PC-PATR Reference Manual

a unification based syntactic parser
version 0.99b5
October 1997

by Stephen McConnel

Copyright (©) 1997 Summer Institute of Linguistics
Published by:

Academic Computing Department

Summer Institute of Linguistics

7500 W. Camp Wisdom Road

Dallas, TX 75236

U.S.A.

Printed on 9 October 1998

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

The author may be reached at the address above or via email as steve@acadcomp.sil.org.

Chapter 1: Introduction to the PC-PATR program 1

1 Introduction to the PC-PATR program

This document describes PC-PATR, an implementation of the PATR-II computational
linguistic formalism for personal computers. It is available for MS-DOS, Microsoft Windows,
Macintosh, and Unix.?

PC-PATR uses a left corner chart parser with these characteristics:
e bottom-up parse with top-down filtering based on the categories

e left-to-right order—after each word is added to the chart, all possible edges that can
be derived up that point are computed as a side-effect

PC-PATR is still under development. The author would appreciate feedback directed to

the following address:

Stephen McConnel (972)708-7361 (office)

Academic Computing Department (972)708-7363 (fax)

Summer Institute of Linguistics

7500 W. Camp Wisdom Road

Dallas, TX 75236 steve@acadcomp.sil.org

U.S.A. or steve.mcconnel@sil.org

L The Microsoft Windows implementation uses the Microsoft C QuickWin function, and
the Macintosh implementation uses the Metrowerks C SIOUX function.

PC-PATR Reference Manual

Chapter 2: The PATR-II Formalism 3

2 The PATR-II Formalism

The PATR-II formalism can be viewed as a computer language for encoding linguistic
information. It does not presuppose any particular theory of syntax. It was originally
developed by Stuart M. Shieber at Stanford University in the early 1980’s (Shieber 1984,
Shieber 1986). A PATR-II grammar consists of a set of rules and a lexicon. Each rule
consists of a context-free phrase structure rule and a set of feature constraints, that is,
unifications on the feature structures associated with the constituents of the phrase structure
rules. The lexicon provides the items that can replace the terminal symbols of the phrase
structure rules, that is, the words of the language together with their relevant features.

2.1 Phrase structure rules

Context-free phrase structure rules should be familiar to anyone who has studied either
linguistic theory or computer science. They look like this:
LHS -> RHS_1 RHS_2 ...

‘LHS’ (the symbol to the left of the arrow) is a nonterminal symbol for the type of phrase
that is being described. To the right of the arrow is an ordered list of the constituents
of the phrase. These constituents are either nonterminal symbols, appearing on the left
hand side of some rule in the grammar, or terminal symbols, representing basic classes of
elements from the lexicon. These basic classes usually correspond to what are commonly
called parts of speech. In PATR-II, the terminal and nonterminal symbols are both referred
to as categories.

Figure 1. Context-free phrase structure grammar

Rule S -> NP VP (SubCl)

Rule NP -> {(Det) (AdjP) N (PrepP)} / PR
Rule Det -> DT / PR

Rule VP -> VerbalP (NP / AdjP) (AdvP)
Rule VerbalP -> V

Rule VerbalP -> AuxP V

Rule AuxP -> AUX (AuxP_1)

Rule PrepP -> PP NP

Rule Ad4djP -> (AV) AJ (A4jP_1)

Rule AdvP -> {AV / PrepP} (AdvP_1)

Rule SubCl ->CJ S

Consider the PC-PATR style context-free phrase structure grammar in figure 1. It has
ten nonterminal symbols (S, NP, Det, VP, VerbalP, AuxP, PrepP, AdjP, AdvP, and SubCl),
and nine terminal symbols (N, PR, DT, V, AUX, PP, AV, AJ, and CJ). This grammar
describes a small subset of English sentences. Several aspects of this grammar are worth
mentioning.

1. Optional constituents (or sets of constituents) on the right hand side are enclosed in
parentheses.

2. Alternative constituents (or sets of constituents) on the right hand side are separated
by slashes.

3. Braces are used to group alternative sets of elements together, so that alternations are
not ambiguous.

PC-PATR Reference Manual

4. Symbols should not be repeated verbatim within a rule. Repeated symbols should be
distinguished from each other by adding a different index number to a symbol each
time it is repeated. Index numbers are introduced by the underscore (_) character.

