you FORMAT
the disk.  The root directory is denoted by the backslash character \.  Thus A:\ denotes the
root directory of the disk in drive A:

U> dir F:\



© mario camilleri 1990 - 1995

MSDOS Page 8 

lists the contents of the root directory of drive F.  The hierarchical structure of directories,
starting with the root directory and going down into directories, subdirectories etc., is
sometimes called the DIRECTORY TREE.

2.3. Directory and filenames

Names of directories and files (which we will collectively call NAMES) in MSDOS may be
from 1 to 8 characters long, and may NOT contain SPACES or most special characters (such
as punctuation).  To be on the safe side, use only letters and digits for names.

In addition, a name may have an EXTENSION of from 1 to 3 characters, which must be
introduced by a FULLSTOP (directory names can, but are usually NOT, given an extension).
The EXTENSION is meant to GIVE SOME INDICATION OF THE FILE TYPE.

The following are all legal NAMES:

DIR1
LETTER.1
PROG.PAS

2.4. Reserved and other extensions

Some extensions are RESERVED by MSDOS to indicate special files. These are:

.SYS an operating system file

.EXE an executable file (can be run by typing its name at the MS DOS
prompt)

.COM also an executable file

.BAT a BATCH file.  Batch files contain sequences of MSDOS
commands which can be executed by merely invoking the batch
file.

Other extensions, while not reserved, are conventionally associated with certain types of files,
for example:

.BAK a backup file

.BAS a BASIC source file

.PAS a PASCAL source file

.ASM an ASSEMBLER source file

.DOC a word-processor document file

.TXT plain ASCII text file

.ZIP a set of files compressed using the PKZIP utility

.ARC a set of files compressed using the PKARC utility

.TPU Turbo Pascal Unit file

.TMP a temporary file

2.5. The directory tree

Consider the following directory tree:



© mario camilleri 1990 - 1995

MSDOS Page 9 

\

PASCALWORDPROC command.com

LETTERS DOCS LESSON1 LESSON2

tom.ltr
bob.ltr

doc.1 prog1.pas
prog1.exe

prog1.pas
prog2.pas

 A directory tree
Trees in Computing differ from those in

nature in that they have their roots sticking
up into the air!

The ROOT DIRECTORY \ contains 3 items: two directories (WORDPROC and PASCAL),
and a file (COMMAND.COM).  The WORDPROC subdirectory itself contains two
subdirectories - LETTERS and DOCS, but no files. And so on.

When you insert a disk into a drive, the ROOT directory of that disk becomes the
DEFAULT DIRECTORY OF THE DRIVE.  If you DIR the disk, you will only see the
items in the root directory.  You can change the DEFAULT DIRECTORY (or CURRENT
DIRECTORY) by using the MSDOS command CD, for example

A> cd PASCAL

This changes the DEFAULT DIRECTORY to the PASCAL subdirectory.  If you do a DIR
now, you will only see the 2 items LESSON1 and LESSON2.  You may, if you wish, again
CD to one of these directories.

2.6. Pathnames

Consider file PROG2.PAS.  From the directory tree you can see that PROG2.PAS is in
directory LESSON2, which is itself in directory PASCAL, which is itself in the root directory
\, which is on the disk in drive A: (for example).  We say that the FULL PATHNAME of the
file PROG2.PAS is

A:\PASCAL\LESSON2\PROG2.PAS

Note how the \ character NOT ONLY denotes the ROOT directory, but is also used as a
NAME SEPARATOR in writing out the path of an object on the disk.

2.7. Relative pathnames

The full pathname is an ABSOLUTE pathname - it completely and unambiguously specifies
where a file is located, whatever your default directory happens to be.

Pathnames may also be specified RELATIVE TO YOUR DEFAULT DIRECTORY. For
example, assume your default directory is currently A:\, then the pathname of the file
PROG2.PAS is

PASCAL\LESSON2\PROG2.PAS

Assume that your default directory is A:\PASCAL (i.e. you did a CD PASCAL), then the
location of PROG2.PAS relative to the current default directory is

LESSON2\PROG2.PAS

2.8. Moving about the directory tree

Suppose your default directory is A:\, and you want to change to directory LESSON1.  You
can do this as follows:



© mario camilleri 1990 - 1995

MSDOS Page 10 

A> cd PASCAL
A> cd LESSON1

The same effect may be achieved using a SINGLE CD command:

A> cd PASCAL\LESSON1

The root directory is the PARENT directory of both WORDPROC and PASCAL. PASCAL
is the PARENT directory of both LESSON1 and LESSON2.  The special directory name ..
represents the PARENT of a subdirectory (note that root has no parent directory).  Thus,
doing a

A> cd ..

will change the default directory to the PARENT of the current default directory.  For
example, if your default directory was LESSON1, the CD .. command will change to
directory PASCAL, since this is the parent directory of LESSON1.  Thus the effect of CD ..
is to MOVE UP ONE LEVEL in the directory tree.

. Draw a simplified directory tree of the network drive U:.  This is the drive containing all
users' home directories.  Note how the tree is structured, and learn to find your way
around.  What happens if you try to list the contents of somebody else's home directory?
Why is this?

2.9. Creating and deleting directories

To create a new directory, use the MD (Make Directory) command.  For example:

MD A:\PASCAL\MYPROGS

will create a directory MYPROGS in directory PASCAL on the disk in drive A:.  The
directory will initially be empty, of course.  You may use relative pathnames.  For example,
MD MYPROGS will create MYPROGS as a subdirectory of your current default directory.

You may delete a directory by using the RD (Remove Directory) command, for example:

RD A:\PASCAL\MYPROGS

The directory to be deleted MUST BE EMPTY.

. Starting with chapter 3, you will be writing Pascal programs which you will need to save
to disk.  During the lesson you will save these programs in your home directory, and at
the end of the lesson you should copy them onto your floppy diskette.  Rather than saving
all files in one directory, it is best to organize things by creating a subdirectory for each
chapter. Create subdirectories in your home directory called CHAP3, CHAP4 and
CHAP5.  Later, you can create subdirectories for the other chapters as well.

2.10. Wildcards

A WILDCARD is a character which may represent any other character (like a Joker in a
card game).  Some MSDOS commands will let you use wildcards in filenames to specify
GROUPS of files, rather than single files.  There are 2 permissible wildcard characters:

* This represents a SEQUENCE OF 0 OR MORE CHARACTERS.

? This represents any SINGLE character.

EXAMPLES:

*.* Represents all files with ANY name and ANY extension

*.pas Represents all files with ANY name and an extension of .PAS

*.? Represents all files with ANY name and ANY SINGLE-
CHARACTER EXTENSION



© mario camilleri 1990 - 1995

MSDOS Page 11 

We can use wildcards to good effect when requesting a directory listing, for example:

DIR pascal\lesson1\*.bak
DIR prog1.*

2.11. Command-line switches

Many MSDOS commands can take one or more command-line switches which change the
way they work.  A command-line switch is usually a single letter preceeded with a /
character.   Most commands in MSDOS 5.0 accept a help switch, /?, which lists help about
that particular command.  For example DIR /? will explain what DIR does, and list all the
command-line switches it accepts.

Among the switches accepted by DIR are /p, which causes the directory listing to pause after
every screenful of data, and /w, which lists the directory in a wide format.  These two
switches are useful when the directory being listed contains many files, since otherwise the
listing will scroll off the screen before you get a chance to view it.  Thus we can issue a dir
command as follows:

DIR A:\LESSONS\*.PAS /P

MSDOS also has a HELP command.  Typing HELP by itself produces a list of all MSDOS
commands.  Typing HELP followed by a command name, for example

HELP DIR

has the same effect as using the /? switch with the command.

NOTE the difference between \ (backslash) used as a directory separator, and / (slash)
used to specify command-line switches.

2.12. Output redirection

Most DOS commands send their output (for example the directory listing produced by DIR)
to the STANDARD OUTPUT DEVICE.  The standard output device is by default the screen,
but you can REDIRECT this output to any other valid output device.  Valid devices include
the disk (ie a file) and the printer.  When you do this, the output produced by the command
goes into the output device you specify instead of going to the screen.

To redirect output, you use the > character, followed by the name of the device where the
output should be sent.  The device name can be either a filename or PRN (the printer).  Thus
we can do the following:

DIR A:\*.* >PRN

which sends the directory listing to the printer - assuming a printer is connected and online.

DIR >LIST.TXT

which sends a listing of the current directory to the file LIST.TXT.  Careful though, if a file
called LIST.TXT already exists, it will be overwritten.  Similarly, the following sends the
help information about the FORMAT command to a file HELP.TXT.

FORMAT /? >HELP.TXT

This could be a very useful way for compiling a help file with information about many
MSDOS commands - just call all the commands you want help about with the /? switch, and
collect the information in a single file, which you could later print in the form of a manual, or
load into a wordprocessor for formatting, etc.  The problem is, of course, that every
command's help output will overwrite all previous output.  To overcome this problem, you
can use the >> output redirector.  This works like >, but instead of overwriting the file you
specify, it appends the new information to it.  Thus, doing:

DIR /? >>HELP.TXT
FORMAT /? >>HELP.TXT

will produce a file HELP.TXT containing information about BOTH DIR and FORMAT.



© mario camilleri 1990 - 1995

MSDOS Page 12 

NOTE that >> will append output to the specified file if the file already exists.  If the
specified file does not exist, it will simply create it (in this case it behaves just like >).

2.13. Copying files

To copy files, you use the COPY command.  This command usually takes two arguments -
the name of the file you want to copy (the SOURCE), and where to place the copy (the
DESTINATION).  Thus

COPY PROG1.PAS PROG1.BAK

will make a copy of PROG1.PAS and call it PROG1.BAK.  Keep in mind that this command
makes a COPY of a file - the original (in this case PROG1.PAS) is not changed in any way.
You can specify a full pathname for the destination file if you want the copy to be placed in a
different directory or on another disk.

The SOURCE argument can specify multiple files by using wildcards.  Thus

COPY U:*.PAS A:\PROGS

will copy all files in the default directory of drive U: with extension .PAS, and place them in
subdirectory PROGS of drive A:

. Your home directory is a subdirectory of ALEV95.  This directory contains all the home
directories of students in the 1995 A-Level group.  This directory also contains a
subdirectory called COMMON.  Common contains files which can be read by all users
in group ALEV95.  Amongst other things, it contains a subdirectory called CHAP3,
which holds some files you will be using in the next chapter.  Make sure you are in your
home directory, and copy all the contents of COMMON\CHAP3 into your own CHAP3
directory.

Another way of copying files is by using the XCOPY command.   Besides being faster than
COPY for copying multiple files, XCOPY can also copy subdirectories if you specify the /S
switch.   Suppose you wanted to copy all the files in your home directory, together with all its
subdirectories and THEIR files and subdirectories (sometimes called a BRANCH of the
directory tree), onto the disk in drive A:.  If you are in your home directory, you could do this
with XCOPY as follows:

XCOPY *.* A:\   /S

2.14. Other common MSDOS commands

The appendix gives an overview of the most common MSDOS commands.  You should,
however, aim to become fluent in using MSDOS - use the /? switch to learn more about
commands.

. Using the /? switch or the HELP command, and redirecting output with >> , produce a
file MANUAL.TXT  with information about the following commands:

CLS Clears the screen.
COPY Copies one or more files to another location.
DEL Deletes one or more files.
DIR Displays a list of files and subdirectories in a directory.
DISKCOPY Copies the contents of one floppy disk to another.
FORMAT Formats a disk for use with MS-DOS.
MD Creates a directory.



© mario camilleri 1990 - 1995

Using the IDE Page 13 

CHAPTER 3.
3. Using the IDE

In this chapter you are introduced to the Trubo Pascal Integrated Development Environment -
the set of software tools you will be using to create Turbo Pascal programs.  You will need the
file TABLES.PAS which you copied into your CHAP3 directory in the previous lesson (this
file will aslo be required for the next chapter).

3.1. Running Turbo Pascal

To run Turbo Pascal 5.5 (TP5) simply type in PAS5.  This invokes a batch file which runs
Turbo Pascal for you.  TP5 is a complete integrated development environment (IDE) -
which means that it integrates the following modules in a single package:

1. Text editor for writing program source.

2. Online, context-sensitive help system containing help about every Pascal construct and
command, all standard libraries, the editor etc., as well as example programs which help
to illustrate the use of all Pascal constructs and library procedures.

3. File librarian for loading and saving source files and navigating directories.

4. Compiler for compiling the source program to an object program.

5. Linker for linking object modules into a single executable program.

6. Loader for running executable code.

7. Source-level debugger for correcting runtime errors in your programs.

The whole environment is menu-driven - you issue commands by selecting items from the
menu bar at the top of the screen.

3.2. The Turbo Pascal Environment

The main TP5 screen consists of 4 basic areas, as follows:

1. The Menu Bar.  This gives access to 7 main menus items, most of which can be pulled
down to reveal further items.

2. The Edit Window.  This is where all file editing takes place.  The first line of the edit
window is a status line providing (among other things) the following information:

• Cursor position (line and column)

• Insert/overwrite indicator, indicating the current edit mode.  The edit mode can be
toggled using the Insert key.

• The file-modified indicator (an asterisk).  This indicates that the file in the edit
window has been modified, and is a kind of warning to remind you that you should
save the file.



© mario camilleri 1990 - 1995

Using the IDE Page 14 

• The filename.  This is the name of the file being edited.  If the file being edited is a
new file, and therefore does not have a name yet, then the default NONAME.PAS is
displayed.

3. The Watch Window.  This window is only used when debugging a program, and is not
required otherwise.  You may prefer to hide this window in order to make the edit
window larger.  You can do this by pressing function key F5 (zoom), which hides and
shows the watch window.

4. The Information Line.  This lists the most common hotkeys you can use.  A hotkey is a
function key or a combination of 2 keys which you can press to perform an action.
Thus, to zoom the edit window and hide the watch window, you can press F5.  There are
many more hotkeys than are listed in the information line.  If you press and hold down
the CTRL key or the ALT key, a different list of hotkeys is displayed.  The right side of
the information line shows (in inverse video) the state of the keyboard's toggle keys - the
CAPS LOCK, the SCROLL LOCK and the NUM LOCK.  In the above diagram only the
NUM LOCK is on, the other two toggle keys being off.

NOTE hotkeys are sometimes also called shortcut keys or accelerator keys.

3.3. Using the Menus

To make a selection from the menu bar, press F10, use the left and right arrow keys to move
to the desired menu, then press ENTER to pull down the menu and make your selection.

A faster method is to use ALT-<Letter>, where <Letter> is the first letter of the menu you
want to access (usually shown in red).  Thus ALT-F takes you to the file menu, etc.  Then use
the up and down cursor keys to move to the desired item, and press ENTER.  To exit from
the menu and return to the edit window, use ESC.

Many menu items have a hot key associated with them - you can use this instead of selecting
the item from the menu.

File     Edit     Run     Compile     Options     Debug     Break/watch
 Edit

Watch

F1-Help  F5-Zoom  F6-Switch  F7-Trace  F8-Step  F9-Make  F10-Menu

Line 1       Col 1          Insert   Indent              Unindent   *  U:NONAME.PAS

NUM

_



© mario camilleri 1990 - 1995

Using the IDE Page 15 

3.4. Using the Online Help

TP5 has an extensive online, context-sensitive hypertext help system.  You access help pages
by using the F1 key, as follows:

1. F1 gives context help  -  i.e. help relevant to what you are currently doing.  Thus,
pressing F1 when in the editor gives help on editor commands, and pressing F1 when in
a menu gives help about the current menu item.

2. Pressing F1 twice takes you to a contents help page (help index), from where you can
select a topic about which you require information.

3. Pressing ALT-F1 displays the last help page.

4. From the editor, pressing Ctrl-F1 brings up help about the item over which the cursor is
positioned.  For example, if the cursor is over the word WRITELN (which is a standard
Pascal procedure), pressing Ctrl-F1 gives help about the syntax of this procedure.

5. Some help pages contain a link to an example page.  Example pages contain small
example programs demonstrating the use of a Pascal command or construct.  You can
run these example programs as follows

• Press C (for Cut) - the cursor will appear in the help page.

• Press B (for Begin), and move the cursor with the cursor (arrow) keys to drag a
rectangle around the example.

• Press ENTER - the marked section of text from the example page is copied into the
editor at the position of the cursor.  You can then compile and run the example
program.

3.5. Loading and Saving Files

In the previous chapter, you created a directory called chap3, which contains a Pascal source
file called tables.pas.  To load this file into the editor, proceed as follows:

1. Go to the file menu (ALT-F).

2. Select LOAD.  You will be asked for the extension of the file you wish to load - press
ENTER to accept the default extension (PAS).  You could also use the hotkey F3 to
perform the same operation.  Note that if you are already editing a file and that file has
been modified, TP5 will ask you whether you want tosave it before loading a different
file.

