TAL 3.6 Discourse and Dialogue
Masters Course, Nancy University, 2007

Lecture 4: Fundamental inference tasks

Patrick Blackburn
TALARIS team
INRIA Nancy Grand Est
patrick.blackburn@loria.fr

17 October 2008


patrick.blackburn@loria.fr

Where we are working

This course explores meaning in natural language from
computational perspective.

LANGUAGE < ———————— > WORLD



Where we are working

A basic them of the course is that logic provides a
mathematical framework for such an exploration.

LOGIC <— === — —— > MODEL

| |
LANGUAGE < — — - ——— — > WORLD



Where we are working

In the second lecture we explored the left-hand-side of the
diagram:

LOGIC <— === — —— > MODEL
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LANGUAGE < — — - ——— — > WORLD



Where we are working

We saw that the link between logic and language can be made
tight by translating language into logic.

LOGIC <— === — —— > MODEL

1] |
LANGUAGE < — — - ——— — > WORLD



Where we are working

In the third lecture we explored the right-hand-side of the
diagram:

LOGIC <— === — —— > MODEL
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LANGUAGE < — — - ——— — > WORLD



Where we are working

We talked about natural language metaphysics: defining models
with the structure needed for coping with natural language.

LOGIC <— === — —— > MODEL

| Il
LANGUAGE < — — - ——— — > WORLD



So what are we doing today?



So what are we doing today?

We’re looking at this part of the diagram:

<—— === —— >
LOGIC < ———=—=———— > MODEL
<—= === —— >

| |
LANGUAGE < — - ———— —— > WORLD



Goals

Get clearer about our two basic inference tasks — why
they are important, and how we should think about them.

Distinguish the proof theoretic approach to logic from the
model-theoretic approach to logic.

That is, distinguish the syntactic approach to logic from
the semantic approach to logic.

But the aim is not merely to distinguish them — that’s the
easy part. One of the deeper aims of today’s lecture is to
show how they fit together.

A further aim of the lecture is to discuss these issues from a
computational perspective — both theoretical and applied.



Key concepts

The key new logical concepts that will be introduced today are:
e Soundness

e Completeness

We will also discuss two more general concepts (that is,
concepts that transcend logic) namely

e Decidability
e Undecidability



Two key technologies

We will also discuss two key inference technologies, namely

e Theorem proving
e Model building

and see what they have to offer us.



What about inference?

Up till now we’ve been talking a lot about representations and
how to build them. But another other key word in
computational semantics is inference. Why is this such an
important word?

The answer is simple: inference seems ubiquitous when human
being use natural language. We (seemingly effortlessly) make
decisions about how to interpret and choose their use of
language that require sophisticated use of inference.

Let’s look at some simple examples which make use of two of
the most fundamental inference tasks: consistency checking and
informativity checking.



Consistency checking

Mia smokes.



Consistency checking

Mia smokes.
Mia does not smoke.



Consistency checking

Mia smokes.
Mia does not smoke.

Should be possible to detect the inconsistency in such
discourses (and to avoid detecting inconsistency in superficially
similar discourses such as Mia smokes. Mia did not smoke.)



Is Mia a tree?

Mia is a beautiful woman.



Is Mia a tree?

Mia is a beautiful woman.
Mia is a tree.



Is Mia a tree?

Mia is a beautiful woman.
Mia is a tree.

Consistency checking — but against background knowledge.

(The background knowledge used here might be such items as
Mia is a human being and Human beings are not plants, and
Trees are plants.)



Inference interacts with representation

Every boxer loves a woman.

Vz(boxer(x) — Jy(woman(y) A loves(z,y)))
Jy(woman(y) A Vz(boxer(z) — loves(x,y)))
She is extraordinarily beautiful.

They call her the Goddess of the Ring.



Resolving scope with consistency checks
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Every boxer has a broken nose.

