Software Agents

Michael R. Genesereth Steven P. Ketchpel
Logic Group Computer Science Department
Computer Science Department Stanford University

Stanford University

1. Introduction

The software world is one of great richness and diversity. Many thousands of software
products are available to users today, providing a wide variety of information and services
in a wide variety of domains. While most of these programs provide their users with
significant value when used in isolation, there is increasing demand for programs that can
interoperate — to exchange information and services with other programs and thereby solve
problems that cannot be solved alone.

Part of what makes interoperation difficult is heterogeneity. Programs are written
by different people, at different times, in different languages; and, as a result, they often
provide different interfaces. The difficulties created by heterogeneity are exacerbated by
dynamics in the software environment. Programs are frequently rewritten; new programs
are added; old programs removed.

Agent-based software engineering was invented to facilitate the creation of software
able to interoperate in such settings. In this approach to software development, application
programs are written as software agents, i.e. software “components” that communicate
with their peers by exchanging messages in an expressive agent communication language.

Agents can be as simple as subroutines; but typically they are larger entities with
some sort of persistent control (e.g. distinct control threads within a single address space,
distinct processes on a single machine, or separate processes on different machines).

The salient feature of the language used by agents is its expressiveness. It allows
for the exchange of data and logical information, individual commands and scripts (i.e.
programs). Using this language, agents can communicate complex information and goals,
directly or indirectly “programming” each other in useful ways.

Agent-based software engineering is often compared to object-oriented programming.
Like an “object”, an agent provides a message-based interface independent of its internal
data structures and algorithms. The primary difference between the two approaches lies
in the language of the interface. In general object-oriented programming, the meaning of a
message can vary from one object to another. In agent-based software engineering, agents
use a common language with an agent-independent semantics.

The concept of agent-based software engineering raises a number of important ques-
tions.

(1) What is an appropriate agent communication language?
(2) How do we build agents capable of communicating in this language?

(3) What communication “architectures” are conducive to cooperation?

1

In the next three sections of this paper, we discuss these questions and describe some
emerging technologies that provide answers. In the final section, we mention some ad-
ditional issues and summarize the key points of the paper. (For more information on
agent-based software engineering, see [Genesereth 1989] and [Genesereth 1992]. See also
[Shoham 1993] for a description of a variation of agent-based software engineering known
as “agent-oriented programming”.)

2. Agent Communication Language

Communication language standards facilitate the creation of interoperable software by
decoupling implementation from interface. So long as programs abide by the details of the
standards, it does not matter how they are implemented. Today, standards exist for a wide
variety of domains. For example, electronic mail programs from different vendors manage
to interoperate through the use of mail standards like SM'TP. Disparate graphics programs
interoperate using standard formats like GIF and JPEG. Text formatting programs and
printers interoperate using languages like PostScript.

Unfortunately, problems arise when it becomes necessary for programs that use one
language to interoperate with programs that use a different language. To begin with, there
can be inconsistencies in the use of syntax or vocabulary. One program may use a word
or expression to mean one thing while another program uses the same word or expression
to mean something entirely different. At the same time, there can be incompatibilities.
Different programs may use different words or expressions to say the same thing.

Agent-based software engineering attacks these problems by mandating a universal
communication language, one in which inconsistencies and arbitrary notational variations
are eliminated. There are two popular approaches to the design of such a language — the
procedural approach and the declarative approach.

The procedural approach is based on the idea that communication can be best mod-
elled as the exchange of procedural directives. Scripting languages (such as TCL, Apple
Events, and Telescript) are based on this approach. They are both simple and powerful.
They allow programs to transmit not only individual commands but entire programs, thus
implementing delayed or persistent goals of various sorts. They are also (usually) directly
and efficiently executable.

Unfortunately, there are disadvantages to purely procedural languages. For one, devis-
ing procedures sometimes requires information about the recipent that may not be available
to the sender. Secondly, procedures are unidirectional. Much information that agents must
share should be usable in both directions — to compute quantity a from quantity b at one
time and to compute quantity b from quantity a at another. Most significantly, scripts are
difficult to merge. This is no problem so long as all communication is one-on-one. However,
things become more difficult when an agent receives multiple scripts from multiple agents
that must be run simultaneously and may interfere with each other. Merging procedural
information is much more difficult than merging declarative specifications or mixed mode
information (like condition-action rules).