Figure 2. Parse of sample English sentence

S
/\
/ \
/ \
/ \
/ \
/ \
/ \
NP VP
/\ /1N
/ 0\ / 1A\
/ \ / 1\
Det N VerbalP NP AdvP
| | | | |
DT man v PR PrepP
| | | /\
the sees us / \
/ \
PP NP
| /\
with / \
/ \
Det N
| |
DT telescope
|
a
Figure 3. Parse of sample sentence (PC-PATR output)
S
__________ R
NP VP
B | __
Det N VerbalP NP AdvP
I man I I I
DT Vv PR PrepP
the sees us _____ [
PP NP
with S DR
Det N
| telescope
DT

a
A significant amount of grammar development can be done just with context-free phrase
structure rules such as these. For example, parsing the sentence “the man sees us with a

Chapter 2: The PATR-II Formalism 5

telescope” with this simple grammar produces a parse tree like that shown in figure 2. (In
order to minimize the height of parse trees without needing to use a graphical interface,
PC-PATR actually draws parse trees like the one shown in figure 3.) Parsing the similar
sentence “we see the man with a telescope” produces two different parses as shown in figure
4, correctly showing the ambiguity between whether we used a telescope to see the man, or
the man had a telescope when we saw him.

Figure 4. Parses of an ambiguous English sentence

S_1
__________ |
NP_2+ VP_4
| o ___ | _
PR_3+ VerbalP_b+ NP_7 AdvP_11
we I N I
V_6+ Det_8+ N_10+ PrepP_12+
see I man = _____ [___
DT_O+ PP_13+ NP_14+
the with S D
Det_15+ N_17+
| telescope
DT_16+
a
S_18
_______ | o __
NP_2+ VP_19
| ___ | o _
PR_3+ VerbalP_5+ NP_20
we | o ____ |
V_6+ Det_8+ N_10+ PrepP_12+
see I man = _____ [___
DT_O+ PP_13+ NP_14+
the with S D
Det_15+ N_17+
| telescope
DT_16+
a

A fundamental problem with context-free phrase structure grammars is that they tend
to grossly overgenerate. For example, the sample grammar would incorrectly recognize the
sentence “*he see the man with a telescope”, assigning it tree structures similar to those
shown in figure 4. With only the simple categories used by context-free phrase structure
rules, a very large number of rules are required to accurately handle even a small subset of
a language’s grammar. This is the primary motivation behind feature structures, the basic
enhancement of PATR-II over context-free phrase structure grammars.?

! Gazdar and Mellish (1989, pages 142-147) discuss why context-free phrase structure
grammars are inadequate to model some human languages. The PATR-II formalism

6 PC-PATR Reference Manual

2.2 Feature structures

The basic data structure of the PATR-II formalism is called a feature structure. A
feature structure contains one or more features. A feature consists of an attribute name
and a value. Feature structures are commonly written as attribute-value matrices like this
(example 1):

&D) [lex: telescope
cat: N]

where lex and cat are attribute names, and telescope and N are the values for those
attributes. Note that the feature structure is enclosed in brackets. Each feature occurs on
a separate line, with the name coming first, followed by a colon and then its value. Feature
names and (simple) values are single words consisting of alphanumeric characters.

Feature structures can have either simple values, such as the example above, or complex
values, such as this (example 2):

(2) [lex: telescope

cat: N

gloss: ‘telescope

head: [agr: [3sg: + 1]
number: SG
pos: N
proper: -
verbal: -]

root_pos: N]

where the value of the head feature is another feature structure, that also contains an
embedded feature structure. Feature structures can be arbitrarily nested in this manner.

Portions of a feature structure can be referred to using the path notation. A path is
a sequence of one or more feature names enclosed in angled brackets (<>). For instance,
examples 3-5 would all be valid feature paths based on the feature structure of example 2:

(3) <head>
(4) <head number>
(5) <head agr 3sg>

Paths are used in feature templates and feature constraints, described below.

Different features within a feature structure can share values. This is not the same thing
as two features having identical values. In Example 6 below, the <head agr> and <subj
head agr> features have identical values, but in Example 7, they share the same value:

(unification of feature structures added to the context-free phrase structure rules) is
shown to be adequate for those cases.