Va(boxer(x) — Jy(broken-nose(y) A has(x,y)))

7?77 Jy(broken-nose(y) A Vz(boxer(z) — has(z,y))) 777
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Every car has a radio.
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Resolving scope with consistency checks

Every boxer has a broken nose.

Va(boxer(x) — Jy(broken-nose(y) A has(x,y)))

7?77 Jy(broken-nose(y) A Vz(boxer(z) — has(z,y))) 777
Biologically implausible — inconsistent with world knowledge

Every car has a radio.
Vz(car(z) — Jy(radio(y) A has(z,y)))
777 Jy(radio(y) A Va(car(x) — has(z,y))) 777

Possible in contexts with one car or no cars — otherwise
inconsistent with world knowledge



Informativity checking



Informativity checking

Mia smokes.



Informativity checking

Mia smokes.
Mia smokes.



Informativity checking

Mia smokes.
Mia smokes.
Mia smokes.



Informativity checking

Mia smokes.

Mia smokes.

Mia smokes.
Make your contribution as informative as is required
(for the current purposes of the exchange). H. P.
Grice.

Suggests need for Informativity checking — indeed, for
informativity checking against background knowledge.



Informativity a ‘soft’ signal



Informativity a ‘soft’ signal

Mia is married.



Informativity a ‘soft’ signal

Mia is married.
She has a husband.



Informativity a ‘soft’ signal

Mia is married.
She has a husband.

Such a discourse could conform to Grice’s requirement in many
cases. The second utterance, though it merely rephrases the
first, might well be “as informative as is required (for the
current purposes of the exchange)”.

So uninformativity a ‘softer’ signal than inconsistency (and it is
not always clear what we should do once we’ve found it) — but
it is something we would like to be able to detect.



Consistency and Informativity checks for Presupposition

A crucial part of Van der Sandt’s Discourse Representation
Theory, based presupposition resolution algorithm (which we
shall discuss later in the course) is a structured sequence of
consistency and informativity checks on subparts of the
semantic representation.

Jean regrets that Marie is pregnant PRESUPP Marie is
pregnant

Jean does not regret that Marie is pregnant PRESUPP Marie

18 pregnant

That is, consistency and informativity checks can be used as
building blocks to analyse more sophisticated semantic tasks.



Consistency checking task in first-order logic
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Let ¢ be the (first-order) semantic representation of the latest
sentence in some ongoing discourse, and suppose that the
relevant lexical knowledge, world knowledge, natural language
metaphysical assumption, and the information from the
previous discourse has been represented in first-order logic.
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Consistency checking task in first-order logic

Let ¢ be the (first-order) semantic representation of the latest
sentence in some ongoing discourse, and suppose that the
relevant lexical knowledge, world knowledge, natural language
metaphysical assumption, and the information from the
previous discourse has been represented in first-order logic.
Consistency checking task:

Lexical U World U NL-Metaphysical U Discourse-So-Far |= —¢
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We can simplify this a little

All-Our-Background-Stuff = —¢
iff
= All-Our-Background-Stuff — —¢

Why? Deduction Theorem!
Consequence: we can reduce the consistency checking task to
deciding the validity of a single formula.
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Informativity checking task in first-order logic

Let ¢ be the (first-order) semantic representation of the latest
sentence in some ongoing discourse, and suppose that the
relevant lexical knowledge, world knowledge, natural language
metaphysical assumption, and the information from the
previous discourse has been represented in first-order logic.
Informativity checking task:

Lexical U World U NL-Metaphysical U Discourse-So-Far |= ¢



We can also simplify this a little

All-Our-Background-Stuff = ¢
iff
= All-Our-Background-Stuff — ¢

Yes - the Deduction Theorem again!
Consequence: we can also reduce this task to deciding the
validity of a single formula.



So, it’s pretty simple, right?



So, it’s pretty simple, right?

