
HLT

Finite State Technology

University of Malta

Finite State Technology (UoM) HLT October 2009 1 / 40

Acknowledgements

Richard Sproat, Morphology and Computation, MIT Press, ISBN
0-262-19314-0 (1992)

Shuly Wintner, Lecture Notes, 2008

Finite State Technology (UoM) HLT October 2009 2 / 40

Outline

1 Computational Morphology

2 Revision of Formal Language Theory

3 Regular Expressions

4 Finite State Automata

5 FSAs and Morphology

Finite State Technology (UoM) HLT October 2009 3 / 40

Outline

1 Computational Morphology

2 Revision of Formal Language Theory

3 Regular Expressions

4 Finite State Automata

5 FSAs and Morphology

Finite State Technology (UoM) HLT October 2009 3 / 40

Outline

1 Computational Morphology

2 Revision of Formal Language Theory

3 Regular Expressions

4 Finite State Automata

5 FSAs and Morphology

Finite State Technology (UoM) HLT October 2009 3 / 40

Outline

1 Computational Morphology

2 Revision of Formal Language Theory

3 Regular Expressions

4 Finite State Automata

5 FSAs and Morphology

Finite State Technology (UoM) HLT October 2009 3 / 40

Outline

1 Computational Morphology

2 Revision of Formal Language Theory

3 Regular Expressions

4 Finite State Automata

5 FSAs and Morphology

Finite State Technology (UoM) HLT October 2009 3 / 40

Computatational Morphology

Morphology involves the relation between word forms and their
constituent morphemes.

enlargement, en + large + ment

Computational morphology is the design of algorithms which
computations over that relation.

Computational morphology is two way:

Morphological Analysis
Morphological Synthesis

Computational Morphology is not just about strings, but is also about
meanings.

Finite State Technology (UoM) HLT October 2009 4 / 40

Challenges for Computational Morphology

Handling Segmentation: what are the parts into which the word is
broken.

Handling Morphotactics:

handling the order in which the parts combine together
computing the result

Handling Phonological Alternations

pity is realized as piti in pitilessness
die becomes dy in dying

Computational Morphology involves a concrete representation of the
lexicon.

Finite State Technology (UoM) HLT October 2009 5 / 40

Representing the Lexicon

Finite-state automata are a good model for representing the lexicon.

They are also perfectly adequate for representing dictionaries
(lexicons+additional information)

They are also for describing morphological processes that involve
concatenation etc.

A natural extension of �nite-state automata - �nite-state transducers -
are a perfect model for most processes known in morphology and
phonology including non-segmental ones.

Finite State Technology (UoM) HLT October 2009 6 / 40

Formal Language Theory

Formal languages are de�ned with respect to a given alphabet Σ,
which is a �nite set of symbols, each of which is called a letter.

A �nite sequence of letters is called a string.

String Length | w |
Concatenation w1.w2

Exponent wn = w1 . . .wn−1.wn

Reversal wR . If w =< w1,w2 . . .wn > then wR =< wn,wn−1 . . .w1 >

Substring:
If w =< x1 . . . xn > then
for any i , j such that 1 ≤ i ≤ j ≤ n

< xi . . . xj > is a substring of w .

Finite State Technology (UoM) HLT October 2009 7 / 40

Pre�x and Su�x

Two special cases of substring are pre�x and su�x.

If w = wl .wc .wr then

wl is a pre�x of w and
wr is a su�x of w

Example

Let Σ = a, b, c , . . . y , z be an be an alphabet and let w =
indistinguishable a, string over Σ.

Then ε in, indis, indistinguish and indistinguishable are pre�xes of w ,
while ε e, able, distinguishable and indistinguishable are su�xes of w .

Substrings that are neither pre�xes nor su�xes include distinguish, gui

and is.

Finite State Technology (UoM) HLT October 2009 8 / 40

Formal Language

Given an alphabet Σ, the set of all strings over Σ, is denoted by Σ∗

A formal language over Σ is a subset of Σ∗.

Example

Let Σ = a, b, c , . . . y , z be an be an alphabet.

