
First-Order Reasoning
for

Attempto Controlled English

Norbert E. Fuchs
Department of Informatics & Institute of Computational Linguistics

University of Zurich
fuchs@ifi.uzh.ch

http://attempto.ifi.uzh.ch

Second Workshop on Controlled Natural Language CNL 2010
Marettimo Island, 13-15 September 2010

Four Approaches for Reasoning in
Attempto Controlled English (ACE)

2

• Tobias Kuhnʼs AceRules is a forward-chaining rule system that calculates the complete answer
set from rules and facts expressed in a subset of ACE that includes logical negation and
negation-as-failure.

• Automatically translate (a subset of) the ACE text into OWL/SWRL and use one of the reasoners
for OWL/SWRL.

The ACE → OWL/SWRL translation is offered by the Attempto Parsing Engine APE.

This approach is used by Kaarel Kaljurandʼs ACE View and Tobias Kuhnʼs AceWiki.

• Automatically translate the ACE text into Sutcliffeʼs TPTP notation and submit it to one of the
reasoners available in the TPTP system.

The ACE → TPTP translation is offered by the Attempto Parsing Engine APE and by the TPTP
web-interface.

On the basis of this approach Nelson Dellis developed CNL-WKR that is able to answer ACE
questions from external knowledge sources.

• Use the Attempto Reasoner RACE – and this is what I will talk about.

Contents

3

• Requirements for RACE

• From the Model Generator Satchmo to RACE

• Overview of RACE

• All Things Considered

• Decidability, Efficiency and Other Aspects

• Outlook

 Requirements for RACE

Requirements for the Attempto Reasoner RACE

5

• RACE should eventually cover the first-order subset of ACE, that is all ACE constructs with the
exception of imperative sentences, negation-as-failure and the modal operators may and should.

• All input and output of RACE should be in ACE or in natural language.

• RACE should give user-friendly justifications for proofs.

• RACE should hide its internal working from the casual user.

• RACE should generate all proofs.

• RACE should allow for auxiliary axioms to express background knowledge that cannot at all, or
not easily, be expressed in ACE."

• There should be an interface to evaluable functions, e.g. arithmetic.

• RACE should combine theorem proving with model generation.

 From the Model Generator Satchmo to RACE

Satchmo as Basis for RACE

7

Satchmo (Manthey & Bry 1988)

• basically a model generator, can also be used as theorem prover

• uses first-order clauses Body → Head

- Body is true or a conjunction of logical atoms, Head is false or a disjunction of logical
atoms

- no explicit negation, instead implication to false (¬ A ≡ A → false)

• Satchmo generates a minimal finite Herbrand model of the clauses (if one exists)

• is correct for unsatisfiability if the clauses are range-restricted

• is complete for unsatisfiability if used level-saturated

• efficient Prolog implementation allowing for

- local extensions and modifications

- direct calls of Prolog predicates (user-defined, built-in, library)

Original Satchmo

8

RACE Extensions of Satchmo

9

RACE is based on Satchmo and contains many extensions and modifications to satisfy the requirements

• RACE's extensions should preserve Satchmoʼs correctness, its completeness and – as far as possible –
its efficiency

• for satisfiable clauses both Satchmo and RACE generate a minimal finite Herbrand model

• for unsatisfiable clauses

- Satchmo stops immediately if it detects unsatisfiability

- RACE finds all minimal unsatisfiable subsets of the clauses

• proof justification

- Satchmo just succeeds or fails, meaning that the clauses are satisfiable or not satisfiable

- RACE generates for each proof a report showing which minimal subsets of the ACE axioms were
used to deduce the ACE theorem

• input and output

- Satchmo works on clauses given as Prolog facts and has no output

- RACE translates ACE axioms and theorems into clauses and outputs the results in ACE

 Overview of RACE

Executive Summary of RACE

11

• RACE performs deductions on ACE texts

• basic proof procedure: if an ACE text (= set of sentences) is inconsistent then RACE
identifies all minimal inconsistent subsets

• variants of the basic proof procedure allow RACE to

- prove that one ACE text (axioms) entails another ACE text (theorems)

- answer ACE queries on the basis of an ACE text

• RACE provides a proof justification in ACE

• RACE finds all proofs

• RACE is running on the dedicated Attempto server and can be accessed via a web-
service or a web-interface

From ACE to Satchmo Clauses

12

• ACE text

John is a man. Every man is a human. No cat is a human.