Um ...NO! It’s about as hard as it gets, actually.

e First (as we shall see) validity is not defined in a way that
leads naturally to computation. We need to have another
handle on it. That is, we need to open a doorway from
model theory to proof theory.

e But even after we’ve done this, a bigger problem faces us:
it turn out we're dealing with an undecidable problem.



Basic inference tasks about deciding validity

As we have just discussed, our two basic inference taks boil
down to deciding the validity of certain formulas. In particular:

e Consistency checking: = All-Our-Background-Stuff — —¢
e Informativity checking: = All-Our-Background-Stuff — ¢



Very nice — but ...

Note:

e This definition is semantic.

e That is, it is given in terms of models.



Very nice — but ...

Note:
e This definition is semantic.
e That is, it is given in terms of models.
This is nice in one way (namely, it makes good sense!) but:

e But it is very abstract.

e It is defined in terms of all models — and there are a lot of
models, and most of them are very large.

e So is it of any computational interest whosoever?



Proof theory

e Proof theory is the syntactic approach to logic.

e It attempts to define collections of rules and/or axioms that
enable us to generate new formulas from old. That is, it
attempts to pin down the notion of inference syntactically.

e Given some proof system P, we write Fp ¢ to indicate that
a formula ¢ is provable in the the proof system.
(Incidentally, /p ¢ means that ¢ is not provable in proof
system P.).



Many types of proof system

Natural deduction

Hilbert-style system (often called axiomatic systems)
Sequent calculus

Tableaux systems

Resolution



Why so many different proof systems?

e Well, one of the most important may simply be that
logicians love to play with such systems — and every
logician has his or her own favourite pet system!

e A more serious reason is: different proof systems are
typically good for different purposes.

e In particular, some systems (notably tableau and
resolution) are particularly suitable for computational
purposes.



But what does all this have to do with semantics and
inference?

e Note: nothing we have said so far makes any connection
with the model theoretic ideas previously introduced.

e All we have done is talk about provability and vaguely said
that we want to “generate” formulas syntactically. What
does this have to do with the previous discussion?



But what does all this have to do with semantics and
inference?

e Note: nothing we have said so far makes any connection
with the model theoretic ideas previously introduced.

e All we have done is talk about provability and vaguely said
that we want to “generate” formulas syntactically. What
does this have to do with the previous discussion?

e Answer: we insist on working with proof systems with two
special properties, namely soundness and completeness.



Soundness

¢ Recall that we write = ¢ to indicate that the formula ¢ is
valid (that is, satisfied in all models under all assignments).

e Recall that we write Fp ¢ to indicate that ¢ is provable in
proof system P.

e We say that a proof system P is sound if and only if

Fp ¢ implies | ¢



Explanation

That is, soundness means that syntactic provability implies
semantic validity.

To put it another way: P does not produce garbage.
And another: P is “safe”.

Needless to say, all the standard proof systems are sound.



Remark

e Soundness is typically an easy property to prove.

e Proofs typically have some kind of inductive structure.
One shows that if the first part of proof is true in a model,
then the rules only let us generate formulas that are also
true in a model.



Completeness

¢ Recall that we write = ¢ to indicate that the formula ¢ is
valid (that is, satisfied in all models under all assignments).

e Recall that we write Fp ¢ to indicate that ¢ is provable in
proof system P.

e We say that a proof system p is complete if and only if

= ¢ implies Fp ¢



Explanation

That is, completeness means that our proof system is
strong enough to prove everything that is provable.

To put it another way: if some formula really is true in all
models, then our proof system P really is powerful enough
to generate it.

And another: no valid formula is out of reach of our proof
system.

The standard proof systems are complete.



Remark

e Completeness is a much deeper property that soundness,
and is a lot more difficult to proof.

e It is typically proved by contraposition. We show that if
some formula is not provable (I ¢) then ¢ is not valid
(£ ¢). This is done by building a model for —¢.

e The first completeness proof for a first-order proof system
was given by Kurt Godel in his 1930 PhD thesis.