In contrast with this procedural approach, the declarative approach to language de-
sign is based on the idea that communication can be best modelled as the exchange of
declarative statements (definitions, assumptions, and the like). To be maximally useful, a

2

declarative language must be sufficiently expressive to communicate information of widely
varying sorts (including procedures). At the same time, the language must be reasonably
compact; it must ensure that communication is possible without excessive growth over
specialized languages. As an exploration of this approach to communication, researchers
in the ARPA Knowledge Sharing Effort [Neches] have defined the components of an agent
communication language (called ACL) that satisfies these needs.

ACL can best be thought of as consisting of three parts — its vocabulary, an “inner
language” called KIF (short for Knowledge Interchange Format), and an “outer” language
called KQML (short for Knowledge Query and Manipulation Language). An ACL message
is a KQML expression in which the “arguments” are terms or sentences in KIF formed
from words in the ACL vocabulary.

The vocabulary of ACL is listed in a large and open-ended dictionary of words appro-
priate to common application areas [Gruber|. Each word in the dictionary has an English
description for use by humans in understanding the meaning of the word; and each word
has formal annotations (written in KIF) for use by programs. The dictionary is open-ended
to allow for the addition of new words within existing areas and in new application areas.

Note that the existence of such a dictionary does not imply that there is only one way
of describing an application area. Indeed, the dictionary can contain multiple ontologies
for any given area. For example, it contains vocabulary for describing three dimensional
geometry in terms of polar coordinates, rectangular coordinates, cylindrical coordinates,
etc. A program can use whichever ontology is most convenient. The formal definitions of
the words associated with any one of these ontologies can then be used by system programs
in translating messages using one ontology into messages using other ontologies.

KIF is a prefix version of first order predicate calculus, with various extensions to
enhance its expressiveness. It provides for the encoding of simple data, constraints, nega-
tions, disjunctions, rules, quantified expressions, metalevel information, and so forth. See
figure 1 for a brief summary of KIF.

While it is possible to design an entire communication framework in which all mes-
sages take the form of KIF sentences, this would be efficient. Because of the contextual
independence of KIF’s semantics, each message would have to include any implicit infor-
mation about the sender, the receiver, the time of the message, message history, and so
forth. The efficiency of communication can be enhanced by providing a linguistic layer in
which context is taken into account. This is the function of KQML. See figure 2 for a brief
summary.

ACL has been used in several large-scale demonstrations of software interoperation,
and the results are promising. Full specifications are available, and parts of the language
are making their way through various standards organizations. Several start-up companies
are proposing to offer commercial products for processing ACL; and a number of established
computer system vendors are looking at ACL as a possible language for communication
among heterogeneous systems.

As of this writing, it is not clear which of these two approaches will succeed. The
declarative approach seems inevitable in the long run. However, scripting languages are
likely to be popular in the short run because of their familiarity; and so the ultimate agent
communication language may end up looking more like a scripting language than ACL.

3

Figure 1 — Knowledge Interchange Format

KIF [Genesereth, Fikes, et al.] is a prefix version of the language of first order predicate
calculus with various extensions to enhance its expressiveness.

First and foremost, KIF provides for the expression of simple data. For example, the
sentences shown below encode 3 tuples in a personnel database. The first argument in
each is the social security number of an individual, the second argument is the department
within which the individual works, and the third argument is the individual’s salary.

(salary 015-46-3946 widgets 72000)
(salary 026-40-9152 grommets 36000)
(salary 415-32-4707 fidgets 42000)

More complicated pieces of information can be expressed through the use of complex
terms. For example, the following sentences states that one chip is larger than another.

(> (* (width chipl) (length chipl)) (* (width chip2) (length chip2)))

KIF includes a variety of logical operators to assist in the encoding of logical infor-
mation (such as negations, disjunctions, rules, quantified formulas, and so forth). The
expression shown below is an example of a complex sentence in KIF. It asserts that the
number obtained by raising any real-number ?x to an even power 7n is positive.

(=> (and (real-number 7x) (even-number 7n)) (> (expt ?x ?n) 0))

One of the distinctive features of KIF is its ability to encode knowledge about knowl-
edge, using the ¢ and , operators and related vocabulary. For example, the following
sentence asserts that agent Joe is interested in receiving triples in the salary relation. The
use of commas signals that the variables should not be taken literally. Without the com-
mas, this sentence would say that agent 1 is interested in the sentence (salary 7x 7y
7z) instead of its instances.