Chapter 2: The PATR-II Formalism 7

(6) [cat: S
pred: [cat: VP
head: [agr: [3sg: + 1]
finite: +
pos: v

tense: PAST
vform: ED]]
subj: [cat: NP

head: [agr: [3sg: + 1]
case: NOM
number: SG
pos: N
proper: -
verbal: -]]]

¢P) [cat: S
pred: [cat: VP

head: [agr: $1[3sg: +]
finite: +
pos: v

tense: PAST
vform: ED]]
subj: [cat: NP

head: [agr: $1
case: NOM
number: SG
pos:
proper: -

verbal: - 1]]
Shared values are indicated by the coindexing markers $1, $2, and so on.

Note that upper and lower case letters used in feature names and values are distinctive.
For example, NUMBER is not the same as Number or number. (This is also true of the
symbols used in the context-free phrase structure rules.)

2.3 Unification

Unification is the basic operation applied to feature structures in PC-PATR. It consists
of the merging of the information from two feature structures. Two feature structures can
unify if their common features have the same values, but do not unify if any feature values
conflict.

Consider the following feature structures:

(8) [agreement: [number: singular
person: first]]
€)) [agreement: [number: singular]
case: nominative]
(10) [agreement: [number: singular

person: third] 1]

8 PC-PATR Reference Manual

(11) [agreement: [number: singular
person: first]
case: nominative]
(12) [agreement: [number: singular
person: third]
case: nominative]

Feature 9 can unify with either feature 8 (producing feature 11) or feature 10 (producing
feature 12). However, feature 8 cannot unify with feature 10 due to the conflict in the values
of their <agreement person> features.

2.4 Feature constraints

The feature constraints associated with phrase structure rules in PC-PATR consist of a
set of unification expressions. Each expression has three parts, in this order:

1. afeature path, the first element of which is one of the symbols from the phrase structure
rule

2. an equal sign (=)

3. either a simple value, or another feature path that also starts with a symbol from the
phrase structure rule

As an example, consider the following PC-PATR rules:

(13) Rule S -> NP VP (SubCl)
<NP head agr> = <VP head agr>
<NP head case> = NOM
<S subj> <NP>
<S head> <VP head>

(14) Rule NP -> {(Det) (AJ) N (PrepP)} / PR
<Det head number> = <N head number>
<NP head> <N head>
<NP head> <PR head>

Rule 13 has two feature constraints that limit the co-occurrence of NP and VP, and two
feature constraints that build the feature structures for S. This highlights the dual purpose
of feature constraints in PC-PATR: limiting the co-occurrence of phrase structure elements
and constructing the feature structure for the element defined by a rule. The first constraint
states that the NP and VP $\langle head$ $agr\rangle$ features must unify successfully,
and also modifies both of those features if they do unify. The second constraint states
that NP’s $\langle head$ $case\rangle$ feature must either be equal to $NOMS or else be
undefined. In the latter case, it is set equal to $NOMS. The last two constraints create a
new feature structure for S from the feature structures for NP and VP.

Rule 14 illustrates another important point about feature constraints. Constraints are
applied only if they involve the phrase structure constituents actually found for the rule.

Chapter 2: The PATR-II Formalism

Figure 5. PC-PATR grammar of English subset

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule
Rule

S -> NP VP (SubCl)
<NP head agr> = <VP head agr>
<NP head case> = NOM
<S subj> = <NP>
<8 pred> = <VpP>
NP -> {(Det) (AdjP) N (PrepP)} / PR
<Det head number> = <N head number>
<NP head> = <N head>
<NP head> = <PR head>
Det -> DT / PR
<PR head case> = GEN
<Det head> = <DT head>
<Det head> = <PR head>
VP -> VerbalP (NP / AdjP) (AdvP)
<NP head case> = ACC
<NP head verbal> = -
<VP head> = <VerbalP head>
VerbalP -> V
<V head finite>
<VerbalP head>
VerbalP -> AuxP V
<V head finite>
<VerbalP head> = <AuxP head>
AuxP -> AUX (AuxP_1)
<AuxP head> = <AUX head>
PrepP -> PP NP
<NP head case> = ACC
<PrepP head> = <PP head>
AdjP -> (AV) AJ (AdjP_1)
AdvP -> {AV / PrepP} (AdvP_1)
SubCl -> CJ S

+
<V head>

10 PC-PATR Reference Manual

Figure 6. PC-PATR output with feature structure

1:
S
__________ |
NP VP
S |
Det N VerbalP NP AdvP
| man I | |
DT v PR PrepP
the saw us _____ | ___
PP NP
with S DI
Det N
| telescope
DT
a
S:
[cat: S
pred: [cat: VP
head: [agr: $1[3sg: +]
finite:+
pos: v
tense: PAST
vform: ED]]
subj: [cat: NP
head: [agr: $1
case: NOM
number : SG
pos: N
proper:-

verbal:- 1 1 1

1 parse found

Figure 5 shows the grammar of figure 1 augmented with a number of feature constraints.
With this grammar (and a suitable lexicon), the parse output shown in figure 2 would
include the sentence feature structure, as shown in figure 6. Note that the <subj head agr>
and <pred head agr> features share a common value as a result of the feature constraint
unifications associated with the rule S -> NP VP (SubCl).

