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A new algorithm for recognizing and parsing arbitrary context-free languages is presented, and several 
new results are given on the computational complexity of these problems. The new algorithm is of 
both practical and theoretical interest. I t  is conceptually simple and allows a variety of efficient 
implementations, which are worked out in detail. Two versions are given which run in faster than 
cubic time. Surprisingly close connections between the Cocke-Kasami-Younger and Earley algorithms 
are established which reveal tha t  the two algorithms are "almost" identical. 
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1. INTRODUCTION 

Since the introduction of context-free languages and grammars in the late 1950s 
there has been considerable interest in efficient recognition and parsing algo- 
rithms for them. Good linear-time algorithms are now known for many subclasses 
of context-free grammars, but these methods are too restricted for some appli- 
cations. In these situations, general context-free language recognition and parsing 
algorithms are used. In the present paper a new, general, context-free recognizer 
is presented. Efficient techniques are given to implement it, and some unexpected 
connections between previously known algorithms are derived. Both theoretical 
and practical analyses of these methods are given. The analysis considers not 
only orders of magnitude, but also the constant multipliers which are commonly 
ignored in theoretical studies but are important in practical situations. 

One significant use of the general context-free methods is as part of a system 
of processing natural languages such as English. We are not suggesting that there 
is a context-free grammar for English. It is probably more appropriate to view 
the grammar/parser as a convenient control structure for directing the analysis 
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of the input string. The overall analysis is motivated by a linguistic model which 
is not context free, but which can frequently make use of structures determined 
by the context-free grammar. 

Other applications that  have been proposed for general context-free methods 
include extensible programming languages. Many programming languages have 
grammars which are suitable for parsing by one of the linear-time methods. 
However, in some extensible languages the grammar is not fully known to the 
compiler designers, and a parsing method is needed which can efficiently accom- 
modate a growing grammar. Even if one of the linear-time parsers satisfied this 
condition, it might still be difficult or impossible for the user to extend the 
language at will and still keep the grammar in the form required by that particular 
parsing method, since the user would not be free to tinker with the whole 
grammar, only the additions. The general context-free methods we discuss later 
not only free the user from all concern about the form of the grammar, but  also 
can easily handle additions to the grammar. {See, for example, [18, 26, 37].) 

Another area where general context-free parsing techniques have been consid- 
ered is speech recognition. Here the input language can only be approximately 
defined, and individual inputs can vary widely from the norm. Thus the goal is to 
find a parse which most closely matches the input. Ambiguity arises, since each 
unit of the input can be considered to be a "distorted" version of any of several 
possible sounds with various probabilities (for example, see [23]). A closely related 
technique has also been proposed for doing error correction while parsing [24]. 

The first context-free parsers used "backtracking" to search exhaustively for a 
derivation matching the input string. While these parsers worked reasonably well 
in some cases, they had a worst-case running time which grew exponentially in 
the length of the input, making them unsuitable for most applications. References 
to many of these methods and comparisons of them may be found in [14, 22]. 

There are two well-known, practical, general context-free recognition methods. 
The first was discovered independently by Cocke, Kasami, and Younger early in 
the 1960s [16, 20, 39]. It is essentially a dynamic programming method and takes 
time proportional to n 3, where n is the length of the input string. The method 
requires a grammar in Chomsky normal form, but  since every context-free 
language has such a grammar, this is not a fundamental restriction. More recently, 
Valiant showed that the computation performed by the Cocke-Kasami-Younger 
algorithm can be related to Boolean matrix multiplication, giving a recognizer 
running in subcubic time 1 [36]. For sufficiently long inputs this is the fastest 
known method. However, the overhead for this method is too large to make it 
useful for values of n in the range of practical interest. 

The second major method was discovered by Earley as an extension of Knuth's 
LR(k) method [7, 8, 21]. Unlike the Cocke-Kasami-Younger algorithm, Earley's 
algorithm will work for any context-free grammar. 

One of the main contributions of this paper is a new general context-free 
language recognizer, presented in Sections 2 and 3. It is derived from Earley's 
algorithm, but  has a number of advantages over its predecessor. First, and most 

Recent ly ,  subs tan t i a l  progress  ha s  been  made  on th is  problem. As of Ju ly  1980, m e t h o d s  are known 
which  mul t ip ly  two n x n mat r i ces  in t ime  proport ional  to n 2'55"''. 
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important, it is conceptually simpler than Earley's method. This simplicity has 
helped reveal a variety of possible implementations and optimizations which 
make the algorithm applicable in a wide range of circumstances. One simple 
implementation of our algorithm uses proportional-to-n 2 bit-vector operations on 
vectors of length n, where n is again the length of the input. For problems of 
practical size this method may be much faster than Earley's, since word-parallel 
Boolean operations may be used to manipulate the bit vectors (which would fit 
in a few words on most computers). Of theoretical interest are versions of the 
algorithm which run in less than n 3 steps. However, the overhead for these 
methods may be too large for practical applications. Readers interested in the 
space complexity of context-free recognition should consult [15, 31, 32, 33]. 

A second contribution of this paper is to exhibit deep and perhaps unexpected 
connections between the various parsing methods mentioned above. In particular, 
we show that the Cocke-Kasami-Younger and Earley methods are "almost" 
identical. This unification of superficially dissimilar methods should simplify the 
field. These results are discussed in Section 4. 

Throughout the paper, we assume that the reader is familiar with the basic 
concepts and notation from language theory, such as context-free grammars (cfg), 
context-free languages (cfl), derivation, derivation tree, and Chomsky normal 
form grammar; precise definitions may be found in any standard text on the 
subject, such as [2, 15]. 

2. THE NEW ALGORITHM 

Throughout this section we assume the presence of an arbitrary context-free 
grammar G = (V, Z, P, S), where Vis the total vocabulary, Z is the set of terminal 
symbols, P is the finite set of productions, and S is the start symbol. We let N = 
V - Y. denote the set of v a r i a b l e s  or n o n t e r r n i n a l s .  It is also convenient to fix 
n _> 1, to fix the input string to be parsed as w = ala2 . .  • a , ,  and, for 1 _ i _ n, 
ai E ~. Further, wi and wi.j for 0 __ i _< j denote the substrings ala2 . . .  ai 

and ai+l . . .  aj, respectively (w0 = wi,~ = A, the empty string). The l e n g t h  of a 
string w, written lg(w), is defined to be the number of occurrences of symbols in 
w. Note that  w~wi,j = wj  and W~.kWk,j = Wi,j. Also, we define the s i z e  of G, written 
as I G I, to be ~,A-.~mp lg(Aa). 

The r e c o g n i t i o n  p r o b l e m  is to decide whether or not w is in L ( G ) .  A r e c o g n i z e r  

i~ a procedure which a c c e p t s  (recognizes) those strings in L ( G )  and rejects all 
others. A recognizer is said to operate o n - l i n e  if it recognizes each prefix of w 
before reading any of the input beyond the prefix. More formally, an on-line 
recognizer is a procedure which sequentially reads its input ala2 . . .  a ,  and 
sequentially generates an output sequence of O's and l's, ror~r2 . . .  r , ,  where r~ is 
generated before ai+~ is read, and ri is 1 if a~ . . .  ai is in L ( G )  and 0 otherwise. A 
recognizer which is not on-line is called of f - l ine .  

A p a r s e r  is a recognizer which additionally outputs a parse or derivation of 
each accepted input. The parse may be encoded in a variety of ways, for example, 
as the list of productions used in a rightmost derivation or as a derivation tree; 
we will not be concerned with the representation at this time. 

It is both necessary and convenient to present an old algorithm first, the so- 
called Cocke-Kasami-Younger algorithm (hereafter called C K Y ) ,  which was 
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discovered independently in the mid 1960s by J. Cocke, T. Kasami, and 
D. Younger [20, 39]. Modern presentations of the algorithm may be found 
in [2, 12, 15]. 

Conven t ion .  For the moment we assume that  the grammar G is a Chomsky 
normal form grammar. 

The CKY algorithm is essentially a dynamic programming method in the sense 
that  a derivation matching a longer portion of the input string is built by "pasting 
together" previously computed derivations matching shorter portions. More 
precisely, for B E N and x E ~* we say that  B m a t c h e s  x i f  B 7 "  x. Notice that  
if B matches x, C matches y, and there is a rule A ~ BC,  then we can paste these 
derivations together to find that  A matches xy,  since A ~ B C  7 "  x C  7 "  xy.  
Similarly, we say that  a set of variables Q matches x if each element of Q matches 
x. For Q, R __C_ N define 

Q ® R ffi {A IA  --* B C  is in P for some B E Q and C E R}. 

Notice that  if Q matches x and R matches y, then Q ® R matches xy.  
The CKY algorithm constructs an (n + 1) × (n + 1) upper triangular matrix t 

(indexed 0 through n), called the recogn i t ion  ma t r i x ,  whose entries are sets of 
variables; the t~,j entry is to be the set of all variables matching the substring w~.j. 
Thus entries in the j t h  column match suffixes of the first j symbols of the input. 
The algorithm is given below in abstract form. 

1 for each column (* i.e., input symbol *) do 
2 begin (* let j  be current input position *) 
3 match j th  input symbol 
4 for increasing length suffixes do 
5 paste derivations of suffix of in'st j symbols of input 
6 e n d  
7 if entire input matched then accept 
8 e l s e  reject; 

The same algorithm follows in Pascal-like notation. 2 

Algor i thm 2.1 (Cocke-Kasami-Younger) 

l forj:---  l t o n d o  
2 begin 
3 t i - l ,~ : f f i (AIA- ->aj i s inP};  
4 for i :ffi j -2  downto 0 do 
5 ti,j :-~ Ui<k<j ti, k ~ tk,j 
6 e n d  
7 i f  S E to~ t h e n  accept 
8 e l s e  reject; 

The essential property of the algorithm is given by the following characteriza- 
tion theorem. 

2 In our notation, all "multiply" operators have higher precedence than set union. 
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Fig. 1. Proof  of Proposit ion 2.1, "if" direction. 

PROPOSITION 2.1. After  executing CKY,  for 0 <_ i < j <_ n, we have A E tij i f  
and  only i f  A matches wi, j. 

S K E T C H  OF PROOF. Detailed proofs are available in the literature [2, 12, 15], 
but  a proof will be sketched, since it parallels the proof which appears in the next 
section. The proof proceeds by an induction which follows the order in which 
matrix entries are generated, namely, completing columns from left to right, with 
each column being completed from bottom to top. Notice that this order com- 
pletes the row entries to the left of ti,j (i.e., ti,h, k < j )  and in the column below ti,j 
(i.e., tkj, i < k) before t i j  is completed, tl,j is basically the "inner product" of (the 
nonempty portions of) row i with column j, i.e., a union of ®-products of 
corresponding entries of row i and column]'. The first part of the proof is to show 
that each ti,j matches wi,j. The argument is straightforward. The second part of 
the proof is to show that each t~j contains all variables A matching w~,j. The 
main step is for lg(wij) _ 2. Here we use the fact that in the derivation tree for 
A 7 "  wi,j some part of wij  descends from the left child of A and the rest descends 
from the right. That  is, there is some rule A --, B C  and some k, i < k < j, such 
that B 7 "  Wi.k and C 7 "  Wk,j. (See Figure 1.) By the induction hypothesis, B 
must be in ti,k and C E tk.j, SO A E t~,k ® tka C_ tij.  [] 

The usual version of CKY [2, 20, 25, 39] is different from that presented here 
in two respects. First, the matrix is organized and indexed differently. Second, 
the matrix entries are completed along (what in our representation correspond 
to} diagonals progressively farther from the main diagonal (i.e., {ti.i+dl 0 <_ i <_ n 
- -  d} for d = 1, 2 , . . . ,  n), rather than working up columns progressively farther 
frOth the left as we have done. Actually, all that matters is that the row to the left 
of t i j  and the column below ti.y must be finished before ti,j is computed. We have 
given the algorithm in this form since it parallels the new algorithm and since it 
is an on-line recognizer. 

The CKY algorithm was the first general context-free recognizer with a 
subexponential running time, and it is one of the simplest. However, it is not 
commonly used in practice, fo2 three reasons. First, it is somewhat inconvenient 
to write and read grammars in Chomsky form. For one thing, breaking up long 
productions into ones with right sides of length 2 may tend to obscure the 
structure of the grammar and language. Additionally, in English optional con- 
structions are common; for instance, a noun phrase might be a noun optionally 
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followed by  a modifier. Optional parts  are typically incorporated in grammars  by 
a combinat ion of A-rules and chain-rules. Eliminating these A- an d /o r  chain- 
rules m a y  require widespread modifications to the grammar.  Of course, conversion 
to Chomsky form may  be done mechanical ly so tha t  the grammar  writer  is not  
direct ly faced with these problems. However,  as a second problem, the conversion 
ma y  square the size of the grammar.  The  CKY algori thm runs in t ime proport ional  
to I G I n 3. In many  applications I G I is much  bigger than  n, so squaring the size of 
the  g rammar  can have a drastic effect on performance.  For  example, in a natural  
language processing system the grammar  might  well have several hundred  pro- 
ductions, bu t  the input  is just  one English sentence of 20 or 30 words. T h e  third 
problem with CKY is tha t  it may  spend lots of t ime making "useless" matches.  
T h a t  is, it finds every variable A matching some substring wi,j without  regard to 
whe ther  or not  tha t  ma tch  can occur within the context  of the rest  of the 
sentence, i.e., whe ther  or not  S 7 "  Wo, iAwj ,  n. Matches  which fail to satisfy this 
cri terion ma y  make up the  great  major i ty  of all matches  found. In one exper iment  
repor ted  by  P ra t t  [27], at  least 80 percent  of the matches  were of this type. 

T h e  new algori thm has much  in common with the Cocke-Kasami-Younger  
algorithm. In particular,  it is also a "dynamic  programming" me thod  in which 
derivations matching longer port ions of the input  are built  up by  pasting together  
previously computed  derivations matching shor ter  portions. Th e  two major  
differences are tha t  a rb i t rary  grammars  are handled (not just  Chomsky form 
ones), and certain "useless" matches  are eliminated. 3 We hencefor th  relax the  
restr ict ion on grammars  to Chomsky form. 

In order  to handle  arbi t rary  grammars,  it will be convenient  to speak of 
matching only par t  of the right side of a rule to the input, r a the r  than  the whole 
rule. As a nota t ion for dealing with this situation, we introduce the do t t ed  rule. 

Def in i t ion .  Let  G = (V, Z, P,  S) be a context-free grammar  and let  • be a 
symbol  not  in V. If  A --~ aft is in P, then  we say tha t  A ~ a .  fl is a do t t ed  rule  

of G. 

T h e  idea is tha t  the dot ted  rule A --~ a .  fl indicates tha t  a has been ma tched  to 
the  input,  but  it is not  ye t  known whether  fl matches.  (A similar idea is used to 
explain LR  parsing.) T h e  notion of matching is made  precise as follows. 

Def in i t ion .  For  U E V, x E Z*, and A ~ a -  fl a dot ted  rule, we say tha t  

and 

A --~ a . fl m a t c h e s  x if  a T * x 

U m a t c h e s  x if U T *  x. 

A se t  of variables a n d / o r  dot ted rules m a t c h e s  x if each e lement  of the  set 
matches  x. 

As with CKY, the new algori thm constructs  an (n + 1) × (n + 1) upper  
t r iangular  matr ix  t = (ti,j), 0 __ i , j  <_ n, whose entries are sets matching substrings 
of the  input,  bu t  here  we use sets of dot ted rules ra ther  t han  sets of variables. 

