
Playing Nomic using a
Controlled Natural Language

John J. Camilleri Gordon J. Pace Michael Rosner

University of Malta

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 1 / 23

Objectives of the Work

Last year we spoke about a CNL for contract specification, enabling
analysis of contracts . . .

Controlled syntax aids much towards easier parsing and generation of
text.
Analysis is also possible, but it is much dependent on semantics;
and requires knowledge of the underlying domain.
The objective this year was therefore to study the use of a controlled
natural language in a controlled semantic domain.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 2 / 23

More Concretely. . .

We investigate the use of a CNL to arbitrate playing Nomic, a game
based on contract enforcement and amendement:

Design a CNL for the contracts and develop it in GF;
Give the language a semantics to enable exact analysis;
Develop a game engine arbitrating amongst players participating in the
game.

But most importantly, we limit the domain of application to enable full
arbitration of the game.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 3 / 23

Developing a CNL

Various issues may need to be addressed when identifying a CNL:
Syntax of the CNL
Basic concepts to be combined using the language syntax (a domain
context)
Semantics of the operators of the language
Semantics of the underlying domain context
Other information e.g. what constitutes simplicity of CNL sentences.

The relative importance of these issues depends on the intended use:
Parsing: syntax, basic concepts.
Generation: syntax, basic concepts, other information.
Superficial analysis: semantics of operators.
Deep analysis: semantics of operators and underlying domain.
Feedback from analysis: requires a combination of generation and
analysis.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 4 / 23

Analysis: An Example

Contracts written in a language with three contractual operators:
obligation, permission and prohibition.
Analysis is required to identify conflicting clauses.

Operator Level Conflict:

“John is obliged to read a book.”
is in conflict with

“John is forbidden from reading a book.”

Domain Level Conflicts:

“John is obliged to read a book.”
is in conflict with

“John is forbidden from opening a book.”

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 5 / 23

Contracts

A contract can be seen as:
1 an agreement between a number of parties;
2 documents the regulation of their actions or behaviour.
3 may change but according to a set of rules (possibly internally

encoded).
Contracts are sometimes seen as a set of properties that a system
must satisfy, but this view does not facilitate reasoning about the
contract e.g.

1 How to analyse a contract into its component parts: what are the
obligations and rights of the parties?

2 At a given stage during contract execution, what are the currently
undischarged obligations in the contract?

3 Reasoning about total behaviour of a system including exceptional
cases such as Whenever clause (a) is violated, the user is prohibited
from obtaining the service.

To facilitate such reasoning a contract must be regarded as a formal
object — an instance of a contract language.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 6 / 23

Games: A Controlled Domain for Contracts?

The rules of a game can be seen as a fixed contract, regulating player
behaviour.
Game rules can be formalised.
Hence a formalised set of game rules could provide a useful handle on
the notion of a formal contract.
Which game?

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 7 / 23

Nomic

Nomic is a game invented by Peter Suber in 1982 about contract
enforcement and evolution
The rules of Nomic allow for the players to actively change the rules
themselves.
An Initial Set of rules regulates the rule-changing process.
One substantive rule (on how to earn points toward winning); but this
rule is deliberately boring so that players will quickly amend it to
please themselves.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 8 / 23

Nomic: Initial Ruleset

101. All players must always abide by all the rules then in effect, in the
form in which they are then in effect. The rules in the Initial Set
are in effect whenever a game begins. The Initial Set consists of
Rules 101-116 (immutable) and 201-213 (mutable).

102. Initially rules in the 100’s are immutable and rules in the 200’s are
mutable. Rules subsequently enacted or transmuted (that is,
changed from immutable to mutable or vice versa) may be
immutable or mutable regardless of their numbers, and rules in the
Initial Set may be transmuted regardless of their numbers.

207. Each player always has exactly one vote.

209. At no time may there be more than 25 mutable rules.

213. If the rules are changed so that further play is impossible, or if the
legality of a move cannot be determined with finality, or if by the
Judge’s best reasoning, not overruled, a move appears equally legal
and illegal, then the first player unable to complete a turn is the
winner.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 9 / 23

Nomic

In real life, Nomic rules can refer to anything:
Real-world: the number of buttons on the player’s shirt.
Game-specific concepts: the number of points a player has amassed.
Contract-specific concepts: whether a player is currently permitted to
propose a change to a particular rule.

