11-711 Algorithms for NLP

The Earley Parsing Algorithm

Reading:

Jay Earley,

"An Efficient Context-Free Parsing Algorithm"

Comm. of the ACM vol. 13 (2), pp. 94-102

The Earley Parsing Algorithm

General Principles:

- A clever hybrid *Bottom-Up* and *Top-Down* approach
- Bottom-Up parsing completely guided by Top-Down predictions
- Maintains sets of "dotted" grammar rules that:
 - Reflect what the parser has "seen" so far
 - Explicitly predict the rules and constituents that will combine into a complete parse
- Similar to Chart Parsing partial analyses can be shared
- Time Complexity $O(n^3)$, but better on particular sub-classes
- Developed prior to Chart Parsing, first efficient parsing algorithm for general context-free grammars.

The Earley Parsing Method

- Main Data Structure: The "state" (or "item")
- A state is a "dotted" rule and starting position:

$$[A \rightarrow X_1... \bullet C...X_m, p_i]$$

- The algorithm maintains sets of "states", one set for each position in the input string (starting from 0)
- We denote the set for position i by S_i

The Earley Parsing Algorithm

Three Main Operations:

- **Predictor:** If state $[A \to X_1... \bullet C...X_m, j] \in S_i$ then for every rule of the form $C \to Y_1...Y_k$, add to S_i the state $[C \to \bullet Y_1...Y_k, i]$
- Completer: If state $[A \to X_1...X_m \bullet, j] \in S_i$ then for every state in S_j of form $[B \to X_1... \bullet A...X_k, l]$, add to S_i the state $[B \to X_1...A \bullet ...X_k, l]$
- Scanner: If state $[A \to X_1... \bullet a...X_m, j] \in S_i$ and the next input word is $x_{i+1} = a$, then add to S_{i+1} the state $[A \to X_1...a \bullet ...X_m, j]$

The Earley Recognition Algorithm

- Simplified version with no lookaheads and for grammars without epsilon-rules
- Assumes input is string of grammar terminal symbols
- We extend the grammar with a new rule $S' \to S$ \$
- The algorithm sequentially constructs the sets S_i for 0 < i < n+1
- We initialize the set S_0 with $S_0 = \{ [S' \rightarrow \bullet S \$, 0] \}$

The Earley Recognition Algorithm

The Main Algorithm: parsing input $x = x_1...x_n$

- 1. $S_0 = \{ [S' \to \bullet S \$, 0] \}$
- 2. For $0 \le i \le n$ do:

Process each item $s \in S_i$ in order by applying to it the *single* applicable operation among:

- (a) Predictor (adds new items to S_i)
- (b) Completer (adds new items to S_i)
- (c) Scanner (adds new items to S_{i+1})
- 3. If $S_{i+1} = \phi$, Reject the input
- 4. If i = n and $S_{n+1} = \{ [S' \to S \$ \bullet, 0] \}$ then *Accept* the input

The Grammar:

$$(1) S \rightarrow NP VP$$

(2)
$$NP \rightarrow art \ adj \ n$$

(3)
$$NP \rightarrow art n$$

(4)
$$NP \rightarrow adj \ n$$

(5)
$$VP \rightarrow aux VP$$

$$(6) VP \rightarrow vNP$$

The original input: "x =The large can can hold the water"

POS assigned input: "x = art adj n aux v art n"

Parser input: "x = art adj n aux v art n"

The input: "x = art adj n aux v art n \$"

$$S_0$$
: $[S' \rightarrow \bullet S \$, 0]$
 $[S \rightarrow \bullet NP \ VP, 0]$
 $[NP \rightarrow \bullet art \ adj \ n, 0]$
 $[NP \rightarrow \bullet art \ n, 0]$
 $[NP \rightarrow \bullet adj \ n, 0]$

$$S_1$$
: $[NP \rightarrow art \bullet adj \ n \ , \ 0]$
 $[NP \rightarrow art \bullet n \ , \ 0]$