3 It should be noted that other methods of solving these problems have been considered, but they 
seem to have some drawbacks. These are considered in Section 3. 
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Notice that  i f A  --. a .  Bf l  matches x and B matches y, then we can "paste" the 
derivations together to conclude that  A --. a B .  fl matches xy, since 

a B  7 "  x B  7 "  xy. 

Matchings can be combined in this way until the dot has been moved to the right 
end of the rule, at which point we know that A itself matches the string. 

For our algorithm it is more efficient if the result of pasting two derivations 
together in this way is always a dotted rule which matches a string which is 
strictly longer than either of the two initial strings. However, in an arbitrary 
grammar if we have, say, B 7 "  A, and if A -* a .  B f  matches x, then so does A 
-*  a B .  f .  Of course, there could be several consecutive variables which all match 
A. The notion of "pasting together" which we use will automatically move the 
dot to the right of variables matching A, so that we need only worry about 
combining derivations matching nonnull strings. In addition to saving time, this 
property also turns out to simplify the algorithm and its proof. The operations we 
need which are analogous to the ® product used in CKY are defined next. 

Definit ion.  Let G - (V, ~, P, S) be a context-free grammar. Let Q be a set of 
dotted rules, and let R _ V. Define 

Q × R = {A --* ~ B f . y I A  --. a , B f y  is in Q, fl 7 "  A, and B E R}, 

Q * R ffi {.4 --. a B f l . T I A  - .  a .B f l T  is in Q, fl 7 "  A, and B 7 " C  

for some C E R}. 

Notice that  there may be several distinct prefixes of f i t  which generate A. We 
include all of them, not just the longest, since any of the variables involved might 
match the next portion of the input. The * product is the same as the × product 
except that  it includes effects of chain derivations (B 7 "  C) which would 
otherwise cause slight complications somewhat analogous to A-derivations. The 
reasons for this definition should b@come clear later. Notice that  Q × R _ 
Q * R .  

Next we extend these products to the case where both arguments are sets of 
dotted rules. 

Definit ion.  Let G = (V, Z, P, S) be a context-free grammar, and let Q, R be 
sets of dotted rules. Define 

Q × R = { A - - ~ a B f l ' y I A - * a . B f l y @ Q ,  f l T * A ,  and B- -~y .  i s i nR} ,  
Q * R = {A--* aBf l .  T I A - - ,  a . B f l T E  Q, f i T *  A, B T *  C for some C E  N, 

and C --. 71" is in R}. 

Again note that  

Q x R C _ Q * R .  

By observing the fact that  a variable matches a string only if the symbols in the 
right side of one of its productions can be pasted together appropriately, the 
reader can begin to see the motivation for these definitions. 
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Example .  Consider the grammar 

S --* A B A C  
A - *  A 

B --* CDC 
C-- .  A 

D - . a .  

Let Q --- {S--* A .  B A C } .  Then 

Q × {B} -- {S--* A B .  AC,  S - - . ' A B A .  C, S--* A B A C .  }, 

while 

Q • {D} = {S --. A B .  AC,  S --* A B A .  C, S --* A B A C .  ). 

The other major difference between this algorithm and CKY is that  we want 
to eliminate some useless matches. Instead of finding all A --* a .  fl which match 
some substring wi,j of the input, we find only those dotted rules A --* a .  fl which 
match wi,j a n d  may legally follow the portion of the input to the left of wi,j; i.e., 
S ~ *  Wo,iAO for some 8 E V*. This is a weaker condition than insisting that  the 
dotted rule be consistent with both left and right context (S ~ *  Wo.iAwj,,), but is 
easier to compute, while being sufficiently restrictive to be of significant practical 
utility. In fact, in the experiment mentioned earlier [27], a condition of this form 
eliminated the quoted 80 percent of the matches, while the stronger condition 
eliminated only a few more. It  is not hard to see how this might happen in, say, 
a grammar for English (which was the basis for Pratt 's  experiment). For instance, 
"who" must begin a relative clause in "The boy who . . . .  " but it must begin a 
question in "Who . . . .  "Thus ,  left context alone is sufficient to narrow greatly the 
range of possibilities in these cases. Such left-right biases are probably very 
common in most natural and artificial languages. 

Definition. For A a variable, A --* a .  fl a dotted rule, and x E ~*, we say that  
A follows x if S ~ *  xA8 for some 8 E V*, A --* a .  fl follows x i f A  does, and a set 
of variables and/or  dotted rules follows x if  each element of the set follows x. 

Given some dotted rules which follow a prefix of the input and match an 
extension to it, it is easy to find variables which may follow the longer prefix. 
Suppose A --* a .  Bfl  follows x and matches y. Then B follows xy, since S ~ *  xA8 

x a B f l S ~ *  xyBfl8 for some 8 E V*. Further, i fB  --. Cy, C--* D6 are rules, then 
C and D follow xy also. 

For convenience we say that  in this case B, C, and D follow A --* a .  Bfl  as well. 
Generalizing this example, we define a function PREDICT which gives the set of 
variables or dotted rules following a given set of variables or dotted rules and, in 
the case of dotted rules, matching A. 

Definition. Let G = (V, ~, P, S) be a context-free grammar and let R __ V. 
Define 

PREDICT(R)  = { C --* ~/. ~ I C --* ~/~ is in P, y ~ *  A, and B ~ *  C~ for some 
B E R and some 77 E V*}. 
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I f  R is a set of dot ted rules then  

P R E D I C T ( R )  -- P R E D I C T ( { B  I A  - .  a .  B f l  is in R}).  

I t  is impor tan t  to note  tha t  P R E D I C T  depends only on the grammar  and can 
be p recomputed  for each variable or dot ted rule. 

E x a m p l e .  Using the same grammar  as the previous example, we have 

P R E D I C T ( ( S } )  = ( S --~ . A B A  C, S - .  A . B A  C, A - , . ,  B - ,  • C D C ,  

B - ,  C .  D C ,  C - .  . , D - .  . a} .  

I t  should be remarked  tha t  P R E D I C T  is something of a misnomer.  Th e  name 
has  been borrowed from Earley 's  algorithm, which is very  closely connected with 
this algorithm, as is shown in Sect ion 4. However,  it does not  really predict  rules 
or variables which will be found. I t  would be more accurate to say tha t  it is used 
to restr ict  a t ten t ion  to those variables which, if matched,  would allow extension 
of part ial ly matched  rules found previously Thus,  "restr ictor,"  "extendor ,"  or 
perhaps  "wishor" might  be be t te r  names than  "predictor ."  

Now we can present  the main algorithm. 

A l g o r i t h m  2.2. Let G = (V, Y., P, S) be any context-free grammar. Let w ffi al . . .  a, ,  
where n _> 0 and ak E ~ for each k, 1 _ k -< n, be the string to be recognized. Form an 
(n + 1) x (n + 1) matrix t = (ti./) (indexed 0 through n in both dimensions) as follows. 
1 begin 
2 to,0 :ffi PREDICT((S));  (* match, A *) 
3 for  j := 1 to n do 
4 begin (* build column j, given columns 0 . . . . .  j - 1 *) 
5 tj-l,j  := tj-l,j-~ * (ai}; (* paste input symbol to A derivations that precede it *) 
6 for  i := j - 2 downto  0 do 
7 begin 
8 r :-~ (Ui<k<j-l(ti,k X t k j ) )  U t i j - i  X ( t j - l , j  l.J {aj} ); (* paste non-A derivations .) 
9 ti.i := r U ti, i * r (. paste matched suffix to A derivations that precede it and 

extend match to reflect chain rules .) 
10 end; 
11 tj, i :ffi PREDICT (Uo~_isj-lti, j); 
12 end; 
13 ff  some S --* a .  is in to,, then  accept 
14 else reject 
15 end. 

T h e  matr ix  t constructed by  the algori thm is called the r e c o g n i t i o n  m a t r i x .  

T h e  order  of computa t ion  of the new algori thm is similar to the CKY method.  
Columns of  the recognit ion matr ix are completed from left to right (the " f o r  j 
• . .  " l o o p  start ing on line 3). With  one exception the elements  of each column are 
completed  in order  f rom bo t tom to top (the " f o r  i . . . "  loop starting on line 6). 
T h e  except ion is tha t  the bo t tommos t  element,  i.e., the  one on the main diagonal, 
is completed  last (line 11). As in CKY, the e lement  immediate ly  above the main 
diagonal is t rea ted  as a special case (line 5). All o ther  off-diagonal elements  ti,j a r e  
formed as follows. First, form the "inner  product"  of (the nonempty  portions of) 
row i with column j ,  i.e., a union of ×-products  of e lements  from row i with 
(correspondingly positioned) e lements  f rom column j (line 8). When  computing 
this product ,  t rea t  t j - l . j  as if it contained the j t h  input  symbol aj (second te rm of 
line 8). T h e  second step is to augment  the " inner  produc t"  by taking a *-product 
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with the diagonal element on the ith row (line 9). This single step in the algorithm 
incorporates all the derivation steps using chain rules to match a suffix of the 
input read so far. The result is ti.j. 

To establish the correctness of the algorithm, one proves the following char- 
acterization. 

THEOREM 2.1. After  executing Algori thm 2.2, a dotted rule A ---> a . fl wil l  be 
in ti,j i f  and  only i f  it follows wi and matches wij; i.e., 

S ==~* wiA• for some 0 ~ V* and a ~ffi~* wi.j. 

We will not give the full formal proof here. A complete proof may be found in 
[31]. Also, see [15] for a proof of an algorithm which is quite close to the present 
one. Although we shall not do the detailed proof, there is much to be learned by 
looking at the structure of the proof, because many of the lemmas explain the 
insights which can be capitalized upon in implementation and optimization. 
Therefore the statements of the lemmas will be presented without proof. 

One key property of the x-  and *-products is that  like ® for CKY, they "paste 
together" derivations corresponding to all of the elements of the two sets. The 
following lemma captures this fact. 

LEMMA 2.1. I f  Q matches x and R matches y, then Q × R and Q * R match 
xy. 

Further the products preserve the following relationship: 

LEMMA 2.2. I f  Q follows x, so do Q × R and Q * R. 

Finally, the PREDICT function "extends" the following relationship: 

LEMMA 2.3. I f  Q follows x and  matches y, then PREDICT(Q)  follows xy and  
matches A. 

With these lemmas it is easy to prove the "only if" half of the characterization 
theorem: 

LEMMA 2.4. Each  set ti,j constructed by Algori thm 2.2 follows wi and  matches 
wi,j. 

PROOF. By an induction which follows the order of computation of the 
algorithm. [] 

LEMMA 2.5. The algorithm places every dotted rule which follows wi and  
matches wij  into t~.j. 

PROOF. Again, by an induction following the order of computation. (Cf. [15, 
31].) [] 

The key idea, as in the proof for the CKY algorithm, is that a dotted rule 
matching a long portion of the input implies the existence of two dotted rules 
matching shorter portions, which (inductively) have been previously placed in 
the matrix. The argument is more complicated technically than for CKY due to 
the possibility of A- and chain-derivations. 
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Lemmas  2.4 and 2.5 together  const i tute a proof  of T h e o r e m  2.1. Th e  correctness 
of  Algori thm 2.2 is a simple corollary: 

COROLLARY 2.1.  A l g o r i t h m  2.2 is correct, i .e. ,  it  accepts  w i f  a n d  only  i f  w E 
L ( G ) .  

PROOF. The  algori thm accepts if and only if there  is some dot ted rule S --) 
a .  in t0,n. By  T h e o r e m  2.1 this happens ff and only ff S 7 "  Wo,, = w. [] 

We close this section with two variants of the algori thm which will be useful in 
the  next  section. T h e  first is derived by  changing the order  of computa t ion  
slightly: we interchange the order  of the two innermost  loops (i on lines 6-10 and 
k on line 8). Instead of getting all of the contributions to an e lement  tij  of  the f l h  
column by taking products  along the ith row and down the j t h  column (before 
considering i - 1), we get all of the contributions to t h e j t h  column from the k th  
column {before considering k - 1). Instead of the single t emporary  variable r in 
Algori thm 2.2, we need separate temporar ies  to hold the partial  results for each 
row of the j t h  column. I t  is convenient  to use the j t h  column of the matr ix  for this 
purpose; we hope tha t  the reader  will not  be confused by the use of the variable 
ti,j to represent  partial  results at  one point  and final results at  a later  point. As we 
will see, in the algori thm below tj.i is completed at line 12, tj-l,j at  line 5, and tk,j 
for k < j - 1 at  line 9. 

Algorithm 2.3 (notation as in Algorithm 2.2) 

1 b e g i n  
2 t0,0 := PREDICT({S}); 
3 for  j := i to n d o  
4 begin 
5 t j - l , j  : =  t j - l j - l * ( a j } ;  
6 for  0 _< i --<j - 2 do ti,j :-- ti,j-1 X (t j- l , j  U (aj}); 
7 f o r  k := j - 2 d o w n t o  0 d o  
8 begin 
9 tk,j :---- tk,j U tk,k*tk,j; 
10 f o r  0 _< i _< k - 1 d o  ti,j := ti,j U t~,k X t~,j 
11 end;  
12 tj, j := PREDICT(U~i~-lti,/) 
13 e n d ;  
14 i f  s o m e  S --* a .  is in to,. t h e n  accept  
15 e l s e  reject  
16 e n d .  

T h e  use of the nota t ion " f o r  a _ i __ b" on lines 6, 10, and 12 ra ther  than  the 
usual " f o r  i := a t o  b" or " f o r  i := b d o w n t o  a"  denotes the fact tha t  the order  
of execut ion is not  relevant.  In fact, the loop body could be executed in parallel 
for all values of i wi thout  invalidating the algorithm. 

We will not  give a formal argument  tha t  this algori thm is equivalent  to 
Algori thm 2.2, bu t  it  is not  difficult to see. The  main idea is to show tha t  af ter  
executing the body of the loop on lines 8-11 for some k, tij  are complete for i >_ 
k, and for i < k, ti,j contains all the  contributions resulting from columns to the 
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right of k - 1, namely, 

U ti.z x t~,j U ti,i-1 x (ti-a,j U {aj}). 
k~ l< j -1  

The result  then  follows by induction. 
The  second variant involves a slightly more substantive change to Algorithm 

2.3. Note tha t  the algorithm completes t~,j by doing a *-product with tk~ (line 9), 
thereby incorporating chain rules into the match, and then  takes x-products  of 
the rest of column k with tk,j (line 10). I t  turns out  to be equivalent to take 
• -products of all of column k with the contents of tk,j before it is completed at  line 
9; i.e., " x "  can be replaced by "*" on line 6 and lines 9 and 10 can be replaced by 

9' r : =  tk,j; 

10' for  0 ----- i ___ k do ti,j := ti,i U t i ,k*r  (2.1) 

to yield a new algor i thm which wi l l  be fur ther developed into A lgor i thm 2.4. 
Let t ing r be as above, we see that  A lgor i thm 2.3 computes "ti,j U ti,k X ( r  U 

tk~*r)." We will show tha t  

ti,k X (r U tk.k*r) = ti,k*r. 

In view of Lemmas  2.1 and 2.2 it is easy to see tha t  Algorithm 2.4 with (2.1) 
computes sets ti,j which follow wi and match  wij. Thus  the correctness of 
Algori thm 2.4 with (2.1) will follow if we show tha t  the new method  omits none 
of the i tems found by the old, i.e., t ha t  

ti,k x (r U tk,k*r) C_ ti,k*r. 

NOW t~., X r C__ t~*r,  so we just  need to show tha t  

ti,, X (t,.k*r) C_ ti,k*r. 

