CSA4050: Advanced Topics in NLP

Statistical NLP IV

Spelling Correction

- Spelling Correction
- Noisy Channel Method
- Probabilistic Models
- Bayesian Method

Dept Computer Science and AI 2003/04
Lecturer: Michael Rosner
Acknowledgement

Much of the material for this lecture comes from chapter 5 of Daniel Jurafsky/Jim Martin: Speech and Language Processing.

www.cs.colorado.edu/~martin/slp.html

See also

for resources on statistical NLP
Speech Recognition and Spelling Correction

Despite apparent differences, these problems share many underlying similarities.

Both are concerned with the problem of accepting a string of symbols and mapping them to a sequence of progressively less likely words.

- In spelling correction, the symbols are characters.

- In the recognition of pronunciation variations, the symbols are phones.
• Language is generated and passed through a noisy channel.

• Resulting noisy data are received

• Goal is to recover the original data from the noisy data.

• Same model can be used in diverse areas of language processing e.g. spelling correction, morphological analysis, pronunciation modelling, machine translation.

• Metaphor comes from Jelinek’s (1976) work on speech recognition, but algorithm is a special case of Bayesian inference (1763).
Kukich (1992) breaks the field down into three increasingly broader problems:

- Detection of non-words (e.g. *graffe*).

- Isolated word error correction (e.g. *graffe* \Rightarrow *giraffe*).

- Context dependent error detection and correction where the error may result in a valid word (e.g. *there* \Rightarrow *three*).
According to Damereau (1964) 80% of all misspelled words are caused by single-error misspellings which fall into the following categories (for the word *the*):

- Insertion (*ther*).
- Deletion (*th*).
- Substitution (*thw*).
- Transposition (*hte*).

Because of this study, much subsequent research focused on the correction of single error misspellings.
Causes of Spelling Errors

Keyboard Based

- Immediately adjacent keys in the same row of the keyboard (50% of the novice substitutions (31% of all substitutions).
- Hitting corresponding key on opposite side of keyboard.
- 83% novice and 51% overall were keyboard errors

Cognitive

- Phonetic separate - separate
- Homonym there - their.

OCR: mainly visual similarity (e.g. m - rn; substitutions; space deletions or insertions; failures.)
Bayesian Classification

In this task, we are given some observation and we must determine which of a set of classes it belongs to.

For example, in *speech recognition*

- The observation is a string of phones
- The classification is the word that was said

For example, in *spelling correction*

- The observation is a string of characters
- The classification is the word that was intended.
• We are given a string $O = (o_1, \ldots o_n)$ of observations.

• The Bayesian interpretation begins by considering all possible classes, i.e. the set of all possible words.

• Out of this universe, we want to choose that word w in the vocabulary V which is most probable given the observation that we have O, i.e.

$$\hat{w} = \arg\max_{w \in V} P(w \mid O)$$

where $\arg\max_{x} f(x)$ means “the x such that $f(x)$ is maximised”.

• Problem. Whilst this is guaranteed to give us the optimal word, it is not obvious how to make the equation operational: for a given word w and a given O we don’t know how to compute $P(w \mid O)$.
Bayes’ Rule

The intuition behind Bayesian classification is use Bayes’ rule to transform $P(w \mid O)$ into a product of two probabilities, each of which is easier to compute than $P(w \mid O)$.

Bayes’ Rule

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)}$$

we obtain

$$\hat{w} = \arg \max_{w \in V} P(w \mid O) = \frac{P(O \mid w)P(w)}{P(O)}$$

- We can estimate $P(w)$ from the frequency of the word.
- As we shall see, $P(O \mid w)$ is also easy to estimate.
- $P(O)$, the probability of the observation sequence, is harder to estimate, but we can ignore it.
Prior Probability and Likelihood

- We can ignore $P(O)$ since we are maximising

$$\frac{P(O|w)P(w)}{P(O)}$$

for all words where the denominator never changes. So \hat{w}, the most likely word

$$= \arg\max_{w \in V} \frac{P(O|w)P(w)}{P(O)}$$

$$= \arg\max_{w \in V} P(O \mid w)P(w)$$

The two terms of this product have names:

$P(w)$ is called the **prior probability**

$P(O \mid w)$ is called the **likelihood**

- In case of spelling O is observed typo and w is correct word.
Bayesian Classification Applied To Spelling Correction

• The noisy channel approach was first suggested by Kernighan, Church and Gale (1990)

• Their program (called correct)

 – Takes words rejected by the Unix spell program

 – Generates a list of potentially correct words

 – Ranks them according to the the above equation

 – Picks the one with the highest rank

• We will follow the correction of the word across which proceeds in two steps, proposing candidates, and ranking candidates.
Proposing Candidates

- Assume that correct word will differ from the misspelling by a single insertion, deletion, substitution or transposition.

- The list of candidates is generated from the typo by applying any single transformation that results in a word occurring in a large online dictionary.

- For instance, the typo *acress* yields the following list: *actress* (d), *cress* (i), *caress* (t), *access* (s), *across* (s), *acres* (i), *acres* (i).