PC-PATR allows disjunctive feature constraints with its phrase structure rules. Consider
rules 15 and 16 below. These two rules have the same phrase structure rule part. They
can therefore be collapsed into the single rule 17, which has a disjunction in its unification
constraints.

Chapter 2: The PATR-II Formalism 11

(15) Rule CP -> NP C’ ; for wh questions with NP fronted
<NP type wh> = +
<C’ moved A-bar> = <NP>
<CP type wh> = <NP type wh>
<CP type> = <C’ type>
<CP moved A-bar> = none
<CP type root> = + ; root clauses
<CP type q> = +
<CP type fin> = +
<CP moved A> = none
<CP moved head> = none

(16) Rule CP -> NP C’ ; for wh questions with NP fronted
<NP type wh> = +
<C’ moved A-bar> = <NP>
<CP type wh> = <NP type wh>
<CP type> = <C’ type>
<CP moved A-bar> = none
<CP type root> = - ; non-root clauses

(17) Rule CP -> NP C’ ; for wh questions with NP fronted
<NP type wh> = +
<C’ moved A-bar> = <NP>
<CP type wh> = <NP type wh>
<CP type> = <C’ type>
<CP moved A-bar> = none
{
<CP type root> = + ; root clauses
<CP type q> = +
<CP type fin> = +
<CP moved A> = none
<CP moved head> = none
/
<CP type root> = - ; non-root clauses

}

Not only does PC-PATR allow disjunctive unification constraints, but it also allows
disjunctive phrase structure rules. Consider rule 18: it is very similar to rule 17. These two
rules can be further combined to form rule 19, which has disjunctions in both its phrase
structure rule and its unification constraints.

12 PC-PATR Reference Manual

(18) Rule CP -> PP C’ ; for wh questions with PP fronted
<PP type wh> = +
<C’ moved A-bar> = <PP>
<CP type wh> = <PP type wh>
<CP type> = <C’ type>
<CP moved A-bar> = none
{
<CP type root> = + ; root clauses
<CP type q> = +
<CP type fin> = +
<CP moved A> = none
<CP moved head> = none
/
<CP type root> = - ; non-root clauses

}

(19) ; for wh questions with NP or PP fronted
Rule CP -> { NP / PP } C’

<NP type wh> = +

<C’ moved A-bar> = <NP>

<CP type wh> = <NP type wh>

<PP type wh> = +

<C’ moved A-bar> = <PP>

<CP type wh> = <PP type wh>

<CP type> = <C’ type>

<CP moved A-bar> = none

{

<CP type root> = + ; root clauses

<CP type q> = +

<CP type fin> = +

<CP moved A> = none

<CP moved head> = none

/
<CP type root> = - ; non-root clauses

}

Since the open brace ({) introduces disjunctions both in the phrase structure rule and
in the unification constraints, care must be taken to avoid confusing PC-PATR when it
is loading the grammar file. The end of the phrase structure rule, and the beginning of
the unification constraints, is signaled either by the first constraint beginning with an open
angle bracket (<) or by a colon (:). If the first constraint is part of a disjunction, then the
phrase structure rule must end with a colon. Otherwise, PC-PATR will treat the unification
constraint as part of the phrase structure rule, and will shortly complain about syntax errors
in the grammar file.

Perhaps it should be noted that disjunctions in phrase structure rules or unifications are
expanded when the grammar file is read. They serve only as a convenience for the person
writing the rules.

Chapter 2: The PATR-II Formalism 13

2.5 The lexicon

The lexicon provides the basic elements (atoms) of the grammar, which are usually
words. Information like that shown in feature 2 is provided for each lexicon entry. Unlike
the original implementation of PATR-II, PC-PATR stores the lexicon in a separate file from
the grammar rules. See Chapter 6 [Lexicon file], page 39 below for details.