The input: "x = art adj n aux v art n \$"

$$S_1$$
: $[NP \rightarrow art \bullet adj \ n \ , \ 0]$
 $[NP \rightarrow art \bullet n \ , \ 0]$

$$S_2$$
: $[NP \rightarrow art \ adj \bullet n \ , \ 0]$

The input: " $x = \text{art adj } \mathbf{n} \text{ aux } \mathbf{v} \text{ art n } \mathbf{s}$ "

$$S_2$$
: $[NP \rightarrow art \ adj \bullet n \ , \ 0]$

$$S_3$$
: $[NP \rightarrow art \ adj \ n \bullet, 0]$

The input: " $x = \text{art adj n } \mathbf{aux} \text{ v art n } \mathbf{\$}$ "

$$S_3$$
: $[NP \rightarrow art \ adj \ n \bullet, 0]$
 $[S \rightarrow NP \bullet VP, 0]$
 $[VP \rightarrow \bullet aux \ VP, 3]$
 $[VP \rightarrow \bullet v \ NP, 3]$

$$S_4$$
: $[VP \rightarrow aux \bullet VP, 3]$

The input: " $x = \text{art adj n aux } \mathbf{v} \text{ art n } \mathbf{s}$ "

$$S_4$$
: $[VP \rightarrow aux \bullet VP, 3]$
 $[VP \rightarrow \bullet aux \ VP, 4]$
 $[VP \rightarrow \bullet v \ NP, 4]$

$$S_5$$
: $[VP \rightarrow v \bullet NP, 4]$

The input: "x = art adj n aux v art n"

$$S_5$$
: $[VP \rightarrow v \bullet NP , 4]$

$$[NP \rightarrow \bullet art \ adj \ n , 5]$$

$$[NP \rightarrow \bullet art \ n , 5]$$

$$[NP \rightarrow \bullet adj \ n , 5]$$

$$S_6$$
: $[NP \rightarrow art \bullet adj \ n \ , \ 5]$ $[NP \rightarrow art \bullet n \ , \ 5]$

The input: " $x = \text{art adj n aux v art } \mathbf{n}$ \$"

$$S_6$$
: $[NP \rightarrow art \bullet adj \ n \ , \ 5]$ $[NP \rightarrow art \bullet n \ , \ 5]$

$$S_7$$
: $[NP \rightarrow art \ n \bullet, 5]$

The input: "x = art adj n aux v art n"

$$S_7$$
: $[NP \rightarrow art \ n \bullet, 5]$
 $[VP \rightarrow v \ NP \bullet, 4]$
 $[VP \rightarrow aux \ VP \bullet, 3]$
 $[S \rightarrow NP \ VP \bullet, 0]$
 $[S' \rightarrow S \bullet \$, 0]$

$$S_8$$
: $[S' \rightarrow S \$ \bullet , 0]$

Time Complexity of Earley Algorithm

- Algorithm iterates for each word of input (i.e. n iterations)
- How many items can be created and processed in S_i ?
 - Each item in S_i has the form $[A \to X_1... \bullet C...X_m, j]$, $0 \le j \le i$
 - Thus O(n) items
- The Scanner and Predictor operations on an item each require constant time
- The *Completer* operation on an item adds items of form $[B \to X_1...A \bullet ...X_k, l]$ to S_i , with $0 \le l \le i$, so it may require up to O(n) time for each processed item
- Time required for each iteration (S_i) is thus $O(n^2)$
- Time bound on entire algorithm is therefore $O(n^3)$

Time Complexity of Earley Algorithm

Special Cases:

- Completer is the operation that may require $O(i^2)$ time in iteration i
- For unambiguous grammars, Earley shows that the completer operation will require at most O(i) time
- Thus time complexity for unambiguous grammars is $O(n^2)$
- For some grammars, the number of items in each S_i is bounded by a *constant*
- These are called *bounded-state* grammars and include even some ambiguious grammars.
- For bounded-state grammars, the time complexity of the algorithm is linear O(n)

Parsing with an Earley Parser

- As usual, we need to keep back-pointers to the constituents that we combine together when we complete a rule
- Each item must be extended to have the form $[A \to X_1(pt_1)... \bullet C...X_m, j]$, where the pt_i are "pointers" to the already found RHS sub-constituents
- At the end reconstruct parse from the "back-pointers"
- To maintain efficiency we must do ambiguity packing