3. From the file requester, select the directory CHAP3, and then move the cursor to the file
TABLES.PAS  and press ENTER to load it.

Tables.pas prints the 3-times table from any number to any number.  It is not important to
understand how the program works at the moment - it will be explained in the next chapter.

To save a file, choose save from the file menu, or use the accelerator key F2.  To save the file
under a different name, choose WRITE TO from the file menu.

To start a new file, choose NEW from the file menu.

3.6. Compiling a Program

It is very important to understand not just HOW to compile a program, but also WHAT
HAPPENS when you compile a program.  The following diagram shows an overall view of
the process:



© mario camilleri 1990 - 1995

Using the IDE Page 16 

Tables.pas Compiler Linker

Units

Executable
code

Tables.exe

Source code
in editor

Pre-compiled
units on disk

Code in memory Saved to disk

Only if compile destination
is set to DISK

Compiling a Program using the TP5 IDE

Strictly speaking, converting a source program (e.g. tables.pas) to an executable program
(e.g. tables.exe) is a 2-stage process:

1. A COMPILER checks the correctness of the source program and, if no errors are found,
converts the source code to OBJECT CODE.  This object code by itself is incomplete
because a program typically makes use of LIBRARY ROUTINES which are in separate
files.  In TP5 these files of library routines are called UNITS.

2. A LINKER takes the object code generated by the compiler and appends to it (LINKS)
all the library routines required to make it a complete program.  This complete program
is the EXECUTABLE FILE, which can be executed by the CPU. The linker also
performs other functions which do not directly concern us here.

Because TP5 provides an integrated environment, this 2-stage process happens automatically
when you issue a compile command.  To do so, choose compile from the Compile menu
(ALT-C).  If the compiler encounters a syntax error, you will get an error message
explaining what was wrong, and the editing cursor will be positioned close to the source of
the error.  Pressing F1 will give further help about what went wrong.  Once a program has
compiled successfully, it is good practice to save it.

TP5 also offers you the option to either leave the executable code in memory, or to actually
save it to disk as an .EXE file.  You choose which from the destination item of the Compile
menu.  If you save the executable file to disk, you will be able to run your program from
MSDOS without having to compile it every time.

3.7. Running Programs

To run the compiled program, choose run from the Run menu.  The screen will switch to the
user screen, and the program will be run.  When the program terminates (whether normally
or because of a runtime error), you are returned to the IDE.

It is important to understand this 2-screen system. Although the computer has only one
physical screen, TP5 maintains two virtual screens - the IDE screen which shows the TP5
environment, and the user screen
which shows your program's
output.  Only one of these virtual
screens can be visible at any one
time.

To switch to the user screen from
the IDE to see the output of your
program use ALT F5.  To switch
back to the IDE press any key.

 User Screen
Shows

program output

Alt F5

IDE Screen

Any Key



© mario camilleri 1990 - 1995

Using the IDE Page 17 

3.8. Editing Source Code

Editor commands (such as moving to the top or bottom of a file, marking a block, etc) are not
available in a menu and can only be accessed from the keyboard.  The appendix lists the most
commonly used editor commands.  The online help gives a complete listing of these
commands.

Locate the TABLEOF constant definition in the program tables.pas and change it to the
value 8.  Recompile and run the program to generate the 8-times table.

3.9. Tracing a Program

Tracing refers to the process of running a program line by line.  It is usually used when
debugging a program which has runtime errors and you want to see exactly what the problem
is.  However, tracing can also give you useful insights into how Pascal works, and will teach
you many things about the language.

TP5 uses key F7 for tracing.  Pressing F7 starts the tracing process.  The first line of the
program is highlighted showing that it is about to be executed.  Pressing F7 again executes
the highlighted line and moves the highlight to the next executable line, waiting for you to
press F7 again to execute it.  While tracing, you can do any of the following:

1. View the user screen (ALT F5).

2. Inspect the contents of any variables or expression.  To do this, move the cursor to the
name of the variable you wish to inspect, and press CTRL F4.  A dialog box pops up
with the name of the variable.  You can either confirm that this is the variable you want
to inspect by pressing ENTER, or type in the name of another variable.  The contents are
displayed in the middle box of the dialogue.  Press escape to put the dialog away.

3. Watch one or more variables.  To do this make sure the watch window is visible (use
F5), and select add watch from the Break/watch menu (hotkey CTRL-F7).   In the
requester which pops up, enter the name of the variable you want to watch - the variable
then appears in the watch window.  You can watch more than one variable - the watch
window will expand to accommodate all of them.

You can also set breakpoints on program lines instead of tracing a whole program line by
line.  The program can then be run normally, but when it reaches a line which has a
breakpoint it will stop and return you to the IDE.  You can then inspect variables, continue
tracing forward from the breakpoint, etc.  To set a breakpoint, move the cursor to the required
line (which MUST be an executable line) and select toggle breakpoint from the
Break/watch menu (hotkey CTRL-F8).



© mario camilleri 1990 - 1995

The Structure of a PASCAL Program Page 18 

CHAPTER 4
4. The Structure of a PASCAL Program

4.1. Example of a Simple PASCAL Program

Consider the following PASCAL program, a simplified version of the tables program from
the previous chapter.  Although you are not expected to understand much of it at first, it
should give you an idea of the STRUCTURE of a program in PASCAL.  If you already know
another programming language (such as BASIC), it would be helpful to note differences
between these two languages.

NOTES :

1. The program starts with a header which consists of the reserved word PROGRAM
followed by the name of the program.

2. Next comes a USES clause, listing all the library units the program uses.  In this
example, the program is only using one unit - the CRT unit which contains functions
and procedures for screen display (e.g. ClrScr).  TP5 has 7 standard library units, but the
CRT unit is the one which every program will need to use most frequently.  Later on, you
will also be able to write your own units for use in your programs.

PROGRAM tables;
USES Crt;

CONST
   TableOf = 3;

VAR
   num1, num2, i : INTEGER;

  { This function multiplies two integer numbers and returns their
    product.}

    FUNCTION ProductOf (num1,num2:INTEGER) : INTEGER;
    BEGIN
       ProductOf := num1 * num2;
    END; {Function ProductOf}

{ --- Main program starts here ------------------------------------------- }

BEGIN
   ClrScr; {Clear the screen}
   WRITELN ('Table of ',TableOf);
   WRITE   ('Enter start:'); {Prompt & input start}
   READLN  (num1);
   WRITE   ('Enter end:'); {Prompt & input end}
   READLN  (num2);
   FOR i := num1 TO num2 DO {Use a loop to print out the table}
   BEGIN {within the given range}
      WRITELN (i,' x ',TableOf,' = ',ProductOf(i,TableOf));
   END;
END. {Program tables}



© mario camilleri 1990 - 1995

The Structure of a PASCAL Program Page 19 

3. The next section of the program is the declaration of CONSTants. Constant values to be
used by the program  (e.g. Maximum mark for an exam) should be declared here and be
given a meaningful name (eg MaxMark). Thereafter, the program should refer to the
constant by its name and not by its value. This has two distinct advantages:

(i) it makes the program more readable,

(ii) if the value of the constant is to be changed, one has only to change its
declaration rather than change every occurence of the constant within the
program.

4. The declaration of VARiables to be used by the program now follows. Unlike BASIC,
all variables have to be declared before they can be used. A variable is declared by means
of an IDENTIFIER (its name) and a TYPE-SPECIFIER (to indicate what type of data
it will store). In the VAR declaration, the line

number_of_students, mark, average_mark : INTEGER;

would serve to declare three variables called number_of_students, mark, and
average_mark each being of type INTEGER. For the time being, we shall introduce the
following 4 types:

INTEGER Can store an integer number (+ve or -ve) within a limited range.

REAL Can store a real number (may include fractional part) within a limited but
much wider range than above. Stored in memory as a floating point
number.

CHAR Can be used to store a single character (occupies one byte).

STRING Can be used to store a string of zero or more characters. The maximum
length of the string must be declared and must be an integer constant (it
may be useful to declare the string's maximum length in the CONST
declaration).

Example:

CONST
max_name_length = 30;

VAR
name : STRING [max_name_length];

5. Next, subprograms are declared.  In the example, only one subprogram, a FUNCTION
called ProductOf, is declared.  This function takes two numbers and returns their
product as its result.  The program tables.pas from the previous chapter also contains an
example of a PROCEDURE declaration - a procedure is another type of subprogram.

6. The actual program instructions start after all the declarations. Note that these
instructions are enclosed within BEGIN and END statements. Furthermore, instructions
may be enclosed within nested BEGIN ... END statements as can be seen above (we will
see the reasons for this later). Consequently, it is good practice to indent the program
statements according to their level of nesting. This is allowed because Pascal is a free
format language. Note that both upper and lower case characters may be used. No
distinction is made between the two. Note also that each statement is terminated by a
semi-colon ';'. This also holds for END in some cases but the END statement at the very
end of the program must be followed by a fullstop.

7. Comments can be placed anywhere in the source program and must be enclosed within
curly brackets { ... } or (* ... *).



© mario camilleri 1990 - 1995

The Structure of a PASCAL Program Page 20 

4.2. Structure of a PASCAL Program

To summarize then, a Turbo Pascal 5 program has the following structure, made up of 4
main sections:

PROGRAM HEADING Giving the name of the program.

UNITS TO BE USED A list of all the units required by the program.

DECLARATIONS Declarations of all objects to be used by the program.  These
include:
Constants
Types
Variables
Subprograms (functions and procedures)
All these declarations are called GLOBAL declarations.

MAIN PROGRAM This is where execution starts.  It has the following syntax:

Begin
statements

End.

4.3. Data Output:  WRITE and WRITELN

SYNTAX : WRITE( <expression 1> , <expression 2> , .... );

This writes the specified expression(s) to the standard output device (usually the screen). The
instruction WRITELN has the same function but will cause the cursor to skip to the next line
after outputting the expression list. An expression may involve combinations of variables (of
most types) and constants. String constants should be enclosed in single quotes ' '.

Examples :

WRITE (1+6);
WRITELN ('1 + 6 = 7');
WRITELN (1,' / ',6,' = ',1/6);
WRITE (sum);
WRITELN ('The sum of ',num1,' and ',num2,' is ',num1+num2);

4.4. Formatted Output

Formatting information may be specified alongside an item in a WRITE statement by using a
colon.  Formatting is particularly useful for printing out neatly aligned tables of data.

integers WRITE(i:7) i will be RIGHT-JUSTIFIED in a field of width 7
characters.

strings WRITE(s:20) s will be RIGHT-JUSTIFIED in a field of width
20 characters.

reals WRITE(r:10:4) r will be RIGHT-JUSTIFIED in a field of width
10 characters, with 4 digits following the decimal
point.

NOTES

1. Formatting integers and strings requires only a single value after the colon - the field
width.  If the value to be printed is shorter than the field width, extra spaces will be
inserted BEFORE it (this is what RIGHT-JUSTIFIED means).



© mario camilleri 1990 - 1995

The Structure of a PASCAL Program Page 21 

2. Fomatting is very important when printing out real numbers, because otherwise real
numbers will be diasplayed using scientific notation (which is not particularly easy to
understand).  When formatting reals, two items of information must be specified - the
field width AND the number of digits required after the decimal point.

Examples:

WRITELN ('Tom':12);
WRITELN ('Jonathan':12);
WRITELN ('1 / 2 = ', 1/2);
WRITELN ('1 / 2 = ', 1/2:6:4);

4.5. Data Input: READ and READLN

SYNTAX : READ ( <var 1> , <var 2> , .... );

This reads values from the standard input file (the keyboard) and places the values in the
specified variables. The instruction READLN has the same function but will cause the cursor
to skip to the next line after inputting. When a running program encounters a READ
statement, it will stop running and wait for the user to enter some data. Care should be taken
that the data corresponds to the type of variable it is destined for. For example, you cannot
input a string into a variable of REAL type !

Examples:

READ  (a,b,c);
READ  (name,address);
WRITELN ('Enter two numbers:');
READLN  (num1,num2);
WRITELN ('The sum of ',num1,' and ',num2,' is ',num1+num2);

4.6. The Assignment Statement

SYNTAX : < variable > := < expression > ;

Examples:

sum   := num1 + num2;
name  := 'George';
count := count + 1;  { Increments value of count }

ý NOTES:

1. This statement will evaluate the expression on the right-hand side and place the result in
the variable specified on the left-hand side.

2. This is equivalent to the BASIC command LET. However the symbol := is used in place
of = to distinguish between assigning a variable and testing for equality.

4.7. Arithmetic Operators and Functions

1. Arithmetic can be performed using operators and functions. An operator works on one or
two expressions e.g. x + y, -num. A function works on one or more arguments to return a
result e.g. y := SIN (x).

2. The arithmetic operators associated with integers are +, -, *, DIV and MOD. The effect
of the DIV and MOD operators is as follows:

x DIV y will divide x by y and return the integer part of the result
(ignoring the remainder). eg 10 DIV 6 returns 1.

x MOD y will divide x by y and return the remainder (integer). e.g. 10
MOD 6 returns 4.



© mario camilleri 1990 - 1995

The Structure of a PASCAL Program Page 22 

3. The reserved word MAXINT is a constant equivalent to the maximum possible integer
that can be stored in a variable of type INTEGER.  How can you discover the value of
MAXINT?

4. The arithmetic operators associated with reals are +, -, *, /. The division operator / will
give a result which may involve a fraction. Integers may be involved in a real expression.
They will automatically be converted to real.

Example:

VAR
capacity, velocity,c ross_section : INTEGER;
time, flowrate    : REAL;

flowrate := velocity * cross_section;
time     := capacity / flowrate;

5. The value of an integer expression may be passed to a real variable as well as an integer
variable (as in the above example) . However, the converse is not directly possible. The
functions ROUND() and TRUNC() can be used to convert a real to an integer.

Examples:

ROUND (3.232) {returns the integer 3}
ROUND (3.8991) {returns the integer 4}
TRUNC (3.8991) {returns the integer 3}

6. Pascal also has an INT() function.  This takes a REAL number and returns the
INTEGRAL PART of the number as another REAL NUMBER.

Example

INT(5.34) {returns 5.0 (NOT 5)}

7. Pascal also provides other mathematical functions. A function takes one or more
arguments (within brackets) and returns a value. Some functions are restricted to a
particular type.

Functions returning integers: (i represents an integer, r a real)

SUCC(i) Returns i+1
PRED(i) Returns i-1
ABS(i) Returns absolute of i (i.e. removes sign)
SQR(i) Returns the square of i
TRUNC(r) Returns an integer representing the truncated value r
ROUND(r) Returns an integer representing the rounded value r

Functions returning reals: (n represents an integer or a real)

SIN(n) Returns sine of n
COS(n) Returns cosine of n
ARCTAN(n) Returns arctangent of n
LN(n) Returns natural logarithm of n (to base e)
EXP(n) Returns e raised to the power of n (en)
SQRT(n) Returns the square root of n
ABS(n) Returns a real if n is a real
SQR(n) Returns a real if n is a real
INT(r) Returns the integral part of r as a REAL NUMBER



© mario camilleri 1990 - 1995

The Structure of a PASCAL Program Page 23 

Note that in the functions SIN and COS, the argument is measured in RADIANS rather
than degrees. Similarly, the angle returned by ARCTAN is also in radians.

4.8. Exercises - 1

1. Write a program which converts angular measurements from degrees to radians. Display
the SINE and COSINE of the angle input at run time.   NOTE that

radians
degrees

=
× ×2

360
π

Pascal has a predefined constant PI to represent π.

2. Write a program which inputs a real value and displays its ARCTANGENT in degrees.
Use the formula:

degrees
radians 360

=
×

×2 π

4.9. Exercises - 2

In each of the exercises below, be careful to include prompts for any input required and to
present output neatly with headings where possible. Use comments, where necessary, to
explain what the program is doing. Use CONST declarations where you think it would be
appropriate.

a. Write a program which takes three numbers as input, calculates their total and average
and prints them on the screen. Use suitable prompts and headings.

b. Write a program which takes a person's age in years as input and outputs the person's
approximate age in months and in days (ignore leap years).

c. Write a program which takes as input the name of a customer, the quantity and name of
an item ordered by the customer, and the price per item, and prints out a letter
acknowledging receipt of the order as follows:

Dear <name> ,

Thank you for your order of <quantity> of <item name> .

Your order will be dispatched on receipt of Lm <total cost> .

The information within <> should automatically be filled in by the program from data
input.

d. For a right-angled triangle having sides a, b, c, where c is the hypoteneuse, Pythagoras
discovered that  c2 = a2 + b2 . Write a program which reads values for a and b and
calculates the length of the hypoteneuse.

e. Write a program which calculates and outputs the diameter, circumference and area of a
circle whose radius is input at run-time.

f. Write a Farenheit to Centigrade conversion program which takes a Farenheit
temperature as input and outputs the corresponding temperature in Centigrade (or
Celsius).  Use the formula

C (F= − ×32
5
9

)



© mario camilleri 1990 - 1995

The Structure of a PASCAL Program Page 24 

 where C is the temperature in Centigrade and F is the temperature in Farenheit.

g. Pascal has no exponentiation operator (like BASIC's ^ or **).  How may this be rectified
using LN and EXP?