14

PC-PATR Reference Manual

Chapter 3: Running PC-PATR 15

3 Running PC-PATR

PC-PATR is an interactive program. It has a few command line options, but it is
controlled primarily by commands typed at the keyboard (or loaded from a file previously
prepared).

3.1 PC-PATR Command Line Options

The PC-PATR program uses an old-fashioned command line interface following the
convention of options starting with a dash character (‘-’). The available options are listed
below in alphabetical order. Those options which require an argument have the argument
type following the option letter.

—-a filename
loads the lexicon from an AMPLE analysis output file.

—-g filename
loads the grammar from a PC-PATR grammar file.

-1 filename
loads the lexicon from a PC-PATR lexicon file.

-t filename
opens a file containing one or more PC-PATR commands. See Section 3.2
[Interactive commands|, page 15.

The following options exist only in beta-test versions of the program, since they are used
only for debugging.

-/ increments the debugging level. The default is zero (no debugging output).

-z filename
opens a file for recording a memory allocation log.

-Z address,count
traps the program at the point where address is allocated or freed for the
count’th time.

3.2 Interactive Commands

Each of the commands available in PC-PATR is described below. Each command consists
of one or more keywords followed by zero or more arguments. Keywords may be abbreviated
to the minimum length necessary to prevent ambiguity.

3.2.1 cd

cd directory changes the current directory to the one specified. Spaces in the directory
pathname are not permitted.

For MS-DOS or Windows, you can give a full path starting with the disk letter and a
colon (for example, a:); a path starting with \ which indicates a directory at the top level

16 PC-PATR Reference Manual

of the current disk; a path starting with .. which indicates the directory above the current
one; and so on. Directories are separated by the \ character. (The forward slash / works
just as well as the backslash \ for MS-DOS or Windows.)

For the Macintosh, you can give a full path starting with the name of a hard disk, a
path starting with : which means the current folder, or one starting :: which means the
folder containing the current one (and so on).

For Unix, you can give a full path starting with a / (for example, /usr/pcpatr); a path
starting with .. which indicates the directory above the current one; and so on. Directories
are separated by the / character.

3.2.2 clear

clear erases all existing grammar and lexicon information, allowing the user to pre-
pare to load information for a new language. Strictly speaking, it is not needed since the
load grammar command erases the previously existing grammar, and the load lexicon and
load analysis commands erase any previously existing lexicon.

3.2.3 close

close closes the current log file opened by a previous log command.

3.2.4 directory

directory lists the contents of the current directory. This command is available only
for the MS-DOS and Unix implementations. It does not exist for Microsoft Windows or the
Macintosh.

3.2.5 edit

edit filename attempts to edit the specified file using the program indicated by the
environment variable EDITOR. If this environment variable is not defined, then edlin is
used to edit the file on MS-DOS, and vi is used to edit the file on Unix. (These defaults
should convince you to set this variable!) This command is not available for Microsoft
Windows or the Macintosh.

3.2.6 exit

exit stops PC-PATR, returning control to the operating system. This is the same as
quit.

3.2.7 file

The file commands process data from a file, optionally writing the parse results to
another file. Each of these commands is described below.

Chapter 3: Running PC-PATR 17

3.2.7.1 file disambiguate

file disambiguate input.ana [out.ana] reads sentences from the specified AMPLE
analysis file and writes the corresponding parse trees and feature structures either to the
screen or to the optionally specified output file. If the output file is written, ambiguous
word parses are eliminated as much as possible as a result of the sentence parsing. When
finished, a statistical report of successful (sentence) parses is displayed on the screen.

3.2.7.2 file parse

file parse input-file [output-file] reads sentences from the specified input file, one per
line, and writes the corresponding parse trees and feature structures to the screen or to
the optionally specified output file. The comment character is in effect while reading this
file. PC-PATR currently makes no attempt to handle either capitalization or punctuation.
PROBABLY SOME CAPABILITY FOR HANDLING PUNCTUATION WILL BE ADDED AT SOME
POINT.

This command behaves the same as parse except that input comes from a file rather
than the keyboard, and output may go to a file rather than the screen. When finished, a
statistical report of successful parses is displayed on the screen.

3.2.8 help

help command displays a description of the specified command. If help is typed by
itself, PC-PATR displays a list of commands with short descriptions of each command.

