
Parsing Context-Free Languages

Alon Lavie

Language Technologies Institute

Carnegie Mellon University

Malta

November 2009

Reading:
Jurafsky and Martin,
“Speech and Language Processing”
Chapter 10



Parsing Algorithms

• CFGs are basis for describing (syntactic) structure of NL sentences

• Thus - Parsing Algorithms are core of NL analysis systems

• Recognition vs. Parsing:

– Recognition - deciding the membership in the language:

For a given grammar G, an algorithm that given an input w

decides: is w ∈ L(G)?

– Parsing - Recognition + producing a parse tree for w

• Is parsing more “difficult” than recognition? (time complexity)

• Ambiguity - a parse for w or all parses for w?

– Identifying the “correct” parse

– Ambiguity representation - an input may have exponentially

many parses

1



Parsing Algorithms

Parsing General CFLs vs. Limited Forms

• Efficiency:

– Deterministic (LR) languages can be parsed in linear time

– A number of parsing algorithms for general CFLs require O(n3)

time

– Asymptotically best parsing algorithm for general CFLs requires

O(n2.376), but is not practical

• Utility - why parse general grammars and not just CNF?

– Grammar intended to reflect actual structure of language

– Conversion to CNF completely destroys the parse structure

2



Top-Down vs. Bottom-Up Parsing

Top-Down Parsing:

• Construct the parse-tree starting from the root (“S”) of the grammar

• At each step, expand a non-terminal using one selected grammar rule

• match terminal nodes with the input

• backtrack when tree is inconsistent with input

• Advantage: only constructs partial trees that can be derived from the root

“S”

• Problems: efficiency, handling ambiguity, left-recursion

Bottom-Up Parsing:

• Construct a parse starting from the input symbols

• Build constituents from sub-constituents

• When all constituents on the RHS of a rule are matched, create a

constituent for the LHS of the rule

• Advantage: only creates constituents that are consistent with the input

• Problems: efficiency, handling ambiguity

3



Top-Down vs. Bottom-Up Parsing

• Various CFG parsing algorithms are a hybrid of Top-Down and

Bottom-Up

• Attempt to combine the advantages of both

• A Chart allows storing partial analyses, so that they can be shared

or memorized

• Ambiguity Packing allows efficient storage of ambiguous analyses

4



The Earley Parsing Algorithm

General Principles:

• A clever hybrid Bottom-Up and Top-Down approach

• Bottom-Up parsing completely guided by Top-Down predictions

• Maintains sets of “dotted” grammar rules that:

– Reflect what the parser has “seen” so far

– Explicitly predict the rules and constituents that will

combine into a complete parse

• Time Complexity O(n3), but better on particular sub-classes

• First efficient parsing algorithm for general context-free

grammars.

5



The Earley Parsing Method

• Main Data Structure: The “state” (or “item”)

• A state is a “dotted” rule and starting position:

[A → X1... • C...Xm, pi]

• The algorithm maintains sets of states, one set for each

position in the input string (starting from 0)

• We denote the set of states for position i by Si

6



The Earley Parsing Algorithm

Three Main Operations:

• Predictor: If state [A → X1... • C...Xm, j] ∈ Si then for every

rule of the form C → Y1...Yk, add to Si the state

[C → •Y1...Yk, i]

• Completer: If state [A → X1...Xm•, j] ∈ Si then for every

state in Sj of form [B → X1... • A...Xk, l], add to Si the state

[B → X1...A • ...Xk, l]

• Scanner: If state [A → X1... • a...Xm, j] ∈ Si and the next

input word is xi+1 = a, then add to Si+1 the state

[A → X1...a • ...Xm, j]

7



The Earley Recognition Algorithm

• Simplified version with no lookaheads and for grammars

without epsilon-rules

• Assumes input is string of grammar terminal symbols

• We extend the grammar with a new rule S′ → S $

• The algorithm sequentially constructs the sets Si for

0 ≤ i ≤ n + 1

• We initialize the set S0 with S0 = {[S′ → •S $, 0]}

8



The Earley Recognition Algorithm

The Main Algorithm: parsing input x = x1...xn

1. S0 = {[S′ → •S $, 0]}

2. For 0 ≤ i ≤ n do:

Process each item s ∈ Si in order by applying to it the single

applicable operation among:

(a) Predictor (adds new items to Si)

(b) Completer (adds new items to Si)

(c) Scanner (adds new items to Si+1)

3. If Si+1 = φ, Reject the input

4. If i = n and Sn+1 = {[S′ → S $•, 0]} then Accept the input

9



Earley Recognition - Example

The Grammar:

(1) S → NP V P

(2) NP → art adj n

(3) NP → art n

(4) NP → adj n

(5) V P → aux V P

(6) V P → v NP

The original input: “ x = The large can can hold the water”

POS assigned input: “ x = art adj n aux v art n”

Parser input: “ x = art adj n aux v art n $”

10



Earley Recognition - Example

The input: “x = art adj n aux v art n $”

S0: [S′ → •S $ , 0]

[S → •NP V P , 0]

[NP → •art adj n , 0]

[NP → •art n , 0]

[NP → •adj n , 0]

S1: [NP → art • adj n , 0]

[NP → art • n , 0]

11



Earley Recognition - Example

The input: “x = art adj n aux v art n $”

S1: [NP → art • adj n , 0]

[NP → art • n , 0]

S2: [NP → art adj • n , 0]

12



Earley Recognition - Example

The input: “x = art adj n aux v art n $”

S2: [NP → art adj • n , 0]