The following are formal languages over σ

Σ∗

the set of strings consisting of consonants only;

the set of strings consisting of vowels only;

the set of strings each of which contains at least one vowel and at
least one consonant;

the set of palindromes;

Finite State Technology (UoM) HLT October 2009 9 / 40

Lifting String Operations to Languages

String operations can be lifted to languages

if L is a language then the reversal of L, denoted LR , is the language

{w | wR ∈ L}

if L1 and L2 are languages, then the concatenation of L1 and L2,

L1.L2 = {w1.w2 | w1 ∈ L1 and w2 ∈ L2}

Finite State Technology (UoM) HLT October 2009 10 / 40

Examples

L1 = {i, you, he, she, it, we, they }

L2 = {smile, sleep }

LR
2 = {elims, peels}

L1.L2 = {ismile, isleep, yousmile, yousleep, . . . theysleep}

Finite State Technology (UoM) HLT October 2009 11 / 40

Kleene Closure

The Kleene Closure of L is denoted L∗ and de�ned as

∞⋃
i=0

Li .

Note also that

L+ =
∞⋃
i=1

Li .

Example

Let L = {dog , cat}.
L0 = {ε}.

L1 = {dog , cat},

L2 = {dogdog , catcat},

Finite State Technology (UoM) HLT October 2009 12 / 40

Regular Expressions

Regular expressions are a formalism for de�ning (formal) languages.

Their �syntax� is formally de�ned and is relatively simple.

Their �semantics" is sets of strings

The denotation of a regular expression is a set of strings in some
formal language.

Finite State Technology (UoM) HLT October 2009 13 / 40

Regular Expressions
Syntax

0 is an RE

ε is an RE

if a ∈ Σ is a letter then a is an RE

if r1 and r2 are REs, then so are r1 + r2 and r1.r2

if r is an RE then so is (r)∗
nothing else is an RE over Σ

Finite State Technology (UoM) HLT October 2009 14 / 40

Regular Expressions
Examples

Let Σ = a, b, c , . . . y , z be an be an alphabet. Some REs over Σ
include

0

ε

((c .a).t)

(((m.e).(o))∗.w)

(a + (e + (i + (o + u))))

(a + (e + (i + (o + u)))))∗

Finite State Technology (UoM) HLT October 2009 15 / 40

Regular Expressions
Semantics

For every RE r its denotation JrK is de�ned as follows:

J0K = 0

JεK = {ε}
if a ∈ Σ is a letter than JaK = a

if r1 and r2 are REs whose denotations are Jr1K and Jr2K, then
Jr1 + r2K = Jr1K ∪ Jr2K
Jr1.r2K = Jr1K.Jr2K
J(r1)∗K = Jr1K

Finite State Technology (UoM) HLT October 2009 16 / 40

Regular Expressions
Semantics

Example

RE DENOTATION

0 0
a {a}
((c.a).t) {c.a.t}
(((m.e).(0)∗).w) {mew ,meow ,meoow ,meooow . . .}
(a + (e + (i + (o + u)))) {a, e, i , o, u}
(a + (e + (i + (o + u)))))∗ all strings of vowels

Finite State Technology (UoM) HLT October 2009 17 / 40

Regular Languages - De�nition

De�nition

A Language is regular if it is the denotation of some regular expression.
Not all formal languages are regular

Closure

A class of languages is said to be closed under some operation if and
only if whenever two languages are in the class, the result of
performing the operation on the two languages is also in this class.

Finite State Technology (UoM) HLT October 2009 18 / 40

Regular Languages
Equivalent Ways of Describing Regular Languages

Finite State Technology (UoM) HLT October 2009 19 / 40

Regular Expressions Closure Properties

Regular languages are closed under:

Union

Intersection

Complementation

Di�erence

Concatenation

Kleene-star

Finite State Technology (UoM) HLT October 2009 20 / 40

Some Things that are Regular Languages

Zero or more a's followed by zero or more b's

The set of words in an English dictionary

Dates

URLs

English?

Finite State Technology (UoM) HLT October 2009 21 / 40

Some Things that are not Regular Languages

Zero or more a's followed by exactly the same number of b's

The set of all English palindromes

The set that includes all noun phrases of the form

the cat slept
the cat the dog bit slept
the cat the dog the man fed bit slept

Finite State Technology (UoM) HLT October 2009 22 / 40

Finite State Automata

Automata are models of computation.

