An Improved Context-Free Recognizer

SUSAN L. GRAHAM, MICHAEL A. HARRISON, and WALTER L. RUZZO
University of California at Berkeley

A new algorithm for recognizing and parsing arbitrary context-free languages is presented, and several
new results are given on the computational complexity of these problems. The new algorithm is of
both practical and theoretical interest. It is conceptually simple and allows a variety of efficient
implementations, which are worked out in detail. Two versions are given which run in faster than
cubic time. Surprisingly close connections between the Cocke-Kasami-Younger and Earley algorithms
are established which reveal that the two algorithms are “almost” identical.

Key Words and Phrases: parsing, context-free grammars, dynamic programming, data structures
CR Categories: 3.42, 4.12, 4.34, 5.23, 5.25

1. INTRODUCTION

Since the introduction of context-free languages and grammars in the late 1950s
there has been considerable interest in efficient recognition and parsing algo-
rithms for them. Good linear-time algorithms are now known for many subclasses
of context-free grammars, but these methods are too restricted for some appli-
cations. In these situations, general context-free language recognition and parsing
algorithms are used. In the present paper a new, general, context-free recognizer
is presented. Efficient techniques are given to implement it, and some unexpected
connections between previously known algorithms are derived. Both theoretical
and practical analyses of these methods are given. The analysis considers not
only orders of magnitude, but also the constant multipliers which are commonly
ignored in theoretical studies but are important in practical situations.

One significant use of the general context-free methods is as part of a system
of processing natural languages such as English. We are not suggesting that there
is a context-free grammar for English. It is probably more appropriate to view
the grammar/parser as a convenient control structure for directing the analysis

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

The editor-in-chief did not participate in the consideration of this paper for publication; it was
processed by the associate editor, M.D. Mcllroy.

This research was supported by the National Science Foundation under Grants MCS74-07644-A03
and MCS74-07636-A01, and by an IBM Postdoctoral Fellowship. A preliminary version of this paper
[13] was presented at the Eighth Annual ACM Symposium on Theory of Computing, 1976.
Authors’ present addresses: S.L. Graham and M.A. Harrison, Computer Science Division, University
of California, Berkeley, CA 94720; W.L. Ruzzo, Department of Computer Science, University of
Washington, Seattle, WA 98195,

© 1980 ACM 0164-0925/80/0700-0415 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980, Pages 415-462.

416 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

of the input string. The overall analysis is motivated by a linguistic model which
is not context free, but which can frequently make use of structures determined
by the context-free grammar.

Other applications that have been proposed for general context-free methods
include extensible programming languages. Many programming languages have
grammars which are suitable for parsing by one of the linear-time methods.
However, in some extensible languages the grammar is not fully known to the
compiler designers, and a parsing method is needed which can efficiently accom-
modate a growing grammar. Even if one of the linear-time parsers satisfied this
condition, it might still be difficult or impossible for the user to extend the
language at will and still keep the grammar in the form required by that particular
parsing method, since the user would not be free to tinker with the whole
grammar, only the additions. The general context-free methods we discuss later
not only free the user from all concern about the form of the grammar, but also
can easily handle additions to the grammar. (See, for example, [18, 26, 37].)

Another area where general context-free parsing techniques have been consid-
ered is speech recognition. Here the input language can only be approximately
defined, and individual inputs can vary widely from the norm. Thus the goal is to
find a parse which most closely matches the input. Ambiguity arises, since each
unit of the input can be considered to be a “distorted” version of any of several
possible sounds with various probabilities (for example, see [23]). A closely related
technique has also been proposed for doing error correction while parsing [24].

The first context-free parsers used “backtracking” to search exhaustively for a
derivation matching the input string. While these parsers worked reasonably well
in some cases, they had a worst-case running time which grew exponentially in
the length of the input, making them unsuitable for most applications. References
to many of these methods and comparisons of them may be found in [14, 22].

There are two well-known, practical, general context-free recognition methods.
The first was discovered independently by Cocke, Kasami, and Younger early in
the 1960s [16, 20, 39]. It is essentially a dynamic programming method and takes
time proportional to n’, where n is the length of the input string. The method
requires a grammar in Chomsky normal form, but since every context-free
language has such a grammar, this is not a fundamental restriction. More recently,
Valiant showed that the computation performed by the Cocke-Kasami-Younger
algorithm can be related to Boolean matrix multiplication, giving a recognizer
running in subcubic time' [36]. For sufficiently long inputs this is the fastest
known method. However, the overhead for this method is too large to make it
useful for values of n in the range of practical interest.

The second major method was discovered by Earley as an extension of Knuth’s
LR(%) method [7, 8, 21]. Unlike the Cocke-Kasami-Younger algorithm, Earley’s
algorithm will work for any context-free grammar.

One of the main contributions of this paper is a new general context-free
language recognizer, presented in Sections 2 and 3. It is derived from Earley’s
algorithm, but has a number of advantages over its predecessor. First, and most

! Recently, substantial progress has been made on this problem. As of July 1980, methods are known
which multiply two n X n matrices in time proportional to n*%""'.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 417

important, it is conceptually simpler than Earley’s method. This simplicity has
helped reveal a variety of possible implementations and optimizations which
make the algorithm applicable in a wide range of circumstances. One simple
implementation of our algorithm uses proportional-to-n? bit-vector operations on
vectors of length n, where n is again the length of the input. For problems of
practical size this method may be much faster than Earley’s, since word-parallel
Boolean operations may be used to manipulate the bit vectors (which would fit
in a few words on most computers). Of theoretical interest are versions of the
algorithm which run in less than n® steps. However, the overhead for these
methods may be too large for practical applications. Readers interested in the
space complexity of context-free recognition should consult [15, 81, 32, 33].

A second contribution of this paper is to exhibit deep and perhaps unexpected
connections between the various parsing methods mentioned above. In particular,
we show that the Cocke-Kasami-Younger and Earley methods are “almost”
identical. This unification of superficially dissimilar methods should simplify the
field. These results are discussed in Section 4.

Throughout the paper, we assume that the reader is familiar with the basic
concepts and notation from language theory, such as context-free grammars (cfg),
context-free languages (cfl), derivation, derivation tree, and Chomsky normal
form grammar; precise definitions may be found in any standard text on the
subject, such as [2, 15].

2. THE NEW ALGORITHM

Throughout this section we assume the presence of an arbitrary context-free
grammar G = (V, Z, P, S), where Vis the total vocabulary, = is the set of terminal
symbols, P is the finite set of productions, and S is the start symbol. We let N =
V — X denote the set of variables or nonterminals. It is also convenient to fix
n = 1, to fix the input string to be parsed as w = @1az ++ - a,, and, for 1 < i < n,
a; € Z. Further, w; and w;; for 0 < i < j denote the substrings a.a; -+ a
and ai+1 «-- @, respectively (wo = w;; = A, the empty string). The length of a
string w, written lg(w), is defined to be the number of occurrences of symbols in
w. Note that ww;; = w; and w;xwe,; = w; ;. Also, we define the size of G, written
as |G|, to be Yaoainr lg(Aa).

The recognition problem is to decide whether or not w is in L(G). A recognizer
is a procedure which accepts (recognizes) those strings in L(G) and rejects all
others. A recognizer is said to operate on-line if it recognizes each prefix of w
before reading any of the input beyond the prefix. More formally, an on-line
recognizer is a procedure which sequentially reads its input aia; --- a, and
sequentially generates an output sequence of 0’s and 1’s, rorir - - - ry, where r; is
generated before a;,, is read, and r;is 1 if a; - -- a; is in L(G) and 0 otherwise. A
recognizer which is not on-line is called off-line.

A parser is a recognizer which additionally outputs a parse or derivation of
-each accepted input. The parse may be encoded in a variety of ways, for example,
as the list of productions used in a rightmost derivation or as a derivation tree;
we will not be concerned with the representation at this time.

It is both necessary and convenient to present an old algorithm first, the so-
called Cocke-Kasami-Younger algorithm (hereafter called CKY), which was

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

418 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

discovered independently in the mid 1960s by J. Cocke, T. Kasami, and
D. Younger [20, 39]. Modern presentations of the algorithm may be found
in[2, 12, 15].

Convention. For the moment we assume that the grammar G is a Chomsky
normal form grammar.

The CKY algorithm is essentially a dynamic programming method in the sense
that a derivation matching a longer portion of the input string is built by “pasting
together” previously computed derivations matching shorter portions. More
precisely, for B € N and x € Z* we say that B matches x if B =" x. Notice that
if B matches x, C matches y, and there is a rule A — BC, then we can paste these
derivations together to find that A matches xy, since A = BC =>* xC =* xy.
Similarly, we say that a set of variables @ matches x if each element of € matches
x. For @, R C N define

Q®R={A|A— BCisin Pforsome BE Q and C € R}.

Notice that if @ matches x and R matches y, then @ ® R matches xy.

The CKY algorithm constructs an (n + 1) X (n + 1) upper triangular matrix t
(indexed 0 through n), called the recognition matrix, whose entries are sets of
variables; the £ ; entry is to be the set of all variables matching the substring w; ;.
Thus entries in the jth column match suffixes of the first j symbols of the input.
The algorithm is given below in abstract form.

1 for each column (* i.e., input symbol *) do

2 begin (* let j be current input position *)

3 match jth input symbol

4 for increasing length suffixes do

5 paste derivations of suffix of first j symbols of input
6 end

7 if entire input matched then accept

8 else reject;

The same algorithm follows in Pascal-like notation.”

Algorithm 2.1 (Cocke-Kasami-Younger)

1 forj:=1tondo
begin
ti;={A|A - ajisin P};
for i := j—2 downto 0 do
tij = Uick<j tia ® ta,j
end
if S € t,,, then accept
else reject;

@3N O WD

The essential property of the algorithm is given by the following characteriza-
tion theorem.

2 In our notation, all “multiply” operators have higher precedence than set union.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 419

a, .. g Gipg + O Oyyp --- G

Fig. 1. Proof of Proposition 2.1, “if”’ direction.

ProposITION 2.1. After executing CKY, for 0 <i<j=<n, we have A € t,, if
and only if A matches w; ;.

SKETCH OF PROOF. Detailed proofs are available in the literature [2, 12, 15],
but a proof will be sketched, since it parallels the proof which appears in the next
section. The proof proceeds by an induction which follows the order in which
matrix entries are generated, namely, completing columns from left to right, with
each column being completed from bottom to top. Notice that this order com-
pletes the row entries to the left of ;; (i.e., Zix, £ <) and in the column below ¢, ;
(i.e., tr.j, i < k) before ¢;; is completed. £ is basically the “inner product” of (the
nonempty portions of) row i with column j, i.e., a union of ®-products of
corresponding entries of row i and column j. The first part of the proof is to show
that each f,; matches w;,;. The argument is straightforward. The second part of
the proof is to show that each ¢;; contains all variables A matching w;;. The
main step is for 1g(w, ;) = 2. Here we use the fact that in the derivation tree for
A =" w; jsome part of w;; descends from the left child of A and the rest descends
from the right. That is, there is some rule A — BC and some %, i < k < j, such
that B =* w;x and C =* w;,,. (See Figure 1.) By the induction hypothesis, B
mustbeint,and CE€ £, j,50 A€ £, Q L;iCt,;. O

The usual version of CKY [2, 20, 25, 39] is different from that presented here
in two respects. First, the matrix is organized and indexed differently. Second,
the matrix entries are completed along (what in our representation correspond
to) diagonals progressively farther from the main diagonal (i.e., {t;iva|0<i=<n
—d}ford=1,2,..., n), rather than working up columns progressively farther
from the left as we have done. Actually, all that matters is that the row to the left
of #;; and the column below ¢;; must be finished before ¢ ; is computed. We have
given the algorithm in this form since it parallels the new algorithm and since it
is an on-line recognizer.

The CKY algorithm was the first general context-free recognizer with a
subexponential running time, and it is one of the simplest. However, it is not
commonly used in practice, for three reasons. First, it is somewhat inconvenient
to write and read grammars in Chomsky form. For one thing, breaking up long
productions into ones with right sides of length 2 may tend to obscure the
structure of the grammar and language. Additionally, in English optional con-
structions are common; for instance, a noun phrase might be a noun optionally

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

420 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

followed by a modifier. Optional parts are typically incorporated in grammars by
a combination of A-rules and chain-rules. Eliminating these A- and/or chain-
rules may require widespread modifications to the grammar. Of course, conversion
to Chomsky form may be done mechanically so that the grammar writer is not
directly faced with these problems. However, as a second problem, the conversion
may square the size of the grammar. The CKY algorithm runs in time proportional
to | G| n®. In many applications | G| is much bigger than n, so squaring the size of
the grammar can have a drastic effect on performance. For example, in a natural
language processing system the grammar might well have several hundred pro-
ductions, but the input is just one English sentence of 20 or 30 words. The third
problem with CKY is that it may spend lots of time making “useless” matches.
That is, it finds every variable A matching some substring w; ; without regard to
whether or not that match can occur within the context of the rest of the
sentence, i.e., whether or not S =* wo;Aw;,. Matches which fail to satisfy this
criterion may make up the great majority of all matches found. In one experiment
reported by Pratt [27], at least 80 percent of the matches were of this type.

The new algorithm has much in common with the Cocke-Kasami-Younger
algorithm. In particular, it is also a “dynamic programming” method in which
derivations matching longer portions of the input are built up by pasting together
previously computed derivations matching shorter portions. The two major
differences are that arbitrary grammars are handled (not just Chomsky form
ones), and certain “useless” matches are eliminated.> We henceforth relax the
restriction on grammars to Chomsky form.

In order to handle arbitrary grammars, it will be convenient to speak of
matching only part of the right side of a rule to the input, rather than the whole
rule. As a notation for dealing with this situation, we introduce the dotted rule.

Definition. Let G = (V, =, P, S) be a context-free grammar and let - be a
symbol not in V. If A — af is in P, then we say that A — « - § is a dotted rule
of G.

