
Codeco: A Grammar Notation for Controlled
Natural Language in Predictive Editors

Tobias Kuhn

Department of Informatics
University of Zurich

Second Workshop on Controlled Natural Language
15 September 2010
Marettimo (Italy)

Introduction

• Problem: Existing grammar frameworks do not work out
particularly well for CNLs.

• Reason:
• CNLs have essential differences to other languages (natural and

formal ones)
• To solve the writability problem, CNLs have to be embedded in

special tools with very specific requirements.
• Error messages and suggestions
• Predictive editors
• Language generation

• Solution: A new grammar notation that is dedicated to CNLs
and predictive editors.

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 2 / 25

CNL Grammar Requirements

Concreteness: CNL grammars should be fully formalized and
interpretable by computers.

Declarativeness: CNL grammars should not depend on a concrete
algorithm or implementation.

Lookahead Features: CNL grammars should allow for the retrieval
of possible next tokens for a partial text.

Anaphoric References: CNL grammars should allow for the
definition of nonlocal structures like anaphoric
references.

Implementability: CNL grammars should be easy to implement in
different programming languages.

Expressivity: CNL grammars should be sufficiently expressive to
express CNLs.

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 3 / 25

Lookahead Features

Predictive editors need to know which words can follow a partial text:

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 4 / 25

Anaphoric References

• Anaphoric references in CNLs are resolvable in a deterministic
way:

A country contains an area that is not controlled by the country.
If a person X is a relative of a person Y then the person Y is a
relative of the person X.
John protects himself and Mary helps him.

• Anaphoric references that cannot be resolved should be
disallowed:

* Every area is controlled by it.
* The person X is a relative of the person Y.

• Scopes have to be considered too:

Every man protects a house from every enemy and does not
destroy ...
... himself.
... the house.

* ... the enemy.

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 5 / 25

Existing Grammar Frameworks

• Grammar Frameworks for Natural Languages
• Head-Driven Phrase Structure Grammars
• Lexical-Functional Grammars
• Tree-Adjoining Grammars
• Combinatory Categorial Grammars
• Dependency Grammars
• ... and many more

• Backus-Naur Form (BNF)

• Parser Generators
• Yacc
• GNU Bison
• ANTLR

• Definite Clause Grammars (DCG)

• Grammatical Framework (GF)

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 6 / 25

How Existing Grammar Frameworks Fulfill our
Requirements for CNL Grammars

NL BNF PG DCG GF

Concreteness + + + + +
Declarativeness +/– + – (+) +
Lookahead Features – + (+) (+) +
Anaphoric References (+) – – (+) –
Implementability – + – – ?
Expressivity + – + + +

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 7 / 25

The Codeco Notation

Codeco = “Concrete and Declarative Grammar Notation for
Controlled Natural Languages”

• Formal and Declarative

• Easy to implement in different programming languages.

• Expressive enough for common CNLs.

• Lookahead features can be implemented in a practical and
efficient way.

• Deterministic anaphoric references can be defined in an adequate
and simple way.

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 8 / 25

Grammar Rules in Codeco

• Grammatical categories with flat feature structures

• Category Types:
• non-terminal (e.g. vp)
• pre-terminal (e.g. noun)
• terminal (e.g. [does not])

• Grammar Rule Examples:

• vp

(
num: Num

neg: Neg

)
:−→ v

(
num: Num

neg: Neg

type: tr

)
np
(
case: acc

)
• v

(
neg: +
type: Type

)
:−→ [does not] verb

(
type: Type

)
• np

(
noun: Noun

)
:−→ [a] noun

(
text: Noun

)
• noun

(
text: woman
gender: fem

)
→ [woman]

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 9 / 25

Forward and Backward References

The special categories “>” and “<” can be used to establish
nonlocal dependencies, e.g. for anaphoric references:

np
:−→ det

(
def: –

)
noun

(
text: Noun

)
>

(
type: noun
noun: Noun

)

ref
:−→ det

(
def: +

)
noun

(
text: Noun

)
<

(
type: noun
noun: Noun

)
s

vp

vp

np

ref

noun

area

det

the

v

tv

control

aux

does not

conj

and

vp

np

noun

area

det

an

v

tv

contains

np

>noun

country

det

A

>

<

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 10 / 25

Scopes

• Opening of scopes:
• Scopes in (controlled) English usually open at the position of the

scope triggering structure, or nearby.
• Scope opener category “�” in Codeco:

quant
(
exist: –

)
:−→ � [every]

• Closing of scopes:
• Scopes in (controlled) English usually close at the end of certain

structures like verb phrases, relative clauses, and sentences.
• Scope-closing rules “

∼−→” in Codeco:

vp
(
num: Num

) ∼−−→ v

(
num: Num

type: tr

)
np
(
case: acc

)

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 11 / 25

Position Operators

• How to define reflexive pronouns like “herself ” that can only
attach to the subject?

• With the position operator “#”, position identifiers can be
assigned:

np
(
id: Id

)
:−→ # Id prop

(
gender: G

)
>

(
id: Id

gender: G

type: prop

)

ref
(
subj: Subj

)
:−→ [herself] <

(
id: Subj

gender: fem

)
s

vp

np

ref

herself

v

tv

helps

np

prop

Maryp0 p1 p2 p3

#

#

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 12 / 25

Negative Backward References

• How to define that the same variable can be introduced only
once?

*A person X knows a person X.