(interested joe ‘(salary ,?x ,?7y ,7z))

KIF can also be used to describe procedures, i.e. to write programs or scripts for
agents to follow. Given the prefix syntax of KIF, such programs resemble Lisp or Scheme.
The following is an example of a three step procedure written in KIF. The first step ensures
that there is a fresh line on the standard output stream; the second step is to print Hello!
to the standard output stream; the final step is to add a carriage return to get to a new
fresh line.

(progn (fresh-line t) (print "Hello!") (fresh-line t))

The semantics of the KIF core (KIF without rules and definitions) is similar to that
of first order logic. There is an extension to handle nonstandard operators (like ¢ and ,),
and there is a restriction to models that satisfy various axiom schemata (to give meaning
to the basic vocabulary in the format). Despite these extensions and restrictions, the core
language retains the fundamental characteristics of first order logic, including compactness
and the semidecidability of logical entailment.

4

Figure 2 — Knowledge Query and Manipulation Language

As used in ACL, KQML messages are similar to KIF expressions. Each message is a
list of components enclosed in matching parentheses. The first word in the list indicates
the type of communication. The subsequent entries are KIF expressions appropriate to
that communication, in effect the “arguments”.

Intuitively, each message in KQML is one piece of a dialog between between the sender
and the receiver, and KQML provides support for a wide variety of such dialog types.

The expression shown below is the simplest possible KQML dialog. In this case, there
is just one message — a simple notification. The sender is conveying the enclosed sentence
to the receiver. In general, there is no expectation on the sender’s part about what use
the receiver will make of this information.

A to B: (tell (> 3 2))

The following dialog is a little more interesting. In this case, the first message is a
request for the receiver to execute the operation of printing a string to its standard i/o
stream. The second message tells the sender that the request has been satisfied.

A to B: (perform (print "Hello!" t))
B to A: (reply done)

In the dialog shown below, the sender is asking the receiver a question in an ask-if
message. The receiver then sends the answer to the original sender in a reply message.

A to B: (ask-if (> (size chipl) (size chip2)))
B to A: (reply true)

In the following case, the sender asks the receiver to send it a notification whenever
it receives information about the position of an object. The receiver sends it three such
sentences, after which the original sender cancels the service.

A to B: (subscribe (position ?x ?r 7c))
B to A: (tell (position chipl 8 10))

B to A: (tell (position chip2 8 46))
B to A: (tell (position chip3 8 64))
A to B: (unsubscribe (position ?x 7r 7c))

In addition to simple notifications, commands, questions, and subscriptions, as illus-
trated here, KQML also contains support for delayed and conditional operations, requests
for bids, offers, promises, and so forth.

(For those who have seen a little of KQML and wonder where the packages went,
it is worth noting that, in addition to the communication layer described here, KQML
includes yet another linguistic layer to support the transmission of messages among agents
operating in different processes. This layer characterizes the additional information that
must be conveyed in communication protocols between distributed systems, such as email
and TCP connections. The details of this “package” layer are irrelevant to the discussion
in this paper; see the KQML document for more information.)

3. Agents

The criterion for agenthood is a behavioral one. An entity is a software agent if
and only if it communicates correctly in an agent communication language like ACL. This
means that the entity must be able to read and write ACL messages, and it means that the
entity must abide by the behavioral constraints implicit in the meanings of those messages.

The specific constraints associated with a message derive from the content of that
message and general principles of agent behavior. For example, there is veracity (an agent
must tell the truth), autonomy (an agent may not constrain another agent to perform
a service unless the other agent has advertised its willingness to accept such a request),
commitment (if an agent advertises a willingness to perform a service, then it is obliged to
perform that service when asked to do so), and so forth.

From a theoretical perspective, it is interesting to note that all of these principles
can be derived from the single principle of veracity. In other words, if all agents are
constrained to tell the truth, then autonomy, commitment, etc. all follow. To many
people, the principle of veracity sounds too strong; but it is not difficult to achieve. An
agent can always state its own inputs, outputs, and definitions with confidence; and it can
nest conjectures inside of statements about its “beliefs”. Unfortunately, a full account of
this issue is beyond the scope of this paper; and, interesting as it may be theoretically, it
has only indirect practical value.