Soundness and completeness together

Recall: proof system P is sound if and only if

Fp ¢ implies | ¢

Proof system P is complete if and only if

E ¢ implies Fp ¢

So if a proof system is both sound and complete (which is
what we want) we have that:

= ¢ if and only if Fp ¢

That is, syntactic provability and semantic validity
coincide. Sound and complete proof system, really capture
the our semantic reality. Working with such systems is not
just playing with symbols.



So we have made progress

We now have both a syntactic and a semantic perspective
on logic.

The semantic (model theoretic) perspective guides us
conceptually.

The syntactic (proof theoretical) persepctive gives us a
practical, symbol manipulation approach to inference.

But there is a problem ...



Deciding first-order validity is an Undecidable task

¢ Deciding validity (in first-order logic) is undecidable.

e That is, no algorithm exists for solving first-order validity.
e Implementing our proof methods for first-order logic (that
is, writing a theorem prover only gives us a semi-decision

procedure. If a formulas ¢ is valid, the prover will (in
principle) be able to prove it..
e But if ¢ is not valid, the prover may never halt!

e So what do we do? Make the best of things! Implement
theorem provers, but also implement a partial converse
tool: model builders.



Computational Tools

Theorem provers: A tool that, when given a first-order formula
¢, attempts to prove ¢. If ¢ is in fact provable a (sound and
complete) first-order prover can (in principle) prove it.

Model builders: a tool that, when given a first-order formula ¢,
attempts to build a model for it. It cannot (even in principle)
always succeed in this task, but it can be very useful.



Using Theoren Provers and Model Builders

Theorem provers: a mature technology which provides a
negative check on consistency and informativity — that is,
theorem provers can tell us when something is not consistent, or
not informative.

Model builders: a newer technology which provides a (partial)
positive check on consistency and informativity — that is, model
builders can tell us when something is consistent or informative.



What model builders and theorem provers give us

Let BACKGROUND be all our background knowledge, and ¢ the
representation of the latest sentence:
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Let BACKGROUND be all our background knowledge, and ¢ the
representation of the latest sentence:

e Partial positive test for consistency: give the model builder
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What model builders and theorem provers give us

Let BACKGROUND be all our background knowledge, and ¢ the
representation of the latest sentence:

e Partial positive test for consistency: give the model builder
BACKGROUND A ¢.

e Partial positive test for informativity: give the model
builder BACKGROUND A —¢.

e Negative test for consistency: give the theorem prover
BACKGROUND — —¢.

e Negative test for informativity: give the theorem prover
BACKGROUND — ¢.

And do this in parallel using the best available software!



Putting it together:
the CURT programs



CURT

(Clever Use of Reasoning Tools)

Baby Curt No inference capabilities
Rugrat Curt: negative consistency checks (naive prover)

Clever Curt: negative consistency checks (sophisticated
prover)

Sensitive Curt: negative and positive informativity checks
Scrupulous Curt: eliminating superfluous readings
Knowledgeable Curt: adding background knowledge

Helpful Curt: question answering



Baby Curt computes semantic representations. . .
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Baby Curt computes semantic representations. . .

Curt: ’Want to tell me something?’
> every boxer loves a woman

Curt: °’0K.’

> readings

1 forall A (boxer(A) > exists B (woman(B) & love(A, B)))
2 exists A (woman(A) & forall B (boxer(B) > love(B, A)))



Baby Curt accumulates information . ..



Baby Curt accumulates information . ..

> mia walks



Baby Curt accumulates information . ..
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> mia walks
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Baby Curt accumulates information . ..

> mia walks
Curt: °’O0OK.’
> vincent dances
Curt: °’O0K.’



Baby Curt accumulates information . ..

> mia walks
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> readings



Baby Curt accumulates information . ..

> mia walks

Curt: °0K.’
> vincent dances
Curt: °0K.’