A �nite state automaton (FSA) is a �ve-tuple < Q, q0,Σ, δ,F >,
where

Q is a set of states
q0 ∈ Q is an initial state
F ⊆ Q is a set of �nal states
Σ is a �nite set of symbols
δ is a relation Q × Σ× Q

Finite State Technology (UoM) HLT October 2009 23 / 40

FSA Example

Example

3 2 1

· · ·

a
a

b

Q = {1, 2, 3}
q0 = 3

F = {1}
Σ = {a, b}
δ = {(3, a, 2), (2, b, 3), (2, a, 1)}

Finite State Technology (UoM) HLT October 2009 24 / 40

Language Accepted by an FSA

De�ne the re�exive transitive extension ∆ of δ

for every state q ∈ Q, (q, ε, q) ∈ ∆
for every string w ∈ Σ∗ and letter a ∈ Σ, if (q,w , q′) ∈ ∆ and
(q′,w , q′′) ∈ δ then (q,w .a, q′′) ∈ ∆

A string w is accepted by an automaton if and only if there exists
qf ∈ Q such that

(q0,w , qf) ∈ ∆

The language accepted by a �nite-state automaton is the set of all
strings it accepts

Theorem (Kleene, 1956): The class of languages recognized by
�nite-state automata is the class of regular languages.

Finite State Technology (UoM) HLT October 2009 25 / 40

Operations on FSAs

Concatenation

Union

Intersection

Minimization

Determinization

Finite State Technology (UoM) HLT October 2009 26 / 40

Operations on FSAs
Concatenation

Finite State Technology (UoM) HLT October 2009 27 / 40

Operations of FSAs
Kleene *

Finite State Technology (UoM) HLT October 2009 28 / 40

Operations of FSAs
Union

Finite State Technology (UoM) HLT October 2009 29 / 40

FSAs and Morphology
The Lexicon

A lexicon is a repository of words

Full form lexicon: every word is listed explicitly

This is sometimes impractical

English nominal in�ection

Finite State Technology (UoM) HLT October 2009 30 / 40

English Nominal In�ection

With respect to plural nouns are either regular or irregular

If regular they add s

If irregular they may have a special plural form which includes no
change

Finite State Technology (UoM) HLT October 2009 31 / 40

FSA for English Nominal In�ection

Finite State Technology (UoM) HLT October 2009 32 / 40

English Verb In�ection

The lexicon has

three stem classes (reg-verb-stem, irreg-verb-stem, irreg-verb-form)

four a�x classes (-ed past, -ed participle, -ing participle, -s
third-singular)

Finite State Technology (UoM) HLT October 2009 33 / 40

FSA for English Verb In�ection

Finite State Technology (UoM) HLT October 2009 34 / 40

Derivational Morphology of Adjectives

big, bigger, biggest

happy, happier, happiest

unhappy, unhappier, unhappiest

clear, clearer, clearest, clearly, unclear, unclearly

cool, cooler, coolest, coolly

red, redder, reddest

real, unreal, really

Finite State Technology (UoM) HLT October 2009 35 / 40

FSA for Derivational Morphology of Adjectives

Finite State Technology (UoM) HLT October 2009 36 / 40

Problems

FSA overgenerates: it will recognise forms like unbig, smally

We need to set up classes of roots and specify their possible su�xes
such as

adj-root1: adjectives that can occur with un- and -ly
adj-root2: adjectives that cannot so occur

Need to handle generalisations such as:

verbs ending in -ize can be followed by -ation (realize, realization)
adjectives ending in -al or -able can take su�x -ity (equal, formal)
or sometimes -ness (naturalness)

Finite State Technology (UoM) HLT October 2009 37 / 40

Morphotactic FSA for Fragment of English Derivational

Morphology

Finite State Technology (UoM) HLT October 2009 38 / 40

Handling the Words

We can use these FSAs to solve the problem of morphological
recognition.

We do this by plugging sub-lexicons into the morphotactic FSAs
de�ned earlier

Given the right infrastructure, this kind of operation can be performed
algebraically

Finite State Technology (UoM) HLT October 2009 39 / 40

Summary

Finite-state automata are reversible: they can be used both for
analysis and for generation.

As recognisers, they can clearly be used for dictionary lookup.

They are e�cient computational devices.

Most algorithms on �nite-state automata are linear.
In particular, the recognition problem is linear.

Most phonological and morphological process of natural languages can
be straightforwardly described using the operations under which
regular languages are closed.

The closure properties of regular languages naturally support modular
development of �nite-state grammars.

Finite State Technology (UoM) HLT October 2009 40 / 40

	Computational Morphology
	Revision of Formal Language Theory
	Regular Expressions
	Finite State Automata
	FSAs and Morphology