For our purposes here, it is sufficient to say that the use of ACL brings with it
behavioral constraints. However, this leaves opens a wide range of possibilities. At one
extreme, we can imagine “perfect” agents that retain all of the information they receive
and act in accordance with the logical consequences of this information. At the other
extreme, we can imagine simple agents, like calculators, that answer arithmetic problems
and ignore everything else. More powerful agents utilize a larger portion of ACL; less
powerful agents use a smaller subset. All are agents, so long as they use the language
correctly.

Given a clear statement of the language and the behavioral principles that agents must
satisfy, it is straightforward to write programs that behave correctly. But what about all
of the programs that have already been written, our so-called “legacy” software? Are there
any standard techniques for converting such programs into software agents? In work thus
far, a number of different approaches have been taken. See figure 3.

B

Transducer Wrapper Rewrite

Figure 3 - Three approaches to agentification

One approach (the leftmost diagram in figure 3) is to implement a transducer that
mediates between an existing program and other agents. The transducer accepts messages
from other agents, translates them into the program’s native communication protocol, and
passes those messages to the program. It accepts the program’s responses, translates into
ACL, and sends the resulting messages on to other agents.

This approach has the advantage that it requires no knowledge of the program other
than its communication behavior. It is, therefore, especially useful for situations in which
the code for the program is unavailable or too delicate to modify.

This approach also works for other types of resources, such as files and people. It is
a simple matter to write a program to read or modify an existing file with a specialized
format and thereby provide access to that file via ACL. Similarly, it is possible to provide
a graphical user interface for a person that allows that person to interact with the system
in a specialized graphical language, which is then converted into ACL, and vice versa.

A second approach to dealing with legacy software (the middle diagram in figure 3)
is to implement a wrapper, i.e. inject code into a program to allow it to communicate
in ACL. The wrapper can directly examine the data structures of the program and can
modify those data structures. Furthermore, it may be possible to inject calls out of the
program so that it can take advantage of externally available information and services.

This approach has the advantage of greater efficiency than the transduction approach,
since there is less serial communication. It also works for cases where there is no interpro-
cess communication ability in the original program. However, it requires that the code for
the program be available.

The third and most drastic approach to dealing with legacy software (the rightmost
diagram in figure 3) is to rewrite the original program. The advantage of this approach
is that it may be possible to enhance its efficiency or capability beyond what would be
possible in either the transduction or wrapping approaches.

The best examples of this approach come from the engineering domain. Many auto-
mated design programs work to completion before communicating with other programs.
For example, the output of a logic synthesis program is passed as input to a printed circuit
board layout and routing program; its output is passed to an assembly planning program:;
and so forth. Recent work in concurrent engineering suggests that there is much advantage
to be gained by writing programs that communicate partial results in the course of their
activity and that accept partial results and feedback from other programs. By communi-
cating a partial result and getting early feedback, a program can save work on what may
turn out to be an unworkable alternative.

4. Architecture of Multi-Agent Systems

Once we have a language and the ability to build agents, there remains the question
of how these agents should be organized to enhance collaboration. Two very different
approaches have been explored: direct communication (in which agents handle their own
coordination) and assisted coordination (in which agents rely on special system programs
to achieve coordination).

The advantage of direct communication is that it does not rely on the existence,
capabilities, or biases of any other programs. Two popular architectures for direct com-

7

munication are the contract-net approach and specification sharing.

In the contract net approach to interoperation [Davis and Smith 1983], agents in
need of services distribute requests for proposals to other agents. The recipients of these
messages evaluate those requests and submit bids to the originating agents. The originators
use these bids to decide which agents to task and then award contracts to those agents.

In the specification sharing approach to interoperation, agents supply other agents
with information about their capabilities and needs; and these agents can then use this
information to coordinate their activities. The specification sharing approach is often more
efficient than the contract net approach because it decreases the amount of communication
that must take place.

One disadvantage of direct communication is cost. So long as the number of agents is
small, this is not a problem. But, in a setting like the Internet, with millions of programs,
the cost of broadcasting bids or specifications and the consequential processing of those
messages is prohibitive. In this case, the only alternative is to organize the agents in some
way that avoids such broadcasts.

Another disadvantage is implementational complexity. In the direct communication
schemes, each agent is responsible for negotiating with other agents and must contain all of
the code necessary to support this negotiation. If only these capabilities could be provided
by the system, this would lessen the complexity of application programs.

A popular alternative to direct communication that eliminates both of these disadvan-
tages is to organize agents into what is often called a federated system. Figure 4 illustrates
the structure of such a system in the simple case in which there are just three machines, one
with three agents and two with two agents apiece. As suggested by the diagram, agents do
not communicate directly with each other. Instead, they communicate only with system
programs called facilitators, and facilitators communicate with each other. (The concept
of a facilitator [Genesereth 1992] derives from and generalizes the concept of a mediator
[Wiederhold].)