> readings

1 (walk(mia) & dance(vincent))



Alas — Baby Curt is very stupid. ..
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Alas — Baby Curt is very stupid. ..

> mia walks
Curt: °0K.’



Alas — Baby Curt is very stupid. ..
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Alas — Baby Curt is very stupid. ..

> mia walks
Curt: °0K.’
> mia does not walk

Curt: °0K.’



Alas — Baby Curt is very stupid. ..

> mia walks

Curt: °0K.’
> mia does not walk
Curt: °0K.’

> 7- readings 1 (walk(mia) & - walk(mia))



Adding an inference component

Key idea — use sophisticated theorem provers and model
builders in parallel.

The theorem prover provides negative check for consistency
and informativity.

The model builder provides positive check for consistency
and informativity.

The first to find a result, reports back, and stops the other
check.






Example

> Vincent is a man



Example

> Vincent is a man

Message (consistency checking): mace found a result.
Curt: OK.
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> Vincent is a man

Message (consistency checking): mace found a result.
Curt: OK.

> 7- models



Example

> Vincent is a man

Message (consistency checking): mace found a result.
Curt: OK.

> 7- models
1 model([d1], [£f(1, man, [d1]), £(0, vincent, di1)])



Example ! continued !



Example (continued)

> Mia likes every man.



Example (continued)

> Mia likes every man.

Message (consistency checking): mace found a result.
Curt: OK.



Example (continued)

> Mia likes every man.

Message (consistency checking): mace found a result.
Curt: OK.

> Mia does not like Vincent.



Example (continued)

> Mia likes every man.

Message (consistency checking): mace found a result.
Curt: OK.

> Mia does not like Vincent.

Message (consistency checking): bliksem found a

result.
Curt: No! I do not believe that!



Background knowledge

e Because we are working with first-order logic, it is
straightforward to add background knowledge.

e Knowledgeable Curt has a information about antonyms,
hypernyms, gender characteristics of proper names, and so
on, stored in its lexicon. When Knowledgeable Curt is
invoked, this information is automatically compiled into
first-order logic.

¢ Knowledgeable Curt also has a (very) small fund of world
knowledge at its disposal.



!nother example



Another example

> 7- every car has a radio



Another example

> 7- every car has a radio

Message (consistency checking): mace found a result.
Message (consistency checking): bliksem found a
result.

Curt: ’0K.°



Another example

> 7- every car has a radio

Message (consistency checking):
Message (consistency checking):

result.
Curt: °0K.’

> 7- readings

mace found a result.
bliksem found a



Another example

> 7?- every car has a
Message (consistency
Message (consistency
result.

Curt: ’O0K.’

> 7- readings

1 forall A (car(a) >
B)))

radio

checking): mace found a result.
checking): bliksem found a

exists B (radio(B) & have(A,



How Curt worked this out

(forall A (concrete(A) > abstract(d)) &
(forall B (entity(B) > concrete(B)) &
(forall C (entity(C) > thing(C)) &
(forall D (artifact(D) > inedible(D)) &
(forall E (artifact(E) > object(E)) &
(forall F (mobile(F) > immobile(F)) &
(forall G (vehicle(G) > instrument(G)) &
(forall H (instrument(H) > mobile(H)) &
(forall I (instrument(I) > artifact(I)) &
(forall J (object(J) > nonliving(J)) &
(forall K (object(K) > entity(K)) &

And much else besides ...it’s not easy computationally!



Some questions

Is a logic-based approach to feasible? How far can it be
pushed?

Is first-order logic essential?
Are there other interesting inference tasks?

Is any of this relevant to current trends in computational
linguistics, where shallow processing and statistical
approaches rule?

Are there applications?



Reminder: a useful URLS

e www.blackburnbos.org. Contains lots of material relating
to the “Representation and Inference” book, including all
the Prolog code for the book; including DCGs, lambda
software, scoping software, and the CURT programs.


www.blackburnbos.org