3.2.9 load

The load commands all load information stored in specially formatted files. The
load ample and load kimmo commands activate morphological parsers, and serve as alter-
natives to load lexicon (or load analysis) for obtaining the category and other feature
information for words. Each of the load commands is described below.

3.2.9.1 load ample control

load ample control xxad(l.ctl xxancd.tab [xxordc.tab] erases any existing AMPLE
information (including dictionaries) and reads control information from the specified files.
This also erases any stored PC-Kimmo information.

At least two and possibly three files are loaded by this command. The first file is the
AMPLE analysis data file. It has a default filetype extension of . ct1 but no default filename.
The second file is the AMPLE dictionary code table file. It has a default filetype extension
of .tab but no default filename. The third file is an optional dictionary orthography change
table. It has a default filetype extension of .tab and no default filename.

1 am c is a synonym for load ample control.

18 PC-PATR Reference Manual

3.2.9.2 load ample dictionary

load ample dictionary [prefix.dic] [infix.dic] [suffix.dic] rootl.dic [...] or
load ample dictionary fileOl.dic [file02.dic . . .| erases any existing AMPLE dictionary
information and reads the specified files. This also erases any stored PC-Kimmo infor-
mation.

The first form of the command is for using a dictionary whose files are divided according
to morpheme type (set ample-dictionary split). The different types of dictionary files
must be loaded in the order shown, with any unneeded affix dictionaries omitted.

The second form of the command is for using a dictionary whose entries contain the type
of morpheme (set ample-dictionary unified).!

1 am d is a synonym for load ample dictionary.

3.2.9.3 load ample text-control

load ample text-control xxintx.ctl erases any existing AMPLE text input control
information and reads the specified file. This also erases any stored PC-Kimmo information.

The text input control file has a default filetype extension of . ctl but no default filename.

1 am t is a synonym for load ample text-control.

3.2.9.4 load analysis

load analysis filel.ana [file2.ana . . .| erases any existing lexicon and reads a new lexi-
con from the specified AMPLE analysis file(s). Note that more than one file may be loaded
with the single load analysis command: duplicate entries are not stored in the lexicon.

The default filetype extension for load analysis is .ana, and the default filename is
ample.ana.

1 a is a synonym for load analysis.

3.2.9.5 load grammar

load grammar file.grm erases any existing grammar and reads a new grammar from the
specified file.

The default filetype extension for load grammar is .grm, and the default filename is
grammar . grm.

1 g is a synonym for load grammar.

3.2.9.6 load kimmo grammar

load kimmo grammar file.grm erases any existing PC-Kimmo (word) grammar and reads
a new word grammar from the specified file.

The default filetype extension for load kimmo grammar is .grm, and the default filename
is grammar.grm.

1 k g is a synonym for load kimmo grammar.

L This is a new feature of AMPLE version 3.

Chapter 3: Running PC-PATR 19

3.2.9.7 load kimmo lexicon

load kimmo lexicon file.lex erases any existing PC-Kimmo lexicon information and
reads a new morpheme lexicon from the specified file. A PC-Kimmo rules file must be
loaded before a PC-Kimmo lexicon file can be loaded.

The default filetype extension for load kimmo lexicon is .lex, and the default filename
is lexicon.lex.

1 k 1 is a synonym for load kimmo lexicon.

3.2.9.8 load kimmo rules

load kimmo rules file.rul erases any existing PC-Kimmo rules and reads a new set of
rules from the specified file. This also erases any stored AMPLE information.

The default filetype extension for load kimmo rules is .rul, and the default filename is
rules.rul.

1 k r is a synonym for load kimmo rules.

3.2.9.9 load lexicon

load lexicon filel.lex [file2.]ex . ..] erases any existing lexicon and reads a new lexi-
con from the specified file(s). Note that more than one file may be loaded with a single
load lexicon command.

The default filetype extension for load lexicon is .lex, and the default filename is
lexicon.lex.

11 is a synonym for load lexicon.

3.2.10 log

log [file.log] opens a log file. Each item processed by a parse command is stored to the
log file as well as being displayed on the screen.

If a filename is given on the same line as the log command, then that file is used for the
log file. Any previously existing file with the same name will be overwritten. If no filename
is provided, then the file pcpatr.log in the current directory is used for the log file.

Use close to stop recording in a log file. If a log command is given when a log file is
already open, then the earlier log file is closed before the new log file is opened.