© mario camilleri 1990 - 1995

Conditional and Compound Statements Page 25 

CHAPTER 5
5. Conditional and Compound Statements

5.1. Boolean Values and Relational Operators

A boolean value is either the value TRUE or the value FALSE.  It is important to
understand that TRUE and FALSE are NOT STRINGS - they are values of type BOOLEAN,
just as 4 is a value of type INTEGER.

Boolean values are generated by boolean expressions, just as integer values are generated by
integer expressions.  The simplest boolean expression involves the comparison of two objects
using a relational operator.  Pascal supports the following relational operators:

RELATIONAL OPERATORS
Operator Meaning

= Equal
<> Not equal
> Greater than
< Smaller than

<= Smaller than or equal
>= Greater than or equal

The objects to be compared using these relational operators must be COMPARABLE.  For
example two strings can be compared, and two numeric values can also be compared (even if
one is a real and the other an integer), but a string and a number cannot be compared.

Boolean values can be printed out using WRITELN.  Thus we can have:

WRITELN(a>b);
WRITELN(x<>0);

5.2. Logic Operators

Boolean expressions can be combined using the logic operators NOT, AND and OR,
sometimes also called boolean operators.  You are undoubtedly familiar with these from
your O-level, although you probably used 1 and 0 instead of TRUE and FALSE.

LOGIC OPERATORS
Logic Operator Result

NOT(X) The inverse of X
X AND Y TRUE if and only if both X and Y are TRUE
X OR Y TRUE if at least one of X and Y is TRUE

NOTE: Boolean expressions combined using these three operators should be bracketed to
avoid ambiguity.  Thus, A>B OR X=0 is not acceptable.  Instead it should be written as
(A>B) OR (X=0).



© mario camilleri 1990 - 1995

Conditional and Compound Statements Page 26 

5.3. Boolean Variables

Just as numeric values can be stored in numeric variables (of type real or integer), similarly
boolean values can be stored in boolean variables.  Boolean variables are only allowed to
store one of the two values TRUE or FALSE.  Boolean variables are sometimes called flags.

Example declaration of boolean variables:

VAR
ready, full, more : BOOLEAN;

Having declared these boolean variables, we can now proceed to use them in the program:

Examples:

ready := full AND NOT more; {These two}
ready := (full AND (NOT more)); {are equivalent.}
ready := (count1 > 10) AND (count2 >20);

In the last example, note how each individual comparison had to be enclosed in brackets.

There is a standard function ODD(x), where x is an integer, which returns a BOOLEAN
value. The value is TRUE if x is odd and FALSE otherwise.  Thus, if NumIsOdd is a
boolean variable, we can write:

NumIsOdd := ODD(Num);

EXERCISE

Consider the following section of program:

CONST
   number=30;
VAR

   num1,  num2 : INTEGER;
   equal, big1, small1, big2, small2 : BOOLEAN;
BEGIN
WRITELN ('Enter a number');
READLN  (num1);
WRITELN ('Enter another number');
READLN  (num2);
equal  := num1 = num2;
big1   := num1 > number;
small1 := num1 < number;
big2   := (num2>number) OR ((num2>num1) AND big1);
small2 := (num2<number) OR ((num2<num1) AND small1);

END.

At the end of the program, what will the values of all five boolean variables be if the inputs to
num1 and num2 are:

(i) 20 and 10  (ii) 20 and 20 (iii) 50 and 10

(iv) 30 and 20 (v) 60 and 30 (vi) 40 and 50

The two longest lines of the above program have some unnecessary code. Rewrite the lines in
a shorter form.



© mario camilleri 1990 - 1995

Conditional and Compound Statements Page 27 

5.4. IF...THEN...ELSE

Syntax 1: IF <boolean expr> THEN <statement 1> ;

Syntax 2: IF <boolean expr> THEN <statement 1> ELSE <statement 2> ;

The following flowcharts demonstrate the difference in logic between the two forms:

Statement
1

Boolean
Expression

True

False

IF...THEN

Boolean
Expression

True

False

Statement
1

Statement
2

IF...THEN...ELSE

 Examples:

IF size > maxsize THEN WRITELN ('Full up');
IF waiting THEN count := SUCC(count);
IF (x>y) OR (a<10) THEN z:=10 ELSE z:=20;

NOTES:

1. Using syntax 1, statement 1 will be executed if the value of the boolean expression is
TRUE. Afterwards, execution continues at the following statement.

2. Using syntax 2, if the value of the boolean variable is TRUE, then statement 1 is
executed. However, if it is FALSE then statement 2 is executed.

3. In syntax 2 there is NO SEMICOLON between statement 1 and the ELSE.

5.5. Compound Statements

A compound statement has the form:

BEGIN
statement 1;
statement 2;
...
statement n;

END

NOTES:

1. A compound statement can be treated as a normal simple statement.  It serves to
GROUP many statements into a SINGLE UNIT.

2. A compound statement can contain more compound statements. It is useful to indent the
program text so that one can easily make out the different levels of compound
statements.

3. Compound statements make the IF...THEN...ELSE a more powerful construct. We can
now do more than one thing for a single condition.



© mario camilleri 1990 - 1995

Conditional and Compound Statements Page 28 

Example

IF count > maxrange THEN
BEGIN

   WRITELN ('Count exceeded range');
   ready := TRUE;
   count := 0;

END
ELSE
BEGIN

   WRITELN ('Count has not exceeded range');
   count := SUCC(count);

END;

NOTE that there is NO SEMICOLON between the END of the compound statement and
the ELSE.

5.6. Exercises - If..Then..Else

a. In a guessing game, player A enters an integer between 1 and 10 while player B is not
looking. If player A cheats by giving a number outside this range, the word CHEAT is
displayed and the game stops. Otherwise the screen is cleared and player B is given a
chance to guess the number. If he guesses it then he wins. If his guess is within three
numbers away from Player A's number then the game is a draw. Otherwise player A
wins. Write a program to implement this game.

b. In an election, people under 18 years old are not eligible to vote. Input a person's age and
output a message stating whether he can vote or not.

c. Write a program which accepts a number as input and outputs a message stating whether
the number lies between 1 and 100 or not. Do you think that a CONST declaration
would be appropriate in this program ? Why ?

d. Write a program which asks the user to input 3 numbers, and outputs the largest.

e. Input a number representing a year and output a message stating whether it is a leap year
or not. Note that a leap year is

EITHER divisible by 400
OR ((divisible by 4) BUT NOT (divisible by 100)).

f. Write a program which takes as input from the keyboard the boolean values a, b, c, d,
and displays the result of the logic function ( a AND b ) OR ( c AND NOT d).  NOTE
that since PASCAL does NOT allow you to READ boolean variables, you will have to
devise a different method for reading the values into variables a,b,c and d.

g. A company has three vans which are used to transport its products

VAN
MAXIMUM
CAPACITY

A 90
B 50
C 30

Write a program which asks for the number of items to transport, validates this number
(must be between 1 and 170) and suggests which vans should be used for the job. A van
should not be used where a smaller one would be sufficient.

h. Quadratic equations of the form   ax2 + bx + c = 0   have roots x1 and x2 which can be
calculated using the formulae:

x
b b ac

a
and x

b b ac
a1

2

2

24
2

4
2

=
− + −

=
− − −

The roots may fall into one of the following three categories:



© mario camilleri 1990 - 1995

Conditional and Compound Statements Page 29 

  i. They are real and equal if  b2 - 4ac = 0 .

 ii. They are real and distinct if b2 - 4ac > 0 .

iii. They are complex and distinct if b2 - 4ac < 0 .

Write a program which first accepts the values for a, b, c, where a should be checked to
ensure that it is NOT zero. Next the program should test the value of  (b2 - 4ac) to
determine which category the roots fall into. Finally the roots should be calculated and
output (if in category i or ii) with a message indicating the category under which they
fall.

i. Given an integer N, calculate the number of characters required to print N.  Note that
MAXINT is 32767, so a positive integer requires a maximum of 5 characters.  However,
the smallest integer, -32768, requires 6 because of the minus sign.



© mario camilleri 1990 - 1995

The CASE Statement Page 30 

CHAPTER 6
6. The CASE Statement

6.1. Syntax of the CASE Statement

Syntax : CASE < expression > OF
const1: < statement 1 >;
const2: < statement 2 >;

  ...
constn: < statement n >;

ELSE < default statement >;
          END  { of case }

Example :

VAR mark    : INTEGER ;
comment : STRING [maxlength] ;

CASE mark OF
10 : comment := 'Full Marks';
 9 : comment := 'Excellent';
 8 : comment := 'Very Good';
 7 : comment := 'Fairly Good';
 6 : comment := 'Not Bad';
 5 : comment := 'Can do better';
 4 : comment := 'Poor';
 3 : comment := 'Very Poor';
 2 : comment := 'Terrible';
 1 : comment := 'Rubbish';
 0 : comment := 'Total loss!'
ELSE  comment := 'Invalid Mark';
END;

NOTES :

1. The IF statement allows a process to select one of two possible choices of action. The
CASE statement is a generalization of this, which enables the process to execute one of
several actions according to the value of an expression.

2. The expression being tested must be one returning a ORDINAL TYPE (ie integer or
character, sometimes also called SCALAR types). Strings may NOT be tested.

label 1

The CASE Statement

label 2

label n

True

True

True

False

False

False

Statement

Statement

Statement

Statement

1

2

n

ELSE

End

Ordinal
Expression
(selector)



© mario camilleri 1990 - 1995

The CASE Statement Page 31 

3. The ELSE as used in the syntax for CASE as shown above is not included in standard
PASCAL, but is an enhancement of TURBO PASCAL. If the value of the expression
does not match any of the constants, then the default statement (ie the one following the
ELSE) is executed.

6.2. Using Many Labels In A Single Case

More than one constant may be associated with a single action. The action would then be
executed if the expression being tested matches one of these constants.

Example

VAR reply   : CHAR ;
continue : BOOLEAN;

BEGIN
  WRITE ('Do you want to continue? <Y/N> ');

READLN (reply);
CASE reply OF

'Y','y' : continue := TRUE;
'N','n' : continue := FALSE;
ELSE WRITELN ('You should press Y, y, N or n');

END;
END.

You can also use a range of constants, for example:

VAR c : CHAR;

BEGIN
WRITE  ('Enter a character: ');
READLN (c);
WRITE ('You have entered a');
CASE c OF

'a'..'z' :  WRITELN (' lower case character.');
'A'..'Z' :  WRITELN ('n upper case character.');
'0'..'9' :  WRITELN (' digit.');
ELSE WRITELN (' punctuation character.');

END;
END.

6.3. Simple Menus

A SIMPLE MENU is a list of options offered to the user, together with a KEY (usually a
single character) for each option.  The user selects the required option by pressing the
associated key.  The program performs the following steps:

1. Displays the menu

2. Prompts user to select option

3. Waits for, and reads, a single character from the user (the option key).

4. Uses a CASE statement to determine what processing is required depending on the key
input by the user.

Reading the single-character option key in step 3 is best accomplished using Turbo Pascal's
READKEY function.  Readkey will wait for the user to press any key, and will return the
corresponding character as its result.  The advantage of using READKEY for this job is that
the user is not required to press ENTER after making the selection (as would be the case if
READLN had been used).  Also, READKEY does not echo the character it reads.



© mario camilleri 1990 - 1995

The CASE Statement Page 32 

6.4. Exercises

1. Write a simple calculator program which first takes two INTEGERS int1 and int2 as
input and then presents a menu of five arithmetic operations: addition, subtraction,
multiplication, division, quotient and modulo:

 MENU

+   num1 + num2
-    num1 - num2
*   num1 * num2
/ num1 / num2
Q num1 div num2
R num1 mod num2
X EXIT

 Enter choice ...

Your program should use READKEY to read the menu option.  The option should be
handled using a CASE statement (which should treat upper and lower case characters as
equivalent), and the corresponding result displayed. Your program should ignore invalid
choices.

2. i. Input the number of a month (1..12) and use a CASE statement to assign the
number of days in the given month to the variable days. Output this variable with
a suitable message at the end of the program (ignore leap years).

ii. Extend the above program to read in the year number and test for leap years. Use
the algorithm you learned in a previous lesson to set the boolean variable leap to
true if the year is a leap year. Use this variable in the case that the month is 2.

iii. Modify the CASE statement in the above so that it also assigns the month name to
the (string) variable monthname.

3. Write a program which reads in a number from 1 to 31, and sets a string variable
SUFFIX to ST, ND, RD or TH depending on the number read.  The program should then
print out the number followed by its suffix (for example, if the user inputs 21, the
program should print 21st).

4. Write a program which reads in three integers representing an abbreviated date and
output the date in full eg. 2 4 95 →→ 2nd April 1995. Modify and use the program from
2.ii to check that the date is valid before printing it. An invalid date such as 50 13 77
should result in the message ERROR being displayed.



© mario camilleri 1990 - 1995

Arrays and Loops Page 33 

CHAPTER 7
7. Arrays and Loops

7.1. Single Dimensional Arrays

A single dimensional array is a SEQUENTIAL COLLECTION OF STORAGE
LOCATIONS, ALL OF THE SAME TYPE.  Each LOCATION (or CELL) is given an
ADDRESS (or INDEX) to identify it from the other cells in the same array.  In this respect, a
single dimensional array may be compared to HOUSES (cells) in a STREET (array).

A single dimensional array must be declared in the VAR section of a PASCAL program
using the syntax:

VAR <array name> : ARRAY [ <lower bound>..<upper bound> ] OF <type>;

The notation X..Y is called a SUBRANGE. Pascal allows two types of subranges:

integer : -3..2 which is the range -3,-2,-1,0,1,2

character : 'a'..'z' which is all letters between and including 'a' and 'z'.

The subrange used to dimension the array declares the RANGE OF ADDRESSES (house
numbers) to be associated with each cell in the array.  Thus, the declaration:

VAR a : ARRAY [4..10] OF INTEGER;

creates the following structure called A:

4  5  6  7  8 9 10

A

NOTE that the numbers 4..7 are the ADDRESSES or INDICES of the array A, NOT
its contents.  Thus, the first cell of A is A[4], and the last is A[10].

Pascal allows arrays to be dimensioned using a character range. In this case the array must be
indexed using a character in the range used to dimension the array.  For example, the
declaration:

VAR x : ARRAY ['d'..'h'] OF REAL;

creates the following structure called X:

'd' 'e' 'f' 'g' 'h'

X

In this case, the first cell of X is X['d'] and the last X['h'].

NOTES:

1. In PASCAL, only a constant may be used to dimension an array.

2. A real may NOT be used to index an array.



© mario camilleri 1990 - 1995

Arrays and Loops Page 34 

3. An uninitialized array contains only garbage.

4. one array may be assigned to another array IF AND ONLY IF (both arrays are of the
same type) AND (both arrays are the same size).

7.2. Two Dimensional Arrays

In a 2-dimensional (or RECTANGULAR) array, cells are arranged in ROWS and
COLUMNS.  Hence, each cell is identified by TWO ADDRESSES - a ROW index and a
COLUMN index.  The following rectangular array R has columns numbered 2..6 and rows
numbered 6..8.

R 2 3 4 5 6
6
7 H
8

The cell marked with a H is in row 7 column 3.  Hence, its address is R[7,3].  To declare this
array in PASCAL, use:

VAR R : ARRAY [6..8 , 2..6] OF <type> ;

Where <TYPE> is whatever type of value is to be stored in each cell.  As with single-
dimensional arrays, characters may also be used to index either the columns, or the rows, or
both.

Examples

VARa : ARRAY [1..6] OF INTEGER;
b : ARRAY [0..2 , 4..7] OF REAL;
c : ARRAY ['a'..'z'] OF INTEGER;

a[5] := 12;
j := b[1,4];
x := 6 ; a[x] := -8;
c['f'] := 70;

7.3. Higher Dimensional Arrays

Arrays with more than 2 dimensions may also be declared.  A 3-dimensional array is like a
cuboid - with an X,Y and Z index.  For example, the following declaration defines a 3-
dimensional array T:

VAR T : ARRAY [1..4, 1..3, 1..8] OF INTEGER;

Higher dimensional arrays are more difficult to visualise than the 1- and 2-dimensional
arrays we will mostly be concerned with.

7.4. Exercises - Arrays

1. Assume the following declarations:

VARarray1 : ARRAY  [-2..2]  OF INTEGER ;
array2 : ARRAY  [1..5]   OF INTEGER ;
array3 : ARRAY  [1..10]  OF INTEGER ;
array4 : ARRAY  ['b'..'g'] OF REAL;
int1 : INTEGER ;
real1 : REAL ;

a. How many elements are there in each array ?



