
Typeful Ontologies with Direct Multilingual
Verbalization

Ramona Enache and Krasimir Angelov

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

September 14, 2010



1 Introduction

2 The Ontology

3 The Controlled Language
SUMO approach
GF approach

4 Demo

5 Directions



The Ontological Aspects of GF

The grammars in GF have abstract and concrete
syntax:

abstract syntax - the ontological description of the domain

concrete syntax - the verbalization

The combination of this two in one framework gives
an unique opportunity for close interaction between
logic and syntax.



The Experiment

The logical framework of GF as ontology description
language:

The abstract syntax in GF is a strongly-typed logical
framework based on Martin Löf’s Type Theory.

In principle, we could use it to encode various domain models.

We explored how to model typical ontological relations such
as ’instance-of’ and ’sub-class-of’ in GF.

As a use case we choose SUMO - the biggest open-source
ontology



Reasoning

The built in reasoning capabilities of GF (in
development):

allows inference as a mean for knowledge retrieval

provides a powerful tool for disambiguation based not on
syntax but on semantic and knowledge based factors



The Ontology as a Controlled Language

GF is a Grammatical Framework after all:

By adding concrete syntax to the ontological abstract syntax
we get controlled language that can be used to express
axioms in natural language.

We will give example of how the type information in the
ontology helps to produce correct language.



Some Statistics - Success rate

Abstract Syntax

(17 modules from the SUMO distribution)

100% declarations

90% of simple axioms

64% of quantified axioms

Concrete Syntax

90% of the two top-level modules - Merge & Mid Level
Ontology (English)

Only few examples for French and Romanian due to the lack
for large coverage lexicon.



1 Introduction

2 The Ontology

3 The Controlled Language
SUMO approach
GF approach

4 Demo

5 Directions



Classes in the Abstract Syntax

The classes are in the core of every ontology:

cat Class;

fun Entity : Class;

Agent : Class;

Human : Class;

...



Classes in the Abstract Syntax

Two basic operations from description logic:

data both : Class → Class → Class; – intersection or conjunction

either : Class → Class → Class; – union or disjunction

Other operations such as complement could be added as well



Instances

We need another category for the instances of some class:

cat Ind Class

Note: Ind is a dependent category. It has a
parameter of type Class which tells us the class of
the instance.



Instances

Now if we have the SUMO axiom:

(instance Pi PositiveRealNumber)

then we will generate the following abstract syntax definition in GF:

fun Pi : Ind PositiveRealNumber ;

i.e. we define Pi as a variable of type Ind and add the class as type
parameter. PositiveRealNumber is the principal class of Pi .



Class Hierarchy

We define yet another category which is now parameterized by two
classes:

cat SubClass (c1, c2 : Class);

then the definition:

fun Human Class : SubClass Human Agent;

asserts that Human is a sub class of Agent.

Note: We have a unique id for the assertion!
(Named Graphs in RDF?)



Inheritance - reflexive transitive closure

We need two ”inference rules”:

cat Inherits (c1, c2 : Class);

fun inhz : (c : Class) → Inherits c c;

inhs : (c1, c2, c3 : Class) → SubClass c1 c2

→ Inherits c2 c3 → Inherits c1 c3;



Generalized Instances

If class c1 is a sub-class of c2 then every instance of c1 is also an
instance of c2:

cat El Class;

fun el : (c1, c2 : Class) → Inherits c1 c2 → Ind c1 → El c2;



Functions

In SUMO the functions are just instances of class Function:

(instance RadiusFn Function)

(domain RadiusFn 1 Circle)

but in GF they have different types:

fun RadiusFn : El Circle → Ind LengthMeasure;



Predicates

Similarly the predicates are instances of class Predicate:

(instance address BinaryPredicate)

(domain address 1 Agent)

(domain address 2 Address)

Just like with the function but now the return type is different.

cat Formula

fun address : El Agent → El Address → Formula;



Some logical operators

Quantifiers:

cat Var Class;

fun exists : (c : Class) → (Var c → Formula) → Formula;

forall : (c : Class) → (Var c → Formula) → Formula;

Connectives:

fun not : Formula → Formula;

and , or , impl , equiv : Formula → Formula → Formula;



Axioms

The axioms in SUMO are some logical formulae:

(=> (instance?P Wading)

(exists (?W )

(and (instance ?W BodyOfWater)

(located ?P ?W ))))

which we turn into abstract syntax trees in GF:

forall Wading (\P →
exists BodyOfWater (\W → located (var P) (var W )))

Note how the type information is handled in GF and
in SUMO!



