
HLT

Introduction to Xerox Finite State Tool (xfst)

University of Malta

xfst (UoM) HLT March 2010 1 / 48

Acknowledgements

Shuly Wintner, Lecture Notes, 2008

xfst (UoM) HLT March 2010 2 / 48

Outline

1 Introduction to xfst

2 xfst User Interface

3 Replace Rules

4 Tutorial Demonstration

5 Class Exercises

6 Handling Irregular Forms

7 Non Concatenative Morphotactics

xfst (UoM) HLT March 2010 3 / 48

Outline

1 Introduction to xfst

2 xfst User Interface

3 Replace Rules

4 Tutorial Demonstration

5 Class Exercises

6 Handling Irregular Forms

7 Non Concatenative Morphotactics

xfst (UoM) HLT March 2010 3 / 48

Outline

1 Introduction to xfst

2 xfst User Interface

3 Replace Rules

4 Tutorial Demonstration

5 Class Exercises

6 Handling Irregular Forms

7 Non Concatenative Morphotactics

xfst (UoM) HLT March 2010 3 / 48

Outline

1 Introduction to xfst

2 xfst User Interface

3 Replace Rules

4 Tutorial Demonstration

5 Class Exercises

6 Handling Irregular Forms

7 Non Concatenative Morphotactics

xfst (UoM) HLT March 2010 3 / 48

Outline

1 Introduction to xfst

2 xfst User Interface

3 Replace Rules

4 Tutorial Demonstration

5 Class Exercises

6 Handling Irregular Forms

7 Non Concatenative Morphotactics

xfst (UoM) HLT March 2010 3 / 48

Outline

1 Introduction to xfst

2 xfst User Interface

3 Replace Rules

4 Tutorial Demonstration

5 Class Exercises

6 Handling Irregular Forms

7 Non Concatenative Morphotactics

xfst (UoM) HLT March 2010 3 / 48

Outline

1 Introduction to xfst

2 xfst User Interface

3 Replace Rules

4 Tutorial Demonstration

5 Class Exercises

6 Handling Irregular Forms

7 Non Concatenative Morphotactics

xfst (UoM) HLT March 2010 3 / 48

What is xfst

xfst is an interface giving access to �nite-state operations (algorithms
such as union, concatenation, iteration, intersection, composition etc.)

xfst includes a regular expression compiler

xfst is bidirectional. The interface includes

a lookup operation (apply up)
a generation operation (apply down)

The regular expression language employed by xfst is an extended
version of standard regular expressions

xfst (UoM) HLT March 2010 4 / 48

Atomic Expressions

0 the epsilon symbol denotes the empty string language

? the any symbol deotes the language of all single-symbol strings or
the corresponding identity relation. The empty string is not included.

Any single symbol a denotes the language consisting of the
corresponding string or the identity relation on that language

Any pair of symbols a:b denotes the relation that consists of the
corresponding ordered pair of strings. a is the upper symbol and b is
the lower symbol. A pair of identical symbols, except for the pair ?:?
is considered to be equivalent to the corresponding single symbol

What is the relationship between ? and ?:?

cat a single multicharacter symbol

"+Noun" single symbol with multicharacter print name

%+Noun single symbol with multicharacter print name

xfst (UoM) HLT March 2010 5 / 48

Atomic Expressions

cat a single multicharacter symbol

%+ the literal plus-sign symbol
%* the literal asterisk symbol (and similarly for %?, %(, %] etc.)
"+Noun" single symbol with multicharacter print name
%+Noun single symbol with multicharacter print name

xfst (UoM) HLT March 2010 6 / 48

Operators

[] empty string
[A] same as A
A | B union
(A) optional A
A & B intersection
A-B set di�erence

xfst (UoM) HLT March 2010 7 / 48

Symbols and Operators

A B concatenation
c a t language consisting of the string �cat�
{cat} language consisting of the string �cat�
A* Kleene Star (zero or more iterations)
A+ one or more iterations
?* the universal language
∼A complement of a (= [?* - A])
∼[?*] the empty language

Question: What is the di�erence between ∼[?*] and 0

xfst (UoM) HLT March 2010 8 / 48

Symbols and Operators

A B concatenation
c a t language consisting of the string �cat�
{cat} language consisting of the string �cat�
A* Kleene Star (zero or more iterations)
A+ one or more iterations
?* the universal language
∼A complement of a (= [?* - A])
∼[?*] the empty language