• Attempto Parsing Engine APE translates ACE text into DRS (here pretty-printed)

[A, B]
predicate(B, be, named(John), A)-1/2
object(A, man, countable, na, eq, 1)-1/4

 [C]
 object(C, man, countable, na, eq, 1)-2/2
 =>
 [D, E]
 object(D, human, countable, na, eq, 1)-2/5
 predicate(E, be, C, D)-2/3
 [F]
 object(F, cat, countable, na, eq, 1)-3/2
 =>
 []
 NOT
 [G, H]
 object(G, human, countable, na, eq, 1)-3/5
 predicate(H, be, F, G)-3/3

From ACE to Satchmo Clauses

13

• standard translation of DRS into FOL statement

exists(A, exists(B, &(object(A, man, countable, na, eq, 1)-1/4, &(predicate(B, be, named('John'),
A)-1/2, &(forall(C, =>(object(C, man, countable, na, eq, 1)-2/2, exists(D, exists(E, &(object(D,
human, countable, na, eq, 1)-2/5, predicate(E, be, C, D)-2/3))))), forall(F, =>(object(F, cat,
countable, na, eq, 1)-3/2, -(exists(G, exists(H, &(object(G, human, countable, na, eq, 1)-3/5,
predicate(H, be, F, G)-3/3)))))))))))

• variant of standard translation of FOL statement into (Satchmo) clauses

satchmo_clause(true, predicate(sk1, sk3, be_NP, named('John'), sk2), [axiom(1)])
satchmo_clause(true, object(sk1, sk2, man, countable, na, eq, 1), [axiom(1)])
satchmo_clause(object(sk1, A, man, countable, na, eq, 1), (object(sk1, sk4(A), human,
countable, na, eq, 1), predicate(sk1, sk5(A), be_NP, A, sk4(A))), [axiom(2)])
satchmo_clause((object(sk1, A, cat, countable, na, eq, 1), object(sk1, B, human, countable, na,
eq, 1), predicate(sk1, C, be_NP, A, B)), fail, [axiom(3)])

How Does RACE Work?

14

Web-Interface: Consistency Checking

15

Web-Interface: Theorem Proving

16

Web-Interface: Query Answering

17

RACE Parameters

18

• according to the Attempto philosophy, RACE should not require any knowledge of theorem
proving in general, or RACE's internal working in particular

• nevertheless, RACE offers a number of parameters that

- enable/disable distributive deductions from collective plurals

- enable/disable the display of auxiliary axioms used during a proof

- enable/disable consistency checking the axioms for proofs and query answering

- limit the search of the proof-tree

• default settings allow most users to ignore the parameters

Parameter "Show First Proofs Only"

19

Parameter "Show First Proofs Only"

20

Auxiliary Axioms for RACE

21

• RACE needs domain-independent background knowledge that – in general – cannot be expressed in ACE

- relations between the plural and the singular form of nouns

- operations on natural numbers and arithmetic

- semantics of generalised quantifiers (at least, more than, …)

- interpretation of under-represented language elements, e.g. copula to be

- ...

• access to the DRS notation allows us to express this knowledge as auxiliary axioms in the form of

- first-order formulas

- Prolog clauses

• auxiliary axioms can also be used to implement evaluable functions or to access external knowledge sources

Proving with Auxiliary Axioms

22

Why? Why Not?

23

As we have seen, RACE answers the question "Why?" – but it also answers the question "Why Not?".

• if ACE theorems/queries can be deduced from ACE axioms then RACE answers the question "why?"

- RACE lists the ACE axioms needed to deduce the ACE theorems/queries

- optionally, RACE lists the auxiliary axioms used in the deduction

• if ACE theorems/queries cannot be deduced from ACE axioms then RACE answers the question "why
not?"

- RACE lists the words or constructs of the ACE theorem/query that could not be proved

- list is generated from the set difference {model of the theorem/query} – {model of the axioms}

Why Not?

24

missing words

Why Not?

25

missing constructs

 All Things Considered

Data Base Query

27

Given the ACE sentences

" John has a red apple.
! John has a green apple.
! John has a yellow apple.

show that

" John has an apple.