In fact, this is true of any sets provided only tha t  t,,k matches  A, since all of the 
i tems in tk.k* r then  are part  of some chain derivation, which can be found directly 
by computing t~,j* r. If  A --* a .  fl is in the expression on the left, there must  be 
al, a2, y~, y2, 8, B,  C, and D such tha t  

Ot ----- o t l B o t 2 ,  

A "-* or1. Bot2• is in ti, k, 

Or2 ==~ * A ,  

B--* ~x. C~,2 is in tk,k, 

~x3'2 ==~* A,  

C ~ *  D, 

D " > 8 .  i s i n  r 

(giving B --> T1Cy2 • in tk,k*r and hence A ---> a lBa2,  fl in ti,k × (tk,k*r)). But  then  
B ~ *  D, so A ---> a lBa2,  fl is in ti,k* r, which is what  we needed to show. 

I t  will be convenient to use the following new notation. Le t  the vector tk 
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represent the kth column of the matrix; t~ .r  and t U t' are the obvious component- 
wise operations. Thus, for example, line 10' above becomes 

~.:= ~. U h*r .  

Using this notation the algorithm is the following. 

Algori thm 2.4 (notation as in Algorithm 2.2) 

1 begin 
2 to,0 := PREDICT({S}); (. match A *) 
3 for  j := I to  n do 
4 begin 
5 ~ :-- ~-i* {aj} ; (. paste input symbol to derivations that precede it *) 
6 for k : u j  %2 downto 0 do 
7 tj := tj U tk*tk,j; (* paste matched suffix to derivations that precede it, extend- 

ing match to reflect chain rules *) 
8 tj.j := PREDICT(Uo~I~_,tIj)(* match A suffixes .) 
9 end; 
10 if some S --* a .  is in to,, then accept 
11 else reject 
12 end. 

In this algorithm line 5 does the same computation as lines 5-6 of Algorithm 
2.3 for the same reasons that  line 7 can replace lines 9 and 10 of the previous 
algorithm. The proof is identical, except that  C may be in ~ and " D  = aj" replaces 
"D--* 6. is in r." 

In line 7 notice that  tk,~ is an element of tj, so it may seem that  to implement 
this statement correctly, tk*tk.j must be completely computed before ~ is modified, 
or tk,j must be saved in a temporary (such as " r"  in lines 9' and 10') before ~. is 
modified. However, all the elements added to tka by this step must match wk,j, so 
by Lemmas 2.1 and 2.2 no unwanted items would be added to tj even if some or 
all of the additions to tk,j were made before or during the execution of line 7. Of 
course, the computation might be slowed by the unnecessary consideration of 
these new elements while computing tk*tk,j. 

As an example consider the grammar 

S - - .  A S I b  

A - - .  a A l b A I A .  

Figure 2 shows the state of the recognition matrix for this grammar and input 
w = a a b  both before and after the second-to-last row of the last column has been 
completed (i.e., before and after executing "t3 := t3 U t~*tl 3" on line 7 of Algorithm 
2.4. 

In the next section we look at implementation of the algorithm in detail. Choice 
of data structure for t, computation of ×, *, and PREDICT, preprocessing the 
grammar, and various optimizations are considered. 

3. IMPLEMENTATION CONSIDERATIONS 

The algorithms given in the previous section were presented in terms of fairly 
high-level set-theoretic operations. A program written in a very high-level lan- 
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Grammar: S --* A S  I b Input: aab 
A - - .  a A I b A I A  

0 1 

S- '*  . A S  
S-"* A . S  
S'-'* . b  
A-"* . a A  
A --.* . bA 
A--->. 

S---~ A . S  
A--*  a . A  
A---~ a A .  

S - *  . A S  
S---~ A . S  
S - *  . b  
A---~ . a A  
A--* . b A  
A--->. 

F . . . . . . . . . . . . .  

I / I 
, b e f o r e  / , 
t / I  I 

IU t l *  t l , 3  ,,/~.dded, 
• ' "  b y  ', 

I I 
/ I 

/ . "  U t] * tl,a i 

. "  ( d u p l i c a t e s )  I I 
/ 

w- . . . . . . . . . . . . . .  .J 

S ~ A  . S  
A - - .  a A .  

S ~ A . S  
A - *  a . A  
A - - .  a A .  

S--* . A S  
S - *  A . S  
S--* . b 
A---~ . a A  
A ---~ . bA 
A - - * .  

3 
. . . . . . . . . . . . . . . .  71 

S---* A S .  / I, 
7 "  I 

l /  I 

/ I 
,," Io 

11 
, ,  ( S - - .  A S  . ) I 

/ *  I 

. . . . .  

S.--> A S .  . . ' ,  
A ~ aA • / "  

/ J  
I 

s "  1 
, /  

/ I 

." S - * A . S  
/ "  (S--* A S  . ) 

S---* A . S  
S " ~  A S .  
S - +  b .  
A ' -*  b . A  
A-'-* bA .  

s 
13 
I 
I 
I 
I 

I 
. . . . . . . . . . . . . . . . .  

Fig.  2. Example of recognition matrix. 

guage which directly implemented the algorithm would be quite inefficient. In 
many situations, significantly more efficient implementations are possible. In this 
section we consider such implementations and the circumstances in which they 
are advantageous. 4 Unfortunately, a "best" implementation is not given, since 
the suitability and efficiency of the various methods depends on the application, 
the grammar, and the input. 

Some of the characteristics of "typical" applications need to be discussed first. 
As mentioned earlier, it is not unusual for the grammar to be much larger than 
the input. In addition, the recognition matrix tends to be sparse, i.e., have many 

4 Researchers studying "automatic" implementation of data structures should regard this analysis as 
a test for their methods. 
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empty positions and only a few dotted rules in each of the nonempty positions. In 
spite of this sparseness, it still can be quite large, even when compressed. Thus in 
many applications space may be at least as valuable as time. 

For example, a grammar for English was supplied by Vaughan Pratt  [29]. He 
describes the grammar as an experiment in seeing how simple the grammar could 
be made at the expense of complicating other portions of his system. The 
grammar has about 90 nonterminals, 160 productions, and about 450 dotted rules. 
By design, there are no A-rules, nor rules with right sides longer than two 
symbols, but there are chain rules. For a typical input, about 10 to 20 percent of 
the matrix entries were empty. Except for the entries on the diagonal, the average 
number of dotted rules per entry was about 20, and the maximum was about 40. 
These numbers were insensitive to the length of the input, so the space required 
to store the matrix grew as n 2. In the nonempty cells, one-third to one-half of the 
entries were of the form A --. a .  ; typically five or more of these dotted rules had 
distinct left sides. The elements on the diagonal were very different. Nearly all of 
them had 150 or more entries; thus they contained almost every rule in the 
grammar! 

The implementations described below should perform well in most applications, 
particularly those having the characteristics discussed above. For instance, the 
space and time requirements are determined by the number of dotted rules 
generated, rather than being fixed by n, the length of the input. The time 
complexity is at worst (P(n3), 5 and will be much better in some cases, such as 
unambiguous grammars. Further, the time requirements are at worst linear in 
the size of the grammar, so the method will be reasonably efficient in the common 
case where the grammar is large but the inputs are short. 

Although the implementations described should perform well in most practical 
applications, the ingenious constructor of counterexamples should have little 
difficulty constructing grammars and/or inputs which thwart all of the optimi- 
zations embodied in the various implementations. We give one such example 
here; some others will appear later in this section. These examples should serve 
to indicate how bad a "worst case" could be. Consider for any k _ 1 the grammar 
Gk = (Vk, Zk, Pk, So), where 

x k denotes k repetitions of x, 
Vk = (So, $1, . . . ,  Sk-1, a), 

~k = {a), 

and Pk has the rules 

(1) So --* A 
(2) So ---> a 
(3) So - - ,  s~ 
(4) $1 --* S~ 

( k +  1) Sk-1--* So k. 

5f(n)  = O(g(n)) f f a n d  o n l y  ff t h e r e  a re  p o s i t i v e  c o n s t a n t s  c a n d  no s u c h  t h a t  for  a l l  n > no, [ f (n)  [ --< 
cg(n). 
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I t  is easy to see tha t  for all i, j _ 0 and all 0 _ p _ k - 1, (a) S o ~ S k  aiSp and (b) 
Sp ~ S k a  j. Consider the i th  row of the matr ix  on input  a". F rom fact (a) we see 
tha t  every  dot ted rule follows a i, and so every dot ted rule is allowable in row i. 
Note  tha t  every  dot ted  rule except  So --~ a .  matches  A, so ti,i w i l l  contain all bu t  
one of the dot ted  rules in the grammar! Now using fact (b) we see tha t  for all j 
>__ 1 and all 0 _ p  _ k - 1, 1 _< q --- k, S(v-1)moak --) S q "sk-q matches  a j .  Thus  all 
k 2 of those dot ted  rules will be in ti, i+j for a l l j  >_ 1. (So --) a .  will also be in ti,i+~.) 
Thus  we see tha t  in contrast  to the " typ ica l "  example described previously, we 
can const ruct  examples where not  only are there  no empty  positions in the 
recognit ion matrix,  bu t  each ent ry  is very  "full," containing at  least k 2 of the k 2 
+ k + 3 dot ted  rules of the grammar!  We can conclude tha t  any optimizations we 
might  consider which depend on a "sparse" recognit ion matr ix  will be of little or 
no use in the worst  case. Nevertheless,  such optimizations are ext remely  valuable 
in mos t  practical  applications. 

In the remainder  of this section we discuss the ×, *, and P R E D I C T  operations, 
choice of  da ta  s t ructure  for represent ing the recognit ion matrix,  extracting parses, 
and some extensions to the algori thm which may  save space a n d / o r  time. First  
we give a brief  descript ion of the representa t ion of the grammar  which will be 
assumed throughout .  

T h e  representa t ion  of the grammar  is important .  T h e  representa t ion described 
below seems natural ,  convenient,  and efficient. We do not  claim tha t  it is optimal, 
however.  We assume tha t  each possible dot ted rule is assigned a unique number.  
These  numbers  are then  used to index one or more tables which tell (i) what  
nonterminal  symbol  is on the left  side of the dot ted rule, (ii) whether  the dot  is 
at  the r ight  end of the  rule, (iii) if not, whici~ symbol occurs to the right of the  
dot, and (iv) the  number  of the dot ted  rule formed by moving the dot  one symbol 
fur ther  to the right (if possible). In addition, we have a table which indicates for 
each symbol  in the vocabulary whether  it  is a terminal  or nonterminal  symbol, 
and which gives for each nonterminal  A a list of the (numbers of) dot ted  rules of 
the  form A --* • a. Figure 3 illustrates this representa t ion for the simple grammar  
used at  the  end of the  previous section (which we will use in examples th roughout  
this section}. Note  tha t  in practice the entries corresponding to columns (i) and 
(iii) of the  upper  table in Figure 3 would use the symbol numbers  given in the 
lower table; the symbols themselves  are used there  only for clarity. Similarly, the 
informat ion in the last columns of bo th  tables is r edundan t  and need not  be 
s tored in practice.  Also the  second and third columns of the upper  table and the 
columns of the  lower table could be combined if an appropriate  coding convent ion 
were used. 

No o ther  da ta  are needed for our  purposes,  a l though we will discuss below the 
uti l i ty of tabulat ing certain o ther  information which can be derived from the  
g rammar  (e.g., which variables generate A). 

T h e  definition of the x -p roduc t  given in the previous section was designed to 
allow a concise s t a tement  of the algorithm. 6 For  computat ional  purposes it is 
be t t e r  to break  down the  definition somewhat.  First, notice tha t  when forming 
the  produc t  Q x R, much  of R is extraneous.  All we need is a summary  of 

6 Recall that Q x R = {A --) aBfl .  ~,[A --~ a .  Bfly is in Q, fl 7 "  A, and B E R}. 
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Grammar: S ~ A S  I b 

A - *  a A I b A I A  

(fi) (iU) 
Dotted (i) Dot at Symbol 

rule Left right to right 
number side end? of dot 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

S 
S 
S 
S 
S 
A 
A 
A 
A 
A 
A 
A 

Y 

Y 

Y 

Y 
Y 

A 
S 

b 

a 

A 

b 
A 

(iv) 
Next 

dotted 
rule 

number 

2 
3 

5 

7 
8 

10 
11 

Dotted 
rule 

(need not be 
stored) 

S---* . A S  
S---* A . S  
S---~ A S .  
S---* . b 
S--* b .  
A----~ . a A  
A--~ a . A  
A.--* a A .  
A ----~ . bA 
A- .*  b . A  
A----~ bA . 
A'-->. 

Symbol 
number 

Is it a 
terminal? 

Fig. 3. 

Dotted rule 
numbers 

("A ~ • a") 

1,4 
6,9, 12 

Symbol ("A") 
(need not be 

stored) 

Grammar representation. 

i n f o r m a t i o n  a b o u t  s o m e  of  t h e  l e f t - h a n d  s ides  o f  d o t t e d  ru l e s  in  R;  i.e., de f ine  (for 
R a se t  of  d o t t e d  ru l e s  a n d / o r  e l e m e n t s  of  V) 

F I N A L ( R )  = { U E  V[ U is in  R o r  s o m e  U--* a -  is in  R} .  

F o r  e x a m p l e ,  

F I N A L ( { A  ----> a A  . , A ---> b A  . , A - - -* . ,  S ---* A . S ,  a})  = {A, a}.  

I t  is e a s y  to  see  t h a t  

Q × R = Q × F I N A L ( R ) .  

N o t e  t h a t  F I N A L ( R )  is eas i ly  c o m p u t e d  f r o m  R,  e spe c i a l l y  i f  R h a s  a l i s t  
r e p r e s e n t a t i o n .  E v e n  m o r e  i m p o r t a n t ,  t h e  p r o d u c t  m a y  be  c o m p u t e d  e l e m e n t w i s e ;  
i.e., 

Q × F I N A L ( R )  = U {q} × {r}. {3.1) 
q•Q 

rEFINAL(R) 

F i n a l l y ,  n o t i c e  t h a t  such  a p r o d u c t  o f  s i ng l e tons  {.,4 ----> a .  U f l }  × { U ' }  is e m p t y  
i f  a n d  o n l y  i f  U ~ U ' .  I f  U -- U ' ,  t h e  p r o d u c t  is e a s y  to  c o m p u t e .  F o r m  a s e q u e n c e  
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of (one or more)  dot ted  versions of the  rule A -*  aUf l  by first moving the  dot  to 
the  r ight  of U, then  to the  r ight  of the  first, second . . . .  symbols  of fl, ending with  
the  dot  to the  left of the lef tmost  symbol  of  fl which c a n n o t  generate  A. T h e  
la t te r  can be easily checked if we p recompute  and store a (bit) table  indicating 
whe the r  or not  U 7 "  A for each U in V. Note  tha t  U 7 "  A does not  depend on 
the  input,  so it can be p recomputed .  Well-known simple a lgor i thms for doing this 
compu ta t ion  in t ime  propor t ional  to the  size of the  g r a m m a r  m a y  be found in the  
l i te ra ture  (e.g., [15]). 

One opt imizat ion is useful. In  the recognit ion a lgor i thms the  produc t  set  will 
be built  incrementa l ly  as we compute  var ious of the  singleton products  in (3.1). 
Suppose  we a t t e m p t  to add some i t em A --> a .  fl to the  par t ia l ly  comple ted  
p roduc t  set  and find t ha t  it was previously entered.  T h e n  we do not  need to see 
whe the r  the  first, second . . . .  symbols  of  fl genera te  A, etc., since t ha t  will have  
been  tes ted  and  appropr ia te  entr ies  made  when  A --* a .  fl was first added to the  
set. In  our  a lgor i thms all uses of the products  will be in s t a t emen t s  of  the  fo rm 
T := T U Q × R, 7 so this opt imizat ion m a y  be even more  effective if the  p roduc t  
rout ine  can "see"  T also. Th is  suggests the following sort  of algori thm. 