© mario camilleri 1990 - 1995

Arrays and Loops Page 35 

b. which of these statements is illegal? Why?
1. array1   := array2 ;
2. array3   := array2 ;
3. array1 [4-3]  := 55 ;
4. int1 := 3 ;

array3 [int1 * 4] := 0 ;
5. array1   := array2 * 3 ;
6. array2 [3]  := real1 ;
7. real1 := 2 ;

array3 [real1]  := 200 ;
8. array4['a']   := real1;

2. Draw a representation of the rectangular array

array5 : ARRAY [1..4 , 2..4] OF INTEGER ;

then fill in the array by following these statements :

array5 [2,3]  :=  4 ;
array5 [1,4]  :=  array5 [2,3] * 2 ;
array5 [4,2]  :=  array5 [1,4] + array5 [2,3] ;
array5 [2,2]  :=  array5 [4,2] DIV array5 [2,3] ;
array5 [1,3]  :=  array5 [1,4] - (array5 [2,2] * 2) ;
array5 [ array5 [2,2] , array5 [1,3] * 2 ] := 1 ;

7.5. Loops

A LOOP is a CONTROL STRUCTURE which REPEATS one or more statements.

Loops are what mostly make the GOTO statement redundant in Pascal. Pascal supports three
kinds of looping mechanisms: FOR, REPEAT and WHILE.

• The FOR loop has two variations - increasing counter and decreasing counter.
• The REPEAT loop differs from the WHILE loop in that the REPEAT loop tests its

termination condition at the end of the loop, while the WHILE loop tests its
termination condition at the beginning of the loop.

It is very important to determine the kind of loop which best serves a particular situation.

7.6. The FOR..DO loop

SYNTAX 1 : FOR <counter> := <start value> TO <end value> DO
<statement> ;

SYNTAX 2 : FOR <counter> := <start value> DOWNTO <end value> DO
<statement> ;

Examples :

1. FOR i := 1 TO 5 DO WRITELN (i) ;

2. WRITE  ('Enter an integer: ') ;
READLN (int) ;
FOR j := ABS(int)  DOWNTO 2 DO
BEGIN

WRITE (j) ;
IF (int MOD j = 0) THEN { if INT is divisible by J }

 WRITE(' -- is a factor') ;{ then it is a factor of J }
WRITELN ;

END ;

NOTES :

1. the <counter> must be a variable  of ordinal type (i.e. NOT of type REAL or STRING).



© mario camilleri 1990 - 1995

Arrays and Loops Page 36 

2. <start value> and <end value> may be constants or expressions, but must be of the same
type as <counter>.

3. <statement> may be a simple statement (including another FOR..DO statement), or a
compound statement.

4. in syntax1, if start value  > end value, then the loop will NOT be executed.

5. in syntax2, if start value < end value, then the loop will NOT be executed.

6. no program statement within the FOR..DO loop may change the value of the <counter>
variable.

7. after the loop has been executed, the value of the <counter> variable is undefined. This
variable should not be used again until it has been assigned a new value.

8. the <counter> variable can be of type character, in which case <start value> and <end
value> must also be character, and the <counter> variable takes on the values of
characters in the range <start value>..<end value>.

Upcounting FOR loop Downcounting FOR loop

Counter :=
start value

Counter >
End value?

Statement

Increment
Counter

Exit
Loop

False

True

Counter :=
start value

Counter <
End value?

Statement

Decrement
Counter

Exit
Loop

False

True

Examples :

1. VAR c : CHAR;
FOR c := 'a' TO 'z' DO WRITE(c);

2. { This prints out all 3-character sequences generated
by characters 'a'..'d', from 'aaa' to 'ddd' }

FOR c1 := 'a' TO 'd' DO
   FOR c2 := 'a' TO 'd' DO

 FOR c3 := 'a' TO 'd' DO
      WRITELN(c1,c2,c3);

3. { This prints out all possible 5-number combinations in
the SUPER FIVE lottery.  However, since there are
376992 such combinations, it might make quite a while
for this program to execute! }

FOR n1 := 1 TO 36 DO
FOR n2 := n1+1 TO 36 DO

FOR n3 := n2+1 TO 36 DO
FOR n4 := n3+1 TO 36 DO

FOR n5 := n4+1 TO 36 DO
WRITELN(n1:3,n2:3,n3:3,n4:3,n5:3);



© mario camilleri 1990 - 1995

Arrays and Loops Page 37 

7.7. The REPEAT..UNTIL loop

SYNTAX  : REPEAT <statements> UNTIL <condition> ;

Example :

VAR j : INTEGER ;
REPEAT

READLN  (j) ;
WRITELN (j) ;

UNTIL ODD(j) ;

NOTES :

1. the statements in the REPEAT..UNTIL are executed repeatedly until <condition>
becomes TRUE.

2. since the condition is tested at the end, the REPEAT..UNTIL loop will be executed at
least once.

3. any number of statements may be inserted between the REPEAT and UNTIL keywords.
No BEGIN..END pair is required.

4. the body of a REPEAT..UNTIL loop may be a null statement, eg.

REPEAT UNTIL KeyPressed; {wait until any key is hit}

7.8. The WHILE..DO loop

SYNTAX  : WHILE <condition> DO <statement> ;

Examples:

1. n := 0;
WHILE n < MAXINT DO

inc(n) ;

2. { Starting with any positive integer, generate a sequence such
that the successor of a number N in the sequence is N*3+1 if N is
odd, and N/2 if N is even. It appears that from whichever INTEGER
you start, you will eventually generate a 1. This, however, has
not been proved }

VAR j : INTEGER;

WRITE  ('Enter a positive non-zero integer: ');
READLN (j);
WHILE j <> 1 DO
BEGIN

   IF ODD(j) THEN j := j * 3 + 1
   ELSE j := j DIV 2;
   WRITE (j:8);

END;

NOTES :

1. the statements in the WHILE..DO loop are executed repeatedly until <condition>
becomes FALSE.

2. since the condition is tested at the beginning of the loop, the statements in the
WHILE..DO loop may never get executed.

3. <statement> may be any statement, simple or compound (bracketed with a BEGIN..END
pair).

4. the body of a WHILE..DO loop may be a null statement, eg.

WHILE NOT KeyPressed DO; {wait until any key is hit}



© mario camilleri 1990 - 1995

Arrays and Loops Page 38 

7.9. Comparison of REPEAT..UNTIL and WHILE..DO loops

The following pair of flowcharts demonstrate the different control logic of the
REPEAT..UNTIL and the WHILE..DO loops.

REPEAT statement UNTIL condition WHILE condition DO statement

Statement

Test
Condition

Exit
Loop

True

False
Statement

Test
Condition

Exit
Loop

True

False

7.10. Exercises - FOR, REPEAT and WHILE loops

1. How many times will the following loops be executed?

a. FOR i := 12 TO 12 DO WRITE(i);
b. FOR i := 12 TO 10 DO WRITE(i);
c. FOR i := 12 DOWNTO 10 DO WRITE(i);
d. FOR i := 10 DOWNTO 12 DO WRITE(i);
e. FOR c := 'd' TO 'h' DO WRITE(c);

2. Write a short program to execute this FOR..DO loop:

FOR j := -4 TO 20 DO WRITELN(j) ;

i. rewrite your program using a REPEAT..UNTIL loop, and check it by comparing the
output of the two programs.

ii. do the same using a WHILE..DO loop.

3. The FOR..DO statement in Pascal lacks a STEP clause. Also, the counter variable may
not be of type REAL.  Show how these constraints may be worked around by using

i. a REPEAT..UNTIL loop

ii. a WHILE..DO loop

to implement the BASIC program:

10 FOR i = 3.5 TO 10 STEP 0.5
20 PRINT i
30 NEXT i

4. Turbo Pascal has an inbuilt random-number generator called by a statement of the form
num := RANDOM (x); where num is an integer variable, and x is an integer-value.
RANDOM returns a random integer between 0 and x-1.



© mario camilleri 1990 - 1995

Arrays and Loops Page 39 

Sorting is a very important activity in any type of programming application. There are
dozens of different sorting algorithms, varying in speed, complexity and memory
requirements. Some well-known sorts are the Quicksort, Heapsort, Insertion sort,
Batcher sort and Bubble sort. The bubble sort is the slowest and least complicated.

Fill an array of 100 integers with some random numbers (using RANDOM(1000)-500),
sort it using a bubble sort, and output the result. The bubble sort algorithm in pseudo
code is:

ALGORITHM BUBBLE SORT [ sort an array 1..MaxIndx ]
1. [ SET UPPER SORT INDEX ]

UpperBound ← MaxIndx - 1.
2. [ FINISHED? ]

if UpperBound = 0 then array is sorted. End.
3. [ PERFORM ONE PASS ]

LastSwap ← 0.
For i ← 1..UpperBound, if array[i] > array[i+1] then swap
and set LastSwap ← i

4. [ SET UPPERBOUND TO LAST SWAP AND PERFORM
  ANOTHER PASS ]
UpperBound ← LastSwap , goto step 2.

5. Searching is just as important as sorting - and done more often. Suppose we have a table
(array) of values (for example, integers), and we would like to know if a particular value
is in the table.  If the table is not sorted, then the table must be searched sequentially, cell
by cell, to determine whether or not the value is in the table.  This may not matter much
if the table is small, but with large tables the search slows down too much.

However, if the table is sorted, there is a better searching method, called the BINARY
SEARCH, as described in the following pseudo-code:

ALGORIHTM BINARY SEARCH

[search a sorted array 1..MaxIndx for value K. Returns FOUNDAT=0 if not found,
else FOUNDAT=position of K in the array.]

1. [ INITIALISE ]
left ← 0
right ← MaxIndx + 1

2. [ COMPUTE MIDPOINT ]
mid  ←  (left + right) DIV 2

3. [ UNSUCCESSFUL? ]
if (mid = left) then the value K is NOT in the table, so set FOUNDAT ← 0
and terminate.

4. [ COMPARE ]
At this point we compare K with the value at position array[mid], and take
different action depending on the value of the comparison:

IF THEN
K < array[mid] right ←  mid, goto step 2
K = array[mid] foundat ←  mid, terminate
K > array[mid] left ←  mid, goto step 2

Fill an array of 1000 integers with random integers using (RANDOM(4000)-2000), sort
it using the BUBBLE SORT, then repeatedly ask the user to input values to be searched
for in the array using the BINARY SEARCH.  For each value, the program should print



© mario camilleri 1990 - 1995

Arrays and Loops Page 40 

NOT IN TABLE if not found, or FOUND AT POSITION n (where n is the position at
which the value was found) if found.

6. Write a program which generates the sequence described in example 2 of the section on
the WHILE..DO loop, for all integers in the range 1..400 (do not display the sequence).
The program should report which integer took longest to degenerate to 1, and the
number of steps it required, for example 327 took longest, requiring 143 steps.



© mario camilleri 1990 - 1995

Strings and Text Files Page 41 

CHAPTER 8
8. Strings and Text Files

8.1. String Variables

Turbo Pascal supports a STRING type. A string variable is declared by

VAR s1 : STRING[50] ;

Variable s1 may then be assigned any string up to 50 characters.  It is important to remember
that the size specified when a string is declared dictates the MAXIMUM length to which the
string may grow.  The actual size of the string at any one time will vary depending on its
current contents.  If a string variable is assigned a string longer than its maximum length, the
string will be truncated.

The maximum length of a Turbo Pascal string is 255 characters.  If the length of a string is
not specified in its declaration, it is assumed to have the maximum allowed length (255
characters).  Thus, the following two declarations are equivalent:

VAR s : STRING[255] ;
VAR s : STRING ;

8.2. Operations On Strings

Turbo Pascal supports a number of inbuilt string-functions:

Finding the actual length of a string (LENGTH)

SYNTAX Length (string)
RETURNS An integer - the length of the string
EXAMPLE i := Length('abcdefg');     {Sets i to 7}

Concatenating a two or more strings (+)

SYNTAX string + string + ... + string
RETURNS A string - the concatenation of all strings.
EXAMPLE s := 'ab' + 'bc';     {Sets s to 'abbc'}

Extracting a substring from a string (COPY)

SYNTAX Copy (string, start position, number of chars)
RETURNS A string - that part of STRING starting at the specified position and

of the specified length.
EXAMPLE s := Copy('abcdefg',2,3);    {Sets s to 'bcd'}

Searching for a substring in a string (POS)

SYNTAX Pos (Substring, String);
RETURNS An integer - the starting position at which SUBSTRING occurs in

STRING.  If the substring is not found, returns 0.



© mario camilleri 1990 - 1995

Strings and Text Files Page 42 

EXAMPLE i := Pos ('cd','abcdefg');    {Sets i to 3}

The following are the standard string procedures

Removing a portion of a string (DELETE)

SYNTAX Delete (string, start position, number of chars);
NOTES Removes that part of a string of the specified length starting at the

specified position.  The string must be a variable.
EXAMPLE s := 'abcdefg';

Delete (s,4,2);    {s becomes 'abcfg'}

Inserting a substring into a string (INSERT)

SYNTAX Insert (substring, target string, position);
NOTES Inserts the string SUBSTRING into the string TARGET STRING

starting at the specified position.  The target string must be a variable.
EXAMPLE s := 'abcdefg';

Insert ('XYZ',s,3);  {s becomes 'abXYZcdefg'}

8.3. Reading and Writing Characters in a String

Characters in a string can be accessed by subscript 1..LENGTH(string). Thus
WRITE(s[4]); prints the FOURTH character of string S. Single characters may be stored
in a string position, eg s[3] := 'x'; changes the THIRD character of string S to 'x'.

NOTES

1. The subscript (position) must be in the range 1 to LENGTH(string).

2. Inside a string, a quote character is written as 2 quotes.

Example:

s1 := 'Here''s how.'; {sets s1 to Here's how.}

8.4. Comparing Strings

Strings and characters may be compared using the normal relational operators < , > , <= , >=
, = , <> .

NOTES

For two strings S1 and S2:

1. S1=S2 only if both are of the same length and both match character for character.  Thus
'tom ' and 'tom' are not equal (the first has trailing spaces), and neither are 'tom'
and 'Tom'.

2. S1 < S2 if S1 comes before S2 in dictionary order.  This dictionary order is defined by
the collating sequence of the ASCII character set - ie. the order in which characters
appear in the ACSII set.  Thus letters of the alphabet follow each other in the normal
alphabetical order, digits and punctuation symbols preceed uppercase characters, and
uppercase characters preceed lowercase characters.

3. S1 > S2 if S1 comes after S2 in dictionary order as explained above.



© mario camilleri 1990 - 1995

Strings and Text Files Page 43 

8.5. Text Files

Text files are files containing printable characters.  The characters are structured into lines of
possibly varying length, and the file can be displayed on screen or loaded into a text editor.
Your PASCAL source files are text files, as are all files prepared using a text editor (files
prepared using a wordprocessor are usually not text files, because they contain formatting
codes in addition to normal text).

Pascal uses SEQUENTIAL ACCESS with text files.  This is because a text file may contain
lines of varying length, and therefore the position of a given line cannot be calculated.
Furthermore, input and output cannot be performed simultaneously to a text file - a text file
can be opened EITHER for reading, OR for writing, but NOT FOR BOTH.

8.6. File Variables

Pascal accesses disk files by means of a FILE VARIABLE. A FILE VARIABLE is like an
INTERNAL name PASCAL uses to refer to a file.  A file variable to read or write a text file
must be declared with type TEXT:

VAR f : TEXT;

To associate a file variable with a particular disk file use ASSIGN. The format is:

ASSIGN ( <file variable> , <filename> );

where <file variable> is a variable of type TEXT

and <filename> is the name of the file as it appears when you do a DIR from MSDOS.
The filename may including a path if necessary, and an extension if any, and can
be either a string constant or a string variable.

For example:

ASSIGN (f,'myfile.txt');

ALL REFERENCES TO THE FILE WILL NOW
BE MADE THROUGH THE FILE VARIABLE.

READ, READLN, WRITE and WRITELN can be used for reading and writing from and
to files.  In this case, THE FIRST ARGUMENT must be the file variable, for example:

WRITELN(f,'Hello Universe');

will write the string 'Hello Universe' to the file associated with the file variable F.

8.7. Reading From a Text File

To READ data from a text file, the following steps are necessary:

READING FROM A TEXT FILE

1 Declare a file variable of type TEXT VAR f : TEXT;

2 Assign it to an existing text file ASSIGN (f,'prog1.pas');

3 Use RESET to move the FILE POINTER to the
beginning of the file.  NOTE that the file MUST
ALREADY EXIST.

RESET (f);



© mario camilleri 1990 - 1995

Strings and Text Files Page 44 

4 Use EOF to determine when the END-OF-FILE has
been reached.

WHILE NOT EOF(f) DO

5 Use READLN to read in strings from the file. READLN (f,s);

6 Close the file when finished. CLOSE (f);

Besides strings, you can also read INTEGERS and REALS from a text file if the file contains
strings representing numbers of the correct type.  When reading from a text file, it is best to
use READLN rather than READ.

