HLT

Finite State Technology

University of Malta

Finite State Technology (UoM) HLT October 2009 1/ 40

Acknowledgements

@ Richard Sproat, Morphology and Computation, MIT Press, ISBN
0-262-19314-0 (1992)

@ Shuly Wintner, Lecture Notes, 2008

Finite State Technology (UoM) HLT October 2009 2 /40

@ Computational Morphology

Finite State Technology (UoM) HLT October 2009 3 /40

@ Computational Morphology

© Revision of Formal Language Theory

Finite State Technology (UoM) HLT October 2009 3 /40

@ Computational Morphology
© Revision of Formal Language Theory

© Regular Expressions

Finite State Technology (UoM) HLT October 2009 3 /40

@ Computational Morphology
© Revision of Formal Language Theory
© Regular Expressions

@ Finite State Automata

Finite State Technology (UoM) HLT October 2009 3 /40

@ Computational Morphology

© Revision of Formal Language Theory
© Regular Expressions

@ Finite State Automata

© FSAs and Morphology

Finite State Technology (UoM) HLT October 2009 3 /40

Computatational Morphology

@ Morphology involves the relation between word forms and their
constituent morphemes.

@ enlargement, en + large + ment
e Computational morphology is the design of algorithms which
computations over that relation.

o Computational morphology is two way:

e Morphological Analysis
e Morphological Synthesis

@ Computational Morphology is not just about strings, but is also about
meanings.

Finite State Technology (UoM) HLT October 2009 4 /40

Challenges for Computational Morphology

e Handling Segmentation: what are the parts into which the word is
broken.
@ Handling Morphotactics:
e handling the order in which the parts combine together
e computing the result
@ Handling Phonological Alternations
e pity is realized as piti in pitilessness
o die becomes dy in dying
e Computational Morphology involves a concrete representation of the

lexicon.

Finite State Technology (UoM) HLT October 2009 5 /40

Representing the Lexicon

Finite-state automata are a good model for representing the lexicon.

They are also perfectly adequate for representing dictionaries

(lexicons+additional information)

@ They are also for describing morphological processes that involve
concatenation etc.

@ A natural extension of finite-state automata - finite-state transducers -

are a perfect model for most processes known in morphology and

phonology including non-segmental ones.

Finite State Technology (UoM) HLT October 2009 6 /40

Formal Language Theory

@ Formal languages are defined with respect to a given alphabet %,
which is a finite set of symbols, each of which is called a letter.

A finite sequence of letters is called a string.
String Length | w |

Concatenation wy.w»

Exponent w” = wy ... wp_1.w,

Reversal w®. If w =< wq, wn ... w, > then w® =< wp, wp_1 ... wy >

Substring:

If w=<xy...x, > then

forany i,jsuchthat 1 <i<;<n
< Xj...xj > is a substring of w.

Finite State Technology (UoM) HLT October 2009 7/ 40

Prefix and Suffix

o Two special cases of substring are prefix and suffix.
o If w = wj.w..w, then

e wj is a prefix of w and
e w, is a suffix of w

o Let X = a,b,c,...y,z be an be an alphabet and let w =
indistinguishable a, string over L.

@ Then € in, indis, indistinguish and indistinguishable are prefixes of w ,
while € e, able, distinguishable and indistinguishable are suffixes of w.

@ Substrings that are neither prefixes nor suffixes include distinguish, gui
and is.

Finite State Technology (UoM) HLT October 2009 8 /40

Formal Language

@ Given an alphabet X, the set of all strings over ¥, is denoted by ¥*

o A formal language over ¥ is a subset of L*.

@ Let X =a,b,c,...y,z be an be an alphabet.
The following are formal languages over o

Z*

the set of strings consisting of consonants only;

the set of strings consisting of vowels only;

the set of strings each of which contains at least one vowel and at
least one consonant;

the set of palindromes;

Finite State Technology (UoM) HLT October 2009 9/ 40

Lifting String Operations to Languages

@ String operations can be lifted to languages

e if L is a language then the reversal of L, denoted LR, is the language

{w|wfel}

o if Ly and L, are languages, then the concatenation of Ly and Lo,

[1.L, = {Wl.Wg ‘ wi € L1 and wn € L2}

Finite State Technology (UoM) HLT October 2009 10 / 40

e Ly = {i, you, he, she, it, we, they }
o Lo = {smile, sleep }
o LK = {elims, peels}

o L[y.Ly = {ismile, isleep, yousmile, yousleep, ... theysleep}

Finite State Technology (UoM) HLT October 2009 11 / 40

Kleene Closure

@ The Kleene Closure of L is denoted L* and defined as
w .
U
i=0

@ Note also that

L+:DU.
=1

Let L = {dog, cat}.
o L0={e}.
o L' = {dog, cat},

o 1% = {dogdog, catcat},

Finite State Technology (UoM) HLT October 2009 12 / 40

Regular Expressions

Regular expressions are a formalism for defining (formal) languages.
Their “syntax” is formally defined and is relatively simple.