(Agent) (Agent) (Agent) (Agent)
] 1
Facilitator) (Facilitator
x
Facili'tator)
]
(Agent) (Agent) (Agent)

Figure 4 - Federated system

In a federated system, agents use ACL (in practice, a restricted subset of ACL) to
document their needs and abilities for their local facilitators. In addition to this metalevel

information, they also send application-level information and requests to their facilitators
and accept application-level information and requests in return. Facilitators use the docu-
mentation provided by these agents to transform these application-level messages and route
them to the appropriate places. In effect, the agents form a “federation” in which they
surrender their autonomy to their facilitators and the facilitators take the responsibility
for fulfilling their needs.

The concepts of system services in support of software interoperation is not new here.
For example, directory assistance programs facilitate software interoperation by providing
a way for programs to discover which programs can handle which requests and which
programs are interested in which pieces of information. Distributed object managers (like
CORBA, OLE, DSOM) provide location transparency for object-oriented systems, routing
messages to objects without requiring senders to know the locations of those objects.
Automatic brokers (like the Publish and Subscribe capabilities on the Macintosh, DDE,
BMS, Tooltalk, etc.) combine these capabilities — they not only compute the appropriate
programs to receive messages but forward those messages, handle any problems that arise,
and, where appropriate, return the answers to the original senders.

The primary difference between these approaches to software interoperation and agent-
based software engineering lies in the sophistication of the processing done by facilitators.
Using ACL, agents can express their needs and capabilities more accurately than in pattern-
based metalanguages; and facilitators can use this added information to be more discrimi-
nating in routing messages. In order to deal with notational incompatibilities, facilitators
can translate messages from one vocabulary to another using definitions supplied by agents
or retrieved from the ACL dictionary. In so doing, they can decompose messages into sub-
messages and send them to different agents. When necessary, they can combine multiple
messages. In some cases, this assistance can be rendered interpretively (with messages
going through the facilitators); in other cases, it can be done in one-shot fashion (with the
facilitators setting up specialized links between individual agents and then stepping out of
the picture).

In order to provide these capabilities, current implementations of facilitators take
advantage of automated reasoning technology developed in the Artificial Intelligence and
Database communities. Powerful search control techniques are used to enhance normal
message-processing performance; and automatic generation of message routing programs
and pairwise translators is used for cases requiring greater efficiency.

Even with these enhancements, these implementations consume more time in the
worst case than simpler processing techniques (like the pattern matching method used in
BMS). This is sometimes acceptable, especially when the alternative is no interoperation
at all. However, in time critical applications (such as machine control), the extra cost can
be prohibitive.

5. Summary

The agent-based approach to software interoperation described here has been devel-
oped into a practical technology and has been put to use in a variety of applications
necessitating interoperation (e.g. concurrent engineering [Cutkosky|, database integration,
and so forth) and is being used at multiple institutions in the construction of software for

9

the national information infrastructure.

In order to concentrate on the central issues in agent-based software engineering, we
have ignored many key problems in our presentation, such as synchronization, security,
payment for services, crash recovery, inconsistencies in program specifications, and so
forth. Although partial solutions to these problems exist, further work is needed.

In our treatment so far, we have assumed that there is sufficient common interest
among the agents that they will frequently volunteer to help each other and receive no
direct reward for their labor. As the Internet becomes increasingly commercialized, we
envision a world where agents act on behalf of their creators to make a profit. Agents will
seek payment for services provided and may negotiate with each other to maximize their
expected utility, which might be measured in a form of electronic currency.

These problems mark the intersection of economics and distributed artificial intel-
ligence (DAI). A number of researchers in DAI are using tools developed in economics
and game theory to evaluate multi-agent interactions [Zlotkin 1994], [Rosenschein and
Genesereth 1985], [Gmytrasiewicz, Durfee and Wehe 1991]. Depending on the prevailing
conditions of the situation, any one of a number of protocols might be applicable. In the
simplest case, the agent requesting a service offers a specific reward for the completion of a
task. The agent that performs the task receives the payment. In more complex scenarios,
a task may be completed by a set of agents, who need to negotiate how to divide the
reward. Dividing the total amount equally might not be fair if the agents made different
contributions. If there are many agents (or sets of agents) that may complete the task, the
requestor might try to minimize its cost by seeking multiple bids or holding an auction.
There are a number of alternatives (e.g. English Ascending Auction, Dutch Descending
Auction, Sealed-Bid, Vickery’s Second Price) that have different properties and may be
applicable or preferred in different situations. The WALRAS system [Wellman 1993] is an
example of market mechanics being used to coordinate agents.