The idea is that the dotted rule A — « - 8 indicates that a has been matched to
the input, but it is not yet known whether 8 matches. (A similar idea is used to
explain LR parsing.) The notion of matching is made precise as follows.

Definition. For U € V, x € %, and A — a - § a dotted rule, we say that

A— a-B8 matches x if a=*x
and
U matches x if U=*ax.

A set of variables and/or dotted rules matches x if éach element of the set
matches x.

As with CKY, the new algorithm constructs an (n + 1) X (n + 1) upper
triangular matrix t = (¢;;), 0 < i,/ < n, whose entries are sets matching substrings
of the input, but here we use sets of dotted rules rather than sets of variables.

31t should be noted that other methods of solving these problems have been considered, but they
seem to have some drawbacks. These are considered in Section 3.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 421

Notice that if A — a - BB matches x and B matches y, then we can “paste” the
derivations together to conclude that A — aB - 8 matches xy, since

aB =* xB =* xy.

Matchings can be combined in this way until the dot has been moved to the right
end of the rule, at which point we know that A itself matches the string.

For our algorithm it is more efficient if the result of pasting two derivations
together in this way is always a dotted rule which matches a string which is
strictly longer than either of the two initial strings. However, in an arbitrary
grammar if we have, say, B =* A, and if A — « - Bf matches x, then so does A
— aB . B. Of course, there could be several consecutive variables which all match
A. The notion of “pasting together” which we use will automatically move the
dot to the right of variables matching A, so that we need only worry about
combining derivations matching nonnull strings. In addition to saving time, this
property also turns out to simplify the algorithm and its proof. The operations we
need which are analogous to the ® product used in CKY are defined next.

Definition. Let G = (V, Z, P, S) be a context-free grammar. Let @ be a set of
dotted rules, and let R C V. Define

@XR= {A— aBB-y|A— a-BByisin @, B =* A, and B € R},
Q@ *R={A— aBB-y|A— a-BByisin Q, B=* A, and B =*C
for some C € R}.

Notice that there may be several distinct prefixes of 8y which generate A. We
include all of them, not just the longest, since any of the variables involved might
match the next portion of the input. The * product is the same as the X product
except that it includes effects of chain derivations (B =* C) which would
otherwise cause slight complications somewhat analogous to A-derivations. The
reasons for this definition should bécome clear later. Notice that @ X R C
@+ R.

Next we extend these products to the case where both arguments are sets of
_dotted rules.

Definition. Let G = (V, Z, P, S) be a context-free grammar, and let @, R be
sets of dotted rules. Define

@XR={A—>aBf-y|A—> a-BByEQ,B=*A, and B — 7. isin R},
Q*R={A—»aBB-ylA—)a-B,ByEQ,,B=>*A,B="‘CforsomeCEN,
and C— 7. isin R}. ’

Again note that
@XRCQ=~R.

By observing the fact that a variable matches a string only if the symbols in the
right side of one of its productions can be pasted together appropriately, the
reader can begin to see the motivation for these definitions.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

422 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

Example. Consider the grammar

S— ABAC
A—- A
B - CDC
C—- A
D - a.

Let @ = {S— A.BAC}. Then

Qx {B}={S—> AB-AC,S— ABA-.C,S8— ABAC -},
while

Q+«{D}=(S—>AB-AC,S— ABA.-C,S— ABAC-}.

The other major difference between this algorithm and CKY is that we want
to eliminate some useless matches. Instead of finding all A — « - 8 which match
some substring w; ; of the input, we find only those dotted rules A — « - 8 which
match w;; and may legally follow the portion of the input to the left of w;;; i.e.,
S =* w,; Al for some § € V*. This is a weaker condition than insisting that the
dotted rule be consistent with both left and right context (S =* wo;Aw;.), but is
easier to compute, while being sufficiently restrictive to be of significant practical
utility. In fact, in the experiment mentioned earlier [27], a condition of this form
eliminated the quoted 80 percent of the matches, while the stronger condition
eliminated only a few more. It is not hard to see how this might happen in, say,
a grammar for English (which was the basis for Pratt’s experiment). For instance,
“who” must begin a relative clause in “The boy who ...,” but it must begin a
question in “Who” Thus, left context alone is sufficient to narrow greatly the
range of possibilities in these cases. Such left-right biases are probably very
common in most natural and artificial languages.

Definition. For A a variable, A — a - B a dotted rule, and x € Z*, we say that
A follows x if S =* xA@ for some 6 € V*, A — a - B follows x if A does, and a set
of variables and/or dotted rules follows x if each element of the set follows x.

Given some dotted rules which follow a prefix of the input and match an
extension to it, it is easy to find variables which may follow the longer prefix.
Suppose A — « - BB follows x and matches y. Then B follows xy, since S =" xAf
= xaBBO =* xyBf0 for some § € V*. Further, if B— Cy, C — Dé are rules, then
C and D follow xy also.

For convenience we say that in this case B, C, and D follow A — « - B as well.
Generalizing this example, we define a function PREDICT which gives the set of
variables or dotted rules following a given set of variables or dotted rules and, in
the case of dotted rules, matching A.

Definition. Let G = (V, Z, P, S) be a context-free grammar andlet RC V.
Define

PREDICT(R) = {C— y-£|C— y¢isin P, y=* A, and B =" Cy for some
B € R and some n € V*}.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 423

If R is a set of dotted rules then
PREDICT(R) = PREDICT({B|A — a- BB is in R}).

It is important to note that PREDICT depends only on the grammar and can
be precomputed for each variable or dotted rule.

Example. Using the same grammar as the previous example, we have

PREDICT({S}) = {S— -ABAC,S— A-BAC,A— -, B— -CDC,
B—C-DC,C— .,D— -a).

It should be remarked that PREDICT is something of a misnomer. The name
has been borrowed from Earley’s algorithm, which is very closely connected with
this algorithm, as is shown in Section 4. However, it does not really predict rules
or variables which will be found. It would be more accurate to say that it is used
to restrict attention to those variables which, if matched, would allow extension
of partially matched rules found previously Thus, “restrictor,” “extendor,” or
perhaps “wishor” might be better names than “predictor.”

Now we can present the main algorithm.

Algorithm 2.2. Let G = (V, Z, P, S) be any context-free grammar. Let w = a; -+ - a,,
where n = 0 and ax € Z for each %, 1 < k =< n, be the string to be recognized. Form an
(n + 1) X (n + 1) matrix t = (£;;) (indexed 0 through ~ in both dimensions) as follows.

1 begin

2 too := PREDICT({S}); (*» match, A)

3 forj:=1tondo

4 begin (* build column j, given columns 0, ..., j — 1 *)

5 tiy,; = ti-1,j—1 * {@;}; (* paste input symbol to A derivations that precede it *)

6 for i :=j — 2 downto 0 do

7 begin

8 r = (Uickj-1tir X tr,;)) U ;51 X (¢-1,; U {@}); (+ paste non-A derivations *)

9 tij:=rYt,;*r (+paste matched suffix to A derivations that precede it and
extend match to reflect chain rules *)

10 end;

11 t,;j = PREDICT (Uoxi< ;1);

12 end;

13 ifsomeS— a-isint, then accept

14 else reject

15 end.

The matrix t constructed by the algorithm is called the recognition matrix.
The order of computation of the new algorithm is similar to the CKY method.
Columns of the recognition matrix are completed from left to right (the “for J
... ” loop starting on line 3). With one exception the elements of each column are
completed in order from bottom to top (the “for i ..."” loop starting on line 6).
The exception is that the bottommost element, i.e., the one on the main diagonal,
is completed last (line 11). As in CKY, the element immediately above the main
diagonal is treated as a special case (line 5). All other off-diagonal elements ¢; ; are
formed as follows. First, form the “inner product” of (the nonempty portions of)
row ¢ with column j, i.e., a union of X-products of elements from row i with
(correspondingly positioned) elements from column j (line 8). When computing
this product, treat ¢, as if it contained the jth input symbol a; (second term of
line 8). The second step is to augment the “inner product” by taking a *-product
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

424 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

with the diagonal element on the ith row (line 9). This single step in the algorithm
incorporates all the derivation steps using chain rules to match a suffix of the
input read so far. The result is & ;.

To establish the correctness of the algorithm, one proves the following char-
acterization.

THEOREM 2.1. After executing Algorithm 2.2, a dotted rule A — a - B will be
in t;; if and only if it follows w; and matches w;;; i.e.,

S=*w;A8 forsome 6€V* and oa=* w;.

We will not give the full formal proof here. A complete proof may be found in
[31]. Also, see [15] for a proof of an algorithm which is quite close to the present
one. Although we shall not do the detailed proof, there is much to be learned by
looking at the structure of the proof, because many of the lemmas explain the
insights which can be capitalized upon in implementation and optimization.
Therefore the statements of the lemmas will be presented without proof.

One key property of the X- and *-products is that like ® for CKY, they “paste
together” derivations corresponding to all of the elements of the two sets. The
following lemma captures this fact.

LemMa 2.1. If @ matches x and R matches y, then @ X R and @ * R match
xy.

Further the products preserve the following relationship:
LemMma 2.2. If Q follows x, so do @ X R and @ * R.
Finally, the PREDICT function “extends” the following relationship:

LEMMA 2.3. If @ follows x and matches y, then PREDICT(Q) follows xy and
matches A.

With these lemmas it is easy to prove the “only if” half of the characterization
theorem:

LEMMA 24. Each set t;; constructed by Algorithm 2.2 follows w; and matches
w;,j.

Proor. By an induction which follows the order of computation of the
algorithm. 0O

LeMMA 2.5. The algorithm places every dotted rule which follows w; and
matches w;,; into t; .

PRrRoOF. Again, by an induction following the order of computation. (Cf. [15,
31]) 0O

The key idea, as in the proof for the CKY algorithm, is that a dotted rule
matching a long portion of the input implies the existence of two dotted rules
matching shorter portions, which (inductively) have been previously placed in
the matrix. The argument is more complicated technically than for CKY due to
the possibility of A- and chain-derivations.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 425

Lemmas 2.4 and 2.5 together constitute a proof of Theorem 2.1. The correctness
of Algorithm 2.2 is a simple corollary:

COROLLARY 2.1. Algorithm 2.2 is correct, i.e., it accepts w if and only if w €
L(G).

Proor. The algorithm accepts if and only if there is some dotted rule S —
a- in t,. By Theorem 2.1 this happens if and only if S =* wy, = w. O

We close this section with two variants of the algorithm which will be useful in
the next section. The first is derived by changing the order of computation
slightly: we interchange the order of the two innermost loops (i on lines 6-10 and
k on line 8). Instead of getting all of the contributions to an element ;; of the jth
column by taking products along the ith row and down the jth column (before
considering i — 1), we get all of the contributions to the jth column from the Ath
column (before considering k£ — 1). Instead of the single temporary variable r in
Algorithm 2.2, we need separate temporaries to hold the partial results for each
row of the jth column. It is convenient to use the jth column of the matrix for this
purpose; we hope that the reader will not be confused by the use of the variable
L, to represent partial results at one point and final results at a later point. As we
will see, in the algorithm below #;; is completed at line 12, ¢-1, at line 5, and #,,
for k <j— 1 at line 9.

Algorithm 2.3 (notation as in Algorithm 2.2)

1 begin

2 too := PREDICT({S});

3 forj:=1tondo

4 begin

5 -y = G-+ {a};

6 forO<i=<j—2dot;:=1t,;1X (t1,;U {a});
7 for k.= j — 2 downto 0 do

8 begin

9 b= lp,j U by a*te s

10 forO<i=<k-1dot,:= LijUtie Xt
11 end;

12 t,; := PREDICT (Uo<i<j—1ti ;)

13 end;

14 ifsomeS— a-isinf, then accept

15 else reject

16 end.

The use of the notation “for a < i < b” on lines 6, 10, and 12 rather than the
usual “for i ;= a to b” or “for i := b downto a” denotes the fact that the order
of execution is not relevant. In fact, the loop body could be executed in parallel
for all values of i without invalidating the algorithm.

We will not give a formal argument that this algorithm is equivalent to
Algorithm 2.2, but it is not difficult to see. The main idea is to show that after
executing the body of the loop on lines 8-11 for some &, ¢;; are complete for i =
&, and for i < &, ¢;; contains all the contributions resulting from columns to the

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

426 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

right of £ — 1, namely,
U Xt Ut X (-1, {a}).

k=sl<j-1

The result then follows by induction.

The second variant involves a slightly more substantive change to Algorithm
2.3. Note that the algorithm completes £, by doing a *-product with ¢ (line 9),
thereby incorporating chain rules into the match, and then takes X-products of
the rest of column k with #.; (line 10). It turns out to be equivalent to take
+-products of all of column & with the contents of #,; before it is completed at line
9; i.e., “X” can be replaced by “*” on line 6 and lines 9 and 10 can be replaced by

9’ ri=t;
10 forO<si=skdoti:=1t;Utis+r (2.1)
to yield a new algorithm which will be further developed into Algorithm 2.4.

Letting r be as above, we see that Algorithm 2.3 computes “¢;; U tix X (r U
trprr).” We will show that

tin X (rU tppxr) = tipsr.

In view of Lemmas 2.1 and 2.2 it is easy to see that Algorithm 2.4 with (2.1)
computes sets #;,; which follow w; and match w;,;. Thus the correctness of
Algorithm 2.4 with (2.1) will follow if we show that the new method omits none
of the items found by the old, i.e., that

tirg X (r U teexr) C tip*r.
Now tix X r C tix*r, so we just need to show that
tir X (Leprr) C tig*r.

In fact, this is true of any sets provided only that ¢, matches A, since all of the
items in #; 2 * r then are part of some chain derivation, which can be found directly
by computing ¢;;*r. If A — «- 8 is in the expression on the left, there must be
ay, a2, 11, Y2, 6, B, C, and D such that

a = a1Bag,

A - a1+ Bazf isin ¢,

az =% A,

B— v,:Cy: isin s,
ny: =" A,

C=*D,

D-—3§. isin r

(giving B — y1Cyz - in .2 +r and hence A — aiBaz - Bin & X (fr,2*r)). But then
B=%* D, s0 A— aiBa:- f is in t;*r, which is what we needed to show.