1 p r o c e d u r e  ×PROD(T, Q, R) 
2 ( * c o m p u t e T : = T U Q x R ; * )  
3 procedure  ADD(T, A ~ a .  fl) 
4 ( * c o m p u t e T : = T U { A - - > ~ f l ' . f l ' i f l ' f l " = f l a n d f l ' ~ * A ) ; * )  
5 begin  
6 i f A  --~ a .  fl is in T then  re turn;  
7 T : = T U { A - - > a . f l } ;  
8 if ]fl ] _> 1 then 
9 begin  

10 (* suppose fl is U8 for some U E V, 8 E V* *) 
11 if  U ~ *  A then ADD(T, A ~ a U .  8) 
12 end 
13 end 
14 begin  
15 R'  :ffi FINAL(R); 
16 for  each A ~ a .  Ufl in Q do 
17 if  U E R' then  
18 ADD(T, A --* a U .  fl) 
19 end 

T h e  loops on lines 16 and  17 could be reversed,  i.e., " f o r  each U ~ R '  do  i r A  
-*  a .  Ufl in Q . . . .  " Which  form is be t t e r  depends  on the  represen ta t ion  of the  
recognit ion matrix,  an  issue we discuss later.  

Not ice  t ha t  the tes t  for dupl icates  on line 6 e l iminates  the  need for such a tes t  
in the  union on line 7, so it has  not  cost us anything.  As the following example  
il lustrates,  the  benefi t  is a savings which m a y  be as large as a factor  of ] G 1 (the 
g r a m m a r  size). 

For  any  integer  g > 0, consider the  g r a m m a r  

S--> A g 

A - - *  A 

7 Recall that following our convention about precedence, T O Q x R = T U (Q × R). 
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and the sets 

T =  6,  
Q = {S---> A i . A g - i l o  <_ i __g}, 
R = {A}. 

Then  while computing "xPROD(T,  Q, R) ,"  the "ADD" procedure will be called 
by " × P R O D "  g times, namely, once for each rule S ~ A i • A g-i, where 1 < i _< g. 
Without  the test  for duplicates, each call would result in g - i additional calls, 
one for each S ~ A i+k • A g-i-k, where 1 _< k _< g - i. This is a total  of about g2 /2  

calls on "ADD." However, with the test  for duplicates only 2g - 1 calls on "ADD" 
will be made. Tha t  is, if the first call from x P R O D  is for S --* A .  A g-l, it will 
recursively generate g - 1 other calls for the other dotted rules; all of the g - 1 
subsequent calls from ×PROD will immediately find duplicates and return 
without  generating subcalls. In practical applications it is probable tha t  long 
strings of variables generating A do not occur often, but  some savings can be 
expected. 

There are several options available for implementing the * operation. The 
simplest is the following. For any R _ V, define CHNTO(R)  = { X  ~ V I X ~ *  Y 
for some Y E R}. The procedure is based on the trivial identi ty Q • R = Q × 
CHNTO(FINAL(R)) .  

procedure STARPRODI(T, Q, R) 
(* compute T := T O Q * R *) 
begin 

R '  := FINAL(R); 
R"  := CHNTO(R'); 
×PROD(T, Q, R " )  

end 

R '  is easily computed, especially if R is stored compactly, for example, as a linked 
list. The only question is how to compute R"  quickly. Well-known algorithms for 
computing the relation X 7 "  Y can be found in any standard text on language 
theory (e.g., [15]). Using this relation, it is easy to precompute and store the value 
of " C H N T O "  for all grammar symbols. Then R "  may  be computed as 

R " =  U CHNTO((Y}).  (3.2) 
YER" 

Unless the CHNTO({ Y}) are extremely small sets, bit-vector representations for 
them and for R "  are attractive. Typical values for I V I are around 100, so each 
vector would take only a few words on most computers, and (3.2) could be 
computed using about I R '  [ • (l V I / w )  word-parallel "OR" instructions, where w 
is the length of a word. This is actually an (P(I G 12) operation in the worst case, 
but  the constant  is so small tha t  it is quite fast in practice. An (9(I G I) method is 
also possible, but  G must  be large before the method is faster. See [31] for this 
method.  

There  is another  reasonable implementat ion of the *-operation which also 
illuminates some interesting properties of the recognition algorithm. One of the 
advantages of this second method is tha t  the X 7 "  Y relation does not need to 
be precomputed or stored. The  method depends on the fact tha t  * is only needed 

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980. 



434 S.L. Graham, M. A. Harrison, and W. L. Ruzzo 

for statements of the form 

R := R O Q * R, (3.3) 

where Q has the property that  

PREDICT(Q) _ Q. (3.4) 

Note that  in the recognition algorithms {2.2-2.4) all the sets th,k have this property. 
In this situation {3.3) can be computed by iterating a x-product; for example, 

repeat 
OLDR := R; 
×PROD(R, Q, R) 

until (R = OLDR) 

Basically, {3.5) 
which are used in 

(3.5) 

correctly implements (3.3) since Q contains all of the rules 
any chain derivations we need, so iterating the x-product will 

eventually follow the chain back to its source. For example, if Q = (A --*. B, 
B --*. C, C - * .  D, D--)- a) and R = (D --. a .  }, then the first iteration of the loop 
above would add C --* D .  to R, the second would add B --* C. ,  the third would 
add A --* B . ,  and the fourth and last would add nothing. 

The procedure (3.5) can be refined considerably--in each iteration we really 
need to consider only those items added to R by the previous iteration. The 
following algorithm reflects this observation. Here it is convenient to assume a 
particular representation for R, namely, a linked list. Using this representation, 
it is easy to process each element of R exactly once by processing the list in order 
and making additions at the far end. 

1 procedure STARPROD2(Q, R) 
(. compute R := R O Q * R when 

(i) PREDICT(Q) _ Q, and 
(ii) R is stored as a linked list * ) 

2 begin 
3 for each r in R, in order (i.e., eventually including 

those added in the following step) do 
4 append (Q × (r}) - R to R 
5 end 

In practice, a straightforward implementation of the above procedure may be 
quite adequate, since Q and R are often rather small sets. However, in the worst 
case the performance can be (9(IG 12), primarily owing to the searches of Q and 
R implicit in line 4. The following four techniques will reduce the time to (9( I G I); 
any or all of them may be useful in practice. First, the same technique for 
eliminating duplicates used in the "ADD" routine of "xPROD" is applicable. 
Second, whenever Q x (U--) a .  ) is computed, note that  Uwas used, so that  one 
does not compute a x-product with some other rule U --) f t . .  Third, store R so 
that  one can quickly test whether or not a particular item is in R. This will speed 
the elimination of duplicates on line 4. For example, a bit vector with one bit per 
dotted rule could be used. Using this representation, note that  it is not necessary 
to have R as a linked list; all we need is a list of all U E FINAL(R) for which Q 
x (U) has not yet been computed. Fourth and last, store Q so that  for any U, all 
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rules of the form A ---) a .  Ufl may be quickly found. For example, keep all such 
items on one linked list whose start is found in an array indexed by U. 

The fourth point above is connected to some issues involved with the choice of 
representation for t, which might as well be discussed here. In the column- 
oriented version of the recognizer (Algorithm 2.3), each element of a column, say 
k, is multiplied by tk,j. Above we suggest that each set tk,k should be partitioned 
so that  all rules with a dot in front of a U may be found easily. Suppose that  each 
set in column k, not just tk,k, is partitioned in this way. Consider the computation 
performed by "STARPROD2(tk,k, th,j)." When it computes each tk,k X (r) on line 
4, suppose we also compute "for  0 _ i _< k - 1 do ti,i := t~,j (J ti.k X {r};". This is 
easily computed, given the suggested partitioning of the ti,k. We assert that  if 
Algorithm 2.3 computes .-products in this way, then it will be a correct recognizer, 
even if the other X-products computed in Algorithm 2.3 (i.e., lines 6 and 10) are 
removed, since " r"  in STARPROD2 will eventually run through all elements of 
the set tk,j which would have been used in the x-product on line 10 of Algorithm 
2.3. Thus each t~,k X tk,j will  eventually be computed. (We remark in passing that 
this computation is not the same as Algorithm 2.4, wherein we compute 
*-products of ti,k with a p a r t i a l l y  completed version of tk,j (i.e., before "tk,j := tk,j 
O tk,k * tk,j").) 

PREDICT has several similarities to x and *. Given Q, let 

Q' = ( B  E N [ A  ---) a .  Bf l  is in Q), 
Q"  = (C  E N I B 7 "  C~ for some B E Q' and some ~}. 

Then 

(3.6) 
(3.7) 

PREDICT(Q) = PREDICT(Q') (3.8) 
= { C - .  y . 6 1 C E  Q"  and y ~ *  A}. (3.9) 

It is easy to compute Q', given Q. For our purposes we are only interested in 
Q = ui<j ti,j for some j. We do not actually need to form Q. We can construct Q' 
directly by scanning the j t h  column of t. The data structure chosen for t may 
make this computation even easier. For example, if all the items in column j with 
the dot to the left of the same symbol were on one list (a possibility mentioned 
in the previous section), Q' is just the set of variables whose lists are not empty. 
Computing Q" is very similar to computing the R"  of the previous section. For 
B in N define 

Then 

LEFT(B) = (C I B ~ *  C~ for some ~ E V* ). 

Q " =  o LEFT(B). 
BEQ" 

As with R"  there are two approaches. The first is to precompute LEFT, store it 
as an array of bit vectors, and form Q"  by ORing some together. The second is 
to precompute DIRECTLEFT(B) = ( C I B  ---) yC6 is in P, where y ~ *  A}, store 
it as a directed graph, and use a "traverse-and-mark" method. (Note that LEFT 
is the transitive closure of DIRECTLEFT, and also that  a transitive reduction of 
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DIRECTLEFT would work, too.) The first method should be quite fast in 
practice, but is (9(]G 12) in the worst case; the second is (P(] G I), but will be 
superior only for large grammars. 

Given Q "  it is easy to compute PREDICT by using (3.9) and the same 
technique of moving the dot to the right of variables generating A as was used in 
× and *. 

One might be able to save space by storing Q'  or Q" in place of tj,j, without 
incurring too great a time penalty. Since products with t j j  are given special 
handling anyway, this change will not upset the organization of the program too 
much. It is argued in [27] that  the number of alternative rules for each variable 
causes PREDICT to generate a large number of items, most of which are found 
to be dead ends as soon as another one or two input symbols are processed. Thus, 
storing Q'  or Q "  instead of tj.j can save lots of space and may save time which 
would otherwise be spent searching sets containing many useless items. 

As with *, it is also possible to compute PREDICT by an iterative process 
which does not require precomputing LEFT. Note that  if A --~ B C D  is a rule, 
then B E LEFT(A), and i fB 7 "  A, then C E LEFT(A), etc. Thus PREDICT can 
be formed according to the following rule: Whenever A --* a .  B f l  is added, also 
add (recursively) all B rules B --* • ~, unless it was done previously, and if B ~ *  
A, also add (recursively) the rule A ---> aB .  ft. In effect, this algorithm is the same 
as the 0(]G]) graph traversal method described above; adding B rules when 
A ~ a .  B f l  is added (if they have not already been added) corresponds to 
following the edge of DIRECTLEFT from A to B and marking B (if it has not 
already been marked). 

All of these methods can be made to work incrementally, i.e., as column j is 
being built rather than after it is finished. Whenever some A - *  a .  B f l  is added 
anywhere in column j, we add PREDICT({B)) to t j j .  As usual, to do this 
efficiently we need to check for duplicates at each step to avoid recomputing a lot 
of items. This checking may make the incremental approach slightly slower than 
doing PREDICT on the whole column at once. However, it does have one feature 
which may sometimes be useful. When doing PREDICT by the iterative method 
outlined above, the relation B 7 "  A does not have to be precomputed, since it 
will be computed as needed. That  is, when adding A --* a .  Bf l ,  we compute 
PREDICT({B}), so we can tell i fB 7 "  A by checking whether PREDICT added 
some B ---> y .  to t j j .  {This is essentially the same as Earley's method [8], which 
is discussed in Section 4.) 

We consider four possible representations for the recognition matrix t. All four 
should give efficient algorithms using a minimum of space. All four are intended 
for use with one of the column-oriented versions of the algorithm (Algorithm 2.3 
or 2.4}. These versions have a slight advantage since they do not need to access 
the matrix by both row and column, as in Algorithm 2.1. 

We illustrate the four data structures using the simple grammar introduced at 
the end of Section 2 and the input w = a a b  of length n - 3. Recall that  Figure 2 
shows that  state of the recognition matrix for this grammar and input both before 
and after the next-to-the-last row of the last column have been completed (i.e., 
before and after executing "t3 := t3 U tl * tl.3" on line 7 of Algorithm 2.4). We 
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k q 
(row (dotted rule 

nbe%i ) / -""  number) 
Z ~(dotted rule) 

¢1 8 YI--,aA. 

T 
0 I 7 A---~a.A 

T 
0 I 2 S---*A.S 

T 
1 1 1 2  A--* .  

T 
1 9 A - - * . b A  

T 
1 6 A--->.aA 

T 
1 4 S - ' , . b  I 

T 
1 2 S---~A.S I =* 

T 
1 1 S--* . AS  I 

Column 1 

lo is  
T 

F--I ............. 1 , 0 , 3  S - * A S .  , 
L__J.. . . . . . . . . . . . . .  . J  

r [ -  . . . . . . . . . . . . . . . . .  
, i 

i i i ,1 , 3  S - * A S .  , 
L. _ _ _ t -  . . . . . . . . . . . . .  j 

t 

. . . . . .  *-~ 0 

A--* aA • ~ . . . . . . . . . .  

. . . . . . . . . . . .  -~ 1 

[ '~ 'I  2 

I 1 ] 2 S- -*A.S~-*_-~  . . . . . . . .  

(Column 1) * 6,3: 
dash lines reflect 
merging with column 3, 
dropping duplicates 

Fig. 4. First data structure for t. 

3 S-->AS. 

t 
I 1 8 A---~o~. 

T 

3 S-->AS.  

T 

11 A --> bA . I 

I 2 10 A--->b.A I 
T 

[ 2  5 S-->b. I 

T 
I 2 ] 3 S - * A S .  I 

I 2 [ 2 S - -> A .S  I 

Column 3 
before adding 

(column 1) * 6,3 

tl,3 

illustrate the same situation for each of the four data structures discussed below, 
although for clarity we only show the representations of the relevant parts of the 
matrix, namely, column 1 and column 3 both before and after adding tl * tl,~. 

T h e  first of the four methods is the simplest. Assume that all dotted rules have 
been assigned numbers, so that if q corresponds to A --> a .  B f l ,  then q + 1 
corresponds to A --> a B .  ft. Then we store each column as a list of ordered pairs 
(k, q), where k is a row number and q is (the number of) a dotted rule. Thus the 
pair (k, q) will be in the list for column j if and only i f  q ~ tk.j. Further, the list 
will be ordered by decreasing k, and secondarily by increasing q. (See Figure 4.) 

