
MODELING OBJECT ORIENTED

SYSTEMS VIA CONTROLLED ENGLISHSYSTEMS VIA CONTROLLED ENGLISH

VERBALIZATION OF DESCRIPTION

LOGIC

CNL2010
Paweł Kapłański
Gdańsk University of Technology
Poland

1

CONTENT

¢ Software Engineering - The Problem
¢ Software Modeling - The Domain
¢ How to formalize OO software models
¢ Why Description Logic?

Why CNL instead of OCL?¢ Why CNL instead of OCL?
¢ My approach – what is done so far
¢ The Toolchain
¢ Possible future work
¢ Discussion

2

THE PROBLEM

¢ Software systems are more and more complex
� Without a support of formal-methods it is almost

impossible to trace and understand consequences of
even small change of design in a complex software
system. Strategic decisions that are made by
the authorities lack of information about the real the authorities lack of information about the real
state of the software product

¢ Software engineers are in general not familiar
with formal methods:
� They use natural language to describe constrains (in

comments)

3

SOFTWARE MODELING

¢ UML+OCL
� UML is a standard software modeling language nowadays
� Users of the UML can use OCL to specify constraints and

other expressions attached to their models

¢ LePUS3
� Capture and convey the building-blocks of object-oriented � Capture and convey the building-blocks of object-oriented

design
� Automatic verification of Design Patterns

¢ SEMAT Initiative
� Ivar Jacobson, Bertrand Meyer, and Richard Sole
� Identifies “Methods&Tools” as one of macro-trends in

modern Software Engineering
� Back to the Clean-Room methodologies
� Searching for a Kernel Language 4

SEMAT – KERNEL LANGUAGE

REQUIREMENTS

¢ The language can cover all relevant practices and
patterns, and their composition, in today’s methods.

¢ It supports composing them in different ways to
describe new method elements.

¢ It is extendible, allowing the description of yet-to-be
invented method elements and their elements (such invented method elements and their elements (such
as individual practices).

¢ The descriptions are easy to understand; the
language should be designed for the developer
community (not just process engineers and
academics).

¢ The language support simulating the application of
method elements.

¢ The language provide validation mechanisms. 5

THE DOMAIN

¢ What is a static structure (or a code structure) of
a computer program?
� Opposite to runtime-structure
� Well defined in terms of compilation-time to machine

codecode
� Not well defined from theoretical perspective

¢ Why is it important?
� Separates the computer program to design and

implementation
� The software design can be treated as an ontology
� Shifts imperative parts to declarative ones

6

DESCRIPTION LOGIC

¢ Mostly used in Semantic-Web
� The math behind OWL

¢ DL is decidable fragment of FOL (with additional
features)features)
� It is a core property for static structures

¢ Complexity vs. Responsiveness
� Effective reasoning implemented

¢ It is possible to Verbalize it in CNL
� ACE OWL
� CEDL –prototypical implementation in JavaCC

7

THE TOOLCHAIN

Model
Description

Model
 Description
Language

Source code

Parser
Source code
generator

Model
 Language

Model
subsumptions

S + A+
D + P

Description
Logic

Reasoner

Language
Parser

Parser generator Language
Generator

Reverce
engeenering
knowledge

Ontology

8

DL CONSTRUCTORS

9

The foundation of DL (Description Logic) together with concept of Semantic Web was discussed by Tim Berners Lee [1] and was intended to provide a mathematical background for the new wave of Internet applications. DL was selected because it is able to describe knowledge about world around us in the formal way, yet understandable by human. In DL - concepts are used to represent classes as sets of individuals, and roles (binary relations) represent its properties/attributes. Usually concepts are placed in the hierarchy formed by concept subsumption (the more specific concept inherits the properties of the more general one). One can build complex concept and role expressions (also simply called concepts and roles), by starting from a set of atomic symbols and then applying suitable constructors (see Fig.1).
The knowledge specification mechanism—the second component of the DL foundation—determines how to construct the DL knowledge base. The DL knowledge base is made of DL expressions that indicate the logical connection between different (possibly complex) concepts, instances and roles. There are two types of DL expressions: concept terminology (historically called TBox) and assertions (ABox) (see Fig.2.).

DL EXPRESSIONS

10

The third part of DL foundation is an automated reasoning which includes tasks like:
To form taxonomic DAG (Directed Acyclic Graph) of all atomic concepts
To determine subconcepts and individuals of specific complex concept
To determine all direct atomic subconcepts (children) or direct individuals of specific complex concept
To check whether two complex concepts are in subsumption relation
To check whether complex concept is satisfiable (can have instances)
To check whether instance is included in specific complex concept.
All these tasks are supported by specialized computable algorithms called Reasoners.