EXERCISE:

Write a program to read in, and display, a Pascal source file.

8.8. Creating a New Text File

CREATING A TEXT FILE

1 Declare a file variable of type TEXT VAR f : TEXT;

2 Assign it to an existing text file ASSIGN (f,'prog1.pas');

3 Use REWRITE to create the file.  NOTE that if the
file already exists, it will be overwritten.

REWRITE (f);

4 Use WRITELN to write strings to the file. WRITELN (f,s);

5 Close the file when finished. CLOSE (f);

Besides strings, you can also write variables of type INTEGER and REAL to a text file, but
they will be stored as strings. You can use formatting information when writing to a file, and
can write more than one variable at a time.  In other words, writing to a text file is identical
to writing to the screen - except that you must specify the file variable of the file to write the
data to.

EXERCISE:

1. Write a program to create a text file of integers 1..40

2. Write a program to read in and total a text file of numbers.

3. Write a program to join two text files, saving the result as a third.

8.9. Appending Data to a Text File

To append data to an existing text file, use the same procedure as for writing, but instead of
rewrite(f) use append(f). The file must already exist.

8.10. The Printer Text File

Turbo Pascal treats the printer device as if it were a text file.  To send data to the printer,
your program should use the standard library unit called PRINTER.  Thus the uses statement
of your program should look something like this:

uses crt, printer;



© mario camilleri 1990 - 1995

Strings and Text Files Page 45 

The printer unit exports a single text variable called LST, which is assigned to the printer
device.  Writing data to the LST file results in the data being sent to the printer (assuming a
printer is connected and online).

Example:

The following simple program prints a textfile called prog1.pas:

program PrintFile;
uses crt,printer;

var NextLine : String;
   InputFile : Text;

begin
   assign(InputFile,'Prog1.pas');
   reset(InputFile);
   while not eof(InputFile) do
   begin
      readln(InputFile,NextLine);
      writeln(Lst,NextLine);
   end;
   close(InputFile);
end.

NOTE that the LST file is automatically opened by the printer unit when your program
is run, and automatically closed when it terminates. DO NOT use ASSIGN, RESET,
REWRITE, APPEND and CLOSE on this file.

8.11. Exercises - Text Files

1. Write a program which takes a Pascal source file (eg. prog1.pas) and writes it to a new
file (prog1.txt), preceeding each line with a line number and changing all characters to
upper case (using the Turbo Pascal function UPCASE).

2. i. Write a program which reads a SINGLE string from the keyboard and writes it out
again, replacing every sequence of consecutive spaces by a single space.

ii. Write a program which does the same thing for every line read from a text file.

3. Write a program which reads details of transactions on a bank account from a text file,
and outputs a bank statement summarizing the transactions.  The input transaction file
has the following format:

LINE CONTENTS

1 account number

2 initial balance (in Lm)

3..eof each line contains a number representing a transaction
(in Lm) - positive for credits, negative for debits.

Your program should produce a bank statement with credit transactions in the first
column and debits in the second, followed by the initial and final balances.  If either
balance is negative, the word OVERDRAWN should be printed next to it.

Use the following transaction file for testing your program:

102-AAD-119876725
1000
200



© mario camilleri 1990 - 1995

Strings and Text Files Page 46 

-500
100
-1000
-100

which should result in a bank statement like this:

Account number: 102-AAD-119876725

CREDITS (Lm) DEBITS (Lm)
200

 500
100

1000
 100

Initial balance : Lm 1000
Final balance   : Lm  300 OVERDRAWN

4. Write a program which reads arithemetic expressions from a file and checks that the
parenthesis balance. The expressions should be written to screen followed by an 'OK' or
'NOT OK' as appropriate.

HINT use an integer counter which is incremented whenever a left-parenthesis is found,
and is decremented whenever a right-parenthesis is found.

5. Explain what this program does. In particular, explain the function of all variables and
replace them with meaningful variable names. Insert helpful WRITE statements to
prompt the user. An important operation has been ommitted from the program. What is
it?

PROGRAM p;
VARs1,s2 : STRING;

f : TEXT;
i1,i2,j : INTEGER;

BEGIN
   i1 := 0;
   i2 := 0;
   READLN(s1);
   ASSIGN(f,s1);
   RESET(f);
   WHILE NOT EOF(f) DO

BEGIN
READLN(f,s2);
i1 := i1 + LENGTH(s2);
FOR j := 1 TO LENGTH(s2) DO

IF s2[j] = '.' THEN i2 := i2 + 1;
END; {while not eof}
WRITELN(i1,i2);

END. {Program p}



© mario camilleri 1990 - 1995

Procedures - 1 Page 47 

CHAPTER 9
9. Procedures - 1

9.1. Top-Down Design

One approach to solving a complex problem is to divide it into subproblems.  These
subproblems can in turn be divided repeatedly into smaller problems, until the individual
problems are so simple that they can easily be solved.  This approach of designing a solution
for a main problem by obtaining solutions for each of its subproblems is called TOP-DOWN
DESIGN.

In order for this approach to be effective, it is desirable that the SUBPROBLEMS BE
INDEPENDENT OF EACH OTHER.  Then each subproblem can be solved and tested by
itself without fear of interfering with the solution of other subproblems.

Top-down design solutions of complex problems can be easily implemented for computer
solution by using BLOCK-STRUCTURED high-level languages such as PASCAL.  The
main problem is solved by the MAIN PROGRAM (or DRIVER), and the subproblems by
SUBPROGRAMS, known as PROCEDURES and FUNCTIONS in PASCAL.  In this
scheme:

1. each SUBPROGRAM executes the instructions necessary to solve a particular
SUBPROBLEM.  Like a worker in a factory, a subprogram is responsible for
carrying out a specific task.

2. the MAIN PROGRAM co-ordinates the execution of the subprograms in order
to affect a complete solution of the main problem.  Like a manager in a factory,
the main program is responsible for delegating work to the subprograms.

Since each subprogram solves one subproblem, and subproblems should be independent of
each other, subprograms should also be, as far as possible,, independent of each other in the
sense that one subprogram should not be written in such a way as to interfere with the
working of the other (for example by overwriting another's variables).  For this reason, each
subprogram should use it's OWN PRIVATE WORKSPACE to save temporary results, etc.  It
is very much like workers in a factory or an office having their own workdesk so as not to get
in each other's way.

9.2. Simple Procedures

Consider the following simple PASCAL program which uses a single procedure called
DRAW_STARS:



© mario camilleri 1990 - 1995

Procedures - 1 Page 48 

SCOPE
1

PROGRAM prog1;
CONST maxstars   = 20;
VAR   i,numstars : INTEGER;

1
2
3

SCOPE
2

PROCEDURE draw_stars;
VAR i : INTEGER;
BEGIN
   FOR i := 1 TO numstars DO WRITE('*');

   END {procedure draw_stars};

4
5
6
7
8

BEGIN
   FOR i := 1 TO maxstars DO
   BEGIN
      numstars := i;
      draw_stars;
   END {for};
END {program}.

9
10
11
12
13
14
15

NOTES:

1. A procedure is like a small program - it has a heading, declarations and a body.
Procedures and functions are collectively known as SUBPROGRAMS - they handle the
subtasks required by the main task. Subprograms enable the user to extend the language
by defining new commands.

2. Procedure declarations must come between the variable declaration section and the
program BEGIN statement.

3. Program execution starts from the program BEGIN statement (line 9 in the example
above). Procedures are not executed unless explicitly called (invoked) by the program
(line 13).

4. Variables declared within a procedure (line 5) are called LOCAL VARIABLES. Local
variables hold data which is private to the procedure - the main program has no access to
variables local to a procedure.  More importantly, the procedure may store data in local
variables without the danger of corrupting any program data.

5. Local variables are CREATED ANEW everytime the procedure is called and CEASE
TO EXIST when the procedure terminates - which also means that a procedure cannot
place a value in a local variable and expect to find it there the next time it is called.

6. Procedures have access to all GLOBAL VARIABLES - ie those declared in the main
program - except when a variable with the same name as a program variable is declared
within the procedure (in which case the program variable is said to be MASKED OUT
or OCCLUDED for the duration of the procedure call).

7. That part of a program in which a variable is 'visible' is called the SCOPE of the
variable.  The example program above has 2 scopes - scope 1 encompasses the whole
program and is called the global scope.  Scope 2 encompasses just the procedure
draw_stars, and is called a local scope.

9.3. Procedures and the Stack

All high-level programming languages use a stack for the subprogram-calling mechanism.
When a subprogram is invoked, the RETURN ADDRESS of the calling program is pushed
on the stack.  When the subprogram terminates, the return address is popped and becomes
the address of the instruction to be executed next.

The stack is also used to store local variables in a subprogram.  When the subprogram is
invoked,  sufficient space to hold all its local variables is reserved on the stack.  The area
allocated on the stack to hold the return address and the local variables is called a STACK



© mario camilleri 1990 - 1995

Procedures - 1 Page 49 

FRAME.  When the subprogram terminates, its STACK FRAME is completely popped, thus
explaining why the values of local variables are only defined when a subprogram is actually
being executed.

9.4. Value Parameters - Parameters for Input

A procedure can take PARAMETERS.  Parameters pass values to the procedure on which
the procedure is to act. An example of this is WRITELN(s1) - s1 is a parameter which holds
data on which the procedure WRITELN is to work.  This method of passing data to a
subprogram is to be preferred to passing data through global variables for the following
reasons:

1. if data is passed to a procedure in a global variable, the procedure may unintentionally
change the value in the global variable, possibly corrupting some data which is
important for the program to function correctly.

2. if data is to be passed to a procedure in a global variable, the procedure MUST KNOW
the name of the variable in which it is to receive data.  This goes against our design
objective of writing procedures which work irrispective of the program they are used in,
since such procedures would only work in a program which has declared a global
variable with the expected name.  This also goes against another important design
principle - reusability, the facility of writing a procedure once but using it in many
different programs.  We'll talk more about this later on.

Thus, the procedure draw_stars in our example program is not designed properly because it
gets the data it needs (the number of stars to draw) from the global variable numstars.  A
better way of writing the procedure would be:

PROCEDURE draw_stars(numstars:INTEGER);
VAR i : INTEGER;
BEGIN
   FOR i := 1 TO numstars DO WRITE('*');
END {procedure draw_stars};

The main program then does not need to declare a variable numstars, and can invoke the
procedure from the for loop by using draw_stars(i) - i being the number of stars the
procedure is to draw.

Here's another example of a procedure declaration with parameters:

PROCEDURE print_sequence ( first : INTEGER ;
last  : INTEGER );

VAR i : INTEGER;
BEGIN
   FOR i := first TO last DO

WRITE(i:4);
END; {Procedure print_sequence}

FIRST and LAST are called FORMAL PARAMETERS. We can call the procedure
PRINT_SEQUENCE by

a := 4;
b := 10;
print_sequence(a,b); {equivalently, print_sequence(4,10)}

A and B are called ACTUAL PARAMETERS. A is associated with the formal parameter
FIRST, and B is associated with LAST. When a procedure is called, the FORMAL
PARAMETERS receive the VALUE of their corresponding ACTUAL PARAMETERS.
Thus, in the example above, WITHIN the procedure PRINT_SEQUENCE, FIRST assumes
the value of A, and LAST assumes the value of B.



© mario camilleri 1990 - 1995

Procedures - 1 Page 50 

This method of feeding data into a procedure is called CALL BY VALUE, because the
FORMAL PARAMETERS of a procedure are ASSIGNED VALUES by the caller.

NOTES:

1. Formal parameters are LOCAL to the procedure. The main program has no access to
variables FIRST and LAST. Procedure print_sequence may change the values of FIRST
and LAST, but THIS DOES NOT AFFECT THE VALUES OF VARIABLES A AND
B.

2. Because the calling program passes values to the procedure by a process of assignment,
the ACTUAL and FORMAL parameters MUST BE ASSIGNMENT COMPATIBLE
(eg integers may be assigned to reals, but NOT vice versa).

3. There is a ONE TO ONE positional correspondence between the ACTUAL and the
FORMAL parameters: for EACH formal parameter there must be an actual parameter
of the correct type in the SAME position.

4. As with variable declarations, formal parameters of the same type may be grouped
together in a list. Thus the example above could have been written as:

PROCEDURE print_sequence (first, last : INTEGER);

5. The following are all legal calls to PRINT_SEQUENCE

print_sequence (12, 20);
print_sequence (A*2, B*(A+12));

9.5. String Parameters - Using Type

Turbo Pascal will not accept a procedure declaration such as

PROCEDURE dosomething ( s : STRING[80] ); {illegal}

To do this, one must first declare a STRING TYPE using the TYPE statement before the
VAR declarations at the top of the program:

PROGRAM prog1;
TYPE  astring     = STRING[60];
VAR   name      : astring;

PROCEDURE CentreString ( s : astring );
CONST screenwidth = 80;
BEGIN

      WRITELN(s:(screenwidth+LENGTH(s)) DIV 2);
END{procedure CentreString};

BEGIN
REPEAT
   READLN(name);
   CentreString(name);
UNTIL name = '';
END{program}.

NOTE that by convention the order of declaration is CONST, TYPE, VAR and
PROCEDURE. What is the logic behind this?

It is important to note that the way we defined CentreString above allows us to centre strings
of only up to 60 characters.  This is because CentreString takes a parameter of type astring,
which was defined as being a type of string with a maximum length of 60.  This leads to two
problems:

1. Procedure CentreString is not general enough, because it will not accept just any string
as its parameter.



© mario camilleri 1990 - 1995

Procedures - 1 Page 51 

2. Moreover, it can only be used in a program which has defines a type called astring, thus
limiting its reusability.

TP5 offers a solution to both problems by allowing us to declare string parameters to be of the
generic type string (ie without a length).  Parameters of type string will accept strings of any
length (up to 255 characters).  Also, because string is a standard type, the main program is
not required to define it in a type declaration.  Thus we can declare CentreString as follows:

PROCEDURE CentreString ( s : string );
CONST screenwidth = 80;
BEGIN

      WRITELN(s:(screenwidth+LENGTH(s)) DIV 2);
END{procedure CentreString};

This is a very convenient way of declaring string parameters (although it is slightly wasteful
of memory), but in the case of CentreString it creates an additional problem.  What is it, and
how can it be solved?

9.6. Some More Standard Turbo Pascal Procedures

We have already encountered many standard (i.e. predefined) Pascal procedures, such as
WRITE, READ, DELETE and INSERT.   Here are two more:

GotoXY (Column,Row)

parameters: Column is an integer (the column number - 1..80)

Row is an integer (the row number - 1..25)

purpose: Moves the cursor to position X,Y on the screen.  The screen is 80
characters wide and 25 lines high, with position 1,1 being the top left
corner.  This procedure is in the CRT unit.

example: GotoXY(6,12) moves the cursor

Val (String,Num,Error)

parameters: STRING is a string to be converted to a number.

NUM is an integer or real variable

ERROR is an integer variable

purpose: Converts the STRING into a number, which is returned in NUM. STRING
must represent a numeric value - no leading or trailing spaces are allowed.
ERROR is set to 0 if the conversion succeeds. Else it is set to a non-0 value.

EXAMPLES:

STRING
(input)

NUM
(output)

ERROR
(output)

'12'
'ABC'
'12A'
' 12'
'12 '
'-12'

'12.345'

12

-12
12.345

0
not 0
not 0
not 0
not 0

0
0



© mario camilleri 1990 - 1995

Procedures - 1 Page 52 

9.7. Exercises  - Procedures 1

1. Use the CentreString procedure in a program which reads in a text file and lists it
centred on the screen.

2. Write a procedure which prints a string on the screen at a position (X,Y) and underlines
it using '-'. The procedure should be declared as:

PROCEDURE Uline (s:string; X,Y:INTEGER);

Modify the procedure so that it underlines the string using any character passed to it as a
parameter.

3. Write a procedure which prints a title string nicely centred on the top line of the screen.
The procedure should be declared as:

PROCEDURE DrawTitle (Title:string);

The title should be printed in some attractive colours using the procedures TextColor,
TextBackground and ClrEol from the CRT unit (see online help for how to use these
procedures).



© mario camilleri 1990 - 1995

Procedures - 2 Page 53 

CHAPTER 10
10. Procedures - 2

10.1. Variable Parameters - Parameters for Input and Output

In the previous chapter we covered VALUE PARAMETERS.  These parameters can only be
used to pass data FROM THE CALLER TO THE SUBPROGRAM, and not vice versa,
since whatever changes the subprogram makes to the parameters are purely local and cannot
affect the caller.