It will be convenient to use the following new notation. Let the vector t
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 427

represent the kth column of the matrix; £+ and £ U ¢’ are the obvious component-
wise operations. Thus, for example, line 10" above becomes

Z,- = Z, U bprr.
Using this notation the algorithm is the following.

Algorithm 2.4 (notation as in Algorithm 2.2)

1 begin

2 too := PREDICT({S}); (* match A x)

3 forj:=1tondo

4 begin

5 % := ;1= {a;}; (» paste input symbol to derivations that precede it *)

6 for & :=j — 2 downto 0 do

7 = 1t; U tists,; (» paste matched suffix to derivations that precede it, extend-
ing match to reflect chain rules *)

8 t,; = PREDICT (Uo<i=j-1t; }(* match A suffixes *)

9 end;

10 ifsome S— a-isinf, then accept

11 else reject

12 end.

In this algorithm line 5 does the same computation as lines 5-6 of Algorithm
2.3 for the same reasons that line 7 can replace lines 9 and 10 of the previous
algorithm. The proof is identical, except that C may be in £ and “D = a;” replaces
“D—>§6-.isinr.” .

In line 7 notice that #, is an element of £, so it may seem that to implement
this statement correctly, £*¢5,; must be completely computed before 7 is modified,
or £, must be saved in a temporary (such as “r” in lines 9’ and 10’) before # is
modified. However, all the elements added to # ; by this step must match wy ;, so
by Lemmas 2.1 and 2.2 no unwanted items would be added to t; even if some or
all of the additions to #,; were made before or during the execution of line 7. Of
course, the computation might be slowed by the unnecessary consideration of
these new elements while computing tx*Zs,;.

As an example consider the grammar

S— AS|b
A > aA|bA|A.

Figure 2 shows the state of the recognition matrix for this grammar and input
w = aab both before and after the second-to-last row of the last column has been
completed (i.e., before and after executing “#s := #5 U #,*,5” on line 7 of Algorithm
24.

In the next section we look at implementation of the algorithm in detail. Choice
of data structure for t, computation of X, *, and PREDICT, preprocessing the
grammar, and various optimizations are considered.

3. IMPLEMENTATION CONSIDERATIONS

The algorithms given in the previous section were presented in terms of fairly
high-level set-theoretic operations. A program written in a very high-level lan-

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

428 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

Grammar: S —» AS|b Input: aad
A— aA|bA|A
0 1 2 3
S— .AS S—>A.8 S—»A.S s-as. A
S—»A.S A—>a-A A—>adA- S
S—.b A—>dA- Ve |
A— .ad ’/' 10
A . bA i
A . /S (S—>ASY) |
/S A—aA- |
S— .AS S—>A-.S S— AS. ,/:
S—>A-8 A—>a-A A—>adA- /’ !
S—>.b A->adA. ,/ !
A> .aA 1 1
A - bA |
A—)- ,/I S—)A-S :
< (S—AS.) |
/ |
S-» .AS S—»A.S
S—»A.S S— AS.
S—>.b S—-b.
A—> .ad A-b.A 2
A . bA A— bA.
A-> .
]
i]
1 1
i I
1]
|
]
13
______________]
- /7: : ll
before S0] .
- s e i
Utl*tl_a /’added:

/ by:
|

/” sz*tl,a:
»" (duplicates)!
[. J

i
|
|
i
|
i
I
] 7
]
1
t
[}
|
|
[}

Fig. 2. Example of recognition matrix.

guage which directly implemented the algorithm would be quite inefficient. In
many situations, significantly more efficient implementations are possible. In this
section we consider such implementations and the circumstances in which they
are advantageous.* Unfortunately, a “best” implementation is not given, since
the suitability and efficiency of the various methods depends on the application,
the grammar, and the input.

Some of the characteristics of “typical” applications need to be discussed first.
As mentioned earlier, it is not unusual for the grammar to be much larger than
the input. In addition, the recognition matrix tends to be sparse, ie., have many

4 Researchers studying “automatic” implementation of data structures should regard this analysis as
a test for their methods.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 429

empty positions and only a few dotted rules in each of the nonempty positions. In
spite of this sparseness, it still can be quite large, even when compressed. Thus in
many applications space may be at least as valuable as time.

For example, a grammar for English was supplied by Vaughan Pratt [29]. He
describes the grammar as an experiment in seeing how simple the grammar could
be made at the expense of complicating other portions of his system. The
grammar has about 90 nonterminals, 160 productions, and about 450 dotted rules.
By design, there are no A-rules, nor rules with right sides longer than two
symbols, but there are chain rules. For a typical input, about 10 to 20 percent of
the matrix entries were empty. Except for the entries on the diagonal, the average
number of dotted rules per entry was about 20, and the maximum was about 40.
These numbers were insensitive to the length of the input, so the space required
to store the matrix grew as n’. In the nonempty cells, one-third to one-half of the
entries were of the form A — « -; typically five or more of these dotted rules had
distinct left sides. The elements on the diagonal were very different. Nearly all of
them had 150 or more entries; thus they contained almost every rule in the
grammar!

The implementations described below should perform well in most applications,
particularly those having the characteristics discussed above. For instance, the
space and time requirements are determined by the number of dotted rules
generated, rather than being fixed by n, the length of the input. The time
complexity is at worst O(n®),® and will be much better in some cases, such as
unambiguous grammars. Further, the time requirements are at worst linear in
the size of the grammar, so the method will be reasonably efficient in the common
case where the grammar is large but the inputs are short.

Although the implementations described should perform well in most practical
applications, the ingenious constructor of counterexamples should have little
difficulty constructing grammars and/or inputs which thwart all of the optimi-
zations embodied in the various implementations. We give one such example
here; some others will appear later in this section. These examples should serve
to indicate how bad a “worst case” could be. Consider for any & = 1 the grammar
Gk = (Vk, Zk, Pk, So), where

x* denotes % repetitions of x,
Vk = {So, S1, vee, Sk-.1, a},
2 = {a},

.and P;, has the rules
(1) Se — A
2) Se — a

3 Sy — Si
(4) S — 8t

(e + 1) Sp-1— Sg
5 f(n) = O(g(n)) if and only if there are positive constants ¢ and ng such that for all n > no, |f(n)| =

cg(n).
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, J uly 1980.

430 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

It is easy to see that for all i, j =0 and all 0 < p < k — 1, (a) So=>§, a'S, and (b)
S, =&, a’. Consider the ith row of the matrix on input a”. From fact (a) we see
that every dotted rule follows a’, and so every dotted rule is allowable in row i.
Note that every dotted rule except So— a - matches A, so #;; will contain all but
one of the dotted rules in the grammar! Now using fact (b) we see that for all j
>landall0<p<k—-1,1=<q=<Zk Sp1mar—S} .S%% matches o’. Thus all
k2 of those dotted rules will be in £; ., for all j = 1. (So — a - will also be in £;;+1.)
Thus we see that in contrast to the “typical” example described previously, we
can construct examples where not only are there no empty positions in the
recognition matrix, but each entry is very “full,” containing at least k? of the k?
+ k + 3 dotted rules of the grammar! We can conclude that any optimizations we
might consider which depend on a “sparse” recognition matrix will be of little or
no use in the worst case. Nevertheless, such optimizations are extremely valuable
in most practical applications.

In the remainder of this section we discuss the X, *, and PREDICT operations,
choice of data structure for representing the recognition matrix, extracting parses,
and some extensions to the algorithm which may save space and/or time. First
we give a brief description of the representation of the grammar which will be
assumed throughout.

The representation of the grammar is important. The representation described
below seems natural, convenient, and efficient. We do not claim that it is optimal,
however. We assume that each possible dotted rule is assigned a unique number.
These numbers are then used to index one or more tables which tell (i) what
nonterminal symbol is on the left side of the dotted rule, (1i) whether the dot is
at the right end of the rule, (iii) if not, which symbol occurs to the right of the
dot, and (iv) the number of the dotted rule formed by moving the dot one symbol
further to the right (if possible). In addition, we have a table which indicates for
each symbol in the vocabulary whether it is a terminal or nonterminal symbol,
and which gives for each nonterminal A a list of the (numbers of) dotted rules of
the form A — - a. Figure 3 illustrates this representation for the simple grammar
used at the end of the previous section (which we will use in examples throughout
this section). Note that in practice the entries corresponding to columns (i) and
(iii) of the upper table in Figure 3 would use the symbol numbers given in the
lower table; the symbols themselves are used there only for clarity. Similarly, the
information in the last columns of both tables is redundant and need not be
stored in practice. Also the second and third columns of the upper table and the
columns of the lower table could be combined if an appropriate coding convention
were used.

No other data are needed for our purposes, although we will discuss below the
utility of tabulating certain other information which can be derived from the
grammar (e.g., which variables generate A).

The definition of the X-product given in the previous section was designed to
allow a concise statement of the algorithm.® For computational purposes it is
better to break down the definition somewhat. First, notice that when forming
the product @ X R, much of R is extraneous. All we need is a summary of

¢ Recall that @ X R = (A — aBB-y|A—> a-BByisin @, B =* A, and B € R}.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 431

Grammar: S — AS|b

A—aA|bA|A
(iv)
(ii) (iit) Next Dotted
Dotted (1) Dot at Symbol dotted rule
rule Left right to right rule (need not be
number side end? of dot number stored)
1 S A 2 S— . AS
2 S N 3 S—>A.8
3 N Y — — S— AS.
4 S b 5 S—>.b
5 S Y — — S—b.
6 A a 7 A— .gA
7 A A 8 Asa-A
8 A Y — — A aA.
9 A b 10 A—> .bA
10 A A 11 A—-b-A
11 A Y — — A—bA.
12 A Y — — A .
Dotted rule || Symbol (“4”)
Symbol Isit a numbers (need not be
number | terminal? | (“A— -a”) stored)
1 1,4 S
2 6,9, 12 A
3 Y — a
4 Y — b

Fig. 3. Grammar representation.

information about some of the left-hand sides of dotted rules in R; i.e., define (for
R a set of dotted rules and/or elements of V)

FINAL(R) = {U€ V|Uisin R or some U — a- isin R}.
For example,
FINAL({A—>aA-,A>bA.,A> ., S—> A-S,a}) ={A, a}.
It is easy to see that
Q@ X R = @ X FINAL(R).

Note that FINAL(R) is easily computed from R, especially if R has a list
representation. Even more important, the product may be computed elementwise;
ie.,

@ X FINAL(R) = v {q} x {r}. 3.1)

qeQ
reFINAL(R)

Finally, notice that such a product of singletons {A — a - UB} X {U’} is empty
if and only if U U’. If U = U’, the product is easy to compute. Form a sequence

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

432 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

of (one or more) dotted versions of the rule A — aUp by first moving the dot to
the right of U, then to the right of the first, second, . . . symbols of B, ending with
the dot to the left of the leftmost symbol of 8 which cannot generate A. The
latter can be easily checked if we precompute and store a (bit) table indicating
whether or not U =* A for each U in V. Note that U =* A does not depend on
the input, so it can be precomputed. Well-known simple algorithms for doing this
computation in time proportional to the size of the grammar may be found in the
literature (e.g., [15]).

One optimization is useful. In the recognition algorithms the product set will
be built incrementally as we compute various of the singleton products in (3.1).
Suppose we attempt to add some item A — «- B to the partially completed
product set and find that it was previously entered. Then we do not need to see
whether the first, second, ... symbols of 8 generate A, etc., since that will have
been tested and appropriate entries made when A — « - 8 was first added to the
set. In our algorithms all uses of the products will be in statements of the form
T := T U Q X R, so this optimization may be even more effective if the product
routine can “see” T also. This suggests the following sort of algorithm.

1 procedure XPROD(T, @, R)
2 (x compute T:= T U @ X R; +)
3 procedure ADD(T, A — «a-fB)
4 (xcompute 7:=TU {A— af’-B”|B'B” =B and B’ =* A}; %)
5 begin
6 if A > a-Bisin T then return;
7 T=TU{A—> a-B};
8 if|B| = 1 then
9 begin
10 (* suppose Bis Ud forsome U € V,§ € V* +)
11 if U=* A then ADD(T, A — aU - 8)
12 end
13 end
14 begin

15 R’ := FINAL(R);

16 foreachA — «-UBin @do
17 if U € R’ then

18 ADD(T, A — aU - B)

19 end

The loops on lines 16 and 17 could be reversed, i.e., “for each U € R’ do if A
— a-UBin @” Which form is better depends on the representation of the
recognition matrix, an issue we discuss later.

Notice that the test for duplicates on line 6 eliminates the need for such a test
in the union on line 7, so it has not cost us anything. As the following example
illustrates, the benefit is a savings which may be as large as a factor of | G| (the
grammar size).

For any integer g > 0, consider the grammar

S — A¢
A-> A

" Recall that following our convention about precedence, TU @ X R = T U (@ X R).
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 433

and the sets
T=0, _ _
Q={S>A.A0=i=<g},
R = {A}.

Then while computing “XPROD(T, @, R),” the “ADD” procedure will be called
by “xPROD?” g times, namely, once for each rule S — A’. A, where 1 <i < g.
Without the test for duplicates, each call would result in g — i additional calls,
one for each S — A™*. A7"* where 1 < k < g — i. This is a total of about g%/2
calls on “ADD.” However, with the test for duplicates only 2g — 1 calls on “ADD”
will be made. That is, if the first call from XPROD is for S — A .A%7, it will
recursively generate g — 1 other calls for the other dotted rules; all of the g — 1
subsequent calls from XPROD will immediately find duplicates and return
without generating subcalls. In practical applications it is probable that long
strings of variables generating A do not occur often, but some savings can be
expected.