It would be easy to implement Algorithm 2.4 using this representation and the 
" ' "  t j U h  t " "STARPRODI"  *-product. To carry out the basic step tj .= * k j ,  we do 

the following. First, scan the portion of the j t h  list whose first components 
are k {i.e., the portion representing tk,j)  and construct the set R "  = 

C H N T O { F I N A L ( t k j ) )  for use in "STARPRODI." Note that  at the end of this 
scan we can leave a pointer to the first item of the form (k + 1, q), so that  when 
we repeat this process for k + 1 we do not have to start searching the list from 
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the  beginning to find the segment  corresponding to tk+l,j. Second, we form tj := 
tj U t~ x R" ,  by merging tk × R "  into the list for co lumnj .  T h e  numbering scheme 
for dot ted rules is such tha t  q × R "  will always be a set of the form (q + 1, 
q + 2 . . . .  , q + / } ,  where 1 >_ 0. Thus  it would be easy to construct  an ordered list 
represent ing tk × R "  while making one sequential  pass over the ordered list 
represent ing tk. I t  is thet~ trivial to merge this ordered list into the ordered list for 
tj, with duplicates discarded. However,  since generating and discarding duplicates 
ma y  be expensive (recall the example following ×PROD) ,  it is probably be t te r  to 
combine the  processing of list k with the duplicate checking and merging into list 
j ,  r a the r  t han  separat ing the two processes. Thus  the overall processing consists 
of sequential ly scanning the port ion of the j t h  list corresponding to tk,j, then  
sequential ly scanning the k th  list in parallel with the port ion of t h e j t h  list at  and 
above row k. (See Figure 4.) 

T h e  running t ime of this procedure  can be es t imated easily. Le t  E be the total  
numbe r  of entries in columns 0 t h r o u g h j  - 1. As k runs f r o m j  - 1 down to 0, we 
will look at  each of the columns to the left  of j exactly once, for a total  of E 
inspections. As each column is processed, we run through an equal number  of 
rows of the  j t h  column. Assuming the density of entries in the  j t h  column is 
about  the  same as in the o ther  columns, we will look at  list entries in the j t h  
column about  E t imes also. Thus  the total  work involves processing about  2E list 
entries. Notice tha t  the me thod  automatical ly takes advantage of sparseness in 
the  matr ix  for bo th  storage and t ime efficiency, ra ther  than  having its performance 
direct ly dictated by  the size of the grammar  a n d / o r  input. 

The  one drawback of this me thod  is tha t  we must  search all the  entries of each 
column, even though only a few dot ted  rules of interest  may  be found. This  
causes the algori thm to use ~(n  3) t imes ~ on unambiguous grammars  when t ime 
(P(n 2) is achievable. The  following example demonst ra tes  this phenomenon.  
However ,  in practical  si tuations where the grammar  is ambiguous and the  matr ix  
is very  sparse, it is not  clear whether  this effect is a serious impediment.  

Consider the following (unambiguous) grammar:  

S ~ A¢ I BC$ 
A---> aAB I A 
B- - -~aBIb lc  
C-*  bCD I A 
D--> bDIc  

and the  input  aPbPc ~ of length n = 3p. We show tha t  for 0 _ i _ p ,  the (p  + i)th 
column contains p - i dot ted rules A --* a A .  B, and the (p  + i)th row contains 
p - i do t ted  rules C--~ b C D . ,  posit ioned in the matr ix  as indicated in Figure 5. 
T h e  algori thm described above will process each of the p - i dot ted rules C -*  
bCD.  in row p + i by scanning all of column p + i. Th e  total  t ime for this scan 
will be ~ffi0 (p  - i)2 = ~(p3)  = ~(n3). Actually, each of those columns has only 
one i tem of interest,  namely,  C --~ b .  CD in tp+/,p+/+l. To  establish our claim, note  

~2 is used for lower bounds analogously to the use of ~ for upper bounds, f(n) = ~(g(n)) if and only 
if there exist c > 0, no > 0 for all n > no, f(n) >_ cg(n) (cf. [15]). 
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(]P 

AoQA'B 

ob-CD 

C ~'bCD" 

b ~ 

C p 

Fig. 5. Example  for t ime n 3 with u n a m b i g u o u s  g rammar .  

tha t  A ~ *  ak(a *(b U c)) k, k _> 0, and in particular,  A ~ *  akb ~, k >_ 1 >_ O. Further ,  
S ~ *  aiABi¢, so the dot ted rule A ---> a A .  B belongs at  least in all ti,j, where the 
substring from i + 1 to j follows a ' s  and spans more  a ' s  than  b's, i.e., the  region 
0 _ i < p  a n d p  _<j < 2p - i sketched in Figure 5. Likewise C ~ *  bkc ~, k >_ l >_ O, 
and S ~ *  aPbbiCDi$, so C--> bCD. belongs in the region p _ i < 2p and 2p _<j  
< 3p - i, as claimed. 

T h e  second data  s t ructure  we consider eliminates the possibility of scanning a 
long list of i r relevant  entries. Instead of having all dot ted rules in a column on a 
single list, we use a separate  list for each column for each symbol U in the 
vocabulary,  with all dot ted rules of the form A --, a .  Ufl on the list for U. 
Additionally, we have a list per  column for all i tems of the form A --* a . .  (See 
Figure 6.) T h e  algori thm proceeds as before, except  tha t  for each U with U--* 
y .  in tk,j we process only the list associated with U for column k. Every  i tem on 
the  list generates  an addition to column j,  a l though some m ay  be duplicates. If  
column j were maintained as a single list and later  converted into the multiple- 
list form, we would simplify the bookkeeping required while building column j.  
However,  sequential  merges into the list(s) representing column j m ay  also 
introduce an extra factor  of n into the t ime bound. This  could be avoided by 
keeping pointers  to the segments of the list(s) representing each row. This  
s i tuat ion is shown in Figure 6. Alternatively, one could store the j t h  column as a 
hash table, with the pairs (k, q) as the keys to be hashed. Ei ther  scheme makes 
it unnecessary  to keep the other  lists sorted. With the hashing scheme, if the 
*-products are to be computed  using STARPROD1,  we should also link together  
all entr ies having the same "k" values (i.e., the  entries in tk.y). If  S T A R P R O D 2  is 
used, it  would be sufficient to pu t  all entries on one list in the order  in which they  
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S 

column 1 (column 1) * t,,3 
A A 

01 2 s - + A . s  I ~ r-5-TS--~-m>-X~:7 

T I F-- -F . . . . . . . . . . .  7 1 2 S - - - * A . S  =* , 1 , 3 S - - } A S .  , 
L _ _ - L  . . . . . . . . . . .  . J  

A 

0[  7 A - - } a . A  

T 
1 [ 1 S - *  . A S  

11 6 A---* . a A  

[ 0 [ 8  A - - * a A . I *  . . . . . . . . . . . . . . . . . .  

[ 1 [ 2  S - - - } A . S  ~ . . . . . . . . . . . . . . . . . . . . .  

column 3 
r 

• o , ~ 1  o 3 s - . A s ,  b--: 
0 

1 9 A - - - - } . b A  

T 
1 4 S - - } . b  

0 8 A - *  aA • 

I 
1 12 A - - * .  

Fig. 6. 

2--* 

1 3 S - - - * A S .  l 
3 -  

2 11 A---*bA. 

T 
i 2 10 A - - . * b . A  

] 2 L 5  s ~ b .  I 
] 

i2 ]  3 s -+As ,  i 

Second data structure for t. 

are added to the hash table. (This version is almost the same as Earley's 
algorithm; see Section 4.) With this approach one would want the various lists in 
each of the previous columns to be accessed through an array indexed by the 
symbol following the dot; i.e., DOTBEFORE(k, U) points to the list of items 
A ----> a .  U f l  for column k. This array would be unnecessary if STARPROD1 were 
used; it would be sufficient to have a linked list of the nonempty lists for each 
column. This representation would probably take much less space. 

With any of these schemes, the time spent constructing the j t h  column is 
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column 1 
A 

1. S ~  .AS  [] 

2. S ' *  A . S [ ]  
% 

3. S----~AS. 
4. S---* . b [ ]  

5. S----~b. 
6. A ---* . aA  [ ]  

7. A --* a.  A [ ]  
8. A--, aA. [] 
9. A----~ . bA [] 

10. A---->b.A 
11. A-.*bA.  
12. A--. .  [ ]  

q k's  
(rule) (row numbers) 

(column 1) * tl ,3 column 3 
A A ~ f  

r -  l :o_j [ ]  
[i] ~ [ ]  / 

[] 

. . . .  "1 

[ ]  
[ ]  

Fig. 7. Third data s tructure for t. 

proport ional  to the number  of additions made to it, i n c l ud i ng  duplicates. If  the 
grammar  is unambiguous, there  will be no duplicates, so the work will be (P(n) 
per  column, or (P(n 2) overall. 

A third representa t ion for the matr ix is a slight modification of the previous 
one. Instead of represent ing each column by a list of pairs (k, q) for each 
vocabulary  symbol, we could store for each dot ted rule q a list of the rows k in 
which it occurs. (See Figure 7.) This  representa t ion could save space, since the 
rule number  would not  need to be repeated  in each entry.  Further ,  in practice the 
lengths of the lists of rows associated with each dot ted rule may  be short  enough 
so tha t  building the lists by merging (as we did in the first method  in this section) 
will prove acceptably efficient. (However, in the worst case it can be ~2(n ~) on 
unambiguous grammars.) In such a case we could have a simple algori thm with 
uniform representat ions  for all columns, including the j t h .  For  this version we 
will use STARPROD1.  To  form the product  tk * tk,/, we merge the list for q in 
column k with the list(s) for q + 1 (q + 2 . . . .  ) in column j whenever  {q )  x 
CHNTO(FINAL( tk j ) )  is not  empty.  If  the set of lists for each column is kept  as 
a list ordered by the dot ted rule number,  the product  can be formed during one 
pass in parallel over the list of lists for column k and tha t  for column j.  

The  four th  and last implementat ion we consider is a slight variat ion of the 
previous one, but  is probably the most  efficient of all the  methods  discussed. 
Instead of represent ing column k by keeping a list of row numbers  for each dot ted 
rule q, we keep one bit vector  of length n, whose i th  bit will be a 1 if and only if 
q E ti,k. The  algori thm will be the same as before, except  tha t  merging lists of row 
numbers  is accomplished by ORing the corresponding bit vectors. (See Figure 8.) 
T h e  advantage of this me thod  is tha t  for most  applications n will be small enough 
tha t  each bit vector  will fit in a few computer  words, so the "OR"  will take a few 
instructions at most. Thus  the algori thm will take t ime (P(n ~ • [n/w]) ,  where w is 
the  computer  word length. Of course, this is an ¢(n a) algorithm, but  for n in the 
range of  practical  interest  it will behave more like an (P(n 2) method,  perhaps  an 
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xN 

E 
row 0 --> 

row 3 

Fig. 8. 

t T 

rZ Q6 

:t 

t t 

column 1 

(column 1) * tl.3 

old column 3, 
where different 

new column 3 

Four th  data s tructure for t. 

order of magnitude faster than the other methods, even for highly ambiguous 
inputs. Further, the amount of memory required for this method will be compa- 
rable to that  used by the previous methods and may be even smaller. For example, 
for n = 50 the space for one bit vector is comparable to that  for only two or three 
entries of a linked list of row numbers (as used in the third method, above). It is 
quite plausible that  each dotted rule occurs an average of two or three times in 
each column of a 51 × 51 matrix, so the list representation would use about as 
much space as the bit-vector representation. The only drawback with this method 
is that  it may be harder to recover the parses than with the other methods. 

The important issue of recognition versus parsing has been ignored so far. The 
previous algorithms are recognizers, not parsers. For some applications that  may 
be sufficient, but usually parsing is of interest. There are well-known algorithms 
for extracting some parse from the completed matrix in time (~(n 2) [2, 12]; an 
improved version running in time (P(n log n) is also known [4]. For many 
applications those results are not sufficient. What is desired is a representation of 
all parses, so that  we may find the one which is "best" according to some semantic 
criteria. Ruzzo [31] discusses modifications to the algorithms above to provide 
such information. Relative bounds on the complexities of algorithms for solving 
these problems may be found in [31, 32]. 

It is of some interest to reduce the size of the recognition matrix. Our algorithm 
ensures that  all items entered in any column, say the j th ,  are "consistent" with 
the f i r s t j  input symbols. However, we can make no such claim about consistency 
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with the portion of the input to the right ofj .  In fact, many dotted rules may be 
entered which are not part of any parse of the (whole) input. Obviously, an 
efficient way to eliminate these useless entries might save both space and time. 

Several researchers have considered various "lookahead" techniques for pre- 
venting some of the useless entries from being generated [5, 8, 19, 35]. Their 
methods are directly applicable to our algorithm. 

The lookahead methods were primarily aimed at improving performance on 
restricted classes of grammars such as LR(k) and LL(k). For these grammar 
classes the lookahead methods prevent the generation of enough items to guar- 
antee linear-time operation (versus ~2(n 2) without lookahead). However, since 
these methods use only a bounded lookahead, they still may generate entries 
which are not consistent with the portion of the input beyond the lookahead. For 
grammars not in the restricted classes mentioned above, such as ambiguous 
grammars, many useless entries may be generated, even with lookahead. A 
method is described subsequently which eliminates all useless entries from the 
matrix after it has been completed. Of course, this method cannot reduce the 
time spent constructing the matrix. However, for many applications, processing 
by the semantic routines can be expected to take more time and possibly more 
space than constructing the recognition matrix. Thus, reducing the matrix before 
the semantic routines are run could be very profitable. 

Before describing our reduction method, a more precise definition of u s e f u l  
entries seems appropriate. A dotted rule A --* a • fl in t i j  is u s e f u l  if there is some 
1 _> j such that  S 7 "  al . . .  aiAaz+l . . .  an, a ==~* a i + l  . . .  aj,  and fl 7 "  aj+l " ' "  

at. Thus a useful entry is one which is used in some derivation of the input string 
from S. The r e d u c e d  r e c o g n i t i o n  m a t r i x  contains just the useful entries from the 
recognition matrix. It is helpful to store with each dotted rule in the matrix a list 
of pointers to all of the dotted rules which caused it to be entered. We will call 
these pointers "parse pointers." Thus if qt ~ ti,k~, rz E tk~,j, and s E (qt} × (rz), we 
would store with s in ti,j a list of the triples (kz, qt, rl), or pairs of pointers to the 
list elements representing qt in ti,kt and rt in tkt,j, or at least a list of the kt's. Notice 
that  the number of parse pointers associated with each dotted rule in ti,j could be 
proportional to j - i + 1. Thus the storage needed for the matrix with parse 
pointers can be ~2(na). 

If parse pointers are present in the original matrix, there is a simple method for 
constructing the reduced matrix; namely, the useful entries are exactly the entries 
which can be reached by following parse pointers from some entry S ---) a .  in to,,. 
If the parse pointers are not initially present, they can be generated easily while 
the reduced matrix is being built as described below. 