However, a subprogram may sometimes want to RETURN DATA back to the caller.  This
can be done if VAR PARAMETERS (sometimes called REFERENCE PARAMETERS)
are used.  An example of this is the standard procedure READLN.  For example, in

READLN(x);

the parameter x receives the data read in by the READLN procedure.

10.2. Declaring Variable Parameters

A reference parameter is declared by prefixing it with the keyword VAR in the procedure
declaration:

PROCEDURE p1( VAR a : INTEGER );

If we now call this procedure with

p1(x);

then any changes to parameter A within procedure p1 will also affect the value of the
corresponding argument X in the calling program. Rather than A getting the value of X, A
BECOMES X. So VAR parameters may be used for OUTPUT from the procedure as well as
for INPUT to it - they serve as a two-way channel of data between a procedure and its caller.
This is called CALL BY REFERENCE.

DO NOT CONFUSE VAR AS USED HERE WITH VAR AS USED IN
VARIABLE

DECLARATIONS.

Example :

This program calculates the permutations of n distinct objects taken in groups of r distinct
objects, where the order of the objects in a group is important (eg 4-digit positive numbers
that can be composed using the digits 123456 - n=6, r=4). The number of permutations of r
out of n objects is given by

P n r
n

n r
( , )

!
( )!

=
−



© mario camilleri 1990 - 1995

Procedures - 2 Page 54 

PROGRAM permutations;
VARn,r : INTEGER;

f1,f2 : REAL;
perm : REAL;

PROCEDURE getfactorial(num : INTEGER ; VAR factorial :
REAL);

VAR i : INTEGER;
BEGIN

factorial := 1;
FOR i := 1 TO num DO
   factorial := factorial * i;

END; {Procedure getfactorial}

BEGIN
   REPEAT

 WRITE('Number of different objects (n) : ');
 READLN(n);
 WRITE('Number of objects in a group (r) : ');
 READLN(r);
 getfactorial(n,f1);
 getfactorial(n-r,f2);
 perm := f1/f2;
 WRITELN (perm:1:0,' permutations.');

   UNTIL FALSE;
END.

NOTES:

1. the procedure uses NUM for input, FACTORIAL for output.

2. the factorial of a number is an integer, but FACTORIAL is declared REAL because a
Pascal INTEGER is too small to accommodate anything bigger than 7! (see if you can
find the greatest factorial REAL can handle).

3. because FACTORIAL is a VAR parameter, whenever the procedure changes the value of
FACTORIAL, the value of F1 (in the first call) and F2 (in the second call) also change.

Certain constraints apply when using VAR parameters:

1. A constant (value or expression) may not be passed to a procedure which expects a VAR
parameter. eg

getfactorial(n,6);
getfactorial(n,f1+7);

are NOT legal. This is because the procedure must be able to assign values to the VAR
parameter, which it cannot do if the parameter is a constant.

2. The types of the actual parameter and a VAR formal parameter MUST MATCH
EXACTLY. If a VAR parameter is declared REAL, then only REAL variables may be
passed to it. This is because the VAR formal parameter is merely a different name for
the actual parameter.

10.3. Exercises - Procedures with VAR Parameters

1. Modify the program PERMUTATIONS so that it finds the COMBINATIONS of
selecting r objects from n (eg the number of ways 4 people can be chosen from 6 people).
In combinations, the order of selection is not important.  The combinations of r out of n
objects is found by

C n r
n

r n r
( , )

!
!( )!

=
-



© mario camilleri 1990 - 1995

Procedures - 2 Page 55 

2. The uppercase characters in the ASCII set have codes from 65 to 90.  The corresponding
lowercase characters have codes from 97 to 122.  Thus, if C is an upper case character,
its corresponding lowercase character can be obtained by

Chr(Ord(C)+32).

Write a procedure

PROCEDURE LowerCaseChar(var C:Char);

which converts its parameter C to lowercase, but only if it is an uppercase character
(otherwise it leaves it unchanged).  Note how the var parameter C here serves to carry
data both into and out of the procedure.

10.4. Using String Types in Var Parameters - Relaxing Type Checking

Because of the constraint that the types of the actual parameters and VAR formal parameters
must match exactly, procedures employing VAR parameters of type STRING will only
accept strings of the EXACT length declared in the procedure. Normally TURBO
PASCAL will check for this during compilation, and will give an error if you attempt to do
something like this:

PROGRAM x;
VAR s1 : STRING[40];

PROCEDURE process_string ( VAR s : string);
BEGIN

{ procedure body }
END;

BEGIN
READLN (s1);
process_string(s1);  { error here, because

process_string only accepts
parameters which are strings of 255
characters. }

END.

This is a nuissance because it means that you cannot write a procedure to process ANY
string.  You can get around this problem by using the COMPILER DIRECTIVE

{$V-}

somewhere at the top of your program. A COMPILER DIRECTIVE controls the way the
compiler behaves. In this case {$V-} tells the compiler not to check that VAR string
parameters match exactly (however, it will still complain if you try to pass, say, an
INTEGER to a REAL VAR parameter). We say that this directive RELAXES TYPE
CHECKING.

Another method you can use to relax var-string type checking is to set the var-string
checking option from the Options|Compiler menu to Relaxed.  If you do this, all programs
will be compiled with relaxed string type checking, whether they have the {$V-} directive or
not.  Having set this option from the menu, you should also save the options using
Options|Save options so that everytime TP5 loads it will retrieve the option settings.   For
this to work, you should save the options to a file called TURBO.TP in your home directory -
TP5 will only automatically load the saved options if it finds them in the directory you are in
when you run it.



© mario camilleri 1990 - 1995

Procedures - 2 Page 56 

10.5. Procedures Which Call Other Procedures

It frequently happens that a procedure needs to call another procedure.  Consider a procedure
called LowerCaseString, which converts a whole string to lowercase.  This procedure will
need to call the LowerCaseChar procedure you wrote earlier for each character in the string,
as follows:

PROCEDURE LowerCaseString(VAR s : STRING);
VAR i : INTEGER;
BEGIN
   FOR i := 1 TO LENGTH(s) DO
      LowerCaseChar(s[i]);
END;

A procedure may call other procedures subject to the condition that THE PROCEDURE
BEING CALLED MUST APPEAR BEFORE THE CALLER IN THE SOURCE
CODE. Since the main program always appears last in the source code, it may call any
procedure.

10.6. Creating a Library Unit

By now you should be familiar with Turbo Pascal's library units such as CRT and PRINTER,
containing precompiled functions and procedures which can be called by any program simply
by including the unit in the program's uses statement.

You can write your own units in which to store subprograms of a general nature for use in
later programs. This saves work and is an important programming principle called CODE
REUSE.

 Subprograms intended for a library unit should adhere to the following design principles:

• they should be of general use.
• they should be thoroughly debugged.
• any communication with the calling program should be through parameters.
From now on you should be on the look out for useful subprograms to add to your library unit
or units.  Any units you write now will prove of great help when you start on your project.

10.7. The Structure of a Turbo Pascal Unit (TPU)

A TPU exports objects to other programs or units which use it.  These objects may include
constants, types, variables and subprograms - any program using the unit will have access to
these exported objects as if they were defined in the program itself.

The structure of a TPU is as follows:

Interface part - public UNIT <unit name>;
INTERFACE
USES <list of units>
<public declarations>

Implementation part - private IMPLEMENTATION
USES <list of units>
<private declarations>

BEGIN
   <unit initialization>
END.



© mario camilleri 1990 - 1995

Procedures - 2 Page 57 

10.7.1. Interface part

The interface part of a unit contains the declaration of all exported objects (called public
declarations).  These are the objects accessible to other programs using this unit.

Unit Name This must be the same as the filename under which the unit source
code will be saved, except that it must not contain an extension.
Thus, if we were to save the unit as MYUNIT.PAS, the unit name
should be MYUNIT.  When TP5 compiles the unit, it will generate
a file called MYUNIT.TPU instead of an executable program.  Note
that yu cannot run a unit - you can only use it.

Uses statement A list of all other units required for the public declarations in the
interface part.  If no other units are needed, this statement should
be omitted.

Public declarations Constants, types and variables to be exported should be declared
here as they would be declared in a normal program.  In the case of
subprograms, however, only the heading should be listed - the
actual subprogram will be written in the implementation part.

10.7.2. Implementation part

The implementation part of a unit contains the actual subprogram code corresponding to the
subprograms declared in the interface part.  It may also contain other declarations not
declared in the interface - such declarations are private to the unit and invisible to any
program using the unit.

The implementation part may optionally contain unit initialization code, which is written
between the final BEGIN and END.  (and thus corresponds to where the main program
would be in a normal program).  When a program uses a unit, the unit's initialization code (if
any) is executed before the main program begins.  The initialization code may be used to
perform any startup processing - for example to initialize any variables required by the unit.
If no initialization code is required, the BEGIN may be omitted, but the END. statement must
still be written.

10.8. Example of a TPU

Here is a simple TPU called SCREEN which provides support for programs which need to
display things in attractive ways.  As it stands, the TPU only exports one constant, two
variables and a single procedure which displays a colourful title centred on the top line of the
screen, but the unit can be easily extended.

UNIT Screen;
INTERFACE

   CONST ScreenWidth = 80;
   VAR   TitleBackground,
         TitleColour : INTEGER;

   PROCEDURE DrawTitle(Title : STRING);

IMPLEMENTATION
   USES Crt;

   PROCEDURE DrawTitle(Title : STRING);
   BEGIN
      TextBackground(TitleBackground);
      TextColor(TitleColour);
      GOTOXY(1,1);
      ClrEol;
      WRITE(Title : (LENGTH(Title) + ScreenWidth) DIV 2);
   END;



© mario camilleri 1990 - 1995

Procedures - 2 Page 58 

{ Unit initialization }
BEGIN
   TitleBackground := Green;
   TitleColour     := Red;
END.

NOTES:

1. The DrawTitle procedure draws the title using the TITLEBACKGROUND and
TITLECOLOUR variables.  These two variables are initialized in the unit's initialization
code to GREEN and RED respectively, but since these variables are declared in the
interface part any program using the unit can alter them to any colours it chooses.

2. The implementation unit uses the standard CRT  because it needs the two procedures
GOTOXY and CLREOL, as well as the colour definitions GREEN and RED, which are
all exported by CRT.  The implementation part, on the other hand, does not need to use
any units.

10.9. Using a TPU

Having compiled the SCREEN unit (generating the library unit SCREEN.TPU), we can use it
in a program just like Turbo Pascal's standard units.  For example:

PROGRAM TestScreen;
USES Screen, CRT;

BEGIN
   TitleColour := Blue;
   DrawTitle('Testing the SCREEN unit.');
END.

Note how this test program can access the variable TITLECOLOUR, which is declared in the
SCREEN unit.  It also needs the CRT unit in order to have access to the constant BLUE.

When you use a unit in a program, TP5 needs to be able to locate the TPU file when it is
compiling the program.  If the TPU file is not in the current directory, you must tell TP5
where to find it.  You do this by using the unit directories option in the Options|Directories
menu.  This option contains a list of directories, separated by semicolons.  When a unit used
by a program is not in the current directory, TP5 will search for it in all these directories in
order.

You should add the name of the directories containing your own units to the front of the unit
directories list.  Be careful not to delete any of the directories already listed, since these are
required by TP5 to locate the standard units such as CRT.  The best thing to do is to place all
your units in a single directory and add this directory to the list.  Remember to save the
modified options to TURBO.TP so that they will be automatically reloaded everytime you run
TP5.

10.10. Exercises - Writing a TPU

Create a unit called EXTRAS containing the following procedures:

1. SWAP_INT (var num1,num2 : integer)

swaps two integer variables, NUM1 and NUM2, setting NUM1 to the value of NUM2
and NUM2 to the value of NUM1. Useful for sorting.

2. SWAP_STR (var str1,str2 : maxstring)

swaps two string variables.



© mario camilleri 1990 - 1995

Procedures - 2 Page 59 

3. CENTRE_STRING (str : string; width : integer)

prints the string STR centred in a field WIDTH characters wide. Useful for screen
formatting.

4. UP_CASE (var str : string);

converts STR to upper case.

5. PRINT_STRING_AT (str: string; posX,posY: integer; UpCase: boolean)

prints the string STR starting at screen positions POSX and POSY. If the parameter
UPCASE is TRUE, then the string is converted to uppercase before printing, otherwise it
is printed as is.  Use the procedure GotoXY to print at a location.

Write a program to test unit EXTRAS.



© mario camilleri 1990 - 1995

Functions Page 60 

CHAPTER 11
11. Functions

11.1. What are Functions?

In Computer Science, a function is a SUBPROGRAM WHICH YIELDS A (SINGLE)
VALUE OF A PARTICULAR TYPE.  Examples of functions are:

sqr(i) which yields the result i2

sin(x) which yields as its result the sine of x radians

upcase(c) which yields as its result the uppercase version of the character c (if c
is lowercase).

It is important to note that, while procedures are like COMMANDS which perform some
action, functions are like VALUES.  Thus, SQR(2) is THE SAME as 4 - we can use the
function SQR(2) wherever we can use 4.

Note also that the concept of functions in computer science is similar, but NOT identical, to
the concept of functions in mathematics.  Thus SQRT (the square root routine) is a function
in computing, but is NOT a function in the mathematical sense (bacause there are 2 square
roots for any positive number, while a function can only return ONE value).

Exercise

Which of the following statements are legal, and which are not?

1 write(UPCASE(c)); 2 sin(3.2);

3 r := sqrt(x); 4 IF SQR(i) < 100 THEN WRITE('ok');

5 IF READLN(a) = 4 THEN WRITE('ok');

11.2. Declaring Simple Functions

Example of a function declaration:

FUNCTION factorial (num : INTEGER) : REAL;
VAR i : INTEGER;

 fact : REAL;
BEGIN

fact  := 1;
FOR i := 1 TO num DO

fact := fact * i;
factorial := fact;

END; {Function  factorial}

NOTES:

1. A function declaration is similar to a procedure declaration except that:



© mario camilleri 1990 - 1995

Functions Page 61 

a. the reserved word FUNCTION is used

b. the function itself must be given a type (here REAL).

2. Somewhere in the body of the function, the function name must be assigned a value AS
IF IT WERE A VARIABLE NAME. The calling program receives this value as a
result of calling the function.

3. Although functions always return a value to the caller by means of the function name,
they may also return values by using VAR parameters like procedures. This, however,
should be avoided.

The function FACTORIAL is better suited for calculating factorials than the procedure we
saw in an earlier chapter. To calculate the permutation P(n,r) we use:

perm := factorial(n) / factorial(n-r);

Thus, function calls (unlike calls to procedures) can be used in expressions as if they were
variables. This is similar to the use of inbuilt PASCAL functions such as SIN, POS,
LENGTH, RANDOM etc.

11.3. Exercise - Writing Functions

Add these 3 functions to your EXTRAS unit, and test them by using the unit in a testbed
program.

1. FUNCTION MAX_OF (a , b : INTEGER ) : INTEGER;
Returns the bigger of A and B.

2. FUNCTION FACTOR_OF (a , b : INTEGER ) : BOOLEAN;
Returns TRUE if A is a factor of B. Else returns FALSE.

3. FUNCTION ASK_YN (prompt : STRING ) : BOOLEAN;
Writes PROMPT on the bottom line of the screen using TITLECOLOUR and
TITLEBACKGROUND (see the DRAWTITLE procedure in the previous lesson), and
waits for the user to press one of the characters 'Y', 'y', 'N' or 'n' (use READKEY).
Returns TRUE if user presses 'Y'or 'y', FALSE if user presses 'N' or 'n'.

11.4. Passing Arrays as Parameters to Subprograms

Arrays can be passed to subprograms (functions and procedures) just like any other type.
However, as with strings (which are, in fact, ARRAY OF CHAR), Pascal will not allow us to
write, for example:

FUNCTION sum_array (a : ARRAY[1..100] OF INTEGER) : INTEGER;

Instead, we must define an array type, using for example:

TYPE Array100 = ARRAY[1..100] OF INTEGER;

and then use the type ARRAY100 in the parameter declarations:

FUNCTION sum_array (a : Array100) INTEGER;
VAR sum,i : INTEGER;
BEGIN
  sum := 0;
  FOR i := 1 TO 100 DO

 sum := sum + a[i];
  sum_array := sum;
END;

11.5. Small Project - Implementing a Stack

In this section we will develope a small project which demonstrates the principles of top-
down design, and how a program may be build up from many simple subprograms.  The
program implements an integer STACK - operations on the stack are performed by



© mario camilleri 1990 - 1995

Functions Page 62 

subprograms.  The subprograms share some common data structures, thus forming a
MODULE.

11.6. Nature of problem to be Solved

A stack is a LIFO structure. Associated with a stack are:

THE STACK POINTER which keeps track of the items on the stack

THE MAXIMUM STACK SIZE which places a limit on the number of items
which the stack can hold.

