Codeco: A Grammar Notation for Controlled
Natural Language in Predictive Editors

Tobias Kuhn

Department of Informatics
University of Zurich

Second Workshop on Controlled Natural Language
15 September 2010
Marettimo (Italy)

Introduction

e Problem: Existing grammar frameworks do not work out
particularly well for CNLs.
e Reason:

e CNLs have essential differences to other languages (natural and

formal ones)
e To solve the writability problem, CNLs have to be embedded in
special tools with very specific requirements.

e Error messages and suggestions
e Predictive editors
e lLanguage generation

e Solution: A new grammar notation that is dedicated to CNLs
and predictive editors.

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo

2/25

CNL Grammar Requirements

Concreteness: CNL grammars should be fully formalized and
interpretable by computers.

Declarativeness: CNL grammars should not depend on a concrete
algorithm or implementation.

Lookahead Features: CNL grammars should allow for the retrieval
of possible next tokens for a partial text.

Anaphoric References: CNL grammars should allow for the
definition of nonlocal structures like anaphoric
references.

Implementability: CNL grammars should be easy to implement in
different programming languages.

Expressivity: CNL grammars should be sufficiently expressive to
express CNLs.

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 3/25

Lookahead Features

Predictive editors need to know which words can follow a partial text:

Every country that has a capital controls ...

text

proper name new variabie

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 4/25

Anaphoric References

e Anaphoric references in CNLs are resolvable in a deterministic
way:
A country contains an area that is not controlled by the country.
If a person X is a relative of a person Y then the person Y is a
relative of the person X.
John protects himself and Mary helps him.

e Anaphoric references that cannot be resolved should be
disallowed:
* Every area is controlled by it.
* The person X is a relative of the person Y.

e Scopes have to be considered too:

Every man protects a house from every enemy and does not
destroy ...
... himself.
. the house.
* ... the enemy.

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 5/25

Existing Grammar Frameworks

Grammar Frameworks for Natural Languages
Head-Driven Phrase Structure Grammars
Lexical-Functional Grammars
Tree-Adjoining Grammars
Combinatory Categorial Grammars
Dependency Grammars

. and many more

Backus-Naur Form (BNF)
Parser Generators

e Yacc
e GNU Bison
e ANTLR

Definite Clause Grammars (DCG)

Grammatical Framework (GF)

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 6/25

How Existing Grammar Frameworks Fulfill our
Requirements for CNL Grammars

NL BNF PG DCG GF
Concreteness + + + + +
Declarativeness +/- + - () +
Lookahead Features - + +) +) +
Anaphoric References | (+) - - () -
Implementability - + - - ?
Expressivity + - + + +

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 7/25

The Codeco Notation

Codeco = “Concrete and Declarative Grammar Notation for
Controlled Natural Languages”

e Formal and Declarative

e Easy to implement in different programming languages.

e Expressive enough for common CNLs.

e Lookahead features can be implemented in a practical and
efficient way.

e Deterministic anaphoric references can be defined in an adequate
and simple way.

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 8/25

Grammar Rules in Codeco

e Grammatical categories with flat feature structures
o Category Types:

e non-terminal (e.g. vp)

e pre-terminal (e.g. noun)

e terminal (e.g. [does not])
e Grammar Rule Examples:

° vp(::g"?) N v<:;g> np<case:acc)

type: tr
° neg: + : .
v(type: —+ [does not] verb(type:[Type]

° np<noun:> — [a] noun (text:)

® noun(e weman) . [woman]
gender: fem

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo

9/25

Forward and Backward References

The special categories “>" and “<" can be used to establish
nonlocal dependencies, e.g. for anaphoric references:

np - @‘(def:—) nOUn(text:) >(:1yozen)

: . . type: noun
ref — det(def.+) noun(text.> <(noun:)

/\
np vp
P 7 T
det noun > vp conj vp
T T —
v np aux v np
tv det noun> tv ref
det nouin'<

A country contains an area and does not control the area

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo

10/25

Scopes

e Opening of scopes:
e Scopes in (controlled) English usually open at the position of the
scope triggering structure, or nearby.
e Scope opener category “/" in Codeco:

quant(exist:—) = J [every]

e Closing of scopes:

e Scopes in (controlled) English usually close at the end of certain
structures like verb phrases, relative clauses, and sentences.
e Scope-closing rules “=" in Codeco:

~ .
vp(num:) —_— v(num.) np(case:acc)

type: tr

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 11/25

Position Operators

e How to define reflexive pronouns like “herself” that can only
attach to the subject?
e With the position operator “#", position identifiers can be

assigned:
. id: [id]
np(id:) — #d] prop(gender:) >| gender:[G]
type: prop
. i : id: [Subj
ref(subj:> — [herself] <(genfem)
s
/\
np vp
L T~
prop v P
| N
tv # ref

| |
Mary helps @) herself

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 12/25

Negative Backward References

e How to define that the same variable can be introduced only
once?

*A person X knows a person X.

e Negative backward references “£" succeed only if no matching
antecedent is accessible:

: type: var e: var
newvar —» Val‘(text:) ;((vy;r’) >(ZF:)

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 13/25

Tobias Kuhn,

Complex Backward References

How to define pronouns like “him” that cannot attach to the
subject?