Modus Ponens

28

Given the ACE sentences

" Every man is a human.
! John is a man.

show that

" John is a human.

More Modus Ponens
Lewis Carroll's Grocer Puzzle

29

Given the ACE sentences

! Every honest and industrious person is healthy.
! No grocer is healthy.
! Every industrious grocer is honest.
! Every cyclist is industrious.
! Every unhealthy cyclist is dishonest.
! No healthy person is unhealthy.
! No honest person is dishonest.
! Every grocer is a person.
! Every cyclist is a person.

show that

! No grocer is a cyclist.

Invoking RACE

30

Variations of Query Answering

31

yes/no-queries ask for the existence or non-existence of a specified situation

Variations of Query Answering

32

wh-queries (who, whose, what, which) ask for noun phrases

Variations of Query Answering

33

how-queries ask for adverbs and prepositional phrases

Variations of Query Answering

34

where- and when-queries ask for adverbs and prepositional phrases

since ACE does not use thematic roles – that would allow RACE to distinguish location, time, manner, instrument etc. – the
where- and when-queries are interpreted as the less specific how-queries

Deductions from Plurals

35

Given the ACE sentence

" John has three apples.

show that

" John has one apple.

The deduction seems obvious to us humans – but RACE doesn't do it.

To have RACE perform this deduction information needs to be provided that links the plural apples of the axiom to the singular apple
of the theorem.

Deductions from Plurals
Adding the Missing Information as an ACE Axiom

36

Given the ACE sentence

" John has three apples.
" If John has three apples then he has one apple.

show that

" John has one apple.

Now RACE does the deduction.

The approach works for this case, but obviously cannot be generalised.

Deductions from Plurals
Auxiliary Axioms

37

To relate singulars and collective plurals of countable nouns we can make use of their logical representations that
are introduced by the translation of an ACE text into a DRS.

• while normally nouns like apple are represented logically as predicates – for instance apple(A) – in our DRS
notation nouns are represented as constant arguments of the predefined predicate object/6

- an apple is represented as object(A, apple, countable, na, eq, 1)

- three apples is represented as object(B, apple, countable, na, eq, 3)

• singulars and collective plurals of countable nouns get the same representation with appropriate cardinalities

• this representation allows us to logically express the relation between collective plurals and singulars of all
countable nouns – expressed by the variable Noun – as the auxiliary axiom

∀ A,Noun,N (object(A, Noun, countable, na, eq, N) ∧ N>1 → object(A, Noun, countable, na, eq, 1))

• or more generally

∀ A,Noun,N1,N2 (object(A, Noun, countable, na, eq, N1) ∧ N1>N2 → object(A, Noun, countable, na, eq, N2))

Deductions from Plurals
Auxiliary Axioms

38

Having an auxiliary axiom relating singulars and collective plurals of nouns, we must distinguish when to use
the axiom and when not to use it.

• Clearly we want: John has three apples. |– John has one apple.

• Probably we do not want: Five men lift a piano. |– A man lifts a piano.

RACE's parameters control when a deduction from a collective plural is enabled or disabled. Default settings
conform to the most common use.

• parameter si "distributive deduction from a collective plural actings as the subject of an intransitive verb"
is per default enabled (Three cats sleep. |– Two cats sleep.)

• parameter si "distributive deduction from a collective plural actings as the subject of an transitive verb"
is per default disabled (Five men lift a piano. |/– A man lifts a piano.)

• parameter ot "distributive deduction from a collective plural actings as the object of an transitive verb"
is per default enabled (John has three apples. |– John has one apple.)

• ...

More on Auxiliary Axioms

39

• auxiliary axioms can be formulated for other cases involving nouns – e.g. generalised quantifiers and distributive
plurals – and for other word classes like the copula to be

• much of the deductive power of RACE stems from auxiliary axioms which allows us to state

axioms |- theorems

if and only if

{model of theorems} ⊆ {model of axioms ∪ additional model derived via auxiliary axioms}

• RACE uses auxiliary axioms expressed as first-order formulas that are translated into Satchmo clauses, or as Prolog
clauses that are called directly

• auxiliary axioms expressed as Prolog clauses can also implement evaluable functions or access external knowledge
sources

• currently there are about 70 auxiliary axioms, and the number is growing

• auxiliary axioms also have their problems

- there can be deductions that only differ in the auxiliary axioms being used – which wastes runtime

- auxiliary axioms can interact to produce incorrect deductions; RACE mutually excludes them

Deductions from Plurals
Using Auxiliary Axioms

40

Given the ACE sentence

" John has three apples.

show that

" John has one apple.