• Negative backward references “≮” succeed only if no matching
antecedent is accessible:

newvar
:−→ var

(
text: V

)
≮
(
type: var
var: V

)
>

(
type: var
var: V

)

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 13 / 25

Complex Backward References

• How to define pronouns like “him” that cannot attach to the
subject?

*John helps him.

• Complex backward references “<+...−...” have one or more
positive feature structure “+” and zero or more negative
ones “−”.

• They succeed if there is an antecedent that matches one of the
positive feature structures but none of the negative ones:

ref

(
subj: Subj

case: acc

)
:−→ [him] <+

(
human: +
gender: masc

)
−
(
id: Subj

)
• A more complicated (but probably less useful) example:

ref
(
subj: Subj

)
:−→ [this] <+

(
hasvar: –
human: –

)(
type: relation

)
−
(
id: Subj

)(
type: prop

)

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 14 / 25

Strong Forward References

• How to define that propernames like “Bill” are always accessible?

*Mary does not love a man. Mary hates him.

Mary does not love Bill. Mary hates him.

• Strong forward references “�” are always accessible:

np
(
id: Id

)
:−→ prop

(
human: H

gender: G

)
�

id: Id

human: H

gender: G

type: prop



Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 15 / 25

Reference Resolution: Accessibility

Forward references are only accessible if they are not within a scope
that has already been closed before the position of the backward
reference:

s ∼

vp

vp ∼

np

ref

...

v

tv

destroy

aux

does not

conj

and

vp

pp

np

>n

enemy

det

every

prep

from

np

n

house

det

a

v

tv

protects

np

n

man

det

Every

∼

�

�

�

((()

>

>

<

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 16 / 25

Reference Resolution: Accessibility

Strong forward references are always accessible:

s ∼

vp

vp ∼

np

ref

...

v

tv

likes

conj

and

vp

np

pp

np

prop

Bill

prep

of

>n

friend

det

every

v

tv

knows

np

prop

Mary

∼

�

()

�

�

<

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 17 / 25

Reference Resolution: Proximity

If a backward reference matches more than one forward reference
then the closest one is taken:

s

s

...

...

np

ref

pn

it

conj

then

s

vp

np

n

error

det

an

v

tv

causes

np

pp

np

n

machine

det

a

prep

of

n

part

det

a

conj

If

>

>

> <

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 18 / 25

Possible Extensions

• Semantics (e.g. with λ-DRSs)

• General feature structures (instead of flat ones)

• ...

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 19 / 25

Parsers for Codeco

Two parsers with different parsing approaches exist:

• Transformation into Prolog DCG
• fast (1.5 ms per sentence)
• no lookahead features
• ideal for regression tests and parsing of large texts in batch mode

• Execution in a chart parser (Earley parser) under Java
• slower, but still reasonably fast (130 ms per sentence)
• lookahead features
• ideal for predictive editors in Java

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 20 / 25

ACE in Codeco

• Large subset of ACE in Codeco
• Includes: countable nouns, proper names, intransitive and

transitive verbs, adjectives, adverbs, prepositions, plurals,
negation, comparative and superlative adjectives and adverbs,
of-phrases, relative clauses, modality, numerical quantifiers,
coordination of sentences / verb phrases / relative clauses,
conditional sentences, questions, and anaphoric references (simple
definite noun phrases, variables, and reflexive and irreflexive
pronouns)

• Excludes: Mass nouns, measurement nouns, ditransitive verbs,
numbers and strings as noun phrases, sentences as verb phrase
complements, Saxon genitive, possessive pronouns, noun phrase
coordination, and commands

• 164 grammar rules

• Used in the ACE Editor:
http://attempto.ifi.uzh.ch/webapps/aceeditor/

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 21 / 25

http://attempto.ifi.uzh.ch/webapps/aceeditor/

Evaluation of ACE Codeco

Exhaustive Language Generation:

• Evaluation subgrammar with 97 grammar rules

• Minimal lexicon

• 2’250’869 sentences with 3–10 tokens:
sentence length number of sentences growth factor

3 6
4 87 14.50
5 385 4.43
6 1’959 5.09
7 11’803 6.03
8 64’691 5.48
9 342’863 5.30

10 1’829’075 5.33

3–10 2’250’869

• All are accepted by the ACE parser
→ ACE Codeco is a subset of ACE

• None is generated more than once
→ ACE Codeco is unambiguous

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 22 / 25

Evaluation of the Codeco notation and its
implementations

Prolog DCG representation versus Java Earley parser:

• Equivalence of the Implementations:

Generate the same set of sentences up to 8 tokens
→ The two implementations process Codeco in the same way

• Performance Tests:
task grammar implementation seconds/sentence

generation ACE Codeco eval. subset Prolog DCG 0.00286
generation ACE Codeco eval. subset Java Earley parser 0.0730
parsing ACE Codeco eval. subset Prolog DCG 0.000360
parsing ACE Codeco eval. subset Java Earley parser 0.0276
parsing full ACE Codeco Prolog DCG 0.00146
parsing full ACE Codeco Java Earley parser 0.134
parsing full ACE APE 0.0161

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 23 / 25

Conclusions

Codeco ...

• ... fulfills our requirements for CNLs in predictive editors.

• ... is suitable to describe a large subset of ACE.

• ... allows for automatic tests.

• ... stands for a principled and engineering focused approach to
CNL.

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 24 / 25

Thank you for your attention!

Questions & Discussion

Tobias Kuhn, University of Zurich Codeco CNL 2010, 15 September, Marettimo 25 / 25