Note that  any dotted rule S--> a .  in to,, is useful. Further, if A --* aB . f l  in ti,j 
is useful, a n d  A --, a . B f l  is in ti,a and B --* y .  is in tk,j, then they are both useful 
too (see Figure 9). These observations are enough to provide an algorithm. First, 
mark all dotted rules S ~ a .  in t0.n. Second, for every i, j, every marked entry s 
in  ti,j, all q, r, and each k, i _< k < j ,  i fq  E ti,k, r E tk,j (or k = j - 1 and r = aj), a n d  
s ~ {q} × {r}, then mark q and r. (If parse pointers are being built, add a pointer 
from s in t~,j to q and r in t~,k and tk,j, respectively). Repeat the second step until 
no new entries can be marked. In fact, provided that  care is taken with A- and 
chain-derivations, all useful entries will be marked if the second step is done in 
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OI " ' "  ( ] i  " ' "  Ok 

S 

• .- (]j " "  a L ' ' '  a n 

A.-aB-/~ in t i, j useful impl ies 

A* .a .B ,8  in ti, k and B°  7- in tk, j useful, too 

Fig. 9. Marking useful entries. 

the  order  

for  j := n downto  0 do 
for  i = 0 to j do 

for  every marked s in ti j  do . . .  (3.10) 

No te  t h a t  this order  is jus t  the  reverse  of the  order  in which the  mat r ix  was 

computed .  
A correctness  proof  will not  be  given in detail, bu t  the  idea is simple. 9 In  the  

in teres t  of  brevi ty ,  we consider only A- and  chain-free g rammars .  We noted  above  
t h a t  all entr ies  m a r k e d  in this way are useful. To  show tha t  every useful en t ry  is 
eventua l ly  marked ,  proceed  by  induct ion on the order  in which the  sets tij  are 
processed in (3.10). Consider  any  useful en t ry  r in tij. Suppose  r is of  the  fo rm 
B --~ y . .  T h e n  there  mus t  be some useful en t ry  A --~ a B .  fl in ti,,j for some i' < i 
(see Figure 10). By  the  inductive hypothesis ,  B --~ y .  m u s t  have  been  m a r k e d  
when  ti,,i was processed. Similarly, if r is of the  fo rm A --~ a .  Ufl, U E V, it would 
have  been  m a r k e d  when  some useful en t ry  A --~ a U  . f l  in tij,, for s o m e f  > j  was 
processed  (see Figure 11). 

T h e r e  is a s t ra ight forward  implementa t ion  of this procedure  for each of the  
represen ta t ions  of the  mat r ix  given earlier. Each  implemen ta t ion  uses t ime 
roughly  comparab le  to t ha t  required for the  initial const ruct ion of the  matr ix.  We 
briefly describe the  implemen ta t ion  of the  b i t -vector  version since it is more  

9 The correctness proof for the algorithm given in [15] to generate a parse after running Earley's 
recognizer is almost identical. 
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S 

a I . - .  a i " .  a j  . . .  aj . . . .  a n 

F i g .  l l .  r in  tla is A --)  a . Ufl.  

interest ing t han  the  others.  In  the interest  of simplici ty we assume a A- and  
chain-free g rammar ,  a l though it is not  hard  to handle  the general  case. 

Wi th  each  bi t  vector,  associate ano the r  bit  vector  of  equal  length, initially all 
O's, which will indicate which e lements  have  been marked .  Denote  the  vector  
corresponding to the  dot ted  rule A --* a .fl in column j by  t j (A  --* a .fl}, and the  
associated m a r k  vector  by  m j ( A  --* a . f l}.  First, for each S--* a .  in t0,n set  the  bi t  
in row 0 of m , ( S  --) ~ .  ) {i.e., m a r k  S ---* a .  in to,,). Process  each ti,j in the  order  
descr ibed above  {3.10) as follows. For  each U in FINAL(t/ , /)  (and U = aj if i = j" 
- 1} and each  A --) a .  Ufl ,  let  t e m p  := m i { A  --) a U  . f l ) / ~  t i{A --* a .  Ufl}.  I f  t e m p  

A C M  T r a n s a c t i o n s  o n  P r o g r a m m i n g  L a n g u a g e s  a n d  S y s t e m s ,  Vol. 2, No.  3, J u l y  1980. 
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is not empty, mark all U ~ 7" in ti,j and set m i ( A  ---> a .  Lift) := rni(A ---> a .  Ufl) 

V temp. Notice that  (A  ~ a .  Ufl) × ( U )  = A --* a U  .fl, and  U E F I N A L ( t i , j ) ,  so 
for each dotted ru le  A ~ a .  Ufl  in column i there will be an entry A --* a U. fl in 
the same row of column j. If any of the dotted rules A ~ a U. fl in column j have 
previously been marked useful, then the corresponding entries A --~ a .  Ufl  in 
column i should be marked useful also. The bit vector temp (= m j ( A  ---> a U  .fl) 

/~ t i (A --~ a .  Ufl))  indicates exactly which marked entries A ~ a U  . f l  in  column 
j correspond to entries A ~ a .  Ufl  in  column i. Thus if temp is not empty, we 
mark the useful entries in column i by setting m i ( A  --* a . Ufl) := rni(A ---> a . Ufl)  
V temp. Further, we also mark all the entries in ti,j which cause U to be in 
FINAL(ti,j), namely, all dotted rules U--* 7" in ti,j. 

Figure 12 illustrates the operation of this algorithm on a simple example. We 
consider the entries marked when processing t2,4. The three entries marked 
previously (when t0,4 and tl,4 were processed) are flagged by "*S" in the figure. 
FINAL(t2,4) = {S}, so the only triple (U,  A - *  a .  Ufl, A ---> a U . f l )  which is 
relevant when processing t2,4 is the triple (S, S --* A • S,  S --~ A S .  ). Thus we form 
temp := rn4(S ~ A S  .) /~ t2(S --~ A .S), which is not zero, so S --~ a b .  in t2,4 is 
marked and rn2(S ~ A . S )  := m 2 ( S  ~ A .S) ~/temp. (The three entries marked 
as a result of these steps are flagged by " tS"  in the figure. The entries marked in 
subsequent steps are flagged with "$S".) In this example more than half of the 
dotted rules remain unmarked and thus are not part of any derivation of the 
input string. 

The processing described above takes at most a bounded number of vector 
ANDs and ORs for each ti.j, or (P(n 2) in total. This time is comparable to the time 
needed to construct the matrix initially. 

Parse pointers can be efficiently generated in the bit-vector implementation. 
Simply scan "temp" for "1" bits; whenever one is found in, say, the kth row, add 
to A ---> a U.  fl in tk,j a pointer to A --~ a .  Ufl  in tk,i and all U ---> 7" in ti,j We can 
roughly estimate the efficiency of this method as follows. Suppose we want to 
end up with a matrix with parse pointers (reduced or not). Using one of the list 
representations, we get the full matrix in time proportional to the total number 
of parse pointers in it. Alternatively, we could use the bit-vector recognizer (which 
is perhaps 5 or 10 times as fast) and then reduce the matrix (equally as fast) while 
simultaneously constructing a list representation with parse pointers. Using 
special fast instructions (such as floating-point normalize) available on most 
computers for scanning the "temp" bit vector for 1 bits, we can expect the 
construction of the list representation to take about the same time as constructing 
a recognition matrix with the same number of entries. Thus if the reduced matrix 
is no bigger than about 60 percent of the size of the original matrix, this method 
will be faster than directly constructing the list-form recognition matrix. If the 
bit-vector recognizer is 10 times as fast as the list method, this approach is 
worthwhile if the reduction process removes only 20 percent of the items from 
the matrix. 

Two schemes for removing useless entries while the matrix is being built are 
presented in [7, pp. 105-108] and further developed in [35]. Here, after the j t h  
column is built, we retain a dotted rule A --> a .  fl in ti,~, k __ j, only if there are 
derivations S 7 "  al  . . .  a lAS ,  a 7 "  ai+l . . .  ak, and f18 7 "  ak+l . . .  aj~' for some 
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Grammar:  S --* A S  Iab Input: a a a b  
A - *  a A l a  

0 1 

$ S - *  . A S  

S--* • ab 

S A --* . aA  

S A - - *  . a 

*S- -~  A . S  

S - *  a . b  

S A - - * a . A  

S A - *  a .  

$S - -*  . A S  
S--~ • ab 

A - *  . a A  

S A - - *  . a 

2 3 4 

t S - - * A  . S  

S A ---~ aA  . 

t S - - . A . S  
S - *  a . b  
A - *  a . A  

S A - - *  a .  

Processing t2,4: 

I: t emp  := rn4 s-~as" A t ~  A's 

2 : m 4  s-'ab" := m ~  ab' with S---> a b .  in t2,4 marked 

t 

3:rn2 s'~A's := ra2 s-*A's V temp 

S - *  A . S  

A---~ a A .  

S--> A . S  

A - *  a A .  

* S - * A S .  

* S - * A S .  

S--~ . A S  

$ S---~ . ab 
A--*  . a A  

A -* . a 

S - *  A . S  

$ S - - - ~ a . b  
A---~ a . A  

A - - -~a .  

t S---~ a b .  

S--> . A S  
S---~ • ab 
A - - . . a A  

A- -*  . a  

*marked before t~,4 
processed 

tmarked  when t2,4 
processed 

Smarked after t2,4 
processed 

Fig. 12. Reducing the  recognition matrix. 

8, 8' in V*. One of Townley's methods proceeds by "losing" all pointers to useless 
items so that  a garbage collector can reclaim the space occupied by them. 
Townley's other method uses a reference-count-type of garbage collection scheme 
tailored to the recognition algorithm. This scheme requires more programming 
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but may be much faster. It uses total time (P(n3), whereas the first method may 
take time ~2(n 3) for each  call on the garbage collector. 

4. CONNECTIONS AND COMPARISONS WITH OTHER RECOGNITION 
ALGORITHMS 

There are some close connections between the apparently unrelated methods of 
Cocke-Kasami-Younger and Earley, which we can show by relating both to our 
algorithm. It is easy to see that  the CKY and Earley algorithms use essentially a 
"dynamic programming" method: A derivation covering a larger portion of the 
input string is built by combining previously computed derivations of smaller 
portions. The most obvious difference between the two algorithms is that  Earley's 
will work with any grammar, while CKY is restricted to grammars in Chomsky 
normal  form. We show that  this difference is actually quite superficial. The 
fundamental difference between the two algorithms turns out to be Earley's 
"predictor," which imposes an additional constraint on the allowable partial 
derivations, namely, that  they be consistent with the beginning of the input 
string. 

To explain the correspondence of our algorithm to the CKY method, we show 
that the predictor can be "weakened" or eliminated without affecting the cor- 
rectness of the recognizer. Suppose we add to tj,j some "extra" dotted rule which 
would not ordinarily be there, say, A --) • a. Subsequent operations may introduce 
"extra" dotted rules into columns to the right of j, but no t  above rowj.  (Even if 
A --) a -  were entered somewhere on row j, the pasting step applied to A --* a .  
would have no effect since column j would not have any entries with a dot in 
front of an A. Similar reasoning applies to other "extra" rules.). In particular, this 
addition would have no effect on to,,, so we still would have a correct recognizer. 
In fact, we could replace the predictor by the statement "tj,j := PREDICT(N);"  
and still have a correct recognizer. This gives the following algorithm. 

Algorithm 4.1. This algorithm is identical to Algorithm 2.2, except that lines 1 (t0,0 :-- 
PREDICT((S})) and 11 (tj,j := PREDICT(U~i~_~ tij)) become t0,0 := 
PREDICT(N) and ti. j :-- PREDICT(N), respectively. 

The characterization theorem for this algorithm is the following, which is 
analogous to the one for CKY. 

LEMMA 4.1. A f t e r  r u n n i n g  A l g o r i t h m  4.1, A --) a .fl is in ti,j i f  a n d  only  i r a  
m a t c h e s  Wi,j, i.e., a 7 "  a i + l  • • * a j .  

PROOF. It fOllOWS directly from the definition that  PREDICT(N)  is the set of 
all dotted rules matching A, so the lemma holds for all tj,j, j >_ O. For the sets ti,j, 
0 _< i < j ,  the proof is analogous to the proof of Theorem 2.1. [] 

Notice that  we could set tj,j to any value such that  

PREDICT(U t i , j )  C_ t j , j  C_ PREDICT(N)  

without affecting the correctness of the recognizer. Adding "extra" items to tj, j in 
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this way seems to correspond to characterist ic LR parsing [11] in roughly the 
same way tha t  Earley 's  me thod  [8] corresponds to LR(k)  parsing [21]. 

I t  will be more  convenient  to work with a slightly different version of C K Y - - a  
version we call CKY1, which allows the addition of chain rules to Chomsky 
normal  form grammars.  (This normal  form is called "canonical two form" [15].) 
T h e  modification is very  simple: Whenever  a variable A is added to some tid, we 
also add A'  if A '  --* A (and likewise A "  if A "  --* A',  etc.). In the product  notat ion 
we have been using, we just  extend the definition of ® as follows: 

Q ® R  -- { A I A  7 "  B C f o r  some B E Q, C E R}.  

We relate  our  algori thm to CKY1 by using a part icular  t ransformat ion which 
converts  any grammar  G into a grammar  G1 which is in canonical two form. (For 
simplicity we assume tha t  A ~ L(G).)  We show tha t  our  algori thm without  the 
predictor  working on G is the "same" as CKY1 working on the t ransformed 
grammar  G1. We also give a t ransformat ion from an arbi t rary  grammar  G to a 
g rammar  G2 in Chomsky form. This  t ransformation can be used to relate our  
algori thm directly to CKY (rather  than  the variant  of CKY), but  the correspond- 
ence is more  clearly visible with the simpler transformation.  (Instead of removing 
the predictor  f rom our  algorithm, it is possible to add one to CKY; [6, 27] give 
such an algorithm. The  same grammar  t ransformations can be used to show the 
connections between the algorithms.) 

T h e  first t ransformat ion we want  is the following: Th e  nonterminals  of G1 
consist of symbols <A --* a .fl) for every  dot ted rule A -* a .fl of G and symbols 
(a)  for every  terminal  a of G. The  productions of G1 are, for every pair of rules 
A ~ aBfl and B ~ ,/, every rule A ~ aafl of G, and every a in 7., 

(1) {A --> aB .fl) ---> (A ~ a .Bfl)  CB --> 7" ), 
(2) CA--> aB .fl) ---* CA--* a . B f l )  i f B ~  A, 
(3) (A --* aB .fl) --* CB --~ ~,. ) if a ~ h  A, 
(4) CA--> a a . f l )  ---* CA--* a .a f l )Ca) ,  
(5) CA ---* aa .fl) --* (a)  if a 7 "  A, and 
(6) C a ) - *  a. 

I t  is obvious tha t  G1 is in canonical two form. Further ,  it is easy to see tha t  this 
g rammar  is equivalent  to G. Rule 6 arises from the obvious t ransformat ion used 
to restr ict  terminals  to rules of the form A --* a; rules I and 4 are a simple way to 
reduce all r ight-hand sides to length _<2; and rules 2, 3, and 5 come from rules 1 
and 4 by the obvious t ransformat ion used to eliminate A-rules. Th e  exact 
correspondence between G and G1 is captured by the following lemma. 

LEMMA 4.2. Let  G = (V, F,, P, S) be an  arbitrary cfg such that  A ~ L(G).  Le t  
G1 be formed from G by the above construction. Then  for any rule A --* aft o f  G 
a n d  any  x E F, +, CA --* a .fl) ~ 1  x i f  and  only i f  a ~ x. 

T h e  proof  is omitted. 
The  equivalence of the grammars  G and G1 follows, since 

x E L ( G )  iff ( S - - * a . ) ~ l x  

for some rule S --> a for G. (The set of nonterminals  CS --> a .  ) functions as the 
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"s ta r t  symbol"  of G1. To  be more  formal, one should introduce a new star t  symbol 
(S) and rules (S) -o  (S -* a .  ).) Finally, we are ready to state precisely the 
correspondence between the algorithms. 

THEOREM 4.1. Le t  G = (V, ~, P, S) be an arbi trary  cfg wi th  A ~ LCG), a n d  
let G1 be cons tructed  ft 'om G as descr ibed  above. I f  A lgor i t hm  4.1 a n d  C K Y 1  
(described above) are execu ted  for the same input  us ing  g r a m m a r s  G a n d  G1, 
respectively,  then  the non te rmina l  (A  --* a .fl) is in ti,j (CKY1)  i f  a n d  only i f  the 
do t ted  rule A -+ ~ .fl is in ti.j (A lgor i thm 4.1). 