There are several options available for implementing the * operation. The
simplest is the following. For any R C V, define CHNTO(R) = {X € VIX=*Y
for some Y € R}. The procedure is based on the trivial identity @ * R = @ X
CHNTO(FINAL(R)).

procedure STARPRODI(T, @, R)
(* compute T:=TU Q * R *)
begin

R’ := FINAL(R);

R” := CHNTO(R’);

XPROD(T, @, R”)
end

R’ is easily computed, especially if R is stored compactly, for example, as a linked
list. The only question is how to compute R” quickly. Well-known algorithms for
computing the relation X =* Y can be found in any standard text on language
theory (e.g., [15]). Using this relation, it is easy to precompute and store the value
of “CHNTO?” for all grammar symbols. Then R” may be computed as

R” = YUR, CHNTO({Y}). (3.2)

Unless the CHNTO({Y}) are extremely small sets, bit-vector representations for
them and for R” are attractive. Typical values for | V| are around 100, so each
vector would take only a few words on most computers, and (3.2) could be
computed using about |R’|. (|V|/w) word-parallel “OR” instructions, where w
is the length of a word. This is actually an ¢(| G |*) operation in the worst case,
but the constant is so small that it is quite fast in practice. An (| G|) method is
also possible, but G must be large before the method is faster. See [31] for this
method.

There is another reasonable implementation of the *-operation which also
illuminates some interesting properties of the recognition algorithm. One of the
advantages of this second method is that the X =* Y relation does not need to
be precomputed or stored. The method depends on the fact that * is only needed

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

434 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

for statements of the form
R=RUQ*+*R, (3.3)
where @ has the property that
PREDICT(®) C Q. (3.4)

Note that in the recognition algorithms (2.2-2.4) all the sets ¢ have this property.
In this situation (3.3) can be computed by iterating a X-product; for example,

repeat
OLDR := R;
XPROD(R, @, R)
until (R = OLDR) (3.5)

Basically, (3.5) correctly implements (3.3) since @ contains all of the rules
which are used in any chain derivations we need, so iterating the X-product will
eventually follow the chain back to its source. For example, if @ = {A — - B,
B—.C,C—.D,D—-a}and R = {D— a-}, then the first iteration of the loop
above would add C — D - to R, the second would add B — C., the third would
add A — B -, and the fourth and last would add nothing.

The procedure (3.5) can be refined considerably—in each iteration we really
need to consider only those items added to R by the previous iteration. The
following algorithm reflects this observation. Here it is convenient to assume a
particular representation for R, namely, a linked list. Using this representation,
it is easy to process each element of R exactly once by processing the list in order
and making additions at the far end.

1 procedure STARPROD2(Q, R)
(* compute R ;= R U @ * R when
(i) PREDICT(Q) C €, and
(ii) R is stored as a linked list *)
2 begin
3 for each rin R, in order (i.e., eventually including
those added in the following step) do
4 append (@ X {r}) —Rto R
5 end

In practice, a straightforward implementation of the above procedure may be
quite adequate, since @ and R are often rather small sets. However, in the worst
case the performance can be ¢(| G|?), primarily owing to the searches of @ and
R implicit in line 4. The following four techniques will reduce the time to O(| G |);
any or all of them may be useful in practice. First, the same technique for
eliminating duplicates used in the “ADD” routine of “XPROD?” is applicable.
Second, whenever @ X {U— a - } is computed, note that U was used, so that one
does not compute a X-product with some other rule U — 8- . Third, store R so
that one can quickly test whether or not a particular item is in R. This will speed
the elimination of duplicates on line 4. For example, a bit vector with one bit per
dotted rule could be used. Using this representation, note that it is not necessary
to have R as a linked list; all we need is a list of all U € FINAL(R) for which @
x {U} has not yet been computed. Fourth and last, store @ so that for any U, all

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 435

rules of the form A — a - UB may be quickly found. For example, keep all such
items on one linked list whose start is found in an array indexed by U.

The fourth point above is connected to some issues involved with the choice of
representation for t, which might as well be discussed here. In the column-
oriented version of the recognizer (Algorithm 2.3), each element of a column, say
k, is multiplied by ¢ ;. Above we suggest that each set . should be partitioned
so that all rules with a dot in front of a U may be found easily. Suppose that each
set in column £, not just ¢, is partitioned in this way. Consider the computation
performed by “STARPRODZ2(ts, tx;).” When it computes each £,z X {r} on line
4, suppose we also compute “for 0 <i=<k —1do ¢;;:=t;; U t;p, X {r};”. This is
easily computed, given the suggested partitioning of the #,,. We assert that if
Algorithm 2.3 computes *-products in this way, then it will be a correct recognizer,
even if the other X-products computed in Algorithm 2.3 (i.e., lines 6 and 10) are
removed, since “r” in STARPROD2 will eventually run through all elements of
the set 7,; which would have been used in the X-product on line 10 of Algorithm
2.3. Thus each £,z X t;,; will eventually be computed. (We remark in passing that
this computation is not the same as Algorithm 2.4, wherein we compute
+-products of &, with a partially completed version of ¢ (i.e., before “t, j = lh;
Utre * t)’).)

PREDICT has several similarities to X and *. Given @, let

Q =(BEN|A— a-BBisin Q) (3.6)
Q" = {C € N|B=* Cn for some B € @’ and some 7}. (3.7)

Then
PREDICT(®) = PREDICT(§’) (3.8)
={C—y-8|CE Q" and y=>* A}. (3.9)

It is easy to compute ', given . For our purposes we are only interested in
@ = Ui, t;; for some j. We do not actually need to form @. We can construct @’
directly by scanning the jth column of t. The data structure chosen for t may
make this computation even easier. For example, if all the items in column j with
the dot to the left of the same symbol were on one list (a possibility mentioned
in the previous section), @' is just the set of variables whose lists are not empty.

Computing @” is very similar to computing the R” of the previous section. For
B in N define

LEFT(B) = {C| B=* Cy for some n € V*}.
Then

®” = U LEFT(B).
Beq’

As with R” there are two approaches. The first is to precompute LEFT, store it
as an array of bit vectors, and form @” by ORing some together. The second is
to precompute DIRECTLEFT(B) = {C|B — yC3§ is in P, where y =* A}, store
it as a directed graph, and use a “traverse-and-mark” method. (Note that LEFT
is the transitive closure of DIRECTLEFT, and also that a transitive reduction of

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, J uly 1980.

436 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

DIRECTLEFT would work, too.) The first method should be quite fast in
practice, but is ¢(| G|*) in the worst case; the second is (| G|), but will be
superior only for large grammars.

Given Q" it is easy to compute PREDICT by using (3.9) and the same
technique of moving the dot to the right of variables generating A as was used in
X and *.

One might be able to save space by storing @’ or @” in place of #;;, without
incurring too great a time penalty. Since products with £;; are given special
handling anyway, this change will not upset the organization of the program too
much. It is argued in [27] that the number of alternative rules for each variable
causes PREDICT to generate a large number of items, most of which are found
to be dead ends as soon as another one or two input symbols are processed. Thus,
storing @’ or Q" instead of ¢;; can save lots of space and may save time which
would otherwise be spent searching sets containing many useless items.

As with *, it is also possible to compute PREDICT by an iterative process
which does not require precomputing LEFT. Note that if A — BCD is a rule,
then B € LEFT(A), and if B=* A, then C € LEFT(A), etc. Thus PREDICT can
be formed according to the following rule: Whenever A — o - Bf is added, also
add (recursively) all B rules B — - y unless it was done previously, and if B =*
A, also add (recursively) the rule A — aB - 8. In effect, this algorithm is the same
as the O(| G|) graph traversal method described above; adding B rules when
A — a-Bp is added (if they have not already been added) corresponds to
following the edge of DIRECTLEFT from A to B and marking B (if it has not
already been marked).

All of these methods can be made to work incrementally, i.e., as column j is
being built rather than after it is finished. Whenever some A — « - B@ is added
anywhere in column j, we add PREDICT({B}) to t;;. As usual, to do this
efficiently we need to check for duplicates at each step to avoid recomputing a lot
of items. This checking may make the incremental approach slightly slower than
doing PREDICT on the whole column at once. However, it does have one feature
which may sometimes be useful. When doing PREDICT by the iterative method
outlined above, the relation B =* A does not have to be precomputed, since it
will be computed as needed. That is, when adding A — a- Bf, we compute
PREDICT({B}), so we can tell if B=>* A by checking whether PREDICT added
some B — y - to t;;. (This is essentially the same as Earley’s method [8], which
is discussed in Section 4.)

We consider four possible representations for the recognition matrix t. All four
should give efficient algorithms using a minimum of space. All four are intended
for use with one of the column-oriented versions of the algorithm (Algorithm 2.3
or 2.4). These versions have a slight advantage since they do not need to access
the matrix by both row and column, as in Algorithm 2.1.

We illustrate the four data structures using the simple grammar introduced at
the end of Section 2 and the input w = aab of length n = 3. Recall that Figure 2
shows that state of the recognition matrix for this grammar and input both before
and after the next-to-the-last row of the last column have been completed (i.e.,
before and after executing % 1=t U £, * 5" on line 7 of Algorithm 2.4). We

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 437

k q
(row (dotted rule
num- number)
ber)) | ((dotted rule)
l Ozl 5 h—»aAI Foe- --|O| 3 S—)AS'|
1
1 ; i
[[7ized] - [Laza}—! [[sdar]
1 1 tia
[o[2 s—>4s] = {0}3 5-48.] oo {13 5~4s.]
| | 1
[1]2 a>.] 5 :r+-{2|11 A-bA-]
1 § i 1
1] 9 a— .04 5 i [2]10 ?—»b-Al
1 i !
[1]6 4> .a4] : : |2|5.T9_>b-—|
1 : .
[1] 4 s>.5 | i [2] 3 s—as-]
t]
e ; !
[1]2 s5as] = {13 s>as.| | i [2] 2 soa-s]|
---------------- [}]
T T é '
[]1 s5.as] = ol]
1)
Column 1 (Column 1) * ¢, 5: Column 3
dash lines reflect before adding
merging with column 3, (column 1) = £,
dropping duplicates

Fig.4. First data structure for t.

illustrate the same situation for each of the four data structures discussed below,
although for clarity we only show the representations of the relevant parts of the
matrix, namely, column 1 and column 3 both before and after adding #, * ¢,3.
‘The first of the four methods is the simplest. Assume that all dotted rules have
been assigned numbers, so that if ¢ corresponds to 4 — «- Bg, then ¢ + 1
corresponds to A — aB - 8. Then we store each column as a list of ordered pairs
(%, q), where % is a row number and q is (the number of) a dotted rule. Thus the
pair (&, g) will be in the list for column j if and only if ¢ € tr;. Further, the list
will be ordered by decreasing &, and secondarily by increasing q. (See Figure 4.)
It would be easy to implement Algorithm 2.4 using this*repl_'.eserltation and the
“STARPROD1” *-product. To carry out the basic step “ti:=t; U t,, * t1,;,” we do
the following. First, scan the portion of the jth list whose first components
are k (ie, the portion representing #.;) and construct the set R” =
CHNTO(FINAL(¢:,,)) for use in “STARPRODL.” Note that at the end of this
scan we can leave a pointer to the first item of the form (k + 1, g), so that when
we repeat this process for 2 + 1 we do not have to start searching the list from

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

438 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

the beginning to find the segment corresponding to Zx+1;. Second, we form § =

t U % X R”, by merging t. X R” into the list for column j. The numbering scheme
for dotted rules is such that ¢ X R” will always be a set of the form {g + 1,

q+2,...,q+ 1}, where [= 0. Thus it would be easy to construct an ordered list
representing Zk R” while making one sequential pass over the ordered list
representing #;. It is then trivial to merge this ordered list into the ordered list for
t;, with duplicates discarded. However, since generating and discarding duphcates
may be expensive (recall the example following XPROD), it is probably better to
combine the processing of list £ with the duplicate checking and merging into list
J, rather than separating the two processes. Thus the overall processing consists
of sequentially scanning the portion of the jth list corresponding to ¢ ;, then
sequentially scanning the kth list in parallel with the portion of the jth list at and
above row k. (See Figure 4.)

The running time of this procedure can be estimated easily. Let E be the total
number of entries in columns 0 through j — 1. As & runs from j — 1 down to 0, we
will look at each of the columns to the left of j exactly once, for a total of £
inspections. As each column is processed, we run through an equal number of
rows of the jth column. Assuming the density of entries in the jth column is
about the same as in the other columns, we will look at list entries in the jth
column about E times also. Thus the total work involves processing about 2E list
entries. Notice that the method automatically takes advantage of sparseness in
the matrix for both storage and time efficiency, rather than having its performance
directly dictated by the size of the grammar and/or input.

The one drawback of this method is that we must search all the entries of each
column, even though only a few dotted rules of interest may be found. This
causes the algorithm to use Q(n®) times® on unambiguous grammars when time
0(n®) is achievable. The following example demonstrates this phenomenon.
However, in practical situations where the grammar is ambiguous and the matrix
is very sparse, it is not clear whether this effect is a serious impediment.

Consider the following (unambiguous) grammar:

S— A¢|BC$
A— aAB|A
B—aB|b|c
C—bCD|A
D—-bD|c

and the input a”b?c? of length n = 3p. We show that for 0 < i =< p, the (p + i)th
column contains p — i dotted rules A — aA - B, and the (p + i)th row contains
p — i dotted rules C — bCD -, positioned in the matrix as indicated in Figure 5.
The algorithm described above will process each of the p — i dotted rules C —
bCD - in row p + i by scanning all of column p + i. The total time for this scan
will be $2 (p — i)’ = 2(p®) = Qn?®). Actually, each of those columns has only
one item of interest, namely, C — b - CD in f,+; p+i+1. T0 establish our claim, note

8 Q is used for lower bounds analogously to the use of @ for upper bounds. f(rn) = Q(g(n)) if and only
if there exist ¢ > 0, no > 0 for all n > no, f(n) = cg(n) (cf. [15)).