The challenges in implementing Nomic to be automatically arbitrated
are threefold:

Processing user proposed contracts;
Enforcing the contracts;
Reasoning about real-life concepts.

The only previous reasonable implementation of Nomic was PerlNomic
which does not use natural language input.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 10 / 23

BanaNomic

BanaNomic is an attempt to reduce Nomic to a computer-regulated
subset, retaining a natural language input interface.
The players are monkeys living in a tree fighting to pick bananas and
protect their stash.
To enable computer arbitration we:

Eliminate references to the real-world, limiting the concepts to (i)
game-internal states e.g. how high a monkey has climbed, the number
of bananas it owns; and (ii) information about the state of the game
e.g. John is permitted to change rule 1.
Restrict the input to a controlled natural language.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 11 / 23

A Deontic Logic for the Game Rules

Deontic logic enables the expression of and reason about notions such
as permission, obligation and prohibition.
Typically these notions are expressed using special modal operators:

Fp — it is forbidden that p
Op — it is obligatory that p
Pp — it is permitted that p

The logic we develop is action-based (ought-to-do) as opposed to
state-based (ought-to-be).
It also contains a notion of time.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 12 / 23

The Logic

The logic is based on a limited number of well-defined basic actions
which may be tagged with their subject and object e.g.
throwBanana(John, Gordon).
Action expressions may be used to define compound behaviour e.g.
throwBanana(John, Gordon) ∧ pickBanana(Mike).
Deontic operators may be applied to these expressions e.g.
F(pickBanana(Paul)).
Deontic statements can be combined together with temporal operators
e.g. 3[0, 10] O(throwBanana(Gordon, John)).
Quantification (at the contract clause level) is allowed through the use
of a placeholder ∗ e.g. F(throwBanana(∗,John)).

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 13 / 23

Syntax of the Logic

Clause ::= Ok | Fail

| O(ActionExpression) | P(ActionExpression) | F(ActionExpression)
| Clause+ Clause | Clause ∧ Clause
| Clause C Query B Clause
| Clause J Clause I Clause
| 3[Time,Time]Clause
| 2[Time,Time]Clause

Basic Contracts
The trivially accepted contract Ok and trivially refuted contract Fail .

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 14 / 23

Syntax of the Logic

Clause ::= Ok | Fail
| O(ActionExpression) | P(ActionExpression) | F(ActionExpression)

| Clause+ Clause | Clause ∧ Clause
| Clause C Query B Clause
| Clause J Clause I Clause
| 3[Time,Time]Clause
| 2[Time,Time]Clause

Deontic Operators
Obligations, Permissions and Forbidden actions (prohibitions).

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 14 / 23

Syntax of the Logic

Clause ::= Ok | Fail
| O(ActionExpression) | P(ActionExpression) | F(ActionExpression)
| Clause+ Clause | Clause ∧ Clause
| Clause C Query B Clause

| Clause J Clause I Clause
| 3[Time,Time]Clause
| 2[Time,Time]Clause

Choice, Conjunction, and Conditions
Standard regular expression-like contract combinators.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 14 / 23

Syntax of the Logic

Clause ::= Ok | Fail
| O(ActionExpression) | P(ActionExpression) | F(ActionExpression)
| Clause+ Clause | Clause ∧ Clause
| Clause C Query B Clause
| Clause J Clause I Clause

| 3[Time,Time]Clause
| 2[Time,Time]Clause

Sequentiality
Follow up a contract by another, depending on whether it was satisfied
(sequential composition) or broken (reparation).

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 14 / 23

Syntax of the Logic

Clause ::= Ok | Fail
| O(ActionExpression) | P(ActionExpression) | F(ActionExpression)
| Clause+ Clause | Clause ∧ Clause
| Clause C Query B Clause
| Clause J Clause I Clause
| 3[Time,Time]Clause
| 2[Time,Time]Clause

Timing
Restricted temporal operators.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 14 / 23

Syntax of the Logic

Clause ::= Ok | Fail
| O(ActionExpression) | P(ActionExpression) | F(ActionExpression)
| Clause+ Clause | Clause ∧ Clause
| Clause C Query B Clause
| Clause J Clause I Clause
| 3[Time,Time]Clause
| 2[Time,Time]Clause

Fake block
nothing here

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 14 / 23

Power and Delegation

The notion of self-amendment, and power to change contract clauses
is achieved by using two special actions:

1 enact(player, position, clause) is the action of the player enacting a
clause at the identified position in the contract.