Question: What is the di�erence between ∼[?*] and 0

xfst (UoM) HLT March 2010 8 / 48

Relations

[A .x. B] Cartesian product relating every string in A
to every string in B

a:b same as [a .x. b]

%+PLU:s same as [+PLU .x. s]

xfst (UoM) HLT March 2010 9 / 48

Abbreviations

$A: all strings that contain A

Question: How would you de�ne $A using concatenation?
Answer $A = [?* A ?*]

A/B: the language obtained by splicing in B* anywhere within the
strings of A strings from B

example [[a b] / x]: includes xxxaxxbxx

\A: The set of all single symbol strings tat are not in the language A.

example \b: [? - b] - any symbol except B

xfst (UoM) HLT March 2010 10 / 48

Abbreviations

$A: all strings that contain A

Question: How would you de�ne $A using concatenation?
Answer $A = [?* A ?*]

A/B: the language obtained by splicing in B* anywhere within the
strings of A strings from B

example [[a b] / x]: includes xxxaxxbxx

\A: The set of all single symbol strings tat are not in the language A.

example \b: [? - b] - any symbol except B

xfst (UoM) HLT March 2010 10 / 48

Abbreviations

$A: all strings that contain A

Question: How would you de�ne $A using concatenation?
Answer $A = [?* A ?*]

A/B: the language obtained by splicing in B* anywhere within the
strings of A strings from B

example [[a b] / x]: includes xxxaxxbxx

\A: The set of all single symbol strings tat are not in the language A.

example \b: [? - b] - any symbol except B

xfst (UoM) HLT March 2010 10 / 48

User Interface

xfst> help

xfst> help union net

xfst> exit

xfst> read regex [d o g | c a t];

xfst> read regex < myfile.regex

xfst> apply up dog

xfst> apply down dog

xfst> pop stack

xfst> clear stack

xfst> save stack myfile.fsm

xfst (UoM) HLT March 2010 11 / 48

User Interface

xfst> define Root [w a l k | t a l k | w o r k];

xfst> define Prefix [0 | r e];

xfst> define Suffix [0 | s | e d | i n g];

xfst> read regex Prefix Root Suffix;

xfst> words

xfst> apply up walking

xfst (UoM) HLT March 2010 12 / 48

Replace Rules
A Motivating Example

Consider the following pairs:

Example

accurate adequate balanced competent
inaccurate inadequate imbalanced incompetent

de�nite �nite mature nutrition
inde�nite in�nite immature innutrition

patience possible sane tractable
impatience impossible insane intractable

The negative forms are constructed by adding the abstract morpheme
iN to the positive forms.

N is realized as either n or m.
xfst (UoM) HLT March 2010 13 / 48

Replace Rules
A Motivating Example

Consider the following pairs:

Example

accurate adequate balanced competent
inaccurate inadequate imbalanced incompetent

de�nite �nite mature nutrition
inde�nite in�nite immature innutrition

patience possible sane tractable
impatience impossible insane intractable

The negative forms are constructed by adding the abstract morpheme
iN to the positive forms.

N is realized as either n or m.
xfst (UoM) HLT March 2010 13 / 48

Replace Rules
A Motivating Example

Consider the following pairs:

Example

accurate adequate balanced competent
inaccurate inadequate imbalanced incompetent

de�nite �nite mature nutrition
inde�nite in�nite immature innutrition

patience possible sane tractable
impatience impossible insane intractable

The negative forms are constructed by adding the abstract morpheme
iN to the positive forms.

N is realized as either n or m.
xfst (UoM) HLT March 2010 13 / 48

Replace Rules
Unconditional Replace Rules

Replace rules are an extremely powerful extension of the regular
expression metalanguage.

The simplest replace rule is of the form
upper -> lower

Its denotation is the relation which maps string to themselves, with
the exception that an occurrence of upper in the input string is
replaced by lower.

For example N -> n

xfst[0]: read regex N -> n;

xfst[1]: apply down iNcorrect

incorrect

xfst[2]: apply down iNperfect

inperfect

Note that the rule itself compiles into an FST

xfst (UoM) HLT March 2010 14 / 48

Replace Rules
Conditional Replace Rules

In order to get imperfect we need a rule like N -> m but this will
yield wrong results (e.g. imcorrect).

So we need to put context conditions on the rule.