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 439

C+bCD-

Fig.5. Example for time n® with unambiguous grammar.

that A =* a*(a*(b U ¢))*, k = 0, and in particular, A =* a*b’, k = [= 0. Further,
S =* a’AB'¢, so the dotted rule A — aA - B belongs at least in all £; j» Where the
substring from i + 1 to j follows a’s and spans more a’s than b’s, i.e., the region
0=i<pandp=j<2p— isketched in Figure 5. Likewise C =* bkc’ k=1=0,
and S =* a?bb’CD'$, so C — bCD - belongs in the regionp=<i<2pand2p =j
< 3p - i, as claimed.

The second data structure we consider eliminates the possibility of scanning a
long list of irrelevant entries. Instead of having all dotted rules in a column on a
single list, we use a separate list for each column for each symbol U in the
vocabulary, with all dotted rules of the form A — «- UB on the list for U.
Additionally, we have a list per column for all items of the form A — a .. (See
Figure 6.) The algorithm proceeds as before, except that for each U with U —
Y- in ¢, we process only the list associated with U for column %. Every item on
the list generates an addition to column j, although some may be duplicates. If
column j were maintained as a single list and later converted into the multiple-
list form, we would simplify the bookkeeping required while building column J-
However, sequential merges into the list(s) representing column j may also
introduce an extra factor of n into the time bound. This could be avoided by
keeping pointers to the segments of the list(s) representing each row. This
situation is shown in Figure 6. Alternatively, one could store the jth column as a
hash table, with the pairs (%, q) as the keys to be hashed. Either scheme makes
it unnecessary to keep the other lists sorted. With the hashing scheme, if the
*-products are to be computed using STARPROD], we should also link together
all entries having the same “%&” values (i.e., the entries in #;, ;). If STARPROD2 is
used, it would be sufficient to put all entries on one list in the order in which they

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

440 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

column 1 (column 1) * ¢ 3

[0] 2 s->a.s] = {0]3 5-45.]

[7smas] = (i[5
s— 1
([7 4=ad] = [0]8 dAcad oo :
r s
([smas] = [[E8masjem oy
A N
I
column 3 i i
1] 6 A—> .dA A < b
(]]_) A row [o] 3 S—»AS-J----E !
a 0 i
1
1
[}
ﬁl 9 ?-—)-bAI 1 Ill 8 A—)aA-]—1 _____ }
2—y tis
[4 5>:0 | , [1] 3 s—>as. ||
b1 -

(o] 8 A—>a4- |

1] 12 L—»-J
A1

[2]11 A—>04-]

[2]10 Aa-5-4]

[2] 5 L—-)b-J
|

[2] 3 §>4S8. |

RT3 L—»A-SJ

Fig. 6. Second data structure for t.

are added to the hash table. (This version is almost the same as Earley’s
algorithm; see Section 4.) With this approach one would want the various lists in
each of the previous columns to be accessed through an array indexed by the
symbol following the dot; i.e., DOTBEFORE(%, U) points to the list of items
A — a - UB for column k. This array would be unnecessary if STARPRODI1 were
used; it would be sufficient to have a linked list of the nonempty lists for each
column. This representation would probably take much less space.

With any of these schemes, the time spent constructing the jth column is
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 441

column 1 (column 1) * 41,3 column 3
1. S -AS 1
— @\ _______
2. S>A.S - @ rig PR
{0 1
3. S—AS. a7 -
4, S— .p
5. S—>b.
6. A— .aA
7. A—aA [0 e 5
8 A—aA- [0 N @ ar
9. A— .bA
10. A>b-A
11. A—bA.
12 A .
1 i)
q k’s
(rule) (row numbers)

Fig. 7. Third data structure for t.

proportional to the number of additions made to it, including duplicates. If the
grammar is unambiguous, there will be no duplicates, so the work will be O(n)
per column, or O(n?) overall.

A third representation for the matrix is a slight modification of the previous
one. Instead of representing each column by a list of pairs (k, g) for each
vocabulary symbol, we could store for each dotted rule g a list of the rows % in
which it occurs. (See Figure 7.) This representation could save space, since the
rule number would not need to be repeated in each entry. Further, in practice the
lengths of the lists of rows associated with each dotted rule may be short enough
so that building the lists by merging (as we did in the first method in this section)
will prove acceptably efficient. (However, in the worst case it can be Q(n?) on
unambiguous grammars.) In such a case we could have a simple algorithm with
uniform representations for all columns, including the jth. For this version we
will use STARPRODI. To form the product #, * t;, we merge the list for g in
column % with the list(s) for ¢ + 1 (g + 2, ...) in column j whenever {q} x
CHNTO(FINAL(¢:,)) is not empty. If the set of lists for each column is kept as
a list ordered by the dotted rule number, the product can be formed during one
pass in parallel over the list of lists for column % and that for column J.

The fourth and last implementation we consider is a slight variation of the
previous one, but is probably the most efficient of all the methods discussed.
Instead of representing column % by keeping a list of row numbers for each dotted
rule g, we keep one bit vector of length n, whose ith bit will be a 1 if and only if
q € tix. The algorithm will be the same as before, except that merging lists of row
numbers is accomplished by ORing the corresponding bit vectors. (See Figure 8.)
The advantage of this method is that for most applications n will be small enough
that each bit vector will fit in a few computer words, so the “OR” will take a few
instructions at most. Thus the algorithm will take time @(n?-[n/w]), where w is
the computer word length. Of course, this is an ¢(n?®) algorithm, but for n in the
range of practical interest it will behave more like an O(n?) method, perhaps an

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

442 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

195] n . ﬂ . < < .
T - T P
R N R T T 1
] 0] 1) 0 < < < < < < <
4 & % % 8 &8 & o8 & 28 o o
0 1 0 0 1 1 0 0
1 1 1 1 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Y Ny Ny column 1
0 1
1 1 (column 1) * 15
0 0
0 0 old column 3,
where different
9 ®
row 0 — i l
0 1 0 [AREY
1 1 0 010
row 3 — 1 1 1 1 1
0 0 0 o[1l0
T

new column 3
Fig. 8. Fourth data structure for t.

order of magnitude faster than the other methods, even for highly ambiguous
inputs. Further, the amount of memory required for this method will be compa-
rable to that used by the previous methods and may be even smaller. For example,
for n = 50 the space for one bit vector is comparable to that for only two or three
entries of a linked list of row numbers (as used in the third method, above). It is
quite plausible that each dotted rule occurs an average of two or three times in
each column of a 51 X 51 matrix, so the list representation would use about as
much space as the bit-vector representation. The only drawback with this method
is that it may be harder to recover the parses than with the other methods.

The important issue of recognition versus parsing has been ignored so far. The
previous algorithms are recognizers, not parsers. For some applications that may
be sufficient, but usually parsing is of interest. There are well-known algorithms
for extracting some parse from the completed matrix in time O(n?) [2, 12]; an
improved version running in time ®(n log n) is also known [4]. For many
applications those results are not sufficient. What is desired is a representation of
all parses, so that we may find the one which is “best” according to some semantic
criteria. Ruzzo [31] discusses modifications to the algorithms above to provide
such information. Relative bounds on the complexities of algorithms for solving
these problems may be found in [31, 32].

It is of some interest to reduce the size of the recognition matrix. Our algorithm
ensures that all items entered in any column, say the jth, are “consistent” with
the first input symbols. However, we can make no such claim about consistency
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 443

with the portion of the input to the right of j. In fact, many dotted rules may be
entered which are not part of any parse of the (whole) input. Obviously, an
efficient way to eliminate these useless entries might save both space and time.

Several researchers have considered various “lookahead” techniques for pre-
venting some of the useless entries from being generated [5, 8, 19, 35]. Their
methods are directly applicable to our algorithm.

The lookahead methods were primarily aimed at improving performance on
restricted classes of grammars such as LR(k) and LL(%). For these grammar
classes the lookahead methods prevent the generation of enough items to guar-
antee linear-time operation (versus £(n?) without lookahead). However, since
these methods use only a bounded lookahead, they still may generate entries
which are not consistent with the portion of the input beyond the lookahead. For
grammars not in the restricted classes mentioned above, such as ambiguous
grammars, many useless entries may be generated, even with lookahead. A
method is described subsequently which eliminates all useless entries from the
matrix after it has been completed. Of course, this method cannot reduce the
time spent constructing the matrix. However, for many applications, processing
by the semantic routines can be expected to take more time and possibly more
space than constructing the recognition matrix. Thus, reducing the matrix before
the semantic routines are run could be very profitable.

Before describing our reduction method, a more precise definition of useful
entries seems appropriate. A dotted rule A — a - 8 in ¢, is useful if there is some
l=jsuchthat S=*a; .- @;Aan1 ++- @n, a =" i1 -+~ a;, and B =* Qi1 » -
a:. Thus a useful entry is one which is used in some derivation of the input string
from S. The reduced recognition matrix contains just the useful entries from the
recognition matrix. It is helpful to store with each dotted rule in the matrix a list
of pointers to all of the dotted rules which caused it to be entered. We will call
these pointers “parse pointers.” Thus if ¢; € ¢ »,, r: Ets,;, and s € {q;} X {r;}, we
would store with s in ¢ ; a list of the triples (&, ¢,, 1), or pairs of pointers to the
list elements representing g:int; x, and r;in ¢, or at least a list of the k/’s. Notice
that the number of parse pointers associated with each dotted rule in ¢ ; could be
proportional to j — i + 1. Thus the storage needed for the matrix with parse
pointers can be Q(n?).

If parse pointers are present in the original matrix, there is a simple method for
constructing the reduced matrix; namely, the useful entries are exactly the entries
which can be reached by following parse pointers from some entry S — « - in to,.
If the parse pointers are not initially present, they can be generated easily while
the reduced matrix is being built as described below.

Note that any dotted rule S — « - in t,, is useful. Further, if A — aB -Bin t;;
is useful, and A — «-BBis in ¢,z and B — v is in £, then they are both useful
too (see Figure 9). These observations are enough to provide an algorithm. First,
mark all dotted rules S — « - in #.. Second, for every i, j, every marked entry s
int,,alq,randeachk,i<k=<jifqEtir,ret; (ork=j— 1 and r = a;), and
s € {g} X {r}, then mark g and r. (If parse pointers are being built, add a pointer
from s in ¢ to ¢ and r in ¢ and ¢, respectively). Repeat the second step until
no new entries can be marked. In fact, provided that care is taken with A- and
chain-derivations, all useful entries will be marked if the second step is done in

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, J uly 1980.

444 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

a oGt Gy Gj gy a,

AeqgB-8 in ti useful implies

A-a-BBint (and Bey- in t, ; useful, foo.
Fig. 9. Marking useful entries.

the order

for j := n downto 0 do
fori=0tojdo
for every marked sin £;;do ... (3.10)

Note that this order is just the reverse of the order in which the matrix was
computed.

A correctness proof will not be given in detail, but the idea is simple.’ In the
interest of brevity, we consider only A- and chain-free grammars. We noted above
that all entries marked in this way are useful. To show that every useful entry is
eventually marked, proceed by induction on the order in which the sets ¢;; are
processed in (3.10). Consider any useful entry r in . Suppose r is of the form
B — y.. Then there must be some useful entry A — aB - g in ¢, for some r<i
(see Figure 10). By the inductive hypothesis, B — y- must have been marked
when t;,; was processed. Similarly, if r is of the form A —» « - UB, U € V, it would
have been marked when some useful entry A — aU -8 in ¢, j, for some j' > j was
processed (see Figure 11).

There is a straightforward implementation of this procedure for each of the
representations of the matrix given earlier. Each implementation uses time
roughly comparable to that required for the initial construction of the matrix. We
briefly describe the implementation of the bit-vector version since it is more

® The correctness proof for the algorithm given in [15] to generate a parse after running Earley’s
recognizer is almost identical.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 445

Fig.10. rint;isB— y-.

Fig.11. rint;isA— a- UB.

interesting than the others. In the interest of simplicity we assume a A- and
chain-free grammar, although it is not hard to handle the general case.

With each bit vector, associate another bit vector of equal length, initially all
0’s, which will indicate which elements have been marked. Denote the vector
corresponding to the dotted rule A — a -8 in column j by (A — a -8), and the
associated mark vector by m;(A — « -B). First, for each S — a - in £, set the bit
in row 0 of m.(S — a-) (i.e,, mark S — a- in #,). Process each ¢, ; in the order
described above (3.10) as follows. For each U in FINAL(¢;;) (and U =g, ifi =
— 1) and each A — «a - UB, let temp := mi{(A — aU -B) N\ t:(A - a - UB). If temp

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

446 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

is not empty, mark all U — vy- in ¢;; and set mi{(A — a-UB) := mi(A — « - UB)
v temp. Notice that (A — a-UB) X (U) = A — aU B, and U € FINAL(¢;), so
for each dotted rule A — a - UB in column i there will be an entry A — aU -8 in
the same row of column j. If any of the dotted rules A — aU - B in column j have
previously been marked useful, then the corresponding entries A — a-UB in
column i should be marked useful also. The bit vector temp (= m;(A — aU-f)
A t:(A — a - UP)) indicates exactly which marked entries A — aU -8 in column
J correspond to entries A — « - UB in column i. Thus if temp is not empty, we
mark the useful entries in column i by setting m:{(A — a - UB) := mi(A — « - UB)
v temp. Further, we also mark all the entries in ¢;; which cause U to be in
FINAL(¢; ;), namely, all dotted rules U — y - in ¢; ;.