A further goal of DAI research is to obviate the need for the truth-telling assumption.
If the selected protocols are truth dominant, agents tell the truth out of self-interest, rather
than by fiat. This makes the system as a whole more resistant to a scheming agent that
might try to exploit other agents by lying. The next step in this research thread is to create
protocols that are resistant to the efforts of groups of agents that attempt to manipulate
the system for their own benefit.

In this paper, we have taken a brief look at how agent technology can be used to pro-
mote software interoperation. Our long-range vision is one in which any system (software
or hardware) can interoperate with any other system, without the intervention of human
users or their programmers. Although many problems remain to be solved, we believe
that the introduction of agent technology will be an important step toward achieving this
vision.

10

References

1. Cutkosky, M. et al. PACT: An Experiment in Integrated Engineering Systems, Com-
puter 26, 1(1993), 28-37.

2. Davis, R., and Smith, R. G. Negotiation as a Metaphor for Distributed Problem Solving,
in Artificial Intelligence 20, 1(1983), 63-109.

3. Ephrati, E. and Rosenschein, J. S. The Clarke Tax as a consensus mechanism among
automated agents”. In Proceedings of the Ninth National Conference on Artificial Intelli-
gence (Anaheim, California 1991). AAAI Press, Menlo Park, CA, pp. 173-178.

4. Finin, T., and Wiederhold, G. An Overview of KQML: A Knowledge Query and Manipu-
lation Language, available through the Stanford University Computer Science Department,
1991.

5. Genesereth, M. R., Fikes, R. E. et al. Knowledge Interchange Format Version 3 Refer-
ence Manual, Logic-92-1, Stanford University Logic Group, 1992.

6. Genesereth, M. R. A Proposal for Research on Informable Agents, Logic-89-9, Stanford
University Logic Group, June 1989.

7. Genesereth, M. R. An Agent-Based Approach to Software Interoperability, In Proceed-
ings of the DARPA Software Technology Conference, 1992.

8. Gmytrasiewicz, P. J., Durfee, E. H. and Wehe, D. K. A Decision- Theoretic Approach
to Coordinating Multiagent Interactions. In Proceedings of the Twelfth International Joint
Conference On Artificial Intelligence (Sydney, Australia 1991). International Joint Con-
ferences on Artificial Intelligence, Inc. pp. 62-68.

9. Gruber, T. Ontolingua: A Mechanism to Support Portable Ontologies, KSL-91-66,
Stanford Knowledge Systems Laboratory, 1991.

10. Kraus, S. Agents Contracting Tasks in Non-Collaborative Environments. In Proceed-
ings of the Eleventh National Conference on Artificial Intelligence (Washington, DC 1993).
AAAI Press, Menlo Park, CA. pp. 243-248.

11. Lander, S. E. and Lesser, V. R. Understanding the Role of Negotiation in Distributed
Search Among Heterogeneous Agents. In Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence (Chambery, France 1993). International Joint Con-
ferences on Artificial Intelligence, Inc. pp. 438-444.

12. Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., and Swartout, W.
Enabling Technology for Knowledge Sharing, Al Magazine 12, 3(1991), 36-56.

13. Rosenschein, J. S. and Genesereth, M.R. Deals Among Rational Agents. In Proceed-

11

ings of the Ninth International Joint Conference on Artificial Intelligence (Los Angelos,
California 1985). AAAI Press, Menlo Park, CA, pp. 91-99.

14. Shoham, Y. Agent-Oriented Programming. Artificial Intelligence 60. 1(1993), 51-92.

15. Wellman, M. P. A Market-Oriented Programming Environment and its Application to
Distributed Multicommodity Flow Problems, Journal of Artificial Intelligence Research 1
(1993), 1-23.

16. Wiederhold, G. The Architecture of Future Information Systems, Stanford University
Computer Science Department, 1989.

17. Zlotkin, G. Mechanisms for Automated Negotiation among Autonomous Agents. Ph.D.
Dissertation. Hebrew University. February 1994.

12