Their “semantics" is sets of strings

The denotation of a regular expression is a set of strings in some
formal language.

Finite State Technology (UoM) HLT October 2009 13 / 40

Regular Expressions

Syntax

0is an RE

eis an RE

if a€ X is a letter then a is an RE

if n and rn are REs, then so are 1 +r» and 1.
if ris an RE then so is (r)x*

nothing else is an RE over ¥

Finite State Technology (UoM) HLT October 2009 14 / 40

Regular Expressions

Examples

o Let Y =a,b,c,...y,z be an be an alphabet. Some REs over &
include

+(e+ (i + (o +u))))
+(e+ i+ (o+u)))))*

Finite State Technology (UoM) HLT October 2009 15 / 40

Regular Expressions

Semantics

For every RE r its denotation [r] is defined as follows:
e [0]=0
o [= {¢}
o if a € X is a letter than [a] = a
e if p and r, are REs whose denotations are [r1] and [r2], then
o [rn+r]=[n]Ulr]

o [r.r] = [n].[r:]
o [(n)]=I[nl

Finite State Technology (UoM) HLT October 2009 16 / 40

Regular Expressions

Semantics

RE DENOTATION
0 0
{a)
((c a).t) {c.a.t}
(((m.e).(0)x).w) {mew, meow, meoow, meooow . ..}
(a+(e+(i+(o+vw))) {aei o, u}
(a+(e+(i+(0o+w)))))* allstrings of vowels |

Finite State Technology (UoM) HLT October 2009 17 / 40

Regular Languages - Definition

@ Definition

o A Language is regular if it is the denotation of some regular expression.
e Not all formal languages are regular

@ Closure

o A class of languages is said to be closed under some operation if and
only if whenever two languages are in the class, the result of
performing the operation on the two languages is also in this class.

Finite State Technology (UoM) HLT October 2009 18 / 40

Regular Languages

Equivalent Ways of Describing Regular Languages

finite
automata

regular
expressions

regular
languages

regular
grammars

Finite State Technology (UoM) HLT October 2009 19 / 40

Regular Expressions Closure Properties

Regular languages are closed under:
o Union
Intersection

Complementation

o

o

o Difference
o Concatenation
o

Kleene-star

Finite State Technology (UoM) HLT October 2009 20 / 40

Some Things that are Regular Languages

Zero or more a’s followed by zero or more b’s
The set of words in an English dictionary
Dates

URLs

English?

Finite State Technology (UoM) HLT October 2009 21 / 40

Some Things that are not Regular Languages

@ Zero or more a's followed by exactly the same number of b’s
@ The set of all English palindromes
@ The set that includes all noun phrases of the form

o the cat slept
e the cat the dog bit slept
o the cat the dog the man fed bit slept

Finite State Technology (UoM) HLT October 2009 22 / 40

Finite State Automata

o Automata are models of computation.
@ A finite state automaton (FSA) is a five-tuple < Q, go, X, 0, F >,
where
o @ is a set of states
e o € Q is an initial state
o F C Q is a set of final states
e X is a finite set of symbols
e dis a relation @ x X x @

Finite State Technology (UoM) HLT October 2009 23 / 40

FSA Example

a
3 2 7 1
b
e Q=1{1,2,3}
@ go=3
o F={1}
o ¥ ={a, b}
e 0=1{(3,a,2),(2,b,3),(2,a,1)}

Finite State Technology (UoM) HLT October 2009 24 / 40

Language Accepted by an FSA

@ Define the reflexive transitive extension A of §
o for every state g € @,(q,¢,q) € A
o for every string w € X* and letter a € &, if (q,w, q’) € A and
(¢',w,q") € 6 then (q,w.a,q¢") € A
@ A string w is accepted by an automaton if and only if there exists
gr € Q such that

(q07 w, qf) €A

@ The language accepted by a finite-state automaton is the set of all
strings it accepts

@ Theorem (Kleene, 1956): The class of languages recognized by
finite-state automata is the class of regular languages.