Figure 12 illustrates the operation of this algorithm on a simple example. We
consider the entries marked when processing t;s. The three entries marked
previously (when &4 and ¢4 were processed) are flagged by “*S” in the figure.
FINAL(t24) = {S}, so the only triple (U, A — a-UB, A — aU-B) which is
relevant when processing £, is the triple (S, S— A .S, S — AS .). Thus we form
temp := m4(S — AS.) A t(S — A .S), which is not zero, so S — ab- in 4 is
marked and m.(S — A -S) := m2(S — A -S) \/ temp. (The three entries marked
as a result of these steps are flagged by “tS” in the figure. The entries marked in
subsequent steps are flagged with “}S”.) In this example more than half of the
dotted rules remain unmarked and thus are not part of any derivation of the
input string.

The processing described above takes at most a bounded number of vector
ANDs and ORs for each ¢; ;, or O(n®) in total. This time is comparable to the time
needed to construct the matrix initially.

Parse pointers can be efficiently generated in the bit-vector implementation.
Simply scan “temp” for “1” bits; whenever one is found in, say, the kth row, add
toA— alU.Bint;;apointerto A— a-UBin t; and all U— v- in ¢;;. We can
roughly estimate the efficiency of this method as follows. Suppose we want to
end up with a matrix with parse pointers (reduced or not). Using one of the list
representations, we get the full matrix in time proportional to the total number
of parse pointers in it. Alternatively, we could use the bit-vector recognizer (which
is perhaps 5 or 10 times as fast) and then reduce the matrix (equally as fast) while
simultaneously constructing a list representation with parse pointers. Using
special fast instructions (such as floating-point normalize) available on most
computers for scanning the “temp” bit vector for 1 bits, we can expect the
construction of the list representation to take about the same time as constructing
a recognition matrix with the same number of entries. Thus if the reduced matrix
is no bigger than about 60 percent of the size of the original matrix, this method
will be faster than directly constructing the list-form recognition matrix. If the
bit-vector recognizer is 10 times as fast as the list method, this approach is
worthwhile if the reduction process removes only 20 percent of the items from
the matrix.

Two schemes for removing useless entries while the matrix is being built are
presented in [7, pp. 105-108] and further developed in [35]. Here, after the jth
column is built, we retain a dotted rule A — « -8 in ¢, £ < j, only if there are
derivations S =* a; -+ - a;Af, a =* a;+1 - -+ ax, and BI =" ap4y - - - a8’ for some
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recoanizer . 447
Grammar: S— AS|ad Input: aaab
A—adla
0 1 2 3 4
1S— .AS *S—A4.8 tS—A.S S—A.S *S— AS.
S— .ab S—>a-b
fA— .ad 1A—>a-A fA—>dA. A—>aA.
ftA—>.a fAd-a-
tS— -AS tS—A.S S—»A.8 *S— AS.
S— .ab S—»a-b
A—> .aA A>a-A A—aA-
A—.a ftA>a-
S— . AS S—>A.S
tS— -ab fS—>a-b tS—>ab-
A— .adA A->a-A
A—>.a A—>a-
. S— .AS
Processing #;4: S— .ab
1: temp := m§45° A 1548 A—> .aA
M1 (1‘ 1 A-.a
1 1 1
0| = (0 A 0
0 0 0
.0 LO] 0
2 m{® 1= m$** with S— ab- in t,, marked
0] FOﬁ
0 0
1| = |0q— V1
0 0
L0 L0
3_mg""'s = m?"A'SV‘temp *marked before 54
17 07 1 processed
1 0 1 tmarked when ¢4
0 =10 v |0 processed
0 0 0 tmarked after ¢,,
LO | LO_ 0 processed

Fig. 12. Reducing the recognition matrix.

8, 8’ in V*. One of Townley’s methods proceeds by “losing” all pointers to useless
items so that a garbage collector can reclaim the space occupied by them.
Townley’s other method uses a reference-count-type of garbage collection scheme
tailored to the recognition algorithm. This scheme requires more programming

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

448 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

but may be much faster. It uses total time @(n’), whereas the first method may
take time Q(n®) for each call on the garbage collector.

4. CONNECTIONS AND COMPARISONS WITH OTHER RECOGNITION
ALGORITHMS

There are some close connections between the apparently unrelated methods of
Cocke-Kasami-Younger and Earley, which we can show by relating both to our
algorithm. It is easy to see that the CKY and Earley algorithms use essentially a
“dynamic programming” method: A derivation covering a larger portion of the
input string is built by combining previously computed derivations of smaller
portions. The most obvious difference between the two algorithms is that Earley’s
will work with any grammar, while CKY is restricted to grammars in Chomsky
normal form. We show that this difference is actually quite superficial. The
fundamental difference between the two algorithms turns out to be Earley’s
“predictor,” which imposes an additional constraint on the allowable partial
derivations, namely, that they be consistent with the beginning of the input
string.

To explain the correspondence of our algorithm to the CKY method, we show
that the predictor can be “weakened” or eliminated without affecting the cor-
rectness of the recognizer. Suppose we add to ¢;,; some “extra” dotted rule which
would not ordinarily be there, say, A — -a. Subsequent operations may introduce
“extra’ dotted rules into columns to the right of j, but not above row j. (Even if
A — a- were entered somewhere on row J, the pasting step applied to A — a -
would have no effect since column j would not have any entries with a dot in
front of an A. Similar reasoning applies to other “extra” rules.). In particular, this
addition would have no effect on &, so we still would have a correct recognizer.
In fact, we could replace the predictor by the statement “;; := PREDICT(N);”
and still have a correct recognizer. This gives the following algorithm.

Algorithm 4.1. 'This algorithm is identical to Algorithm 2.2, except that lines 1 (fo0 :
PREDICT({S})) and 11 (¢, := PREDICT (Uoxi=j—1 %)) become too
PREDICT(N) and ¢,; := PREDICT(V), respectively.

The characterization theorem for this algorithm is the following, which is
analogous to the one for CKY.

LEMMA 4.1. After running Algorithm 4.1, A — a-B isin t.; if and only if

matches w;j, i.e., a =* Qir1 +++ Q.

Proor. It follows directly from the definition that PREDICT(JV) is the set of
all dotted rules matching A, so the lemma holds for all ¢, j = 0. For the sets ¢,
0 = i <J, the proof is analogous to the proof of Theorem 2.1. [

Notice that we could set ¢;; to any value such that
PREDICT(U t.;) C t;,; C PREDICT(N)

i<j

without affecting the correctness of the recognizer. Adding “extra” items to ¢;; in
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 449

this way seems to correspond to characteristic LR parsing [11] in roughly the
same way that Earley’s method [8] corresponds to LR(k) parsing [21].

It will be more convenient to work with a slightly different version of CKY—a
version we call CKY1, which allows the addition of chain rules to Chomsky
normal form grammars. (This normal form is called “canonical two form” [15].)
The modification is very simple: Whenever a variable A is added to some ¢;;, we
also add A’ if A’ - A (and likewise A” if A” — A’, etc.). In the product notation
we have been using, we just extend the definition of ® as follows:

Q®R={A|A="* BCfor some BE€ @, C € R}.

We relate our algorithm to CKY1 by using a particular transformation which
converts any grammar G into a grammar G1 which is in canonical two form. (For
simplicity we assume that A € L(G).) We show that our algorithm without the
predictor working on G is the “same” as CKY1 working on the transformed
grammar G1. We also give a transformation from an arbitrary grammar G to a
grammar G2 in Chomsky form. This transformation can be used to relate our
algorithm directly to CKY (rather than the variant of CKY), but the correspond-
ence is more clearly visible with the simpler transformation. (Instead of removing
the predictor from our algorithm, it is possible to add one to CKY; [6, 27] give
such an algorithm. The same grammar transformations can be used to show the
connections between the algorithms.)

The first transformation we want is the following: The nonterminals of G1
consist of symbols (A — a -B) for every dotted rule A — « -8 of G and symbols
(a) for every terminal a of G. The productions of G1 are, for every pair of rules
A — aBf and B — v, every rule A — aaf of G, and every a in I,

(1) (A—>aB:B)—> (A—a-BB)(B—>y-),
(2) (A>aB-B8) > (A—> a-BB)if B¢ A,
3) (A—> aB:B) > (B—y-)ifa=§A,
4) (A> aa-B)—> (A— a-af)(a),

5) (A—> aa-B) = (a) ifa=* A, and

(6) (a)— a.

It is obvious that G1 is in canonical two form. Further, it is easy to see that this
grammar is equivalent to G. Rule 6 arises from the obvious transformation used
to restrict terminals to rules of the form A — a; rules 1 and 4 are a simple way to
reduce all right-hand sides to length <2; and rules 2, 3, and 5 come from rules 1
and 4 by the obvious transformation used to eliminate A-rules. The exact
correspondence between G and G1is captured by the following lemma.

LEmMA 4.2, Let G=(V, Z, P, S) be an arbitrary cfg such that A € L(G). Let
G1 be formed from G by the above construction. Then for any rule A — off of G
and any x EX", (A —> «-B) =4 x if and only if a =§ x.

The proof is omitted.
The equivalence of the grammars G and G1 follows, since

x € L(G) ff (S—a:-)=%x

for some rule S — « for G. (The set of nonterminals (S — « -) functions as the
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

450 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

“start symbol” of G1. To be more formal, one should introduce a new start symbol
(S) and rules (S) — (S — «-).) Finally, we are ready to state precisely the
correspondence between the algorithms.

THEOREM 4.1. Let G = (V, Z, P, S) be an arbitrary cfg with A € L(G), and
let G1 be constructed from G as described above. If Algorithm 4.1 and CKY1
(described above) are executed for the same input using grammars G and G1,
respectively, then the nonterminal (A — « -B8) is in t;; (CKY1) if and only if the
dotted rule A — o -B is in ti; (Algorithm 4.1).

ProoF. By Lemmas 4.1 and 4.2 we have

(A—>a-ByEL; (CKYD) iff (A>a-Bf)=bain- - q
iff a=&ai--a
iff A>a-Bet, (Algorithm41). O

Not only are the two algorithms computing the same information, but we can
show that their methods of computing it are the “same” also. CKY1 puts A in ¢;;
whenever it finds B in ¢;; and C in ¢;; with A — BC. Similarly, our algorithm puts
A — aB -Binto t;; whenever it finds A > a -Bf in ¢;, and B— vy - in #, ;. We can
view this as a disguised version of the CKY method applied to the rule (A — aB -
B) - (A — a-BB)(B — y-). Furthermore, whenever CKY1 adds 4, it will also
add A’if A’ > A (and A” if A” — A’, etc.). Our algorithm is very similar if we
look closely at our definition of the X- and *-products. Suppose we find some
dotted rule A — a-BCDp and also find B — y-.. Naturally, we add A — aB -
CDg since it is in {A — a-BCDB} X {B — v-}. Further, if C =* A and D =*
A, then A - aBC-DB and A — aBCD .8 are also in {A —» a-BCDB} X {B —
v-}, so we will add them also. This action is the direct counterpart of CKY1
handling the chain rules (A — aBC -DfB) —» (A — aB -CDf) and (A — aBCD .
B) = (A - aBC.Dp) in G1. There is a similar correspondence for the other
chain rules in G1.

One further modification of our algorithm is of interest. If we eliminate the
predictor (as in Algorithm 4.1), all of the diagonal elements would be the same,
independent of the input, so they could be eliminated by changing the limits on
the loops and using a suitably modified “product” operation in place of both X
and *, e.g., ®, where

@ ® R = (@ X R) U PREDICT(N) * (@ X R).

We then get an algorithm which is structurally identical to CKY but can be used
for any grammar, not just one in Chomsky normal form.' It is also possible to
apply Valiant’s method to compute the matrix in time proportional to that for
Boolean matrix multiplication. The modified product implicitly defines a trans-
formation to Chomsky form which is similar to the one we discussed above but
somewhat more complex. In the interest of completeness we present the grammar
(G2) corresponding to this variation below.
For all dotted rules A — « -8 in G we have

10 A similar idea is suggested in problem 4.2.15 of [2].
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 451

i) Ha=>*a€el,
(A a-8)—>a
(ii) if @ =* B € N, then for every rule B — yUS with § =* A we have either
(a) if U€E Z,
(A—> a-B) = (B— y-Us)(U)
or (b)if U€E N, then for all U — o,
(A a-f) > (B> y-U)(U—o0-)
(iii) if @ = a1Ua2 with az =* A, we have either
(a)if UeZ,
(A—> a-B) > (A-> a1 - UasfB)(U)
or
(b)if U€ N, for all U— o,
(A a-B)> (A— a,-Uas)(U—0-)
(iv) for every a € Z,
(a) > a

(Note that the first three cases are not mutually exclusive, and that the grammar
is not necessarily reduced.) The correspondence between G and G2 is presented
in the following proposition. The proof is omitted.

ProrosiTIiON 4.1. Let G = (V, =, P, S) be an arbitrary cfg with A € L(G),
and let G2 be constructed from G as described above. Then for all dotted rules
A — . 8 and nonnull strings x € 2,

a=>Ex iff (A-> a-B) =k x.

Finally we consider the differences between the CKY algorithm and ours. As
mentioned previously, the main difference is the predictor, which allows certain
left context to be considered. From our characterization theorems, it is clear that

ti; with predictor (i.e., Algorithm 2.2)
Cti; without (i.e., Algorithm 4.1),

and it is easy to find examples where the containment is proper. Figure 13 gives
such an example. Since fewer matrix entries usually means savings in both time
and space, it is clear that the predictor usually does not hurt. However, the worst-
case performance for both algorithms is ©(n®) time and ©(n?) space. For certain
restricted grammar classes the bounds are also the same; for example, for
unambiguous or linear grammars both may need ¢(n?) time. There are other
cases where our algorithm is asymptotically superior to CKY. It is not hard to see
how this situation can arise. The predictor has a left-right bias which may be
ideal for some grammars but useless for others. For example, our algorithm takes
time O(rn) on S — Sala while CKY takes Q(n?), but on the equally simple
grammar S — aS|a, both take 2(n?). A less artificial comparison is reported in

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

Grammar: S— Sa|a

t (with
predictor,
Algorithm 2.2)

t (without
predictor,
Algorithm 4.1)

Input: oaa

S— -Sa S—a. 88— Sa. S— 8Sa-
S—.a S§—=8.a S—=S-a S—=8-a
S—+ .8a S—>a. S— Sa- 8— Sa-
S— .a S—8.a §-S8.a S—8S-a
S -8Sa S—a- S— Sa-
8= .a S§—-8.a 8§85 S-a

S— .8a S—a-
S—.a S§—=S.a

8§~ .8Sa

S—-a

Fig.13. & ; with predictor C t;; without predictor.