The input: "x = art adj n aux v art n"

The input: "x = art adj n aux v art n \$"

$$S_0$$
: $[S' \rightarrow \bullet S \$, 0]$
 $[S \rightarrow \bullet NP \ VP, 0]$
 $[NP \rightarrow \bullet art \ adj \ n, 0]$
 $[NP \rightarrow \bullet art \ n, 0]$
 $[NP \rightarrow \bullet adj \ n, 0]$

$$S_1$$
: $[NP \rightarrow art_1 \bullet adj \ n \ , \ 0]$ 1 art $[NP \rightarrow art_1 \bullet n \ , \ 0]$

The input: "x = art adj n aux v art n \$"

$$S_1$$
: $[NP \rightarrow art_1 \bullet adj \ n \ , \ 0]$
 $[NP \rightarrow art_1 \bullet n \ , \ 0]$

$$S_2$$
: $[NP \rightarrow art_1 \ adj_2 \bullet n \ , \ 0]$ 2 adj

The input: " $x = \text{art adj } \mathbf{n} \text{ aux } \mathbf{v} \text{ art n } \mathbf{s}$ "

$$S_2$$
: $[NP \rightarrow art_1 \ adj_2 \bullet n \ , \ 0]$

$$S_3$$
: $[NP_4 \rightarrow art_1 \ adj_2 \ n_3 \bullet, 0]$

4
$$NP \rightarrow art_1 \ adj_2 \ n_3$$

The input: " $x = \text{art adj n } \mathbf{aux} \text{ v art n } \mathbf{\$}$ "

$$S_3$$
: $[NP_4 \rightarrow art_1 \ adj_2 \ n_3 \bullet, 0]$
 $[S \rightarrow NP_4 \bullet VP, 0]$
 $[VP \rightarrow \bullet aux \ VP, 3]$
 $[VP \rightarrow \bullet v \ NP, 3]$

$$S_4$$
: $[VP \rightarrow aux_5 \bullet VP, 3]$ 5 aux

The input: " $x = \text{art adj n aux } \mathbf{v} \text{ art n } \mathbf{s}$ "

$$S_4$$
: $[VP \rightarrow aux_5 \bullet VP, 3]$
 $[VP \rightarrow \bullet aux \ VP, 4]$
 $[VP \rightarrow \bullet v \ NP, 4]$

$$S_5$$
: $[VP \rightarrow v_6 \bullet NP, 4]$

The input: "x = art adj n aux v art n"

$$S_5$$
: $[VP \rightarrow v_6 \bullet NP, 4]$

$$[NP \rightarrow \bullet art \ adj \ n, 5]$$

$$[NP \rightarrow \bullet art \ n, 5]$$

$$[NP \rightarrow \bullet adj \ n, 5]$$

$$S_6$$
: $[NP \rightarrow art_7 \bullet adj \ n \ , \ 5]$ 7 art $[NP \rightarrow art_7 \bullet n \ , \ 5]$

The input: " $x = \text{art adj n aux v art } \mathbf{n}$ \$"

S₆:
$$[NP \rightarrow art_7 \bullet adj \ n \ , \ 5]$$

 $[NP \rightarrow art_7 \bullet n \ , \ 5]$

$$S_7$$
: $[NP_9 \rightarrow art_7 \ n_8 \bullet, 5]$

9
$$NP \rightarrow art_7 n_8$$

The input: "x = art adj n aux v art n"

$$S_7$$
: $[NP_9 \to art_7 \ n_8 \bullet, 5]$
 $[VP_{10} \to v_6 \ NP_9 \bullet, 4]$ 10 $VP \to v_6 \ NP_9$
 $[VP_{11} \to aux_5 \ VP_{10} \bullet, 3]$ 11 $VP \to aux_5 \ VP_{10}$
 $[S_{12} \to NP_4 \ VP_{11} \bullet, 0]$ 12 $S \to NP_4 \ VP_{11}$
 $[S' \to S \bullet \$, 0]$

$$S_8$$
: $[S' \rightarrow S \$ \bullet , 0]$