Semantic Disambiguation and Nonsense Filtering

The abstract syntax for sentence like this:
for every human X . . . X has more than 2 Mb of memory

is

forall Human (\X → . . . (el Human Computer ? X ) . . .)

But this will be rejected by the type checker because the meta
variable cannot be resolved:

? : Inherits Human Computer



1 Introduction

2 The Ontology

3 The Controlled Language
SUMO approach
GF approach

4 Demo

5 Directions



1 Introduction

2 The Ontology

3 The Controlled Language
SUMO approach
GF approach

4 Demo

5 Directions



SUMO approach

natural language generation through combination of string
templates

covers most of Merge - the main SUMO ontology

available in 10 languages

hand-written



SUMO approach - Problems

cannot model phonetic mutations

(format fr origin "%1 %nne a %npas pour &%origine
%2")

generates “X ne a pas pour origine Y”
instead of “X n’a pas pour origine Y” in French.



SUMO approach - Problems (continued)

cannot model gender agreement

(format ro SquareRootFn "radacina & %square%t
patrata a lui %%1")
(format ro TangentFn "&%tangent%ttangenta lui %1")

generates “tangenta lui radacina patrata a lui X”
instead of “tangenta radacinii patrate a lui X” in Romanian.

(the tangent of the square root of X)



SUMO approach - Problems(cont’d)

cannot assign gender to variables (solved with GF)

forall Animal (\A → exists Animal (\B → smaller B
A))
forall House (\A → exists House (\B → smaller B A))

should generate
“pour chaque animal A il existe un animal B tel que B est

plus petit que A”
and

“pour chaque maison A il existe une maison B telle que B
est plus petite que A”
in French.



1 Introduction

2 The Ontology

3 The Controlled Language
SUMO approach
GF approach

4 Demo

5 Directions



GF approach

automatic for concepts - from their SUMO name (English)

semi-automatic for relations

optimizations for elegant rendering of formulas

verbalizations for higher-order functions (not in the original
SUMO NLG)

verbalizations for instance and subclass declarations (not in
the original SUMO NLG)

reusable when adding new languages

syntactically correct and more readable



GF approach - Examples

higher-order functions

Abs EquivalenceRelation Entity (\x , y → equal x y)
Eng ”x is equal to y” is an equivalence relation

instance declarations

Abs instStm PrimaryColor Blue
Eng blue is an instance of colour

subclass declarations

Abs subClassStm Beverage Food Beverage Class
Eng beverage is a subclass of food



GF approach - Examples

SUMO

“for all unique list ?LIST holds for all ?NUMBER1,
?NUMBER2 holds If ?NUMBER1th element of ?LIST” is
equal to ”?NUMBER2th element of ?LIST”, then
?NUMBER1 is equal to ?NUMBER2 “

GF

“ for every unique list LIST, every positive integer NUMBER2
and every positive integer NUMBER1 we have that if the
element with number NUMBER1 in LIST is equal to the
element with number NUMBER2 in LIST, then NUMBER1 is
equal to NUMBER2”



1 Introduction

2 The Ontology

3 The Controlled Language
SUMO approach
GF approach

4 Demo

5 Directions



Demo

There is a new user interface for GF where the user
could write new axioms and explore the ontology. If
the axioms are not type correct the error is reported
to the user.



1 Introduction

2 The Ontology

3 The Controlled Language
SUMO approach
GF approach

4 Demo

5 Directions



Directions

The current language follows too strictly the abstract syntax
of the underlying logical formulae. It would be nice to make
the language more natural.

Some transfer would be needed from the user language to the
core logical language.

A rendering to the logical language is still a useful tool for the
user.


	Introduction
	The Ontology
	The Controlled Language
	SUMO approach
	GF approach

	Demo
	Directions

