
University of Malta
BSc IT (Hons)Year IV

CSA4050: Advanced Topics
Natural Language Processing

Lecture N-Grams

Statistical Approaches to NLP

• Sentence and Word Prediction

• N-Gram models

• Bigram Calculations

Dept Computer Science and AI 2004/05

Lecturer: Michael Rosner



Grammaticality
versus

Sentence Probability

The Linguist Says

“It must be recognised that the notion of “prob-

ability of a sentence” is an entirely useless one,

under any known interpretation of this term”.

Noam Chomsky 1969

The Statistician Says

“Anytime a linguist leaves the group the recog-

nition rate goes up”.

Fred Jelenek (1988), Head of the then IBM

speech group, in an address to a speech recog-

nition workshop.

Advanced Topics in NLP (2004/05) lecture N-Grams:1



Word Prediction is Useful

1. Automatic Speech Recognition (ASR)

2. Handwriting Recognition (OCR)

3. Augmentative Communication

4. Spell Checking

In 1 and 2, input is noisy and does not give
enough information to completely specify the
intended word, some kind of top-down knowl-
edge about words and their combinations seems
necessary.

In 3, the ability to predict the next word can
improve the efficiency of devices designed to
help users to specify the next sentence.

In 4 errors can be often detected by proba-
bilistic models of syntax particularly when the
misspelt strings are actually valid words.

Advanced Topics in NLP (2004/05) lecture N-Grams:2



Probability of a Word Sequence

• Model we shall discuss concerns words but

is equally valid for other kinds of sequence.

• Problem: how to compute the probability

of a complete string of words P (w1 . . . wn).

Below we use the abbreviation wn
1 (≡ w1 . . . wn).

• The chain rule for probabilities gives us

P (wn
1) =

P (w1)P (w2 | w1)P (w3 | w2
1) . . . P (wn | wn−1

1 )

=
∏n

k=1 P (wk | wk−1
1 )

• The problem is that in general we do not

know how to compute P (wk | wk−1
1 ) i.e.

the probability of a word given a long se-

quence of preceding words.

Advanced Topics in NLP (2004/05) lecture N-Grams:3



Markov Models: Bigram

• We cannot obtain P (wk | wk−1
1 ) by count-

ing: most corpora are too small to contain
useful information about such sequences.

• The obvious solution is to use the following
approximation:

P (wk | wk−1
1 ) ≈ P (wk | wk−1)

That is, we approximate the probability of
a word given all the previous words as the
probability of the word given just the pre-
vious word.

• The assumption that P (wn) depends only
on P (wn−1) is called a Markov Assumption.

• Markov models are the class of probabilis-
tic models which assume that we can pre-
dict the probability of some future event by
looking a finite distance into the past.

• A bigram looks one word into the past.

Advanced Topics in NLP (2004/05) lecture N-Grams:4



Bigram Probability of a Sequence

• The bigram probability of a sting is the

product of the probabilities of all the bi-

grams that make it up. So for example,

P (abcd) = P (a | b) ∗ P (b | c) ∗ P (c | d)

• Hence the bigram probability of a string wn
1

is

P (wn
1) ≈

n∏
k=1

P (wk | wk−1)

Advanced Topics in NLP (2004/05) lecture N-Grams:5



N-Gram Approximation

The general equation for N-gram approxima-

tion of the conditional probability of the next

word in a sequence is:

P (wn | wn−1
1 ) ≈ P (wn | wn−1

n−N+1)

• Bigram Approximation, N=2

P (wn | wn−1
1 ) ≈ P (wn | wn−1

n−1)

= P (wn | wn−1)

• Trigram Approximation N=3

P (wn
1) ≈

∏n
k=1 P (wk | wk−1

k−2)

Advanced Topics in NLP (2004/05) lecture N-Grams:6



Bigram Example:
Berkeley Restaurant Project

Jurafsky(1994)

Example Utterances

I’m looking for Cantonese food

I’d like to eat dinner someplace nearby

I’m looking for a good place to eat breakfast

When is Caffe Venezia open during the day?