PROOF. By  Lemmas  4.1 and 4.2 we have 

(A  --* a .fl) ~ ti,j (CKY1) iff CA -----> Ot . f l )  ~ 1  ai+l ' ' '  a1 
i f f  a ~ a i + l  ' ' '  a j  

iff A --* a .fl E tio (Algorithm 4.1). [] 

No t  only are the two algorithms computing the same information, bu t  we can 
show tha t  their  me thods  of computing it are the "same"  also. CKY1 puts  A in t i j  
whenever  it  finds B in ti.k and C in ti,i with A -+ BC. Similarly, our  algori thm puts 
A --* a B .  fl into t i j  whenever  it  finds A --. a .  Bfl  in ti,k and B --* ~,. in tk,i. We can 
view this as a disguised version of the CKY method  applied to the rule (A -+ a B .  
fl) -~  (A  --* a .Bf l )  CB ~ y .  ). Fur thermore ,  whenever  CKY1 adds A, it will also 
add A'  if A'  --* A (and A "  if  A "  --* A' ,  etc.). Our algori thm is very  similar if we 
look closely at  our  definition of the x-  and . -products .  Suppose we find some 
dot ted  rule A --* a .BCDf l  and also find B --* y .. Naturally,  we add A --* a B .  
CDfl since it is in {A --> a .BCDfl}  × {B --~ y .}. Further ,  if C 7 "  A and D 7 "  
A, then  A --4 a B C  .Dfl and A --4 a B C D  .fl are also in {A --4 a .BCDf l }  x {B --* 
y .  }, so we will add t hem also. This  action is the direct counterpar t  of CKY1 
handling the chain rules (A  --* a B C  .Dfl)  --~ (A  -o a B .  CDfl) and CA --* a B C D .  
fl) --* CA --~ a B C  .Dfl)  in G1. The re  is a similar correspondence for the o ther  
chain rules in G1. 

One fur ther  modification of our  algori thm is of interest.  If  we eliminate the 
predictor  (as in Algori thm 4.1), all of  the diagonal e lements  would be the same, 
independent  of the input, so they  could be el iminated by changing the limits on 
the  loops and using a suitably modified "product"  operat ion in place of bo th  x 
and *, e.g., ®, where 

Q ®  R = (Q x R) U P R E D I C T ( N )  * (Q × R). 

We then  get an algori thm which is s t ructural ly identical to CKY but  can be used 
for any  grammar,  not  just  one in Chomsky normal  form. 1° I t  is also possible to 
apply  Valiant 's  me thod  to compute  the matr ix  in t ime proport ional  to tha t  for 
Boolean matr ix  multiplication. The  modified product  implicitly defines a trans- 
format ion  to Chomsky form which is similar to the one we discussed above but  
somewhat  more  complex. In the interest  of completeness we present  the grammar  
(G2) corresponding to this variat ion below. 

For  all dot ted  rules A --* a . f l  in G we have 

lo A similar  idea is sugges ted  in p rob lem 4.2.15 of [2]. 
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(i) I f a T * a ~ , ,  

(A --* a -fl) --* a 
(ii) if a 7 "  B E N, then  for every  rule B --. 7U8 with 8 7 "  A we have ei ther  

Ca) if U E Z, 

(A- -*  a . f l)  --* (B- -*  ~ , .US)CU)  

or (b) if U E N, then  for all U--* o, 

CA--* a . f l)  --. ( B  --. 7 . U~) C U--* a . ) 

(iii) i f a  = alUa2 with a2 7 "  A, we have ei ther 

(a) if U E ~, 

( A  --~ a .fl) --~ CA --* al . Ua2fl) ( U )  

o r  

(b) if U E N, for all U--* a, 

CA--* a . f l)  --* CA--* al .Ua2fl)  C U - *  o . )  
(iv) for every  a E Z, 

<a) --, a 

(Note tha t  the first three  cases are not  mutual ly  exclusive, and tha t  the grammar  
is not  necessarily reduced.) The  correspondence between G and G2 is presented 
in the following proposition. The  proof  is omitted. 

PRoPosITIoN 4.1. L e t  G = (V, F,, P,  S )  be an  a rb i t ra ry  cfg w i th  A ¢~ L ( G ) ,  
a n d  let  G2 be c o n s t r u c t e d  f r o m  G as  d e s c r i b e d  above.  T h e n  for  a l l  d o t t e d  ru les  
A --* a .  fl a n d  n o n n u l l  s t r ings  x E Y,+, 

a = * ~ x  i f f  ( A - - * a . f l ) ~ 2 x .  

Finally we consider the differences between the CKY algori thm and ours. As 
ment ioned previously, the main difference is the predictor,  which allows certain 
left  context  to be considered. F rom our  characterizat ion theorems,  it is clear tha t  

ti,j with predictor  (i.e., Algorithm 2.2) 

t i , j  without  Ci.e., Algorithm 4.1), 

and it is easy to find examples where  the conta inment  is proper. Figure 13 gives 
such an example. Since fewer matr ix  entries usually means  savings in bo th  t ime 
and space, it is clear tha t  the predictor  usually does not  hurt.  However,  the worst- 
case performance for bo th  algorithms is (P(n 3) t ime and (9(n 2) space. For  certain 
restr icted grammar  classes the bounds are also the same; for example, for 
unambiguous or l inear grammars  both  may  need (gCn 2) time. The re  are o ther  
cases where our  algori thm is asymptotical ly superior to CKY. It  is not  hard  to see 
how this si tuation can arise. The  predictor  has a lef t - r ight  bias which may  be 
ideal for some grammars  but  useless for others. For  example, our algori thm takes 
t ime LoCn) on S -*  S a l a  while CKY takes ~2(n2), but  on the equally simple 
g r a m m a r  S - -*  aS[  a, both  take ~2(n2). A less artificial comparison is repor ted  in 
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Grammar: S --~ S a  I a Input: a a a  

t (with 
predictor, 
Algorithm 2.2) 

S ---~ • S a  
S - " ~  . a  

S - - >  a ° 

S - - ,  S . a  
S----~ S a  • 
S - *  S . a  

S - -~  S a  . 
S - ~  S . a  

t (without 
predictor, 
Algorithm 4.1) 

S--.~ . S a  
S . - - ~  ° a  

S- -~  a 
S---~ S . a  

S ---~ . S a 

S - . - ~  ° a  

S- -~  S a .  
S---~ S . a  

S, . - .~  a o 

S - ~  S . a  

S---~ . S a  
S---~ . a 

S- , . .~  S a  , 

S - *  S . a  

S---~ S a  • 

S - -~  S . a  

S - - - ~  a ° 

S- -~  S . a  

S - *  • S a  
S - - ~ ° a  

Fig. 13. t i j  with predictor _C ti,j without predictor. 
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[27]. Pratt  states that  use of the predictor gave a factor-of-5 reduction in the 
number of matrix entries generated. In his application (natural language process- 
ing) the semantic routines executed for each entry may be very expensive, so the 
savings may be appreciable. However, it should be emphasized that  the savings 
achieved by the predictor are strongly dependent on the grammar and input 
being processed. 

Next we consider the connections between our algorithm and Earley's as 
described in [8]. The notation used below follows the discussion of Earley's 
algorithm given in [2], which is closer to our notation than that  originally used by 
Earley. 

Earley's algorithm and ours are very similar in the information they gather 
and in the way it is gathered. Earley's algorithm constructs lists/j ,  0 _ j _ n, of 
ordered pairs (A --* a .  fl, i), where A --, a .  fl is a dotted rule of G and 0 _< i < n. 
The entry (A --* a .  fl, i) will appear on l is t / j  if and only if A --* a .  fl follows wi 
and matches wi,j. Consequently, the set of entries in list I i with second component 
i corresponds exactly to the set ti,j constructed by Algorithm 2.2 (and list /j 
corresponds to t h e j t h  column of t). One of the main steps of Earley's algorithm 
(the "completer") is to add (A --* a B .  fl, i) to l is t / j  when some (B --* 7 ", k) is 
found on l is t / j  and (A  - ,  a .  Bf l ,  i) is on list Ik. This step is analogous to line 8 of 
Algorithm 2.2, noting that A --* a B .  fl is in ti,k X tk,j (since A -*  a .  B f l  E ti.k and  
B - *  ~,. E tk,j). 

Our algorithm and Earley's differ in three respects. One is the handling of 
A- and chain-derivations. Our algorithm precomputes this information, whereas 
Earley's will find a A- or chain-derivation by doing a series (equal in number to 
the length of the derivation) of predictor and completer steps. Two more funda- 
mental differences between the algorithms are the choice of data structure 
(matrix versus fist) and the order of computation. Earley's processes items added 
to l i s t / j  in the order of their addition, whereas ours processes items added to 
column j in order of decreasing row number. 

As we have seen, a variety of implementations of our algorithm is possible. 
Usually these implementations will be more efficient than comparable versions 
of Earley's algorithm. Some of our implementations have no counterpart at all 
within Earley's framework. While this efficiency and flexibility are a significant 
advantage over Earley's method, we feel that it really represents only one 
expression of the main advantage of our method, which is its simplicity and 
clarity. Our method also exposes certain otherwise obscure characteristics of the 
two algorithms. Several examples will be presented to emphasize these points. 

One example of a feature of the algorithm made visible in our version is the 
relationship between the CKY and Earley methods, discussed above. As a second 
example, we consider the recognition of linear languages. A l i n ear  context-free 
grammar is one whose rules are all of the form 

A -* x or A -*  x B y  

where x, y E ~*, A, B E N. It is known that  both the CKY and Earley algorithms 
can be made to run in time (9(n z) on linear grammars [12], but the proof for 
Earley's algorithm is much less obvious than for CKY. Our algorithm also can 
work in time (9(n ~) for linear grammars, and the proof is very simple. Suppose we 
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i j 

A,~ BB 

Fig. 14. Time n 2 for linear grammars.  

I f, -- Mox lal 
A -  aBB 

find some ru le  B --* ~[. in  ti,j; we must  search column i for all rules of the form 
A --* a .  B f l .  Since the grammar  is linear, a and fl E E*, so A --* a .  B f l  can be in 
tk,i if and only if a 7 "  wk,i if and only if a = Wk.i. If  1 = maxA_~BZ lg(a), then  
i - 1 _ k __ i, i.e., all entries of the form A --* a .  B f l  are  in a narrow band above 
the  diagonal (see Figure 14). Thus  we must  search only a bounded  port ion of 
column i to f i nd  all A --* a .  B f l .  The  total  processing t ime is then  easily seen to 
be (9(n2). Fur thermore ,  we can take advantage of the  "shape"  of the matr ix  to 
choose a be t te r  representat ion.  

The r e  are several examples of implementat ions  of our  algori thm for which 
there  is e i ther  no counterpar t ,  or only a less efficient one for Earley 's  algorithm. 
One method,  using the representa t ion shown in Figure 4, scans each column to 
the left  of column j exactly once. An equivalently simple implementa t ion of 
Ear ley 's  a lgori thm would have to scan list I i ,  i < j ,  once for e a c h  dot ted rule of 
the  form B -* y .  found in ti.j. This  could easily be five to ten t imes more work 
than  with our  method.  Fur thermore ,  our  me thod  scans the columns to the left of 
j in the order  j - 1, j - 2 . . . . .  whereas Earley 's  me thod  accesses the columns at  
" r andom"  (i.e., in whatever  order  i tems are entered onto list l j ) .  Th e  scan order  
allows our  me thod  to be done in t ime n 3 on a mult i tape Tur ing  machine,  whereas 
Ear ley 's  me thod  takes t ime n 4 on a Tur ing machine [7]. Per formance  of the 
algori thm on a Tur ing  machine may  not  seem of much  practical  interest.  However,  
the much  more  regular pa t te rn  of memory  accesses which allows the improved 
per formance  on Tur ing  machines may  also give greatly improved performance on 
vir tual  m e m o r y  or paging systems, a factor which is of significant practical  
interest.  A third example is the bi t -vector  implementa t ion shown in Figure 8, for 
which there  is no analog with Earley 's  method.  Other  examples include the 
subcubic algori thms discussed in the next  section. 

Two less well-known general context-free parsing methods  are closely re la ted 
to ours. T h e  n o d a l  s p a n  method  of [6] is an adaptat ion of Earley 's  predictor  to 
the CKY algorithm. A few years la ter  a similar version appeared in [27]. This  
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algori thm requires a grammar  in Chomsky normal  form, so it suffers from the 
problem ment ioned in Sect ion 2.2--convert ing to Chomsky form may  square the 
size of the grammar.  Pra t t ' s  algori thm allows Chomsky form plus chain rules  (i.e., 
canonical two form) as in CKY1 discussed above. I t  is easy to convert  an arbi t rary  
g rammar  to canonical two form with only a linear increase in size, so this aspect 
of Pra t t ' s  algori thm is preferable. 

The  use of a Chomsky or canonical two form grammar  in these algorithms is 
at tract ive,  since it simplifies the notat ion needed to state and program the 
algorithms. However,  there  is a hidden cost to this approach. If  the algori thm 
stores information corresponding to dot ted rules of the form A ~ B .  C, then  
more  space may  be used than  with our method;  if such dot ted rules are not  
stored, the algori thm may  use more time, but  less space, than  ours. To  see how 
this can happen,  suppose tha t  the original grammar  G has a rule A ~ B~B2 . . .  

Bk .  In the equivalent  canonical two form grammar  G1 there  will be k - 1 rules, 

A --~ Ck - lBk  

Ck-1 "--> Ck-2Bk-1 

C2 ---> B I B 2 .  

When  some port ion of the input  matches  A --) B1 • • • Bk •, our  algori thm will 
make, among others, the k entries A ---) B 1 .  B2 . . .  Bk  . . . . .  A ~ B I B 2  . . .  Bk . . 

(We ignore entries A --) • B1 . . .  Bk for reasons explained below.) An algori thm 
working with G1 must  store k - 1 dot ted rules, namely,  C2 --) B1B2. ,  Ca ---) 
C 2 B a . ,  . . . .  A ----> C k - l B k . .  If it also stores the intermediate  k - 1 entries C2 --) 
B 1 .  B2, C3 ~ C2. B3 . . . .  , A ---) Ck-1.  Bk ,  it will have used (2k - 2 ) / k  t imes as 
much  space as our  algorithm. (Our dot ted rule A ----) B1B2 . . .  B i .  Bi+l . . .  Bk  

serves two purposes: it notes tha t  B1 • .- Bi has been matched,  which is noted by 
Ci ----) C i - i B i .  in G1; and it notes tha t  a Bi+~ would be useful, which is noted by 
the separate  dot ted rule Ci+~ ~ Ci .  Bi+l in G1.) Of course, there  is only a small 
increase in space if the average length of a rule in G is nearly 2 (averaged with 
respect  to f requency of occurrence in the recognition matrix). Alternatively,  if 
the algori thm does not  store the intermediate  i tems Ci ~ Ci-~ • Bi ,  then  it will 
save space, namely,  use only (k - 1 ) / k  t imes as much space as our  algorithm. 
However,  it will use more  t ime since it must  do extra searching to discover that ,  
say, a Ci-~ and a B~ can be combined to give a Ci. Note  tha t  these space est imates 
are only approximate,  since a given dot ted rule may  be paired with another  
dot ted  rule to generate a third dot ted rule several t imes (or no times). Th e  
published versions of bo th  the Cocke-Schwartz  [6] and Pra t t  algorithms use the 
space-saving form, but  Pra t t ' s  implementat ion of his LINGOL system uses the 
faster  form [27]. 