An Improved Context-Free Recognizer . 453

[27]. Pratt states that use of the predictor gave a factor-of-5 reduction in the
number of matrix entries generated. In his application (natural language process-
ing) the semantic routines executed for each entry may be very expensive, so the
savings may be appreciable. However, it should be emphasized that the savings
achieved by the predictor are strongly dependent on the grammar and input
being processed.

Next we consider the connections between our algorithm and Earley’s as
described in [8]. The notation used below follows the discussion of Earley’s
algorithm given in [2], which is closer to our notation than that originally used by
Earley.

Earley’s algorithm and ours are very similar in the information they gather
and in the way it is gathered. Earley’s algorithm constructs lists I;, 0 < j < n, of
ordered pairs (A — « - 8, i), where A — « - B is a dotted rule of G and 0 = i < n.
The entry (A — a - S, i) will appear on list I; if and only if A — « - 8 follows w;
and matches w;,;. Consequently, the set of entries in list I; with second component
i corresponds exactly to the set ¢, constructed by Algorithm 2.2 (and list I;
corresponds to the jth column of t). One of the main steps of Earley’s algorithm
(the “completer”) is to add (A — aB - B, i) to list I; when some (B — y -, k) is
found on list I; and (A — a - BB, i) is on list I,. This step is analogous to line 8 of
Algorithm 2.2, noting that A — aB - Bisin t;x X &, (since A - a - BB € t;, and
B—ovy.et;).

Our algorithm and Earley’s differ in three respects. One is the handling of
A- and chain-derivations. Our algorithm precomputes this information, whereas
Earley’s will find a A- or chain-derivation by doing a series (equal in number to
the length of the derivation) of predictor and completer steps. Two more funda-
mental differences between the algorithms are the choice of data structure
(matrix versus list) and the order of computation. Earley’s processes items added
to list I, in the order of their addition, whereas ours processes items added to
column j in order of decreasing row number.

As we have seen, a variety of implementations of our algorithm is possible.
Usually these implementations will be more efficient than comparable versions
of Earley’s algorithm. Some of our implementations have no counterpart at all
within Earley’s framework. While this efficiency and flexibility are a significant
advantage over Earley’s method, we feel that it really represents only one
expression of the main advantage of our method, which is its simplicity and
clarity. Our method also exposes certain otherwise obscure characteristics of the
two algorithms. Several examples will be presented to emphasize these points.

One example of a feature of the algorithm made visible in our version is the
relationship between the CKY and Earley methods, discussed above. As a second
example, we consider the recognition of linear languages. A linear context-free
grammar is one whose rules are all of the form

A-x or A - xBy

where x, y € 2%, A, B € N. It is known that both the CKY and Earley algorithms
can be made to run in time @(n?) on linear grammars [12], but the proof for
Earley’s algorithm is much less obvious than for CKY. Our algorithm also can
work in time @(n”®) for linear grammars, and the proof is very simple. Suppose we

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

454 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

all rules
A+a-Bf

no rules
Ava-BS

{ = Max |a|
A«aBf

Fig. 14. Time n? for linear grammars.

find some rule B — y- in ¢; j; we must search column i for all rules of the form
A — a - BB. Since the grammar is linear, « and 8 € 3*,s0 A — « - BB can be in
t; if and only if a =* w,; if and only if @ = ws,;. If [= maxa_.np 1g(a), then
i —l=<k=iie., all entries of the form A — a - BB are in a narrow band above
the diagonal (see Figure 14). Thus we must search only a bounded portion of
column i to find all A — « - BB. The total processing time is then easily seen to
be ©(n?). Furthermore, we can take advantage of the “shape” of the matrix to
choose a better representation.

There are several examples of implementations of our algorithm for which
there is either no counterpart, or only a less efficient one for Earley’s algorithm.
One method, using the representation shown in Figure 4, scans each column to
the left of column j exactly once. An equivalently simple implementation of
Earley’s algorithm would have to scan list I;, ¢ < j, once for each dotted rule of
the form B — vy found in ¢ ;. This could easily be five to ten times more work
than with our method. Furthermore, our method scans the columns to the left of
jin the orderj — 1,j — 2, ..., whereas Earley’s method accesses the columns at
“random” (i.e., in whatever order items are entered onto list ;). The scan order
allows our method to be done in time n°® on a multitape Turing machine, whereas
Earley’s method takes time n? on a Turing machine [7]. Performance of the
algorithm on a Turing machine may not seem of much practical interest. However,
the much more regular pattern of memory accesses which allows the improved
performance on Turing machines may also give greatly improved performance on
virtual memory or paging systems, a factor which is of significant practical
interest. A third example is the bit-vector implementation shown in Figure 8, for
which there is no analog with Earley’s method. Other examples include the
subcubic algorithms discussed in the next section.

Two less well-known general context-free parsing methods are closely related
to ours. The nodal span method of [6] is an adaptation of Earley’s predictor to
the CKY algorithm. A few years later a similar version appeared in [27]. This
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 455

algorithm requires a grammar in Chomsky normal form, so it suffers from the
problem mentioned in Section 2.2—converting to Chomsky form may square the
size of the grammar. Pratt’s algorithm allows Chomsky form plus chain rules (i.e.,
canonical two form) as in CKY1 discussed above. It is easy to convert an arbitrary
grammar to canonical two form with only a linear increase in size, so this aspect
of Pratt’s algorithm is preferable.

The use of a Chomsky or canonical two form grammar in these algorithms is
attractive, since it simplifies the notation needed to state and program the
algorithms. However, there is a hidden cost to this approach. If the algorithm
stores information corresponding to dotted rules of the form A — B. C, then
more space may be used than with our method; if such dotted rules are not
stored, the algorithm may use more time, but less space, than ours. To see how
this can happen, suppose that the original grammar G has a rule A — B,B; - . -
B:. In the equivalent canonical two form grammar G1 there will be £ — 1 rules,

A — C,1B;
Cr1— Cr2Bi-

Cz g B1Bz.

When some portion of the input matches A — B; -.. By -, our algorithm will
make, among others, the k& entries A > B;-Bs -+« Bs,...,A— BBy --- B, -
(We ignore entries A — - B, .- B, for reasons explained below.) An algorithm
working with G1 must store 2 — 1 dotted rules, namely, C; — B;B;-, C; —
CeBs-, ..., A — Cr1B,..If it also stores the intermediate 2 ~ 1 entries C> —
Bi-B:, Cs— C2+Bs, ..., A— Ci1- By, it will have used (2k — 2)/k times as
much space as our algorithm. (OQur dotted rule A — BBy --- B;- B,y --- By
serves two purposes: it notes that B, - - . B; has been matched, which is noted by
Ci— Ci-1B;- in GI; and it notes that a B;.; would be useful, which is noted by
the separate dotted rule C;+y — C;- Bi41 in G1.) Of course, there is only a small
increase in space if the average length of a rule in G is nearly 2 (averaged with
respect to frequency of occurrence in the recognition matrix). Alternatively, if
the algorithm does not store the intermediate items C; — C;_, - B;, then it will
save space, namely, use only (k — 1)/k times as much space as our algorithm.
However, it will use more time since it must do extra searching to discover that,
say, a C;—; and a B; can be combined to give a C;. Note that these space estimates
are only approximate, since a given dotted rule may be paired with another
dotted rule to generate a third dotted rule several times (or no times). The
published versions of both the Cocke-Schwartz [6] and Pratt algorithms use the
space-saving form, but Pratt’s implementation of his LINGOL system uses the
faster form [27].

Three different methods of storing the predictor data are used by Pratt’s
method, the Cocke-Schwartz method, and ours. Pratt stores for the jth column,

Goal; = {C|A — B- Cis in ¢, for some i}.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

456 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

Cocke and Schwartz store
Goal} = {D|C=* Dé for some 8§ € V* and some C € Goal;}.
Our method stores
PREDICT(Goal;) = {D — .a|D &€ Goal} and D — « is a rule}.

(For simplicity, we assume that the same grammar is used for all three algo-
rithms.) Pratt’s method requires the least computation to generate the predictor
information, and ours needs the most. For all subsequent tests using the predictor
data, the situation is reversed: our method takes the least work and Pratt’s takes
the most. Our method also has the advantage of uniform representation: we do
not need a special data structure for recording the predictor data. However, Pratt
argues that PREDICT may generate a large number of irrelevant items (at least
with the sort of grammars used for processing English). As an example, Pratt
considers a grammar having rules S —» NV| WV| V where S stands for “sentence,”
N for “noun phrase,” V for “verb phrase,” and W for “interrogatory phrase.” For
a sentence beginning “Why ...,” only the second of the rules is applicable, but
PREDICT will also generate entries for the dead ends S — - NV, S — . V, N —>
«eee, V> etc. The prediction certainly wastes space, and the time spent
constructing these dotted rules could easily exceed the savings due to quicker
tests, so Pratt’s method may be faster. (Mere presence of the dotted rules does
not slow subsequent operations if appropriate data structures are used.) If so, the
Cocke-Schwartz form may be better still. Some experimentation with realistic
grammars and inputs would be required to settle these issues.

One shortcoming of Pratt’s method is that like the simple implementation of
Earley’s algorithm discussed above, it will scan column i once for each variable
C found in ¢, ; (searching for items A — B . C). This search can be considerably
slower than our algorithm which scans column ¢ only once.

Several other related contributions have been made. Lyon [24] independently
observed that Earley’s algorithm could be modified to operate with its lists sorted
by row number, and that this modification allowed an @(n®) multitape Turing
machine'’ version. Weicker [38] also gives a modification of Earley’s algorithm
which orders the columns as we have done and uses this ordering to get an ¢(n?)
bit-vector version which is somewhat different from ours: each column is repre-
sented by a single bit vector of length n - | G|. Weicker extends this method to an
O(n® log n) algorithm for a uniform cost RAM"' by encoding the bit vectors into
integers having | G| - n log n bits.

An unpublished paper by Floyd [9] describes another clever ¢(n?) bit-vector
recognizer, in this case a version of CKY. Floyd’s method stores the transpose of
the (upper triangular) recognition matrix in (the lower triangle of) the same
matrix, so that a row-column product may be formed by ANDing the row with
the transpose of the column. (The column-oriented bit vector algorithm described
in Section 3 is probably faster, since it does not need to maintain the second copy
of the matrix.) Another related work is by Townley [35], who also considered the
possibility of precomputing information about A-derivations.

1 See, e.g., [1] for definitions.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 457

5. SUBCUBIC VERSIONS

All versions of the algorithm presented to this point have had a worst-case
running time of ©2(n®). Two versions of our algorithm running in less than n®
time are presented here. These algorithms are theoretically interesting, but are
not of practical utility, since they are faster than the n® methods only for
unrealistically large values of n.

The first subcubic version uses Valiant’s method to give an algorithm which
runs in the same time bound as matrix multiplication. In Section 4 it was noted
that our algorithm could be modified so that Valiant’s method could be used to
produce a matrix ¢;,; = {A = a- Bla="* a1 --- @;} for i <j (note that i # j).
Having done this in time 0(n>*), we can in time O(n?) add the correct diagonal
and “prune” the other entries to get a matrix identical to the one produced by
Algorithm 2.2 as follows.

(1) to,0 := PREDICT({S});
fori:=0ton—1do
begin
3 forj=i+1tondo
ty={A—>a-Bint ;|some Arule A— o' -8 isin t;.};
(2) tirrier := PREDICT(Upcis1 br,iv1)
end;

The proof is simple. If ¢; ; is set correctly (i.e., as in Earley’s algorithm) at (1)
(which it clearly is) and at (2) (which will follow by induction), then the for loop
at (3) will set the entire ith row correctly, since

A->a- BE L) (after (3))
implies
A-a-BEY, (before (3)),

which implies

a=>* @1 - -+ ;. (5.1)
Further,
A—>a’ -Bisint;; for some rule A — a’B’
which implies
S=%a .- a:iAy for some . (5.2)

Conditions (5.1) and (5.2) characterize #;; in our algorithm, of course.

Conversely, if (5.1) holds, then A — a - 8 must be in ¢ ; before (3), and if (5.2)
holds, some A — ' - 8’ must be in ¢;; (in particular, A — - yis in ¢;; for all rules
A — y). Thus A — « - 8 will be in #;; after (3). By induction, all of column i + 1
will be correct before (2) is done, s0 #;+1,:+1 will be correct.

If recognition alone is the goal, it makes no sense to prune the matrix, since
Valiant’s algorithm alone is a recognizer. However, for parsing it might be very
useful to remove many of the “useless” items found in the CKY-type scheme we

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, J uly 1980.

458 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

started with. It would be interesting to know if all useless items (in the sense
defined in Section 2.4) could be removed within the same time bound.

Valiant’s method was based on fast general matrix multiplication methods [1].
As we show next, it is also possible to use the Boolean matrix multiplication
scheme of [3]. This approach gives a recognizer requiring 0(n?/log n) operations
on bit vectors of length n, ¢(n®/log n) steps on a uniform cost RAM,* or ¢(n®)
steps on a logarithmic cost RAM."” Further, this is an on-line recognizer, in
contrast to the algorithm given above, or Valiant’s method.