Sample of Bigram Probabilities

eat on .16 eat Thai .03
eat some .06 eat breakfast .03
eat lunch .06 eat breakfast .03
eat dinner .05 eat Chinese .02
eat at .04 eat Mexican .02
eat a .04 eat tomorrow .01
eat Indian .04 eat dessert .007
eat today .03 eat British .001

Advanced Topics in NLP (2004/05) lecture N-Grams:7



Calculating Probability
of a Sentence

P (I want to eat British Food) =

P (I |< s >)P (want | I)P (to | want)P (eat |
to)P (British | eat)P (food | British)

= .25 * .32 * .65 * .26 * .002 * .60

= .000016

• The longer the string, the smaller the prob-

ability

• Risk of numerical underflow

• Many standard programs for computing N-

gram store bigram probabilities as loga-

rithms (base 2).

Advanced Topics in NLP (2004/05) lecture N-Grams:8



Computing Bigram Probabilities

N-gram models can be trained by counting and

normalising

We take some training corpus, and from this

corpus take the count of a particular bigram,

and divide this count by the number sum of

bigrams that share the same first word:

P (wn | wn−1) =
C(wn−1wn)

ΣwC(wn−1w)

We can simplify this since the sum of all the

bigram counts that start with a given word

wn−1 is the same as the unigram count for

that word

P (wn | wn−1) =
C(wn−1wn)
C(wn−1)

Advanced Topics in NLP (2004/05) lecture N-Grams:9



Bigram Probabilities

Unigram Counts

I 3437
want 1215
to 3256
eat 938
Chinese 213
food 1506
lunch 459

Bigram Counts

I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I want to eat Chinese food lunch
I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 .0049
to .00092 0 .0031 .26 .00092 0 .0037
eat 0 0 .0021 0 .02 .0021 .055
Chinese .0094 0 0 0 0 .56 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Advanced Topics in NLP (2004/05) lecture N-Grams:10



Higher Order N-grams

• Increasing accuracy of N-gram models as

we increase the value of N.

• Very strong dependency of the model on

the training corpus.

The cardinal sin in Statistical NLP is to

test on your training data

• Sparse data: One major problem with stan-

dard N-gram models is that they must be

trained from some finite corpus from which

certain perfectly legitimate N-grams are miss-

ing. Hence the training matrix is sparse.

Jelinek reports that using a 1.5 million word

corpus and applying the resulting trigram

model to a 300K word text, 25% of the

trigram types in the second text did not

appear.

Advanced Topics in NLP (2004/05) lecture N-Grams:11



Accuracy

1-gram Every enter now severally so, let
Hill he late speaks; or! a more to leg less first you
enter.

No coherent relation between words; no sentence-
final punctuation.

2-gram What means, sir. I confess she? then all sorts, he
is trim, captain.
Why dost stand forth thy canopy, forsooth; he is
this palpable hit the King Henry. Live king. Follow.

Strong local coherence between word-to-word co-
herence (esp. punctuation).

3-gram Sweet prince, Falstaff shall die. Harry of Mon-
mouth’s grave.
Indeed the duke; and had a very good grave

4-gram It cannot be but so.
They say all lovers swear more performance than
they are wont to keep obliged faith unforfeited!

The trigram and quadrigram sentences look a lot like
Shakespeare; too much so. Once the generator has
chosen “it cannot be but”, there is only one continua-
tion, given the training data.

Training set is far too small for the task at hand. Corpus
= 1M.

Advanced Topics in NLP (2004/05) lecture N-Grams:12



Dealing with Sparse Data

• Abstraction over the data to increase the

size of equivalence classes.

– Tagged Data

– Instead, n-grams are calculated only for

the K most common words. The rest

are considered as ”out of vocabulary”

(OOV) and mapped to a single token

(e.g. <UNK>).

• Smoothing Techniques

Advanced Topics in NLP (2004/05) lecture N-Grams:13



Add-One Smoothing
for Unigrams

Unsmoothed MLE of the unigram probability

P (wx) = count of wx
corpus size = c(wx)∑

i c(wi)
= c(wx)

N

where N is the total number of tokens. The
various smoothing techniques will rely upon an
the notion of an adjusted count c∗. The ad-
justed count for add-one smoothing can be de-
fined by:

• adding one to the count and then
• multiplying by a normalisation factor N

N+V :

c∗i = (ci + 1)
N

N + V

Here V is the vocabulary size, i.e. the number
of word types. Since we are adding 1 to the
count of each word type, the total number of
tokens N, must be increased by the number of
types, V.