Conditional replace rules include left and/or right contexts.

upper -> lower || leftcontext _ rightcontext

Its denotation is the relation which maps string to themselves, with
the exception that an occurrence of upper preceded by leftcontext

and followed by rightcontext, is replaced in the output by lower.

xfst (UoM) HLT March 2010 15 / 48

Replace Rules
Conditional Replace Rules

A linguistically accurate way of handling these phenomena is to use
two rules

N -> m || _ [b|m|p]

N -> n

ensuring that their application is obligatory and that they are applied
in the order given.

xfst (UoM) HLT March 2010 16 / 48

xfst Demonstration

read regex

(read) regex <regexp> <semicolon>

regex <regexp> <semicolon>

(print) words

xfst[0]: regex [d o g | c a t | h o r s e] ;

xfst[1]: print words

horse

cat

dog

xfst[1]:

The expression is read and compiled, and the network is pushed on the
stack.

The words of the top item are printed.

The keywords read anmd print are optional

xfst (UoM) HLT March 2010 17 / 48

xfst Demonstration

define

define <var> <regexp> <semicolon>

xfst[0]: define MyVar [d o g | c a t | h o r s e] ;

xfst[0]: regexp MyVar MyVar

xfst[1]: words

horsehorse

horsecat

horsedog

cathorse

catcat

catdog

doghorse

dogcat

dogdog

xfst[1]:

The variable is de�ned and the value stored in a symbol table
The variable can be reused

xfst (UoM) HLT March 2010 18 / 48

xfst Demonstration

apply up/down

(apply) up <word>

xfst[0]: regex [d o g | c a t | h o r s e] ;

xfst[1]: apply up dog

dog

xfst[1]: up pig

xfst[1]:

xfst[1]: down dog

dog

The <word> is �looked up�

The result of tranducing the word in an upward/downward direction is
output.

The keywords read and print are optional

xfst (UoM) HLT March 2010 19 / 48

xfst Demonstration

apply up/down from file

xfst[0]: regex < animals

Opening file animals...

420 bytes. 10 states, 11 arcs, 3 paths.

Closing file animals...

xfst[1]: up < wl

Opening file wl...

dog

dog

pig

horse

horse

cat

cat

Closing file wl...

xfst[1]:

xfst (UoM) HLT March 2010 20 / 48

xfst Demonstration

exponentiation operator

xfst[1]: regex a^2;

xfst[2]: words

aa

xfst[2]: regex a^{2,5};

228 bytes. 6 states, 5 arcs, 4 paths.

xfst[3]: words

aa

aaa

aaaa

aaaaa

xfst[4]:

xfst (UoM) HLT March 2010 21 / 48

xfst Demonstration

print net command

(print) net

xfst[2]: regex a^{2,5};

228 bytes. 6 states, 5 arcs, 4 paths.

xfst[3]: net

Sigma: a

Size: 1

Net:

Flags: deterministic, pruned, minimized, epsilon_free, loop_free

Arity: 1

s0: a -> s1.

s1: a -> fs2.

fs2: a -> fs3.

fs3: a -> fs4.

fs4: a -> fs5.

fs5: (no arcs)

xfst (UoM) HLT March 2010 22 / 48

xfst Demonstration

intersect operation and stack

xfst[0]: regex a|b|c;

xfst[1]: regex b|c;

xfst[2]: regex a|b;

xfst[3]: intersect

xfst[1]: words

b

xfst[1]: regex [a|b|c] & [a|c] & [b|a];

xfst[2]: words

a

xfst[2]: union

xfst[1]: words

b

a

xfst[1]:

xfst (UoM) HLT March 2010 23 / 48

xfst Demonstration

cross product - possible abbreviations

The following are all equivalent

[[d o g] .x. [c h i e n]] |

[[c a t] .x. [c h a t]] |

[[h o r s e] .x. [c h e v a l]];

[{dog} .x. {chien}] |

[{cat} .x. {chat}] |

[{horse} .x. {cheval}];

{dog} : {chien} |

{cat} : {chat} |

{horse} : {cheval};

xfst (UoM) HLT March 2010 24 / 48

xfst Demonstration

Cross Product

xfst[0]: regex {dog}:{chien};

268 bytes. 6 states, 5 arcs, 1 path.

xfst[1]: up chien

dog

xfst[1]: down dog

chien

xfst[1]: words

<d:c><o:h><g:i><0:e><0:n>

xfst[1]:

xfst (UoM) HLT March 2010 25 / 48

xfst Demonstration

Cross Product

xfst[0]: regex {dog}:{chien};

268 bytes. 6 states, 5 arcs, 1 path.

xfst[1]: up chien

dog

xfst[1]: down dog

chien

xfst[1]: words

<d:c><o:h><g:i><0:e><0:n>

xfst[1]:

xfst (UoM) HLT March 2010 26 / 48

Class Exercise 1

The verb "sing" has the forms "sang" and "sung"

Write a regular expression which allows you to look up any of these
forms and get "sing".