The operations on which can be performed on a stack are:

CLEAR_STACK empties the stack of any items

IS_FULL check whether the stack is full

IS_EMPTY check whether the stack is empty

POP_ITEM get the last item we saved on the stack

PUSH_ITEM save a new item on the stack

ITEMS_ON_STACK returns the number of items on the stack

11.7. Designing the Interface

We will collect all the functionality associated with the stack and its handling into a single
unit called INTSTACK - since this is going to be a stack of integers.  Any program needing
to use an integer stack can then simply use the INTSTACK unit.

It is important at this stage to clearly separate those objects which the unit needs to export
from those objects which can remain hidden within the implementation part of the unit.
Programs using INTSTACK will need to perform the seven operations listed above, and
therefore the unit must export subprograms which implement these operations.  In fact, these
operations are ALL that programs using the stack unit will require - everything else can be
hidden in the implementation part.

UNIT IntStack;
INTERFACE

 PROCEDURE Clear_Stack;
 FUNCTION  Is_Full : BOOLEAN;           {TRUE if stack is full}
 FUNCTION  Is_Empty : BOOLEAN;          {TRUE if stack is empty}
 FUNCTION  Pop_Item : INTEGER;          {Pops item from non-empty stack}
 PROCEDURE Push_Item (Item : INTEGER);  {Pushes item onto non-full stack}
 FUNCTION  Items_On_Stack : INTEGER;    {How many items on stack}

If the stack is empty, Pop_Item is undefined - i.e. it will not return a valid value.  Programs
using the unit are thus expected to first check that the stack is not empty (by calling
Is_Empty) before calling Pop_Item.  Similarly, Push_Item is undefined if the stack is full.

11.8. Designing the Implementation

The implementation details - how the stack is actually implemented and how the procedures
and subprograms work - are hidden from any program using the unit by placing them in the
implementation part.  This way, we can change the way the stack is implemented without
affecting programs using the unit.  This is sometimes called data abstraction.

DATA REPRESENTATION



© mario camilleri 1990 - 1995

Functions Page 63 

1. The stack will be represented as an integer array [1..MAX_STACK] called STACK.

2. MAX_STACK is a constant.

3. Items are stored starting at location 1 (this is called an ASCENDING STACK). The last
item in a FULL stack occupies location MAX_STACK.

4. A variable, STACK_PTR, points to THE NEXT FREE LOCATION. The stack pointer
takes on values 1 (when the stack is empty) to MAX_STACK+1 (when it is full).

STACK, STACK_PTR and MAX_STACK are
declared within the IMPLEMENTATION part of
INTSTACK so that they are accessible to all the
subprograms within the unit, but are inaccessible to
programs using it.

The diagram shows how the stack would look after 5
items have been pushed.

IMPLEMENTATION OF THE STACK OPERATORS

The implementation of the functions and procedures listed in the interface part is quite
straightforward.

UNIT INITIALIZATION

We will use the unit initialization code to initialize the stack by calling Clear_Stack.

11.9. Exercises - Stack Unit

1. Implement the INTSTACK unit described above.

2. Test the unit by writing a program which uses INTSTACK to fill the stack with the
numbers 1,2,etc using PUSH_ITEM (you should NOT use the value of the constant
MAXSTACK in your program, since this is hidden within the implementation part of
the unit).  When the stack is full (i.e. Is_Full becomes TRUE), the program should print
out the contents of the stack as returned by POP_ITEM.

3. Add an exported function Peek_Item to the INSTACK unit which returns the item at the
top of stack without actually popping it.  Like Pop_Item, this function is only defined if
the stack is not empty.

4. Add an internal procedure STACKERR to INTSTACK which prints the error message
*STACK ERROR* on the bottom line of the screen and halts the program (use the
standard procedure HALT).  Modify Pop_Item and Peek_Item so that if they are called
when the stack is empty they will call STACKERR, causing the program to abort.
Similarly modify Push_Item to call STACKERR if it is called when the stack is full.
Note that it is pointless to export the procedure STACKERR.

18

12

-32

50

19

6 1

2

3

4

5

6

7

MAXSTACK

STACK_PTR STACK



© mario camilleri 1990 - 1995

Enumerated Types, Ranges and Sets Page 64 

CHAPTER 12
12. Enumerated Types, Ranges and Sets

12.1. Enumerated Types

There are many programming situations in which we know that a variable can assume only a
small number of distinct values, such as, for example the seven days of the week. There are
various things we could do:

Method 1

We could use integers to represent the seven days of the week, e.g. Sunday = 0, Monday = 1
etc, and in our program write something such as:

IF Today = 5 THEN IssuePayslips;

to mean that if the integer variable Today indicates a Friday (day 5) then the procedure
IssuePayslips should be called.  The problem with this method is that it is not very readable,
with the result that it is very easy to make a mistake when writing the program.

Method 2

A better method would be to define 7 integer constants at the beginning of the program, or in
a unit, thus:

CONST Sunday = 0; Monday = 1; Tuesday = 2; {...etc}

so that we could then write:

IF Today = Friday THEN IssuePayslips;

This is very much more readable, but we might have to define quite a large number of
constants.  Moreover, the variable TODAY would probably be declared as an integer, and
therefore Pascal would not complain if we were to write something such as:

Today := 100;

which is clearly a mistake.  We would like to tell the compiler that TODAY should only be
allowed to assume one of the values from 0 to 6.

Method 3

The prefered method is to us an enumerated type, which is essentially a new type created by
the programmer and defined within a type declaration as shown by the following example:

TYPE
  day =
(sunday,monday,tuesday,wednesday,thursday,friday,saturday);

We can now declare variables of type day as follows:

VAR holiday,workday : day;

NOTES:

1. Any enumerated type such as the one illustrated above can be treated just like any other
type with a few exceptions. Thus the following statements are all valid:



© mario camilleri 1990 - 1995

Enumerated Types, Ranges and Sets Page 65 

VAR
  daily_pay : ARRAY[monday..friday] OF REAL;
  today,pay_day,work_day : day;

total_pay : REAL;

  pay_day := friday;

  total_pay:=0;
  FOR work_day := monday TO friday DO
   total_pay := total_pay + daily_pay[work_day];

CASE today OF
   sunday : WRITELN('Sleep late.');
 saturday : WRITELN('Wash car.');

ELSE WRITELN('Go to work.');
  END;

IF today = pay_day THEN WRITELN('Today is pay day.')
ELSE   WRITELN('Not pay day yet.');

2. Variables of an enumerated type cannot be used with input/output commands such as
READLN and WRITELN. Thus statements such as

 READLN(today);
WRITELN(pay_day);

are not accepted.

3. The only operators that may be used with enumerated types are the relational operators
=, <, >, <> which all return boolean values.

Example:

monday < tuesday {returns true}
tuesday = wednesday {returns false}
thursday > friday {returns false}

The ordering of these values is determined by the order in which they appear in the type
declaration. The function ORD(), which was previously used to find the ASCII code of a
character, can also be used to find the ordinal number of the identifier in the list that
defines the enumerated type. The 1st value in the list has ordinal number 0, the 2nd
value has ordinal number 1 etc.

Example:

ORD(monday) {returns 1}

4. A value may not belong to more than one type. Thus the following type declaration is not
valid since the value tomato cannot belong to both fruit and vegetable types.

TYPE
  fruit = ( apple, orange, lemon, banana, tomato );
  vegetable = ( onion, potato, tomato, pea );

12.2. Subrange Types

A subrange type is defined by two constants, both of the same type, within a type declaration.

Example:

TYPE
  digit   = '0'..'9';
  letter  = 'a'..'z';
  weekday = monday..friday;
  age     = 0..100;



© mario camilleri 1990 - 1995

Enumerated Types, Ranges and Sets Page 66 

NOTES:

1. The constants used to define the subrange are called the lowerbound and the
upperbound. The upperbound must be greater than or equal to the lowerbound.  Only
ordinal types (integer, char, boolean, and enumerated types) may be used to define the
bounds (thus, real numbers and strings are not allowed).

2. A variable of subrange type is only allowed to take values within the specified bounds. A
runtime error occurs if the variable exceeds its range, thus making it easier for the
programmer to detect the presence of some related logical error.  Turbo Pascal only
performs runtime range-checking if you set the range checking item in the
Options|Compiler menu to ON.

3. The two declarations necessary for a subrange variable can be combined into one:

VAR
work_day,pay_day   : monday..friday;

  retirement_age,school_leaving_age : 0..100;

4. A subrange cannot have gaps.  Thus:

consonants = 'b'..'d','f'..'h','j'..'n','p'..'t','v'..'z'

is not acceptable.

5. Subranges should be used as much as possible since they offer the following advantages:

i. Program readability is improved, because the allowed range of possible values
of a variable is clearly stated.

ii. Logical mistakes can be easily detected if range-checking in Turbo Pascal is
enabled.

12.3. Set Types and Sets

A set is a collection of objects of the same type. We can define a set based on any ordinal
type (i.e. char, boolean, integer subranges, and user-defined enumerated types).

To declare a set type, we use:

TYPE identifier = SET OF base type;

The objects which can be contained in a set include all those values belonging to the base
type.

For example, suppose we need to keep a record of which subjects students learn.  We can first
define an enumerated type of all allowed subject options, and a set type which can contain
any number of allowed subjects:

TYPE Subjects =
(English,Maths,Computing,Accounts,SOK,Economics);

SubjectSet = SET OF Subjects;

Next, we can define a SubjectSet for each of the students:

VAR
Mark,Joan,Petra : SubjectSet;

and initialize them to the appropriate subjects in the program:

Mark := [English,Computing,SOK,Economics];
Joan := [Accounts..Economics];
Petra := [English..Computing,SOK];



© mario camilleri 1990 - 1995

Enumerated Types, Ranges and Sets Page 67 

NOTES:

1. The contents of a variable of type SubjectSet is a set (collection) of values belonging to
the type Subjects. A set is represented by a list of its members enclosed within square
brackets. The members should generally be seperated by commas. However, if some
members are consecutive values of the base type, a subrange notation may be used.

2. A set may have no members.  Such a set is called the empty set and is written as [ ].

3. The relational operators may be used to compare sets.

= denotes set equality

<> denotes set inequality

<= denotes "is contained in"

>= denotes "contains"

Note that a set A is said to contain a set B if every member of B is also a member of A.

4. The union (+) of two sets is a set containing the members of both sets. The intersection
(*) of two sets is a set containing only those objects which are members of both sets. The
difference (-) of two sets is a set conatining all the members of the first set that are not
members of the second.

Example:

IF (Mark * Joan) = [] THEN
WRITELN('Mark and Joan take no subjects in common.');

Mark := Mark + [Maths]; { Now Mark takes Maths too.}
Joan := Joan - [Economics]; { Joan has dropped Economics.}

5. The reserved word IN is used to test whether a particular element is in a set, and returns
a boolean value accordingly.

Example:

  IF Economics IN Petra THEN WRITELN('Petra takes
Economics.');

6. READ and WRITE cannot be used with sets.  If we want to list all the elements of a set,
we can use a loop to test each possible element, and print out those which are in the set:

WRITELN('Mark takes: ');
FOR Subject := English TO Economics DO
IF Subject IN Mark THEN
CASE Subject OF

English : WRITELN('English');
Maths : WRITELN('Mathematics');
Computing : WRITELN('Computer Studies');
Accounts : WRITELN('Accounts');
SOK : WRITELN('Systems of Knowledge');
Economics : WRITELN('Economics');

END;

7. Sets can be very useful in validation.

• Range checks such as ('0' <= digit) and ( digit <= '9')
can be shortened to digit IN ['0'..'9']

• An expression such as (x=2) OR (x=8) OR (x=9)
can be shortened to x IN [2,8,9]



© mario camilleri 1990 - 1995

Enumerated Types, Ranges and Sets Page 68 

12.4. Exercises - Enumerated types, Ranges and Sets

1. Show how

i. a case statement, and
ii. an array

may be used to print values of an enumerated type.

Since enumerated types may neither be read nor written, I/O of enumerated types
requires conversion functions to translate between the enumerated type and a string
representation.  Given the enumerated type:

TYPE suite = (clubs, diamonds, spades, hearts);

and a variable CARD of type SUITE, write two functions:

FUNCTION StringToSuite (s:str10) : suite;
FUNCTION SuiteToString (s:suite) : str10;

to convert between type string and type suite.  Hence write a program which reads in a
string from the user, converts it to suite for assignment to variable CARD, and then
converts CARD back to a string for display.

2. Given

TYPE  numberset = SET OF min..max;

where min and max are integer constants and min < max, write a procedure printset
which prints the value of a variable of type numberset. e.g. the set whose members are
3, 7, 11, and 9 should be output as [3,7,9,11].

3. Given the type CHSET = SET OF CHAR write a function

FUNCTION ReadChar(allowed:CHSET):CHAR;

which waits for the user to enter one of the allowed characters in the set, and returns that
character.  The function should not accept any characters except those allowed (use
READKEY).  For example, the following can be used to get the user to enter a
hexadecimal digit into the character variable C:

C := ReadChar(['0'..'9','A'..'F','a'..'f']);
WRITELN('You entered ',C);

4. Write a program which generates 20 different random numbers between 0 and 100. (
Hint: Use a set to 'remember' which values have already been generated ).



© mario camilleri 1990 - 1995

Static Records and Random Files Page 69 

CHAPTER 13
13. Static Records and Random Files

13.1. The RECORD Type

A record is a structure consisting of a fixed number of components called fields. The fields
may be of different types and each field is given a name (called the field identifier) which is
used to select it. The following example defines a record type car which contains the fields
licence_no, make, model, colour, miles_to_gallon, cylinders.

TYPE
  colourtype = ( red   , green , blue , white , yellow ,

  black , silver );
  CarRec =
  RECORD

licence_no : STRING[7];
 make,model : STRING[10];

colour : colourtype;
miles_to_gallon : REAL;
cylinders : INTEGER;

  END;

Record variables of type CarRec can now be declared as follows:

VAR
  mycar,myoldcar,sportscar:CarRec;

Each record variable of type CarRec can be thought of as a variable which consists of six
component variables of various types. To access a particular component, one should specify
the name of the record variable followed by a period '.' and the field identifier of the required
component. These constitute a record selector which may be used just like any other variable
of the same type.

Example:

sportscar.licence_no := 'X-1234';
sportscar.make    := 'Ferrari';
sportscar.model := 'TestaRossa';
sportscar.colour := red;
sportscar.miles_to_gallon := 18.6;
sportscar.cylinders := 20;

WRITELN('My car is a ',mycar.make,' ',mycar.model);

gallons_needed := distance / mycar.miles_to_gallon ;

NOTES:

1. A record variable can be copied into another by means of an assignment statement such
as

mycar := sportscar;



© mario camilleri 1990 - 1995

Static Records and Random Files Page 70 

This statement is equivalent to six assignment statements which copy each component
one at a time

mycar.licence_no := sportscar.licence_no;
mycar.make := sportscar.make;
mycar.model := sportscar.model;
etc.

2. The names of the fields of a particular record type must be unique. However, different
record types may make use of the same field identifier (with different types if necessary).
The following example type can therefore also be declared along with CarRec :

TYPE
  BikeRec =
    RECORD
      make,model : STRING[8];
      colour : colourtype;
      gears : INTEGER;
    END;

3. There are no operators that can be used with records. Also, there is no ordering
whatsoever associated with records (i.e. one cannot say that a record variable is greater
than another), and therefore records cannot be compared.

4. Records may be passed to procedures and functions as parameters, but a function cannot
return a record as its result.  However, records can be passed as VAR parameters so that
subprograms can change data in a record.

5. Pascal is very flexible as far as type declarations are concerned. We may have arrays of
records, records of arrays, and even records of records as shown below:

TYPE
monthtype = ( Jan , Feb , Mar , Apr , May , Jun ,

Jul, Aug , Sep , Oct , Nov , Dec );
DateRec =
  RECORD
     day : 0..31;

        month : monthtype;
        year : 1900..2099;
         END;

PurchaseRec =
RECORD

       date   : DateRec;
    sold_car : CarRec;

       buyer : RECORD
               name    : STRING[20];
               address : STRING[50];
              tel_no  : ARRAY[1..3] OF STRING[6];
            END;

  amount    : REAL;
END;

VAR
cars_for_sale  : ARRAY [1..200] OF CarRec;
purchases      : ARRAY [1..200] OF PurchaseRec;

In this example we would use the record selector purchases[5].buyer.tel_no[2] in order
to refer to the 2nd telephone number of the buyer involved in the 5th purchase.

Exercise:



© mario camilleri 1990 - 1995

Static Records and Random Files Page 71 

Write down the record selectors required to access each of the following items of
data:

1 Month in which 4th purchase was made.

2 Colour of 2nd car in table of cars for sale.

3 No. of cylinders of car sold in 9th purchase.

4 Name of buyer involved in ith purchase.

5 First character of name of buyer involved in ith purchase.

6 jth digit of the 3rd telephone number of the buyer involved in the ith purchase.