Advanced Topics in NLP (2004/05) lecture N-Grams:14



Turning Adjusted Counts
into Probabilities

The adjusted count c∗i can then be turned into

an adjusted probability p∗i by normalisation (this

time by N - i.e. total number of actual tokens).

p∗i =
c∗i
N

=
N(ci + 1)

N(N + V )
=

ci + 1

N + V

The effect is to give a little bit of the proba-

bility space to unseen events.

Now we turn to the case of bigrams.

Advanced Topics in NLP (2004/05) lecture N-Grams:15



Unsmoothed versus
Add-One Adjusted

Bigram Counts

Here are the original counts:

ORIG. I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

So we add one to all of them:

ADD-1 I want to eat Chinese food lunch
I 9 1088 1 14 1 1 1
want 4 1 787 1 7 9 7
to 4 1 12 861 4 1 13
eat 1 1 3 1 20 3 53
Chinese 3 1 1 1 1 121 2
food 19 1 17 1 1 1 1
lunch 5 1 1 1 1 2 1

Advanced Topics in NLP (2004/05) lecture N-Grams:16



Smoothed Bigram Probabilities

Recall that normal bigram probabilities are com-
puted by normalising counts by the unigram
count:

P (wn | wn−1) =
C(wn−1wn)

C(wn−1)

The adjusted probabilities p ∗ (wn | wn−1) are
obtained by

p ∗ (wn | wn−1) =
C(wn−1wn) + 1

C(wn−1) + V

(It is as though we have added all possible word
pairs to the corpus)

Here, V is 1616 - the total number of word
types in the Berkeley corpus. The effect is
marked.

word count count +1616

I 3437 5053
want 1215 2931
eat 938 2554
lunch 459 2075

Advanced Topics in NLP (2004/05) lecture N-Grams:17



Unsmoothed v. Smoothed
Bigram Probabilities

ORIG. I want to eat Chinese food lunch

I .0023 .32 0 .0038 0 0 0

want .0025 0 .65 0 .0049 .0066 .0049
to .00092 0 .0031 .26 .00092 0 .0037
eat 0 0 .0021 0 .02 .0021 .055

Chinese .0094 0 0 0 0 .56 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Here are the smoothed probabillities.

ADD1 I want to eat Chinese food lunch

I .0018 .22 .00020 .0028 .0002 .0002 .0002

want .0014 .00035 .28 .00035 .0025 .0032 .0025
to .00082 .00021 .0023 .18 .00082 .00021 .0027
eat .00039 .00039 .0012 .00039 .0078 .0012 .021

Chinese .0016 .00055 .00055 .00055 .00055 .066 .0011
food .0064 .00032 .0058 .00032 .00032 .00032 .00032
lunch .0024 .00048 .00048 .00048 .00048 .0096 .00048

Although difficult to read, we can discern that

some of the changes are disproportionate.

Advanced Topics in NLP (2004/05) lecture N-Grams:18



Add-one Smoothed Bigram Counts

To make things easier to read we can can re-
construct the count matrix
ORIG. I want to eat Chinese food lunch

I 8 1087 0 13 0 0 0

want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52

Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

ADD1 I want to eat Chinese food lunch

I 6 740 .68 10 .68 .68 .68

want 2 .42 331 .42 3 4 3
to 3 .69 8 594 3 .69 9
eat .37 .37 1 .37 7.4 1 20

Chinese .36 .12 .12 .12 .12 15 .24
food 10 .48 9 .48 .48 .48 .48
lunch 1.1 .22 .22 .22 .22 .44 .22

• Add-one smoothing has made a very big
change to the counts.

• Note that the adjusted count for “Chinese
food” went from 120 to 15.

Advanced Topics in NLP (2004/05) lecture N-Grams:19



Add-One Smoothing - Remarks

• The main disadvantage of add-one smooth-

ing is that the estimates are dependent on

the size of the vocabulary.

• The larger the number of unseen elements,

the more probability mass is “stolen” from

the seen ones.

• So for sparse data sets over large vocabu-

laries, the method is unsatisfactory. In the

case at hand:

– too much probability mass is assigned

to previously unseen bigrams, and

– too little probability is assigned to those

bigrams having non-zero counts.

Advanced Topics in NLP (2004/05) lecture N-Grams:20



Gale and Church (1994):
What’s wrong with adding one?

• A study by Gale and Church (1994) con-

cludes that

– add-one is worse at predicting zero-count

bigrams than other methods.

– Variances of the counts produced by the

add-one method are actually worse than

than those for the unsmoothed method.

Advanced Topics in NLP (2004/05) lecture N-Grams:21