RACE performs the deduction using the auxiliary axiom cd1 that is expressed as a Prolog clause.

Deductions from Generalised Quantifiers

41

Given the ACE sentence

" John has at least three apples.

show that

" John has more than 2 apples.

RACE performs the deduction using the auxiliary axiom cd8.

Deductions from Conjunctive Plurals

42

Given the ACE sentence

" John and Mary wait.

show that

" Mary waits.

The deduction seems obvious – but checking the respective DRSs one realises that RACE cannot
perform it directly, nor with the auxiliary axioms for collective plurals introduced so far.

" # John and Mary wait.
" [A, B]
! has_part(B, named(John))
! has_part(B, named(Mary))
! object(B, na, countable, na, eq, 2)
! predicate(A, wait, B)

" # Mary waits.
! [A]
! predicate(A, wait, named(Mary))

Another auxiliary axiom is needed.

Deductions from Conjunctive Plurals

43

Given the ACE sentence

" John and Mary wait.

show that

" Mary waits.

RACE performs the deduction using the auxiliary axiom npc1.

Aggregation
Counting Cats

44

just adding 2 and 3 cats

Note added after the presentation:
The representation tacitly assumes that the classes "red cat" and "black cat" are distinct.
Some participants of CNL 2010 pointed out that this should better be made explicit, e.g. by "No red cat is a black cat.".

Aggregation
Counting Cats and Dogs

45

adding elements of the super-class animal

Note added after the presentation:
The representation on this and the following two slides tacitly assumes that the classes "cat" and "dog" are distinct.
Some participants of CNL 2010 pointed out that this should better be made explicit, e.g. by "No cat is a dog.".

Aggregation
Counting Cats and Dogs

46

Aggregation & Conjunctive Plurals
Counting Dogs

47

Given the ACE sentence

" Mary has a peaceful dog and a dog that bites the postman.

show that

" Mary has two dogs.

RACE performs the deduction using the auxiliary axioms npc3 and agg1.

48

ACE provides modal auxiliaries for possibility and necessity, as well as sentence subordination ...

A man can wait. A customer must wait. John believes that a customer waits.

... which extend the DRS language by the three operators diamond <>, box [] and colon :

[A, B, C, D]
object(A, man, countable, na, eq, 1)-1/2
 <>
 [E]
 predicate(E, wait, A)-1/4
object(B, customer, countable, na, eq, 1)-2/2
 []
 [F]
 predicate(F, wait, B)-2/4
predicate(C, believe, named(John), D)-3/2
 D:
 [G, H]
 object(G, customer, countable, na, eq, 1)-3/5
 predicate(H, wait, G)-3/6

Modality

Deductions with Modality

49

Given the ACE sentence

" John waits.

show that

" John can wait.

How can we prove that?

One possibility is to use one of the axioms of propositional modal logic, in this case

" A → <> A

but this approach doesn't work for deriving

" John can wait.

from

" John waits patiently in the hall.

that requires a more powerful logic.

50

Modal logic can be mapped to first-order predicate logic via the so-called standard translation

• standard translation adds to each logical atom an argument that stands for a "possible world"

• possible worlds are connected by a binary accessibility relation

• RACE assumes the accessibility relation to be reflexive, symmetric and transitive (= equivalence relation)

• standard translation DRS → FOL with Johan Bos' extension for sentence subordination (cf. rule 9)

Extended Standard Translation to
Possible World Semantics

Modality: Example Deductions

51

A |– B and modality axiom B |– <> B (if B then it is possible that B)

Modality: Example Deductions

52

modality axiom [] A |– ¬ <> ¬ A (if A is necessary then it is not possible that not A)

Sentence Subordination: Example Deductions

53

John promises that he waits. = John promises to wait.