S3: [NP → art adj n • , 0]

13



Earley Recognition - Example

The input: “x = art adj n aux v art n $”

S3: [NP → art adj n • , 0]

[S → NP • V P , 0]

[V P → •aux V P , 3]

[V P → •v NP , 3]

S4: [V P → aux • V P , 3]

14



Earley Recognition - Example

The input: “x = art adj n aux v art n $”

S4: [V P → aux • V P , 3]

[V P → •aux V P , 4]

[V P → •v NP , 4]

S5: [V P → v • NP , 4]

15



Earley Recognition - Example

The input: “x = art adj n aux v art n $”

S5: [V P → v • NP , 4]

[NP → •art adj n , 5]

[NP → •art n , 5]

[NP → •adj n , 5]

S6: [NP → art • adj n , 5]

[NP → art • n , 5]

16



Earley Recognition - Example

The input: “x = art adj n aux v art n $”

S6: [NP → art • adj n , 5]

[NP → art • n , 5]

S7: [NP → art n • , 5]

17



Earley Recognition - Example

The input: “x = art adj n aux v art n $”

S7: [NP → art n • , 5]

[V P → v NP • , 4]

[V P → aux V P • , 3]

[S → NP V P • , 0]

[S′ → S • $ , 0]

S8: [S′ → S $ • , 0]

18



Parsing with an Earley Parser

• We need to keep back-pointers to the constituents that we

combine together when we complete a rule

• Each item must be extended to have the form

[A → X1(pt1)... •C...Xm, j], where the pti are “pointers” to the

already found RHS sub-constituents

• the constituents and the pointers can be created during

Scanner and Completer

• At the end - reconstruct parse from the “back-pointers”

19



Earley Parsing - Example

The input: “x = art adj n aux v art n $”

20



Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S0: [S′ → •S $ , 0]

[S → •NP V P , 0]

[NP → •art adj n , 0]

[NP → •art n , 0]

[NP → •adj n , 0]

S1: [NP → art1 • adj n , 0] 1 art (0,1)

[NP → art1 • n , 0]

21



Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S1: [NP → art1 • adj n , 0]

[NP → art1 • n , 0]

S2: [NP → art1 adj2 • n , 0] 2 adj (1,2)

22



Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S2: [NP → art1 adj2 • n , 0]

S3: [NP4 → art1 adj2 n3 • , 0] 3 n (2,3)

4 NP → art1 adj2 n3 (0,3)

23



Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S3: [NP4 → art1 adj2 n3 • , 0]

[S → NP4 • V P , 0]

[V P → •aux V P , 3]

[V P → •v NP , 3]

S4: [V P → aux5 • V P , 3] 5 aux (3,4)

24



Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S4: [V P → aux5 • V P , 3]

[V P → •aux V P , 4]

[V P → •v NP , 4]

S5: [V P → v6 • NP , 4] 6 v (4,5)

25



Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S5: [V P → v6 • NP , 4]

[NP → •art adj n , 5]

[NP → •art n , 5]

[NP → •adj n , 5]

S6: [NP → art7 • adj n , 5] 7 art (5,6)

[NP → art7 • n , 5]

26



Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S6: [NP → art7 • adj n , 5]

[NP → art7 • n , 5]

S7: [NP9 → art7 n8 • , 5] 8 n (6,7)

9 NP → art7 n8 (5,7)

27



Earley Parsing - Example

The input: “x = art adj n aux v art n $”

S7: [NP9 → art7 n8 • , 5]

[V P10 → v6 NP9 • , 4] 10 V P → v6 NP9 (4,7)

[V P11 → aux5 V P10 • , 3] 11 V P → aux5 V P10 (3,7)

[S12 → NP4 V P11 • , 0] 12 S → NP4 V P11 (0,7)

[S′ → S • $ , 0]

S8: [S′ → S $ • , 0]

28



Efficient Representation of Ambiguities

• a Local Ambiguity - multiple ways to derive the same substring from

a non-terminal A

• What do local ambiguities look like with Earley Parsing?

– Multiple items in the constituent chart of the form

[A → X1(pt1)...Xm(ptm)](pk, pj), with the same A, pj and pk.

• Local Ambiguity Packing: create a single item in the Chart for

A(pj , pk), with pointers to the various possible derivations.

• A(pj , pk) can then be a sufficient “back-pointer” in the chart

• Allows to efficiently represent a very large number of ambiguities

(even exponentially many)

• Unpacking - producing one or more of the packed parse trees by

following the back-pointers.

29



Time Complexity of Earley Algorithm

• Algorithm iterates for each word of input (i.e. n iterations)

• How many items can be created and processed in Si?

– Each item in Si has the form [A → X1... • C...Xm, j],

0 ≤ j ≤ i

– Thus O(n) items

• The Scanner and Predictor operations on an item each require

constant time

• The Completer operation on an item adds items of form

[B → X1...A • ...Xk, l] to Si, with 0 ≤ l ≤ i, so it may require

up to O(n) time for each processed item

• Time required for each iteration (Si) is thus O(n2)

• Time bound on entire algorithm is therefore O(n3)

30



Time Complexity of Earley Algorithm

Special Cases:

• Completer is the operation that may require O(i2) time in

iteration i

• For unambiguous grammars, Earley shows that the completer

operation will require at most O(i) time

• Thus time complexity for unambiguous grammars is O(n2)

• For some grammars, the number of items in each Si is bounded

by a constant

• These are called bounded-state grammars and include even

some ambiguious grammars.

• For bounded-state grammars, the time complexity of the

algorithm is linear - O(n)

31