Finite State Technology (UoM) HLT October 2009 25 / 40

Operations on FSAs

Concatenation

Union

°
°

@ Intersection
@ Minimization
°

Determinization

Finite State Technology (UoM) HLT October 2009 26 / 40

Operations on FSAs
Concatenation

Finite State Technology (UoM) HLT October 2009 27 / 40

Operations of FSAs

Kleene *

Finite State Technology (UoM) HLT October 2009 28 / 40

Operations of FSAs
Union

Finite State Technology (UoM) HLT October 2009 29 / 40

FSAs and Morphology

The Lexicon

A lexicon is a repository of words
Full form lexicon: every word is listed explicitly

This is sometimes impractical

English nominal inflection

Finite State Technology (UoM) HLT October 2009 30 / 40

English Nominal Inflection

o With respect to plural nouns are either regular or irregular
o If regular they add s

o If irregular they may have a special plural form which includes no
change

reg-noun irreg-pl-noun irreg-sg-noun plural

fox geese goose -8
cat sheep sheep
aardvark mice mouse

Finite State Technology (UoM) HLT October 2009 31/ 40

FSA for English Nominal Inflection

- . plural-s _
00" 4
e o A

irreg-pl-noun

—

irreg-sg-noun

Finite State Technology (UoM) HLT October 2009 32 /40

English Verb Inflection

The lexicon has

@ three stem classes (reg-verb-stem, irreg-verb-stem, irreg-verb-form)

o four affix classes (-ed past, -ed participle, -ing participle, -s
third-singular)

reg-verb-stem irreg-verh-stem irreg-past-stem past past-part pres-part 3sg

walk cut caught -ed -ed -ing -5
fry speak ate

talk sing eaten

impeach sang

Finite State Technology (UoM) HLT October 2009 33 /40

FSA for English Verb Inflection

irreg-past-verb-form

irreg-verb-stem

Finite State Technology (UoM) HLT October 2009 34 / 40

Derivational Morphology of Adjectives

big, bigger, biggest

happy, happier, happiest

unhappy, unhappier, unhappiest

clear, clearer, clearest, clearly, unclear, unclearly
cool, cooler, coolest, coolly

red, redder, reddest

real, unreal, really

Finite State Technology (UoM) HLT October 2009 35 / 40

FSA for Derivational Morphology of Adjectives

un- adj-root __ -er -est -ly _
@ @ @ @

€

Finite State Technology (UoM) HLT October 2009 36 / 40

@ FSA overgenerates: it will recognise forms like unbig, smally

@ We need to set up classes of roots and specify their possible suffixes
such as

e adj-rootl: adjectives that can occur with un- and -ly
e adj-root2: adjectives that cannot so occur

@ Need to handle generalisations such as:

o verbs ending in -ize can be followed by -ation (realize, realization)
e adjectives ending in -al or -able can take suffix -ity (equal, formal)
e or sometimes -ness (naturalness)

Finite State Technology (UoM) HLT October 2009 37 / 40

Morphotactic FSA for Fragment of English Derivational

Morphology

: noun, . -izelV atlon.’N = =
Bl Whaddy Paedllly Q
~— _al e g

W\ -al. (-able/A TityIN- / \ -eri N

i @-‘:‘1 “‘%SF{N @6

|Ii. _\\ v:erb -a.gJ:QlJ_S__ o i _rlesj;:lAdv - yr?c"‘\\

Iy = b~ : ﬂ@ wefA /qu - /__9-)

| \Lver

o Q//\\ auvefg’) fullA yaay

\ nounI - ,@

Finite State Technology (UoM) HLT October 2009

38 / 40

Handling the Words

@ We can use these FSAs to solve the problem of morphological
recognition.

e We do this by plugging sub-lexicons into the morphotactic FSAs
defined earlier

@ Given the right infrastructure, this kind of operation can be performed
algebraically

Finite State Technology (UoM) HLT October 2009 39 / 40

o Finite-state automata are reversible: they can be used both for
analysis and for generation.

@ As recognisers, they can clearly be used for dictionary lookup.

@ They are efficient computational devices.

e Most algorithms on finite-state automata are linear.
e In particular, the recognition problem is linear.

@ Most phonological and morphological process of natural languages can
be straightforwardly described using the operations under which
regular languages are closed.

@ The closure properties of regular languages naturally support modular
development of finite-state grammars.

Finite State Technology (UoM) HLT October 2009 40 / 40

	Computational Morphology
	Revision of Formal Language Theory
	Regular Expressions
	Finite State Automata
	FSAs and Morphology