Draw the corresponding FST

xfst (UoM) HLT March 2010 27 / 48

Class Exercise 2a

Design and compile a network which has the following behaviour

xfst[] up black

black

xfst[] up blacker

black

xfst[] up blackest

black

xfst (UoM) HLT March 2010 28 / 48

Class Exercise 2b

Modify the network to handle the forms of "green".

Modify the network to perform morphological analysis i.e. it should
give the part of speech as well as the degree of comparison, if
applicable

xfst[] up green

green+JJ

xfst[] up greener

green+JJ+CMP

xfst[] up greenest

green+JJ+SUP

xfst (UoM) HLT March 2010 29 / 48

Class Exercise 2c

What happens when you add the word "blue"?

To �x the problem you need to use replace rules together with the
composition operation.

e.g. part of rule for eliminating "e" when it comes before %+COMP

R1 e -> 0 || _ %+COMP ;

xfst (UoM) HLT March 2010 30 / 48

Handling Irregular Forms
Irregular Plurals

Irregular Plurals: don't just add an �s� (in EN)

Extra Irregular Plurals: irregular form is in addition to regular plural.
example: �sh (sing/pl), �shes (pl)
Overriding Irregular Plurals: irregular form replaces regular plural.
example: index (sg), indices (pl)

xfst (UoM) HLT March 2010 31 / 48

Handling Irregular Plurals
Extra Irregular Plurals

Example

Noun Regular Irregular

�sh �shes �sh

lexicon lexicons lexica

person persons people

xfst (UoM) HLT March 2010 32 / 48

Overriding Irregular Plurals
Overriding Extra Plurals

Example

Noun Regular Irregular

sheep sheeps sheep

corpus corpuses corpora

index indexes indices

xfst (UoM) HLT March 2010 33 / 48

Handling Irregular Plurals

First note that the following overgenerates and undergenerates with
wrt to the linguistic phenomena1.

define NOUNS {cat} | {fish} |{sheep};

define NUMBER %+Noun%+SG:0 | %+Noun%+PL:s;

regex NOUNS NUMBER

words;

apply up cat/cats: correct

apply up �sh/�shs: undergenerates

apply up sheep/sheeps: overgenerates

1NB: for the moment we ignore the misspelling of ��shes�
xfst (UoM) HLT March 2010 34 / 48

Handling Undergeneration
Extra Irregular Plurals

In this case we need to add the fact that ��sh� is both singular and
plural.

One way to do this is to simply add an extra path into the network
and then add this using the union operation

define NOUNS {cat} | {fish} |{sheep};

define NUMBER %+Noun%+SG:0 | %+Noun%+PL:s;

define EXTRA {fish} %+Noun%+PL:0

regex [NOUNS NUMBER] | EXTRA

words;

Now we also get that "�sh" can be plural

xfst (UoM) HLT March 2010 35 / 48

Handling Overgeneration

To handle overgeneration, we can

1 De�ne a grammar which overgenerates regular plurals, i.e. adds "s"
even when it shouldn't.

2 Use composition to �lter out the overgenerated plurals

3 Use union to add the overriding irregular plurals

xfst (UoM) HLT March 2010 36 / 48

Handling Irregular Plurals

1 De�ne a grammar which overgenerates regular plurals, i.e. adds "s"
even when it shouldn't.

define NOUNS {cat} | {fish} |{sheep};

define NUMBER %+Noun%+SG:0 | %+Noun%+PL:s;

define LEX [NOUNS NUMBER]

xfst (UoM) HLT March 2010 37 / 48

Handling Irregular Plurals

1 De�ne a grammar which overgenerates regular plurals, i.e. adds "s"
even when it shouldn't.

2 Use composition to �lter out the overgenerated plurals

define NOUNS {cat} | {fish} |{sheep};

define NUMBER %+Noun%+SG:0 | %+Noun%+PL:s;

define OVERRIDING {sheep} %+Noun%+PL:0;