<table>
<thead>
<tr>
<th>Error</th>
<th>Correction</th>
<th>Correct Letter</th>
<th>Error Letter</th>
<th>Position (Letter #)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>acress</td>
<td>actress</td>
<td>t</td>
<td>–</td>
<td>2</td>
<td>deletion</td>
</tr>
<tr>
<td>acress</td>
<td>cress</td>
<td>–</td>
<td>a</td>
<td>0</td>
<td>insertion</td>
</tr>
<tr>
<td>acress</td>
<td>caress</td>
<td>ca</td>
<td>ac</td>
<td>0</td>
<td>transposition</td>
</tr>
<tr>
<td>acress</td>
<td>access</td>
<td>c</td>
<td>r</td>
<td>2</td>
<td>substitution</td>
</tr>
<tr>
<td>acress</td>
<td>across</td>
<td>o</td>
<td>e</td>
<td>3</td>
<td>substitution</td>
</tr>
<tr>
<td>acress</td>
<td>acres</td>
<td>–</td>
<td>2</td>
<td>5</td>
<td>insertion</td>
</tr>
<tr>
<td>acress</td>
<td>acres</td>
<td>–</td>
<td>2</td>
<td>4</td>
<td>insertion</td>
</tr>
</tbody>
</table>
The second stage scores each correction. Let t be the typo and c range over a set C of candidate corrections. The most likely correction \hat{c} is then $\text{argmax}_{c \in C} P(c \mid t)$, which by Bayes' rule is equivalent to

$$\hat{c} = \text{argmax}_{c \in C} P(t \mid c)P(c)$$

The prior probability $P(c)$ can be estimated by

- Counting how often the word c appears in the corpus
- Normalising the count by dividing it by the number N of words in the corpus. Zero counts can cause problems, and so we add .5 to all counts (this is called “smoothing”). Having done this, we must compensate by adding $0.5*V$ to the denominator for each word V in the vocabulary so that

$$P(c) = \frac{C(c)+0.5}{N+0.5V}$$
Using the formula above, the prior probabilities come out as follows:

<table>
<thead>
<tr>
<th>c</th>
<th>freq(c)</th>
<th>P(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>actress</td>
<td>1343</td>
<td>0.0000315</td>
</tr>
<tr>
<td>cress</td>
<td>0</td>
<td>0.00000014</td>
</tr>
<tr>
<td>caress</td>
<td>4</td>
<td>0.000001</td>
</tr>
<tr>
<td>access</td>
<td>2280</td>
<td>0.000058</td>
</tr>
<tr>
<td>across</td>
<td>8436</td>
<td>0.00019</td>
</tr>
<tr>
<td>acres</td>
<td>2879</td>
<td>0.000065</td>
</tr>
</tbody>
</table>
The likelihood term $P(t \mid c)$ is difficult if not impossible to predict in the general case (depends on arbitrary factors e.g. on who the typist is, the lighting conditions etc.)

However it can be estimated if we have a theory of how it was produced.

In the case of Kernighan et al, it is assumed that t arises from a single insertion, deletion, transposition or substitution, for which certain a priori probabilities are evident, e.g.

- the identity of the correct letter,
- how the letter was misspelled
- the surrounding context
- e.g. m and n are often confused (because they are pronounced similarly, they often crop up in the same contexts.)
In fact Kernighan et al. ignored most of these factors and simply counted the occurrences of particular kinds of error occurring in a large corpus of errors.

Using this technique they constructed a series of confusion matrices for the different kinds of error.

- sub\([x,y]\) - number of times \(x\) is substituted for \(y\).
- ins\([x,y]\) - number of times \(x\) was typed as \(xy\)
- del\([x,y]\) - number of times \(xy\) was typed as \(x\)
- tran\([x,y]\) - number of times \(xy\) was typed as \(yx\)
Using the Confusion Matrices

Using these matrices, they calculated $P(t \mid c)$ as follows, where c_p is the p^{th} character of word c.

$$P(t \mid c) = \frac{\text{sub}[t_p, c_p]}{\text{count}[c_p]}$$

$$P(t \mid c) = \frac{\text{tran}[c_p, c_{p+1}]}{\text{count}[c_p c_{p+1}]}$$

$$P(t \mid c) = \frac{\text{del}[c_{p-1}, c_p]}{\text{count}[c_{p-1}, c_p]}$$

$$P(t \mid c) = \frac{\text{ins}[c_{p-1}, t_p]}{\text{count}[c_{p-1}]}$$
The algorithm predicts “acres” as the correct word. Yet the surrounding context

... *was called a “stellar and versatile across whose combination of sass and glamour has defined her…”*

makes it clear that the correct word is actually “actress”.

- Clearly other methods are necessary to take account of context.
Producing Confusion Matrices

The algorithm described requires hand-annotated data to train the confusion matrices. This is expensive and slow to produce.

Kernighan et al (1990) suggested the following iterative approach to the problem of constructing confusion matrices:

- Initialise matrices with equal values
- Spelling error correction algorithm is run on a set of spelling errors. This yields the errors paired with their corrections.
- Using this information in these pairs, the confusion matrices can now be recomputed.
- The program performed quite well, agreeing with 87% of the judgements of asking human judges concerning spelling errors that had two possible corrections.