6. It is often necessary to access different components of the same record several times in a
small section of the program. The WITH statement can be used to avoid repeating the
record identifier each time.

Syntax: WITH <record identifier R> DO <statement S>

Within the statement S, components of the record R may be referred to by field name
alone. The following code displays some information about the first 5 cars available for
sale:

FOR i := 1 TO 5 DO
  WITH cars_for_sale[i] DO
  BEGIN
    WRITELN('Make  :',make);
    WRITELN('Model :',model);
    WRITELN('No. of cylinders :',cylinders);
  END;

Exercise:

Using the with statement, write program sections to display the following:

i) The make, model, and cylinders fields of the cars sold in the first 10 purchases.

ii) The dates of the first 5 purchases in the form dd mm yyyy (remember that the month
field is based on an enumerated type - use ORD as appropriate ).

iii) The make, model of the 3rd car sold together with the amount it was bought for and
the name of its buyer.

13.2. Files of Records

The previous section outlined the organization of data for a typical data processing
application whereby records of available cars for sale and purchases made are kept. These
two tables of information were stored in arrays, thus giving a useless system since the data
would be lost on switching off.  Moreover, arrays are of a fixed size.  These records should
instead be stored on disk as files.  We can redefine the variables cars_for_sale and
purchases as follows:

TYPE
  cars_for_sale  :  FILE OF CarRec;
  purchases      :  FILE OF PurchaseRec;

Thus cars_for_sale and purchases are now file variables rather than arrays. As in the case of
text files, the file variable is needed in order to identify the file on which an input/output
(I/O) operation is to be performed. Unlike text files however, all records are now of equal
length. This allows random (or direct) access to records from the file as we shall see later.

Records in a TP5 file are indexed by their position.  Record positions start at 0.  Pascal
maintains a file pointer which indicates the position of the current record in the file.  The
current file record can be read into a variable of the same record type using READ, and a
record can be written to the current file position using WRITE.



© mario camilleri 1990 - 1995

Static Records and Random Files Page 72 

The diagram shows a file of 5 records - numbered 0 to 4 - with record 1 being the current
record.  The file pointer can be moved using  SEEK to any
position between 0 and 5, position 5 being the end of file
(EOF) position.  Attempting to move the file pointer to a
position greater than 5 will cause a runtime error.

e can read a record from any position between 0 and 4, but
attempting to read a record from position 5 (EOF) will result
in a runtime error, because there is no record at this position.
We can write a record to any position in the file.  Writing a
record to any of positions 0 to 4 will simply cause the record
which is already there to be overwritten.  Writing a record to
the EOF position will cause the file to grow by 1 record - i.e. the record will be appended to
the file.  After every READ or WRITE operation, the file pointer is automatically advanved
to the next record position.

13.3. Opening a Record File

The procedure for opening a record file is identical to that for opening a text file.

ASSIGN(<file variable>,<filename string>)

As for text files, this associates a DOS filename with a file variable.

REWRITE(<file variable>)

As for text files, creates and opens a new file with the name previously assigned to the
file variable and positions the file pointer at the start of the file.

RESET(<file variable>)

As for text files, this opens an EXISTING file for processing. The file pointer is
positioned at the beginning of the file (record 0). If the file does not exist then an I/O
error is returned.

The file should be closed to ensure that all records written to the file are actually saved to
disk.  A typical dataprocessing application using record files would normally open all the
files it requires at the beginning of the program and close all its files before exiting.  Such an
application would also need to check whether the data files already exist before opening
them, creating new empty data files if they do not yet exist.  Here's an example of how this
can be done:

VAR cars_for_sale : FILE OF CarRec;

PROCEDURE OpenFiles;
CONST CarsFileName = 'CARS.DAT';
BEGIN
   ASSIGN(cars_for_sale,CarsFileName)
   IF FileExists(CarsFileName) THEN RESET(cars_for_sale)
   ELSE REWRITE(cars_for_sale);
END;

Note that the cars_for_sale file variable is global to the whole program so that all procedures
needing to process records in the file have access to it.  At the beginning of the main
program, procedure OpenFiles is called to open all necessary data files.  OpenFiles uses
RESET or REWRITE depending on whether the data file already exists or not.  Function
FileExists is not a Pascal function - we'll see how to write such a function later on.

0

1

2

3

4

EOF

File
Pointer

5

File of
Records



© mario camilleri 1990 - 1995

Static Records and Random Files Page 73 

13.4. Reading and Writing Records

The standard I/O procedures READ and WRITE are also used for transferring records
between memory and files (READLN and WRITELN cannot be used in this case).

READ(<file variable>,<var1>,<var2>,...,<varn>)

Reads the next n records from the file and places them in the record variables
var1,...,varn. Note that these variables must be of the same record type as the file
component type. After each read, the file pointer is advanced to the next record so that at
the end, the file pointer points to the start of the record following that read into varn.

WRITE(<file variable>,<var1>,<var2>,...,<varn>)

Writes the record variables var1 up to varn (having the same type as the component type
of the file) to the file starting from the current record position. After each write
operation, the file pointer is advanced to the start of the next record.

SEEK(<file variable>,<position>)

Positions the file pointer to the record indicated by position. The first record has position
0, the second has position 1 etc. It is this statement which allows us to perform random
access.

It is important to remember that records in a file cannot be manipulated unless they are first
read into a memory variable.  Since usually records are only processed one at a time, a single
memory record variable (called a buffer) will suffice no matter how large the file is.

13.5. Other File Operations

CLOSE(<file variable>)

Closes the file associated with the file variable making the latter available for use with a
different file.

ERASE(<file variable>)

Erases the corresponding file from disk. Should not be used on an open file.

RENAME(<file variable>,<new filename string>)

The disk file associated with the file variable is renamed to the given name. This should
never be used on an open file.

13.6. File Functions

EOF(<file variable>)

Returns true if the file pointer is positioned at the end of the file (i.e. after the last
record), otherwise returns false.

FILEPOS(<file variable>)

Returns an integer which is the current position of the file pointer within the file.
Positioning starts from 0 as for SEEK.

FILESIZE(<file variable>)

Returns the total number of records in the file. If this returns 0 then the file is empty. In
order to position the file pointer to the end of the file f, one should use

SEEK(f,FILESIZE(f));

Subsequent writes will cause the file to grow.



© mario camilleri 1990 - 1995

Static Records and Random Files Page 74 

13.7. Handling File I/O Errors

If an I/O error occurs when using any of the above procedures and functions, execution of
the program is terminated with a run-time error unless the compiler directive {$I-} is used.
This directive will not stop execution whenever an I/O error occurs. However, after each I/O
operation, all I/O is suspended until the function IOResult is called. This returns an integer
which is either zero (if the operation was successful) or a positive number which indicates the
type of error encountered. It is then left up to the programmer to handle errors.  Directive
{$I+} cancels the {$I-}.

One situation where this directive is indispensible is when checking whether a file already
exists or not.  This could be implemented as follows:

FUNCTION File_Exists(filename:STRING):BOOLEAN;
VAR
  f:TEXT;
BEGIN
  ASSIGN(f,filename);
  {$I-}
  RESET(f);
  CLOSE(f);
  {$I+}
  File_Exists:=(IOResult=0);
END;

Without the {$I-} directive, the RESET procedure would halt the program with a runtime
error if the file did not exist.  The final line of the function returns TRUE or FALSE
depending on whether IOResult is 0 (i.e. RESET did not cause an error), or non-0 (i.e.
RESET could not open the file - obviously because the file does not exist).

13.8. Using Random-Access Files - Some Notes

1. Since records in a file are most easily accessed by their position within the file (ie the
record number), it makes sense to use the record number as the key.  Of course, it is
pointless to store the record number as part of the record itself.

2. In many applications, record 0 is not used, records being numbered from 1 upwards.  In
this case, a DUMMY record number 0 should be stored when the file is created. This
ensures that when the real records are stored, they will occupy positions starting at 1.

3. Since records in a file cannot be modified directly, a record variable of the same type as
the records in the file is used as a DATA BUFFER in the program.  The program then
proceeds as follows:

SEEK (f, recordnumber);
READ (f, bufferrecord);

modify bufferrecord;

SEEK (f, recordnumber);
WRITE (f, bufferrecord);

13.9. Exercises - Random Access Files

Copy the subdirectory COMMON\RECORDS into a subdirectory of your own home
directory.  There are 3 files in this directory:

STUDDEF.PAS is a unit containing the definition of a record type called STUDENTREC.
This is a very simple type of record containing some student particulars.  The file
STUDDEF.TPU is the compiled version of this unit.  The file STUDENTS.DAT is a file of
STUDENTREC containing 101 records, the first of which is just a dummy record containing
only garbage data.



© mario camilleri 1990 - 1995

Static Records and Random Files Page 75 

Here is a listing of STUDDEF.PAS for your reference:

UNIT StudDef;
INTERFACE

CONST MaxName  = 40;
      MaxAddr  = 60;

TYPE StudentRec = RECORD
                     Left  : BOOLEAN;          {Has left school}
                     Name  : STRING[MaxName];
                     Addr  : STRING[MaxAddr];
                     Form  : INTEGER;
                  END;

IMPLEMENTATION
END.

Using the unit STUDDEF, write a program called STUDENTS containing the following
procedures, and test the procedures as you write them:

Procedure OpenFiles;

Which opens, or creates, the file STUDENTS.DAT.  The main program should call this
procedure first.

Procedure DisplayRecord(S:StudentRec);

Which clears the screen and displays the contents of the student record S, with field
names and proper formatting.  Write another procedure DisplayAllRecords which
displays the whole file, waiting for the user to press a key after each record.

Procedure StudentsInForm(Form : Integer);

This procedure takes a form and displays all records of students in that form (except
those who have left).  At the end it should display a count of the number of students in
the form.

Procedure EndOfYear;

Which promotes all students who have not left to the next form (i.e. increments the
FORM field).  Students who are in form 5 should not be promoted, but should be marked
as LEFT.

Procedure NewBatch;

Which creates a new file of student records called NEWSTUD.DAT into which it copies
all records of students who have not left school.  Remember that record 0 of the new file
should not be used for storing a valid record.

Procedure Statistics;

Which counts the number of students in each form and the number of students who left,
and presents the data neatly formatted.

Procedure AddRecord;

Which prompts the user to input details for each field of the record (except LEFT, which
is automatically set to FALSE), and appends the record to the students' file.



© mario camilleri 1990 - 1995

Recursion Page 76 

CHAPTER 14
14. Recursion

14.1. A Simple Example of Recursion

A RECURSIVE procedure or function is one which contains a call to itself. The following
function calculates the factorial of a positive number recursively:

1 FUNCTION factorial ( number : INTEGER ) : REAL;

2 BEGIN

3    IF    number = 0 THEN factorial := 1

4    ELSE  factorial := number * factorial(number - 1);

5 END;

It will be helpful to return to this example after the following discussion.

14.2. Recursive vs. Iterative Strategies

Like many other problems, that of finding the factorial of a number N can be tackled either
ITERATIVELY or RECURSIVELY.

ITERATIVELY, N! is calculated as N * N-1 * ... * 2 * 1.

Thus 4! is 4 * 3 * 2 * 1

RECURSIVELY, N! is calculated as N * (N-1)!.

Thus 4! is

4 * 3!

In solving 4! we must thus first solve 3!, which is

3 * 2!

But now we must solve 2!, which is

2 * 1!

and 1!, which is

1 * 0!

and 0! - but 0! is known to be 1 (by definition), so there is
no need to go further. Once we know that 0! = 1, we can
solve 1!. Once we have solved 1! we can solve 2!. Once
we have solved 2! we can solve 3!, whereupon we can solve 4! - the original problem.

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0) 1

1 * 

2 * 1

3 * 

1

2

4 * 6

CALLER
calls factorial(4) gets result 24

Bottom Line



© mario camilleri 1990 - 1995

Recursion Page 77 

14.3. Characteristics of Recursive Algorithms

The factorial example in the previous section demonstrates the general characteristics of all
recursive procedures:

1. The problem is broken down into a SIMPLER FORM OF THE SAME
PROBLEM eg 4! → 4 * 3!. The harder problem (4!) is SUSPENDED until
the simpler one (3!) can be solved.

2. THERE EXISTS A VERY SIMPLE PROBLEM OF THE SAME TYPE
(0!) FOR WHICH THE SOLUTION IS KNOWN (1). This is called the
BOTTOM LINE of the recursion, and halts infinite recursion (the
recursion BOTTOMS OUT). The term A SIMPLER FORM OF THE
SAME PROBLEM used above can thus be defined as a problem which is in
some sense CLOSER TO THE BOTTOM LINE. Thus 3! is simpler than 4!
because it is closer to 0! (the bottom line).

3. When the bottom line is hit, the procedure goes back up and solves all the
'harder' problems it has suspended on its way down (1!,2!,3! and finally
4!). This is called UNWINDING THE RECURSION.

14.4. The Uses of Recursion

The recursive factorial function provides a good demonstration, but is otherwise a useless
exercise because the iterative function is faster and simpler. Typical uses of recursion are

• in tree traversal
• in parsing
• in some sorting algorithms
• in graphics (e.g. shape filling)

14.5. Examples of Recursion

Study the following recursive routines. For each identify the BOTTOM LINE. DRY RUN
each routine for two simple cases.

1. This procedure takes a number and prints it out in
BINARY (base 2)

PROCEDURE Binary (n : INTEGER);
BEGIN
   IF n < 2 THEN WRITE (n)
   ELSE
   BEGIN
      Binary (n DIV 2);

   WRITE  (n MOD 2);
   END;
END;

The diagram shows a call to the BINARY procedure
with a parameter of 13 (=11012).

Binary(13)

Binary(6)

Binary(3)

Binary(1) WRITE(1)

WRITE(1)

WRITE(0)

WRITE(1)

CALLER
Binary(13)

1

2

3

4

Bottom Line



© mario camilleri 1990 - 1995

Recursion Page 78 

2. This procedure accepts strings from the console. When the string 'END' is input it prints
out all the strings in reverse order. Note that the procedure does not need an array to
'remember' the strings which have been input. Why?

PROCEDURE getstring;
VAR s : STRING [20];
BEGIN

       READLN (s);
       IF s <> 'END' THEN getstring;
       WRITELN (s);

END;

Modify the procedure to read in a (short) text file and write it to screen in reverse order
WITHOUT USING AN ARRAY. What would be the BOTTOM LINE of this procedure?

3. This procedure lists a text file to screen. When it finds a line starting with a '#' it takes
the rest of the line to be the name of another text file. So it stops listing the first file, lists
the second, and then resumes listing the first. Of course, the second file may include
references to other files within it:

PROCEDURE listfile (filename : STRING);
VAR line : STRING;
    flvr : TEXT;
BEGIN
   ASSIGN (flvr,filename);
   RESET (flvr);
   WHILE NOT EOF (flvr) DO
   BEGIN

READLN (flvr,line);
IF line[1] = '#' THEN listfile (COPY(line,2,255))
ELSE WRITELN(line);

   END;
   CLOSE (flvr);
END;

14.6. Exercises - Recursion

To better understand how recursive algorithms work, you should single step through the
following procedure.  Use the call stack display (Debug menu) - hotkey Ctrl-F3 - to inspect
the pending calls on the stack.

1. Write a procedure similar to BINARY which converts an integer to OCTAL (base 8).

2. Write a procedure CONVERT(number, base : INTEGER); which converts NUMBER to
base BASE (between 2 and 10).

 3. Extend the procedure CONVERT to cater for bases up to 16.

 4. Ackerman's function A(m,n) is defined as

A(m,n)  ::= if m=0 then result is n+1
   else if n=0 then result is A(m-1,1)

else        result is A(m-1, A(m,n-1))

Identify the BOTTOM LINE in this function and DRY RUN it for A(1,2) - the result
should be 4. Implement it in PASCAL and check it using the following TEST CASES:

A(3,2)  = 29. A(3,4) = 125. A(3,6) = 509.
A(2,21) = 45. A(0,0) = 1. A(4,0) = 13.



© mario camilleri 1990 - 1995

Recursion Page 79 

NOTE the recursive solution of Ackerman's function for m > 4 takes a long time
and is likely to run out of memory long before a solution is found. These are
common problems of recursive algorithms.

5. Euclid's algorithm for finding the highest common factor of two integers is defined as

HCF(m,n) ::= if n > m  then result is HCF(n,m)
else if n = 0  then  result is m
else           result is HCF(n,m MOD n)

Identify the BOTTOM LINE of this algorithm.  Implement it in Pascal and test it using
the following test cases:

HCF(128,240) = 16. HCF(217,93)   = 31.
HCF(559,344) = 43. HCF(1695,904) = 113.