Sentence Subordination & Modality

54

combining

• sentence subordination
• modality axiom A → <> A
• modality axiom [] A → <> A

 Decidability, Efficiency and Other Aspects

Decidability of ACE

56

• ACE has been developed for high expressivity

• complexity and decidability considerations have been of minor concern

• undecidable English fragment (Pratt-Hartman & Third 2006)

- Cop + Rel + TV + GA

- Cop = singular, existentially/universally quantified nouns, predicative adjectives, copula with/without
negation, Rel = relative clauses, TV = transitive verbs with/without negation, GA = reflexive/non-
reflexive pronouns as anaphors, resolution by co-indexing anaphors and antecedent noun phrases

• ACE is not decidable since already its FOL subset is larger than this English fragment"

• some decidable subsets of ACE

- Cop + Rel + TV + DTV " (DTV = ditransitive verbs with/without negation)

- translation ACE ⇔ OWL defines a decidable subset of ACE

- do not allow for explicit attributive adjectives, adverbs and prepositional phrases

Efficiency Considerations

57

• ACE is undecidable

- RACE may not terminate

- RACE uses a time-out limit calculated on the number of Satchmo clauses" "

• RACE uses forward-chaining of Satchmo clauses – i.e. eager evaluation – whose worst-case time
complexity is O(n2) where n is the number of clauses" "

• reduction of the number of clauses that participate in forward-chaining

- simplifying the DRS representation can reduce the number of clauses"

- clause compaction generates a smaller number of more complex clauses
(clause head is a disjunction of conjunctions of logical atoms, clause body is a conjunction of
disjunctions of logical atoms)

- eliminate after the first round of forward-reasoning the clauses with the body true that cannot be fired
again

- using Prolog auxiliary axioms instead of FOL auxiliary axioms – that are translated into clauses –
reduces the number of clauses and replaces eager evaluation by lazy evaluation for these axioms

Further Efficiency Considerations

58

• other means

- complement splitting – given a disjunction (A ∨ B), one investigates (A ∧ ¬B), respectively (¬A ∧ B)
– though complement splitting is not guaranteed to increase the efficiency in each case"

- intelligent search for clauses that could be fired in the next round of forward chaining

- Rete algorithm

- good Prolog programming practices, specifically optimal clause indexing"

• when proving theorems and answering questions with large sets of axioms users may want to set the
parameters that

- switch off the consistency check of axioms (RACE parameter scca)

- limit the search of the proof-tree (RACE parameter fpo)" "

Lewis Carroll's Grocer Puzzle
Runtime Comparisons

59

Lewis Carroll's Grocer Puzzle: influence of the parameters fpo and scca on the runtime

Attempto Server MacBook Pro

no parameter

fpo

scca

fpo & scca

650 ms 70 ms

480 ms 50 ms

440 ms 41 ms

280 ms 30 ms

Preventing Looping

60

• here is an excerpt from an ontology written by Kaarel Kaljurand

... Flossie is a mad cow. Every mad cow is a cow that eats the brain of a sheep. Every cow that eats the
brain of a sheep is a mad cow. ...

• since ACE does not offer a specific construct for equality, Karel expresses the equality of the two classes

A = mad cow and B = cow that eats the brain of a sheep

by the implications

A → B

B → A

which seems innocuous enough

• however, together with the fact

A

forward-reasoning in RACE leads to an infinite loop A, B, A, B, A, ...

• RACE contains a flexible loop detector that stops the loop after a predefined number of times " "

Reasoning Despite Loops

61

consistency checking

query answering"

•

Other Theoretical Aspects of RACE

62

RACE uses

• the unique name assumption, i.e. different names refer to different entities unless
explicitly stated otherwise (John is Harry.)

• the open world assumption, i.e. missing knowledge of the truth of an ACE sentence A,
respectively a failed proof of A, is not interpreted as ¬ A

 Outlook

Conclusions and Further Research

64

So far, so good – but many things remain to be done, for example

• mathematical operations: arithmetic, sets, lists, strings

• answering of wh-queries by showing substitutions (e.g. "who = John")

• hypothetical reasoning (“What happens if …?”)

• abductive reasoning (“Under which conditions happens ...?”)

• temporal reasoning, perhaps with event calculus

• executable specifications

• problems suggested by RACE users (legal language, contracts, business rules, ...)

• larger examples, possibly using external knowledge sources

• ...