Before giving the next algorithm, we mention several related results. Bit-vector
machines defined in [30] allow unit time “AND,” “NOT,” and “SHIFT” opera-
tions on bit vectors of arbitrary length. The results in [30] give an O(log’n)
context-free language recognizer. Pratt [28] reports a method using time ¢ (log’n).
Ruzzo [34] gives an O(log’n) algorithm. These methods use very long vectors
(R(n'**") bits) and make essential use of the “shift” instruction. The method
presented here uses vectors of length n and does not use shifts. Our method is the
fastest known to us for machines using vectors of length ©(n), even if shifts are
allowed. The fastest known method for a uniform-cost RAM is the O(n’log n)
algorithm of Weicker [38]. The uniform-cost RAM is often used as a model of
modern computers. It captures the fact that most operations take about the same
time, regardless of the size of the numbers involved, provided that the numbers
fit in one “word.” However, the uniform-cost model deviates from reality in
allowing arbitrarily large numbers, i.e., arbitrarily large “words.” Weicker’s algo-
rithm exploits this feature of the uniform-cost model to achieve a fast algorithm
by encoding an entire column of the recognition matrix as one long integer—
| G| n log n bits. It has been suggested that a modification of the uniform-cost
model which restricts integers to k log n bits (for some constant £) would be more
consistent with the characteristics of current computers. Qur n?/log n algorithm
falls within this restricted model. Results in [17] show that any algorithm running
in time T(n) = n log n on a multitape Turing machine can be simulated in time
T(n)/log T(n) on a uniform-cost RAM or in time 7T'(n) on a logarithmic-cost
RAM. Galil [10] extends their result by showing that the simulating RAM can be
on line if the Turing machine was on line. Thus our n°/log n uniform-cost and n®
log-cost results can now be obtained as corollaries of these more general theorems.
However, our direct construction of these results and our n?/log n bit-vector
algorithm are still of interest. They are presented below, but only a sketch of the
proofs will be given.

The idea of the construction is quite simple. Consider Algorithm 2.4. Pick some
number g > 0. For each j from g to n the algorithm computes a specific function
of columns ¢ - - - £,-1 and the sets £, ..., {;-1,; (namely, the portion of the in-
ner loop “for & := ¢ — 1 downto 0 do ¢ := t; U lx*tr;”). There are only a
finite number, say s, of possible sets of dotted rules.If n is very large (greater than
s%), the same g-tuple of sets %o, . . . , tg-1,; must occur for different values of j. We
could avoid recomputing those functions if the previous answers had been
tabulated. In fact, it is easier simply to tabulate the function for all possible
g-tuples of sets of dotted rules and then to compute the function by table look-up

2 Gee. e.g., [1] for definitions.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 459

for each g-tuple %, ..., t;-1,,] < n. Instead of taking about n-q steps to
compute, we will now need about n (look-ups) + s? (to build the table). Choosing
q = log n, the work is then @(n) rather than O(n log n). Repeating this
construction for the other n/log n groups of columns, the total work is O(n - n/
log n) = O(n*/log n) instead of O(n log n - n/log n) = O(n?).

Our algorithm is given below. 2 denotes the set of all dotted rules; R denotes
the tabulated function; [%] is the floor of k.

Algorithm 5.1

forg:=1,2,3,...untiln < s?do
begin (* Throughout, all vectors are s’-vectors; the second index of R always has ¢
components. *)

PREDICT({S})
- %]
to = . 5
1%

R .= X
for all vo C 2do R0, (10, D, ..., D)) = to*vo;
forj:=1to s’ do
begin

¢ = ti1+{a};

for k:=1(j — 1)/q] downto 0 do

tji=t; U R(k, (trqj> tag+1,js - - - » Lhg+q—17));
tj:= PREDICT(UosiSj_l tii);
J=L1i/alg;
for all v, vjs1, ..., 0, C D do
. begin
V=
[O
Do
%]
vy
= ;
Uj
(%)
. &
ll.1'1= U t;*v,-;
RWi/ah (v, ... 0, @, ..., D)) =
wUyU R('.J/qjy (wf') ooy Wi, Qy @, es ey ®>);
end;
end;
end;

Two points are noteworthy. First, an on-line algorithm cannot know n, the
length of the input, in advance. We used n in our previous algorithms as a
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

460 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

notational convenience, but only to control termination of a loop; this could be
done as easily by some kind of “end of input” indicator. However, in the current
algorithm n determines ¢ which determines the table structure, so it would be
incorrect to assume it was known in advance. Instead, this algorithm will run
with some ¢ until n > s9 then use ¢ + 1; at this point it will go back to the
beginning of the input and rebuild the tables based on the new value for q. This
updating will turn out to affect the execution time only by a constant factor.
Second, note that if the accesses to the table R are removed and the following
function inserted, the resultant program is equivalent to Algorithm 2.4.

function R(@, (vig, . . - » Vigrg—1));

begin
%) .
: iq
1%}
Uig
o= - ,
Vig+q—1
1%}

for k := ig + ¢ — 1 downto ig do
vi=0U lpxy
return (v);
end;

Basically, R(i, (vi, ...)) produces the vector reflecting the contribution of the
ith group of columns (columns ig --- ig + ¢ — 1) to some column with v, - -+ in
the ith group of rows (more precisely, vi, - - - in the ith group of rows just after
the contributions from column groups [j — 1/q), [— 1/g] — 1, ..., i + 1 have
been added). Since Algorithm 5.1 with the function R is equivalent to Algorithm
2.4, to show correctness of Algorithm 5.1 with the table R, we must merely show
that the table and function values are the same. This is fairly easy to show by
induction on j. The key statement is the last “for” loop, where R(lj/ql, ...) is
extended to include the contribution due to column j. This gives the following
proposition.

PropPOSITION 5.1. Algorithm 5.1 correctly computes the recognition matrix;
ile,A— a-Bisint,;if and only if S =* a, --- a;Ay and a =" ai+1 +-- a; for
some y.

Next we consider the time complexity of Algorithm 5.1. First we note that R is
represented by a two-dimensional array, with (v, ..., U,-1) considered to be an
integer (think of it as a g¢-digit s-ary number). All conversions to and from this
format can easily be done in a constant number of steps on a bit-vector machine.
Thus the array references each take constant time. The “for k” loop takes
0(j/q) steps. The body of the last for loop takes constant time, so the loop takes
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

An Improved Context-Free Recognizer . 461
0(s’™49) steps. Thus as j runs from 1 to s?, the “for j” loop takes

sy 5 q q—1 a\2 2
@<z 1.5 sf)=(9(<3’ +fi.sq)=@<‘8">)
=149 q ;=0 q q q

The outermost loop runs for ¢ = 1, .. ., [logs n], so the total time is

Mogsnl (o7)2
A7)
=1 g

which is @(n®/log n) (as can be verified by induction). Since the bit vectors are all
of length @(n), any bit-vector operation can be simulated in time ¢(n) on a
uniform-cost RAM, so the time complexity on a RAM is ©(n®/log n).

Note that this algorithm requires the storage of ©(n®/log n) bit vectors or
O(n®/log n) bits. Most of the other versions we have discussed use only ¢(n) bit
vectors or 0(n?) bits.

6. CONCLUSION

A new general context-free language recognition algorithm has been presented,
together with its implementation. The algorithm should be of practical utility
since it is conceptually simple, can be efficiently implemented in a wide variety
of situations, and can be used for any context-free grammar. It is also of theoretical
interest since it exposes close connections between a number of previously known
recognition methods, notably the method of Earley and that of Cocke, Kasami,
and Younger. It is also possible to implement the algorithm in time asymptotically
less than n®.

REFERENCES

1. Ano, A.V., HopcrOFT, J.E., AND ULLMAN, J.D. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, Mass., 1974.

2. AHo, AV, AND ULLMAN, J.D. The Theory of Parsing, Translation, and Compiling, Vol. 1:
Parsing. Prentice-Hall, Englewood Cliffs, N.J., 1972.

3. ArRLAZAROV, V.L,, Dinic, E.A,, KRONROD M.A,, AND FARADZEV,LA. On economical construction
of the transitive closure of a directed graph. Dokl. Akad. Nauk SSSR 194 (1970), 487-488 (in
Russian). [English translation Soviet Math. Dokl. 11, 5 (1970), 1209-1210.]

4. BAYER, P.J. Personal communication, 1977.

5. BOUCKAERT, M., PIROTTE, A., AND SNELLING, M. Efficient parsing algorithms for general
context free grammars. Inf. Sci. 8, 1 (Jan. 1975), 1-26.

6. CockE, J., AND ScCHWARTZ, J.I. Programming Languages and Their Compilers. Courant
Institute of Mathematical Sciences, New York University, New York, 1970.

7. EARLEY, J. An efficient context-free parsing algorithm. Ph.D. Dissertation, Carnegie Mellon
University, Pittsburgh, Pa., 1968.

8. EARLEY, J. An efficient context-free parsing algorithm. Commun. ACM 13, 2 (Feb. 1970), 94-
102.

9. FLoyp, R.W. A machine-oriented recognition algorithm for context-free languages. Unpublished

. manuscript, 1969.

10. GALIL, Z. Two fast simulations which imply some fast string matching and palindrome-recog-
nition algorithms. Inf. Process. Lett. 4, 4 (Jan. 1976), 85-87.

11. GELLER, M.M.,, AND HARRISON, M.A. Characteristic parsing: A framework for producing com-
pact deterministic parsers, 1. J. Comput. Syst. Sci. 14, 3 (June 1977), 265-317.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

462 . S. L. Graham, M. A. Harrison, and W. L. Ruzzo

12.

13.

14.
15.
16.
17.
18.
19.
20.

21.
22.

23.

25.
26.
27.
28.
. PraTt, V.R. Personal communication, 1977.
30.
31.

32.

33.

34.
35.

36.
37.

38.

39.

GRAHAM, S.L., AND HARRISON, M.A. Parsing of general context-free languages. In Advances in
Computers, Vol. 14. Academic Press, New York, 1976, pp. 77-185.

GRaHAM, S.L., HaArrIisoN, M.A,, AND Ruzzo, W.L. Online context free language recognition in
less than cubic time. Proc. 8th Ann. ACM Symp. on Theory of Computing, Hershey, Pa., 1976, pp.
112-120.

GRIFFITHS, L., AND PETRICE, S. On the relative efficiencies of context-free grammar recognizers.
Commun. ACM 8, 5 (May 1965), 289-300.

HARRISON, M.A. Introduction to Formal Language Theory. Addison-Wesley, Reading, Mass.,
1978.

Hays, D.G. Automatic language-data processing. In Computer Applications in the Behavioral
Sciences, H. Borko, Ed., Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 394-423.

HoprcROFT, J.E., PauL, W., AND VALIANT, L. On time versus space and related problems. Conf.
Record IEEE 16th Ann. Symp. on Foundations of Computer Science, Berkeley, Calif., 1975, pp.
57-64.

Irons, E.T. Experience with an extensible language. Commun. ACM 13, 1 (Jan. 1970), 31-40.
JoNEs, C.B. Formal development of correct algorithms: An example based on Earley’s recog-
nizer. ACM SIGPLAN Notices 7,1 (Jan. 1972), 150-169.

Kasamr, T. An efficient recognition and syntax analysis algorithm for context free languages.
Sci. Rep. AF CRL-65-758, Air Force Cambridge Research Laboratory, Bedford, Mass., 1965.
KNuTtH, D.E. On the translation of languages from left to right. Inf. Control 8 (1965), 607-639.
Kuno, S. The predictive analyzer and a path elimination technique. Commun. ACM 8, 7 (July
1965), 453-462.

LipToN, R.J.,, AND SNYDER, L. On the optimal parsing of speech. Res. Rep. No. 37, Dep.
Computer Science, Yale Univ., New Haven, Conn., 1974.

. LYoN, G. Syntax-directed least-errors analysis for context-free languages: A practical approach.

Commun. ACM 17,1 (Jan. 1974), 3-14.

MANACHER, G.K. Animproved version of the Cocke-Younger-Kasami algorithm. Comput. Lang.
3 (1978), 127-133.

MARQUE-PUCHEN, G. Analyses des langages algébriques. These de 3° Cycle, Institute de
Programmation, IP75-23, Université Paris VI, 1975 (in French).

Prarr, V.R.,, LINGOL—A progress report. Advance Papers 4th Int. Joint Conf. on Artificial
Intelligence, Thilisi, Georgia, USSR, 1975, 422-428.

PrATT, V.R. Personal communication, 1976.

PrATT, V.R,, AND STOCKMEYER, L.J. A characterization of the power of vector machines. J.
Comput. Syst. Sci. 12 (1976), 198-221.

Ruzzo, W.L. General context free language recognition. Ph.D. Dissertation, Dep. Computer
Science, Univ. California, Berkeley, Calif., 1978.

Ruzzo, W.L. On the complexity of general context-free language parsing and recognition. In
Automata, Languages, and Programming, Sixth Colloquium, Graz, July 1979, H. Maurer, Ed.,
Vol. 71, Lecture Notes in Computer Science, Springer Verlag, Berlin, 1979, pp. 489-497.

Ruzzo, W.L. Tree-size bounded alternation. Proc. 11th Ann. ACM Symp. on Theory of Com-
puting, Atlanta, Ga., 1979, pp. 3562-359.

Ruzzo, W.L. An improved characterization of the power of vector machines. In preparation.
TowNLEY, J.G. The measurement of complex algorithms. Ph.D. Dissertation, Harvard Univ.,
Cambridge, Mass., 1973 (TR14-73).

VaLIANT, L. General context free recognition in less than cubic time. J. Comput. Syst. Sci. 10
(1975), 308-315.

WEGBREIT, B. Studies in extensible programming languages. Ph.D. Dissertation, Harvard Univ.,
Cambridge, Mass., 1972.

WEICKER, R. Context free language recognition by a RAM with uniform cost criterion in time
n*log n. In Symposium on New Directions and Recent Results in Algorithms and Complexity,
J.F. Traub, Ed., Academic Press, New York, 1976.

YounGer, D.H. Recognition of context-free languages in time n®. Inf. Control 10, 2 (Feb. 1967),
189-208.

Received September 1979; revised April 1980; accepted April 1980
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