2 abolish(player, position) is the action of the player abolishing the clause
at the identified position.

Combining the deontic operators and these actions enables the
expression of power information:

John is obliged to abolish a rule: O(abolish(John,*)).
John is not allowed to enact any rules: 2[0,∞] F(enact(John, ∗, ∗)).

Nesting these clauses enables us to talk about delegation e.g. John is
obliged to enact a rule which forbids Mary from withdrawing rule 5.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 15 / 23

BanaL

We have developed BanaL — a CNL for Bananomic.
It is designed as a NL representation for Bananomic rules and actions.
It has been implemented in GF.
Abstract syntax is very close to underlying logic.
Concrete syntax permits different realisations of similar underlying
logical constructs.
For example, different natural language variants of BanaL could be
created by defining a separate concrete syntax for each NL version.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 16 / 23

Abstract Syntax - Examples

C_Deontic (DE_Obliged "Paul"
(A_Action (An_ThrowBanana "Ringo")))

C_Query (Q_PointsLt "John" 5)
(C_Deontic (DE_Permitted "John" (A_Action An_Pick)))
C_Empty

C_Conditional
(DE_Permitted "George" (A_Action An_Enact))
C_Empty
(C_Sometimes T_None (T_Time 9)

(DE_Obliged "George" (A_Action An_Abolish)))

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 17 / 23

Concrete Syntax - Examples

Paul is obliged to throw a banana at Ringo
If John’s points are less than 5 then John is permitted to pick a banana
If George is permitted to enact a rule the (nothing) otherwise at some
point before time 9 George is obliged to abolish a rule

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 18 / 23

The Implementation

Playable, web-based version of BanaNomic.
Contract logic processor on the backend, built from scratch in Haskell.
CNL interface (generation and analysis) on the frontend, using
Grammatical Framework (GF).

Players had one turn per day to:
Perform basic actions (climb, pick etc.)
Abolish / enact a rule

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 19 / 23

The Implementation

Graphical representation of game state.
List of current rules and effective obligations, permissions and
prohibitions.
Drop-down auto-completion for aiding the construction of
grammatical CNL phrases.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 20 / 23

The CNL: Discussion

BanaL is very close to the underlying logic.
Main advantage is that not only is it easy to carry out the translation
between CNL and logic but that this works in both directions.
Main disadvantage is that the “success" of BanaL results from a highly
delicate balance between the simplicity of the logic and the
“naturalness", and hence acceptability, of the CNL.
If the underlying logic becomes more complex, the CNL must expand
in order to retain naturalness.

Example: bananas can be large, small, or rotten, (and have different
values to the holder).

If the CNL becomes more complex, then the underlying logic must
accommodate the the enhanced semantic potential.

The CNL includes numbers (e.g. “three bananas").

There is no end to the ways in which the CNL might be expanded.

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 21 / 23

What Counts as Natural in CNLs?

We are accustomed to assuming that CNLs are simply reduced forms
of NLs – simpler but essentially made of the same stuff.
It may be interesting to speculate on the use of “stuff" which is
natural, which has a direct bearing on semantics, but is not normally
considered as part of natural language.
The elements underlying web-page styles and web-page design.

Examples include: headings, lists, indentation, highlighting etc.

Formalisation is not the issue.
The issue is the largely unexplored relation between the layout and the
semantics, which is made use of, in an informal way, by e.g. legislators
(legal documents) and mathematicians (proofs).
Is this an area in which CNLs might profitably be applied?

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 22 / 23

The Semantics: Discussion

Despite the controlled semantic domain, there are still many concepts
not encoded in the contracts and enforced e.g. order of play.
Can these be all made explicit?
What about the semantics of the language?

PerlNomic enforces the semantics of Perl on the contracts.
We implicitly enforce an operational semantics of the contract
language.
Can the semantics be encoded in the contract — making them also
mutable according to the contract itself? Does this self-referentiality
lead to any contradictions?

Camilleri, Pace & Rosner (UoM) Playing Nomic using a CNL CNL September 2010 23 / 23