define FILTER OVERRIDING.u;

define LEX [NOUNS NUMBER] | OVERRIDING

define FILTEREDLEX ~FILTER .O. LEX

xfst (UoM) HLT March 2010 38 / 48

Handling Irregular Plurals

1 De�ne a grammar which overgenerates regular plurals, i.e. adds "s"
even when it shouldn't.

2 Use composition to �lter out the overgenerated plurals
3 Use union to add the overriding irregular plurals

define NOUNS {cat} | {fish} |{sheep};

define NUMBER %+Noun%+SG:0 | %+Noun%+PL:s;

define OVERRIDING {sheep} %+Noun%+PL:0;

define FILTER OVERRIDING.u;

define LEX [NOUNS NUMBER] | OVERRIDING

define FILTEREDLEX ~FILTER .O. LEX

define EXTRA {fish} %+Noun%+PL:0;

define GOODLEX FILTEREDLEX | EXTRA

xfst (UoM) HLT March 2010 39 / 48

xfst Programming Idioms

We have seen how irregular plurals can override unwanted regular
plurals.

To achieve this we used an �idiom" that combines two things:

upperside �ltering
union

It turns out to be such a useful idiom that it has been packaged into a
single operator which is part of the xfst language.

xfst (UoM) HLT March 2010 40 / 48

Priority Union

The priority union operator is written L .P. R

L .P. R is not symmetrical

The result of L .P. R is a union of L and R except that whenever L
and R have the same string on the upper side, the path in L takes
priority.

xfst (UoM) HLT March 2010 41 / 48

Priority Union

define L a:1 | b:2 | c:3;

define R a:3 | c:4 | d:5;

regex L .P. R;

words

xfst (UoM) HLT March 2010 42 / 48

Use of Priority Union

define NOUNS {cat} | {fish} |{sheep};

define NUMBER %+Noun%+SG:0 | %+Noun%+PL:s;

define EXTRA {fish} %+Noun%+PL:0;

define OVERRIDING {sheep} %+Noun%+PL:0;

define LEX [NOUNS NUMBER] | EXTRA | OVERRIDING;

define FILTEREDLEX OVERRIDING .P. LEX;

regex FILTEREDLEX | OVERRIDING;

xfst (UoM) HLT March 2010 43 / 48

There are three main phenomena of interest:

xfst (UoM) HLT March 2010 44 / 48

Non-Concatenative Morphology

Fixed Length Reduplication

Full Stem Reduplication

Stem Interdigitation

xfst (UoM) HLT March 2010 44 / 48

Non-Concatenative Morphology

Fixed Length Reduplication

Full Stem Reduplication

Stem Interdigitation

xfst (UoM) HLT March 2010 44 / 48

Non-Concatenative Morphology

Fixed Length Reduplication

Full Stem Reduplication

Stem Interdigitation

xfst (UoM) HLT March 2010 44 / 48

Non-Concatenative Morphology

Fixed Length Reduplication

Full Stem Reduplication

Stem Interdigitation

xfst (UoM) HLT March 2010 44 / 48

Fixed Length Reduplication
Tagalog

ROOT CV+ROOT GLOSS

pili pipili choose

tahi tatahi sew

kuha kukuha take

xfst (UoM) HLT March 2010 45 / 48

Full Stem Reduplication
Malay

ROOT GLOSS REDUPLICATION GLOSS

anak child anak-anak children

lembu cow lembu-lembu cows

buku book buku-buku books

basikal bicycle basikal-basikal bicycles

xfst (UoM) HLT March 2010 46 / 48

Stem Interdigitation
Maltese, Arabic, Hebrew

Stems are composed of

root consisting of consonants such as ktb
pattern consisting of vowels such as _i_e_ and slots into which
consonants are inserted

Root and pattern are �interdigitated� to form stems like �kiteb" and
�ktieb"

NB. The role of vowels in Arabic is much more complex and also
systematic than in Maltese.

xfst (UoM) HLT March 2010 47 / 48

Interdigitation using Compile Replace

list C b t y k l m n f w r z d s

list V a i u e

regex {ktb} .m>. {CVCVC} .<m. [i|e]+;

words

xfst (UoM) HLT March 2010 48 / 48

	Introduction to xfst
	xfst User Interface
	Replace Rules
	Tutorial Demonstration
	Class Exercises
	Handling Irregular Forms
	Non Concatenative Morphotactics