*John helps him.

Complex backward references “<*... ~..." have one or more
positive feature structure “*" and zero or more negative

ones

They succeed if there is an antecedent that matches one of the
positive feature structures but none of the negative ones:

ref(subj:) _} [him] <+(human:+ >_<id:)

case: acc gender: masc

A more complicated (but probably less useful) example:

ref(mbj:) _) [this] <+<Ezi\q’:;i.—_> (type: reIatiOn)i(id:>(tyP€: ProP)

University of Zurich Codeco CNL 2010, 15 September, Marettimo 14/25

Strong Forward References

e How to define that propernames like “Bill" are always accessible?
*Mary does not love a man. Mary hates him.
Mary does not love Bill. Mary hates him.

e Strong forward references “>>" are always accessible:

id:
. . human:[H] human: [H]
np (Id') prop (gender: > gender:
type: prop
Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 15/25

Reference Resolution: Accessibility

Forward references are only accessible if they are not within a scope
that has already been closed before the position of the backward

reference:
S ~
/\
np vp
P N\ e T
det n > vp & conj vp ~
T T T~
! v np PP v np
| T~ T T~ T |
tv det n > prep np | aux tv ref

P N .
det n > / <
i |

@ Every man protects a house from) every enemy @Q)and () does not destroy ...

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 16 /25

Reference Resolution: Accessibility

Strong forward references are always accessible:

//\
np vp
T TS
prop > vp & conj vp~
//\
| 7~ [
e e I
tv det n > pp tv ref
/ prep np | <
N
prop >

|
Mary knows () every friend of Bill Q)and likes ...

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo

17/25

Reference Resolution: Proximity

If a backward reference matches more than one forward reference
then the closest one is taken:

%\

conj s conj s
/\
np vp np
ey A T |
det n > pp v np ref
prep np tv det n > pi (<
el
dlet r|‘| > |
If a part of a machine causes an error then it

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 18/25

Possible Extensions

e Semantics (e.g. with A-DRSs)
o General feature structures (instead of flat ones)

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 19/25

Parsers for Codeco

Two parsers with different parsing approaches exist:
e Transformation into Prolog DCG
e fast (1.5 ms per sentence)
e no lookahead features
o ideal for regression tests and parsing of large texts in batch mode
e Execution in a chart parser (Earley parser) under Java
e slower, but still reasonably fast (130 ms per sentence)
e |ookahead features
e ideal for predictive editors in Java

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 20/25

ACE in Codeco

e Large subset of ACE in Codeco

e Includes: countable nouns, proper names, intransitive and
transitive verbs, adjectives, adverbs, prepositions, plurals,
negation, comparative and superlative adjectives and adverbs,
of-phrases, relative clauses, modality, numerical quantifiers,
coordination of sentences / verb phrases / relative clauses,
conditional sentences, questions, and anaphoric references (simple
definite noun phrases, variables, and reflexive and irreflexive
pronouns)

e Excludes: Mass nouns, measurement nouns, ditransitive verbs,
numbers and strings as noun phrases, sentences as verb phrase
complements, Saxon genitive, possessive pronouns, noun phrase
coordination, and commands

e 164 grammar rules

e Used in the ACE Editor:
http://attempto.ifi.uzh.ch/webapps/aceeditor/

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 21/25

http://attempto.ifi.uzh.ch/webapps/aceeditor/

Evaluation of ACE Codeco

Exhaustive Language Generation:
e Evaluation subgrammar with 97 grammar rules
e Minimal lexicon
e 2'250'869 sentences with 3-10 tokens:

sentence length number of sentences growth factor

3 6

4 87 14.50

5 385 4.43

6 1'959 5.09

7 11'803 6.03

8 64'691 5.48

9 342'863 5.30

10 1'829'075 5.33
3-10 2'250'869

o All are accepted by the ACE parser
— ACE Codeco is a subset of ACE

* None is generated more than once
— ACE Codeco is unambiguous

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 22/25

Evaluation of the Codeco notation and its
implementations

Prolog DCG representation versus Java Earley parser:
e Equivalence of the Implementations:

Generate the same set of sentences up to 8 tokens
— The two implementations process Codeco in the same way

e Performance Tests:

task grammar implementation seconds/sentence
generation ACE Codeco eval. subset Prolog DCG 0.00286
generation ACE Codeco eval. subset Java Earley parser | 0.0730

parsing ACE Codeco eval. subset Prolog DCG 0.000360

parsing ACE Codeco eval. subset Java Earley parser | 0.0276

parsing full ACE Codeco Prolog DCG 0.00146

parsing full ACE Codeco Java Earley parser | 0.134

parsing full ACE APE 0.0161

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo

23/25

Conclusions

Codeco ...
o ... fulfills our requirements for CNLs in predictive editors.
e ... is suitable to describe a large subset of ACE.

e ... allows for automatic tests.

e ... stands for a principled and engineering focused approach to
CNL.

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 24 /25

Thank you for your attention!

Questions & Discussion

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 25/25