Th re e  different methods  of storing the predictor  data  are used by Pra t t ' s  
method,  the Cocke-Schwar tz  method,  and ours. P ra t t  stores for the j t h  column, 

Goalj = ( C I A  --~ B .  C is in t/d for some i).  
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Cocke and Schwartz store 

Goalj* = {D] C ~ *  D8 for some 3 ~ V* and some C ~ Goal/}. 

Our method stores 

PREDICT(Goalj) = {D--)  •a]D E Goal7 and D--* a is a rule}. 

(For simplicity, we assume that the same grammar is used for all three algo- 
rithms.) Pratt 's method requires the least computation to generate the predictor 
information, and ours needs the most. For all subsequent tests using the predictor 
data, the situation is reversed: our method takes the least work and Pratt 's takes 
the most. Our method also has the advantage of uniform representation: we do 
not need a special data structure for recording the predictor data. However, Pratt  
argues that  PREDICT may generate a large number of irrelevant items (at least 
with the sort of grammars used for processing English). As an example, Pratt  
considers a grammar having rules S--* NV] WV] V where S stands for "sentence," 
N for "noun phrase," V for "verb phrase," and W for "interrogatory phrase." For 
a sentence beginning "Why . . . .  " only the second of the rules is applicable, but 
PREDICT will also generate entries for the dead ends S --* • NV,  S --* • V, N 
. . . .  , V-* . . . .  , etc. The prediction certainly wastes space, and the time spent 
constructing these dotted rules could easily exceed the savings due to quicker 
tests, so Pratt 's method may be faster. {Mere presence of the dotted rules does 
not slow subsequent operations if appropriate data structures are used.) If so, the 
Cocke-Schwartz form may be better still. Some experimentation with realistic 
grammars and inputs would be required to settle these issues. 

One shortcoming of Pratt 's method is that like the simple implementation of 
Earley's algorithm discussed above, it will scan column i once for each variable 
C found in ti,j (searching for items A ---) B .  C). This search can be considerably 
slower than our algorithm which scans column i only once. 

Several other related contributions have been made. Lyon [24] independently 
observed that  Earley's algorithm could be modified to operate with its lists sorted 
by row number, and that  this modification allowed an O(n 3) multitape Turing 
machine u version. Weicker [38] also gives a modification of Earley's algorithm 
which orders the columns as we have done and uses this ordering to get an (P(n 2) 
bit-vector version which is somewhat different from ours: each column is repre- 
sented by a single bit vector of length n .  ] G ]. Weicker extends this method to an 
(0(n 2 log n) algorithm for a uniform cost RAM u by encoding the bit vectors into 
integers having ] G[ • n log n bits. 

An unpublished paper by Floyd [9] describes another clever (P(n 2) bit-vector 
recognizer, in this case a version of CKY. Floyd's method stores the transpose of 
the (upper triangular) recognition matrix in (the lower triangle of) the same 
matrix, so that  a row-column product may be formed by ANDing the row with 
the transpose of the column. (The column-oriented bit vector algorithm described 
in Section 3 is probably faster, since it does not need to maintain the second copy 
of the matrix.) Another related work is by Townley [35], who also considered the 
possibility of precomputing information about A-derivations. 

u See, e.g., [1] for definitions. 
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5. SUBCUBIC VERSIONS 

All versions of the algori thm presented to this point  have had a worst-case 
running t ime of ~t(n3). Two versions of our  algori thm running in less than  n 3 
t ime are presented here. These  algorithms are theoretically interesting, but  are 
not  of practical  utility, since they  are faster than  the n 3 methods  only for 
unrealistically large values of n. 

T h e  first subcubic version uses Valiant 's method  to give an algori thm which 
runs in the same t ime bound as matr ix multiplication. In Sect ion 4 it was noted 
tha t  our  algori thm could be modified so tha t  Valiant 's me thod  could be used to 
produce a matr ix  ti,j = { A  - *  a .  i l i a  7 "  ai+~ . . .  a j }  for i < j  (note tha t  i # j ) .  
Having done this in t ime (P(n255), we can in t ime (9(n 2) add the correct  diagonal 
and "prune"  the o ther  entries to get a matr ix  identical to the one produced by 
Algori thm 2.2 as follows. 

(1) to,o := PREDICT({S}); 
for  i :=  0 to n -  1do  
begin 

{3) f o r j  = i + 1 to n do 
ti,j :-~ { A  --* a . fl in ti,jl s o m e  A rule A ---> a ' .  fl' is in ti.i} ; 

(2) ti+1,i+, := PREDICT(Uk<i+I tk,i+l) 
end; 

T h e  proof  is simple. If  ti,i is set correct ly {i.e., as in Earley 's  algorithm) at  (1) 
(which it clearly is) and at  (2) (which will follow by induction}, then  the f o r  loop 
at  (3) will set the  entire i th  row correctly, since 

implies 

which implies 

Further ,  

which implies 

A --> a .  f l  E t i j  (after (3)) 

A --~ a .  f l  ~ t i j  (before (3)), 

a ~ *  ai+l . . .  a s. (5.1) 

A - *  a ' .  f l '  is in ti,i for some r u l e  A --~ a ' f l '  

$ 7 "  a l  . . .  a i A y  for some 7. {5.2} 

Conditions (5.1} and {5.2} characterize t i j  in our algorithm, of course. 
Conversely, if {5.1} holds, then  A -* a .  fl must  be in ti,j before (3}, and if {5.2} 

holds, some A --> a ' .  f l '  must  be in ti,i (in particular, A ---> • ~/is in ti,i for all rules 
A ---> ~,}. Thus  A --> a .  fl will be in t i j  after  (3}. By induction, all of column i + 1 
will be correct  before (2} is done, so ti+l,i+l w i l l  be correct.  

If  recognit ion alone is the goal, it makes no sense to prune the matrix, since 
Valiant 's algori thm alone is a recognizer. However,  for parsing it might  be very  
useful to remove  many  of the "useless" i tems found in the CKY-type scheme we 
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s tar ted with. I t  would be interesting to know if all  useless i tems (in the sense 
defined in Sect ion 2.4) could be removed within the same t ime bound. 

Valiant 's me thod  was based on fast general matr ix  multiplication methods  [1]. 
As we show next, it is also possible to use the Boolean matr ix  multiplication 
scheme of [3]. This  approach gives a recognizer requiring 0(n2/ log  n) operat ions 
on bit vectors  of length n, (P(na/log n) steps on a uniform cost RAM, 12 or 0 ( n  3) 
steps on a logarithmic cost RAM. 12 Further ,  this is an on-line recognizer, in 
contras t  to the algori thm given above, or Valiant 's method.  

Before  giving the next  algorithm, we ment ion several re la ted results. Bi t -vector  
machines  defined in [30] allow unit  t ime "AND,"  "NOT,"  and " S H I F T "  opera- 
t ions on bit  vectors  of arbi t rary  length. Th e  results in [30] give an (P(log4n) 
context-free language recognizer. P ra t t  [28] reports  a me thod  using t ime (P(log3n). 
Ruzzo [34] gives an (9(log2n) algorithm. These  methods  use very  long vectors  
(~2(n l°g") bits) and make  essential use of the "shif t"  instruction. Th e  me thod  
presented  here  uses vectors  of length n and does not  use shifts. Our me thod  is the 
fastest  known to us for machines using vectors of length (P(n), even if shifts are 
allowed. The  fastest  known me thod  for a uniform-cost  RAM is the (p(n21og n) 
algori thm of Weicker [38]. The  uniform-cost  RAM is often used as a model  of 
modern  computers.  I t  captures the fact tha t  most  operat ions take about  t h e  same 
time, regardless of the size of the numbers  involved, provided tha t  the numbers  
fit in one "word." However,  the uniform-cost  model  deviates f rom reali ty in 
allowing arbitrari ly large numbers,  i.e., arbitrari ly large "words." Weicker 's  algo- 
r i thm exploits this feature of the uniform-cost  model  to achieve a fast algori thm 
by encoding an entire column of the recognit ion matr ix  as one long in teger - -  
I G I n log n bits. I t  has been suggested tha t  a modification of the uniform-cost  
model  which restricts integers to k log n bits (for some constant  k) would be more  
consistent  with the characterist ics of current  computers.  Our n~/log n algori thm 
falls within this restr ic ted model. Results  in [17] show tha t  any algori thm running 
in t ime T(n) >_ n log n on a mult i tape Tur ing  machine can be simulated in t ime 
T(n ) / l og  T(n)  on a uniform-cost  RAM or in t ime T(n) on a logarithmic-cost 
RAM. Galil [10] extends their  result  by showing tha t  the simulating RAM can be 
on line if the Tur ing  machine was on fine. Thus  our  n3/log n uniform-cost  and n 3 
log-cost results  can now be obtained as corollaries of these more  general theorems.  
However ,  our  direct  construct ion of these results and our  n2/log n bi t -vector  
algori thm are still of interest.  T h e y  are presented below, but  only a sketch of the 
proofs will be given. 

T h e  idea of the construct ion is quite simple. Consider Algori thm 2.4. Pick some 
number  q > 0. F o r e a c h  j f rom q to n the algori thm computes  a specific function 
of co lumns /0  . . .  tq-1 and the sets to,j . . . .  , t q_ l , j (namely ,  the  port ion of the in- 
ner  loop " f o r  k := q - 1 d o w n t o  0 do  tj := t i U tk*tk,j"). There  are only a 
finite number,  say s, of possible sets of dot ted rules. If n is very  large {greater than  
sq), the  same q-tuple of sets to,j . . . . .  tq-l,j must  occur for different values off i  We 
could avoid recomputing those functions if the previous answers had been 
tabulated.  In fact, it is easier simply to tabula te  the  function for all possible 
q-tuples of sets of dot ted rules and then  to compute  the function by table look-up 

12 See, e.g., [1] for definitions. 
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for each  q- tuple  to,j . . . . .  tq-~, j ,  j <_ n .  Ins tead  of taking abou t  n .  q s teps to 
compute ,  we will now need abou t  n (look-ups) + s q (to build the  table). Choosing 
q = log n, the  work is then  (P(n) r a the r  t han  (P(n log n). Repea t ing  this 
cons t ruc t ion  for the  o ther  n / log  n groups of columns, the  to ta l  work is ( P ( n .  n ~  

log n) = (p(n2/log n) instead of (~(n log n .  n / log  n) = (P(n2). 
Our  a lgor i thm is given below. ~ denotes  the  set  of  all dot ted  rules; R denotes  

the  t abu la ted  function; LkJ is the floor of  k. 

A l g o r i t h m  5.1 

for q := 1, 2, 3 , . . .  until n <_ s q do 
begin  (* Throughout, all vectors are sq-vectors; the second index of R always has q 

components. .)  

PREDICT({S}) 

to :-- 

R :ffiO; 
for all Vo C ~ d o  R(O, (Vo, ~ . . . . .  ~))  :ffi t0*vo; 
for j :ffi I to s q do 
begin 

:-- ~-I* (aj}; 
for k :=.L(J - 1)/qJ downto  0 do 

:ffi t j  U R ( k ,  ( tkq,j, tkq+l,j . . . . .  t~+q-lj)); 
tj, i := PREDICT(Uo_~/_~j-1 tij); 
J '  :ffi LJ/qJq;  
for all vi,, vi,+1 . . . .  , vj C ~ d o  
begin 

v:-- 

v j, 

V : =  • ; 

vj 
0 

0 

w:--  vu/ , - ,v~;  
R ( [ j / q J .  (v j , ,  . . . .  vj,  f~ . . . . .  ~ ) )  :-- 

w U R ( [ j / q J ,  (wi , ,  . . . .  w~_~, 0 ,  ~ . . . . .  0));  
end; 

end; 
end; 

Two points  are notewor thy.  First, an  on-line a lgor i thm cannot  know n, the  
length of the input, in advance.  We used n in our  previous a lgor i thms as a 
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notat ional  convenience, but  only to control  terminat ion of a loop; this could be 
done as easily by some kind of "end of inpu t"  indicator. However,  in the current  
algori thm n determines  q which determines the table structure,  so it would be 
incorrect  to assume it was known in advance. Instead, this algori thm will run  
with some q until  n > s q, then  use q + 1; at  this point  it will go back to the 
beginning of the input  and rebuild the tables based on the new value for q. This  
updat ing will tu rn  out  to affect the execution t ime only by a constant  factor. 
Second, note  tha t  if the accesses to the table R are removed  and the following 
funct ion inserted, the resul tant  program is equivalent  to Algori thm 2.4. 

f u n c t i o n  R(i, (V~q . . . . .  V/q+q--1)) ;  
b e g i n  

• iq 

Oiq 

g:= 
Uiq+q--1 

0 

O 

f o r k  := i q+  q - 1 d o w n t o  i q  d o  
V := v U t k * v k  

r e t u r n  (v); 
end; 

Basically, R(i ,  {v~ . . . .  )) produces the vector  reflecting the  contr ibut ion of the 
i th  group of columns {columns iq . . .  iq + q - 1) to some column with Via " "  in 
the i th  group of rows {more precisely, viq . . .  in  the  i th  group of rows just  af ter  
the contr ibut ions from column g r o u p s / j  - 1~q J, I j  - 1/qJ - 1, . . . ,  i + 1 have 
been added). Since Algori thm 5.1 with the function R is equivalent  to Algori thm 
2.4, to show correctness of Algori thm 5.1 with the table R, we must  mere ly  show 
tha t  the table and function values are the same. This  is fairly easy to show by 
induction on j'. The  key s ta tement  is the last " f o r "  loop, where R ( [ f f q J ,  . . . )  is 
extended to include the contr ibut ion due to column fi This  gives the following 
proposition. 

PaOPOSITION 5.1. A l g o r i t h m  5.1 correct ly  c o m p u t e s  the  recogn i t ion  matr ix ;  
i.e., A -*  a . fl is in  t i j  i f  a n d  only  i f  S 7 "  al . . .  a i A y  a n d  a 7 "  a i + l  . . .  a j  for  
s o m e  y. 

Next  we consider the t ime complexity of Algorithm 5.1. First  we note  tha t  R is 
represented  by  a two-dimensional  array, with {v0 . . . . .  Vq-1) considered to be an 
integer (think of it as a q-digit s-ary number) .  All conversions to and f rom this 
format  can easily be done in a constant  number  of steps on a bi t -vector  machine.  
Thus  the  array references each take constant  time. T h e  " f o r  k "  loop takes 
(P(f fq)  steps. T h e  body of the last f o r  loop takes constant  time, so the loop takes 
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(9(S jm°dq) steps. Thus a s j  runs from 1 to s q, the " fo r  j "  loop takes 

('j~l jq q sq~' ) ((Sqq )2 qSq ) ((sq--)q 2) 
s j = (9 + • s q = (9 (9 - + - - j = o  

The outermost loop runs for q = 1 , . . . ,  flogs nl, so the total time is 

(9~/rlogsnlq~--1 ~ ) '  

which is (9(n2/log n) (as can be verified by induction). Since the bit vectors are all 
o f  length (9(n), any bit-vector operation can be simulated in time (9(n) on a 
uniform-cost RAM, so the time complexity on a RAM is (9(na/log n). 

Note that this algorithm requires the storage of (9(n2/log n) bit vectors or 
(9(na/log n) bits. Most of the other versions we have discussed use only (9(n) bit 
vectors or  (9(n 2) bits. 

6. C O N C L U S I O N  

A new general context-free language recognition algorithm has been presented, 
together with its implementation. The algorithm should be of practical utility 
since it is conceptually simple, can be efficiently implemented in a wide variety 
of situations, and can be used for any context-free grammar. It is also of theoretical 
interest since it exposes close connections between a number of previously known 
recognition methods, notably the method of Earley and that of Cocke, Kasami, 
and Younger. It is also possible to implement the algorithm in time asymptotically 
less than n 3. 
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