THE SEMANTIC OF OWL AND UML ARE

DIFFERENT

¢ How to map UML to OWL
� UML classes are like templates that define a runtime

object and its storage.
� OWL classes are like labels for concepts,
� There is no 1:1 full mapping (problems include � There is no 1:1 full mapping (problems include

aggregation and polymorphism)
� There is no way to describe high-level structures

¢ Diego Calvanese (2005): Mapping UML to
ALUNI.
� Reasoning on UML class diagrams

¢ OMG
� Metamodels of UML and OWL 11

THE ALTERNATIVE MAPPING

¢ Class as an instance
¢ it can be threaded as an instance in fact – in

some OO languages class is an runtime object -
reflexion

¢ We can build complex expressions in DL for ¢ We can build complex expressions in DL for
classes

12

BASIC OO MODEL

DOMAINS AND RANGES

13

CLASS AND OBJECT

14

CLASS INHERITANCE

15

PROPERTIES OF ROLES

materializemrealize,
materializeéextendmrealize

materialize(éextend)* mrealize

16

SIMPLE CONSTRAINS

¢ Abstract class

¢ Final class

The singleton

$realize.^

$extend.^

¢ The singleton

Singlethon

� realize.{Singlethon}� {[obj ect]}

Everything that realizes
Singlethon is one object

17

HIERACHIES

¢ Hierarchy of classes is a set that contain all
classes related with “extend” relationship

¢ If C is a class

� ¨m$include.{C}� ¨m$include.{C}

� includeéextendminclude,
� includeéextend-minclude

� HCº $include-.($include.{C}).

18

CLASS HIERARCHY

19

THE MODEL OF PART-WHOLE

¢ Modeled by a “have” role
� extendéhavemhave
� Implies that have-éextend-mhave-

� if between two classes C and D exists chain of
“extend” roles: {C}m$extend-.$extend-....$extend-.{D} “extend” roles: {C}m$extend .$extend$extend .{D}

� then it can be inferred that: $have-.{C}m$have-.{D}
� That means that everything that is had by C is had

also by D
� It can be interpreted as inheritance

20

THE AGGREGATION AND ITS

REPRESENTATION

C

D

0..2

obj ect� � mater iali ze.(class� {C})

� � 2 have.(obj ect� � mater ialize.(class� {D }))

Every object that materializes class
C has at most two objects that

realize class D.

21

While aggregation between object is done in runtime, classes can be a seen as useful specifications of its materializations. Using part-whole model it is possible to describe that some object that materialize a specific class aggregates other class materialization, and even by using number restriction one can provide exact numbers for modeled aggregation

PARTS OF CLASS AND PARTS OF OBJECT

+CM()

-CP

C

{C}� classC is a class.

{CP}� attr ibute� � have� .{C}

CP is an attribute
that is had by C.

{CM}� method� � have� .{C}

CM is a method
that is had by C.

+CM()=FCM

-CP=X

O

{O}� � mater iali ze.{C}

{O}� obj ect

O materializes C.

O is an object.

{X }� obj ect� � have� .{O}� � f i ll.{CP}

X is an object
that is had by O
and that fills CP.

{ } { }

{FCM}� f unction� � have� .{O}
� � f i ll.{CM}

FCM is a function
that is had by O
and that fills CM.

22

EXTENDING FUNCTION NAMES TO

SUPERIMPOSITIONS OF SIGNATURES AND

CLASSES

�

{FMC} {FND}

�

� � call.

f unction� � implement . �

� � have� .(obj ect� � mater ialize.{C})

{MC} f unction� � implement . �

� � have� .(obj ect� � mater ialize.{D})

{MD}
� � call.

� � call.
f unction� � implement . �

� � have� .(obj ect� � mater ialize.{C})

method� � identi f y� .{M }� � have� .{C} f unction� � implement . �

� � have� .(obj ect� � mater ialize.{D})

method� � identi f y� .{M }� � have� .{D }

� �

23

A
 C

L
A
S
S

24

CALL AND CREATE

+M()

C D

<<create>>

f unction� � implement .(method� � identi f y� .{M }� � have� .{C})� � have� .(obj ect� � mater ialize.{C}))
� � create.(obj ect� � mater ialize.{D })

Every function that implements a method (that is identified by M and had by C) that is
had by an object that materialize C creates an object that materializes D.

25

THE PRACTICAL PROBLEMS

¢ Inconsistencies between requirements, system
design, test cases and the source code that
appear in the process of software development

¢ Violations of design constraints and the existing
architectural style found in the source codearchitectural style found in the source code

¢ The effects of changes on the reliability
(traceability of the system) of the system and
analyze the risks of a change.

26

DESIGN PATTERNS

¢ Why we want to formalize Design Pattern?
� We can detect them in existing code
� We can check if there are no violations of DP
� We can reuse them – they become language

independentindependent
� With CNL we can use the natural language as a

design-pattern language

27

ADAPTER

¢ Adapter design pattern (often referred to as the
wrapper pattern or simply a wrapper) is a design
pattern that translates one interface for a class
into a compatible interface. An adapter allows
classes to work together that normally could not classes to work together that normally could not
because of incompatible interfaces, by providing
its interface to clients while using the original
interface. The adapter translates calls to its
interface into calls to the original interface, and
the amount of code necessary to do this is
typically small (...)

28

ADAPTER

29

FUTURE WORK

¢ The Tool – Ontology Aided Software Engeenering
(OASE)

¢ Other Ontologies in SW:
� Requirement specification� Requirement specification
� Run time testing - contracts

30

DISCUSSION

¢ …

31