3.2.11 parse

parse [sentence or phrase] attempts to parse the input sentence according to the loaded
grammar. If a sentence is typed on the same line as the command, then that sentence
is parsed. If the parse command is given by itself, then the user is prompted repeatedly
for sentences to parse. This cycle of typing and parsing is terminated by typing an empty
“sentence” (that is, nothing but the Enter or Return key).

Both the grammar and the lexicon must be loaded before using this command.

20 PC-PATR Reference Manual

3.2.12 quit

quit stops PC-PATR, returning control to the operating system. This is the same as
exit.

3.2.13 save

The save commands write information stored in memory to a file suitable for reloading
into PC-PATR later. Each of these commands is described below.

3.2.13.1 save lexicon

save lexicon [file.lex] writes the current lexicon contents to the designated file. The
output lexicon file must be specified. This can be useful if you are using a morphological
parser to populate the lexicon.

3.2.13.2 save status

save status [file.tak] writes the current settings to the designated file in the form of
PC-PATR commands. If the file is not specified, the settings are written to pcpatr.tak in
the current directory.

3.2.14 set

The set commands control program behavior by setting internal program variables.
Each of these commands (and variables) is described below.

3.2.14.1 set ambiguities

set ambiguities number limits the number of analyses printed to the given number.
The default value is 10. Note that this does not limit the number of analyses produced,
just the number printed.

3.2.14.2 set ample-dictionary

set ample-dictionary value determines whether or not the AMPLE dictionary files
are divided according to morpheme type. set ample-dictionary split declares that
the AMPLE dictionary is divided into a prefix dictionary file, an infix dictionary file, a
suffix dictionary file, and one or more root dictionary files. The existence of the three
affix dictionary depends on settings in the AMPLE analysis data file. If they exist, the
load ample dictionary command requires that they be given in this relative order: prefix,
infix, suffix, root(s).

set ample-dictionary unified declares that any of the AMPLE dictionary files may
contain any type of morpheme. This implies that each dictionary entry may contain a
field specifying the type of morpheme (the default is root), and that the dictionary code
table contains a \unified field. One of the changes listed under \unified must convert a
backslash code to T.

Chapter 3: Running PC-PATR 21

The default is for the AMPLE dictionary to be split.?

3.2.14.3 set check-cycles

set check-cycles value enables or disables a check to prevent cycles in the parse chart.
set check-cycles on turns on this check, and set check-cycles off turns it off. This
check slows down the parsing of a sentence, but it makes the parser less vulnerable to
hanging on perverse grammars. The default setting is on.

3.2.14.4 set comment

set comment character sets the comment character to the indicated value. If character
is missing (or equal to the current comment character), then comment handling is disabled.
The default comment character is ; (semicolon).

3.2.14.5 set failures

set failures value enables or disables grammar failure mode. set failures on turns
on grammar failure mode, and set failures off turns it off. When grammar failure mode
is on, the partial results of forms that fail the grammar module are displayed. A form
may fail the grammar either by failing the feature constraints or by failing the constituent
structure rules. In the latter case, a partial tree (bush) will be returned. The default setting
is off.

Be careful with this option. Setting failures to on can cause the PC-PATR to go into an
infinite loop for certain recursive grammars and certain input sentences. WE MAY TRY TO
DO SOMETHING TO DETECT THIS TYPE OF BEHAVIOR, AT LEAST PARTIALLY.

3.2.14.6 set features

set features value determines how features will be displayed.
set features all enables the display of the features for all nodes of the parse tree.

set features top enables the display of the feature structure for only the top node of
the parse tree. This is the default setting.

set features flat causes features to be displayed in a flat, linear string that uses less
space on the screen.

set features full causes features to be displayed in an indented form that makes the
embedded structure of the feature set clear. This is the default setting.

set features on turns on features display mode, allowing features to be shown. This
is the default setting.

set features off turns off features display mode, preventing features from being shown.

2 The unified dictionary is a new feature of AMPLE version 3.

22 PC-PATR Reference Manual

3.2.14.7 set gloss

set gloss value enables the display of glosses in the parse tree output if value is on,
and disables the display of glosses if value is off. If any glosses exist in the lexicon file,
then gloss is automatically turned on when the lexicon is loaded. If no glosses exist in the
lexicon, then this flag is ignored.

3.2.14.8 set marker category

set marker category marker establishes the marker for the field containing the category
(part of speech) feature. The default is \c.

3.2.14.9 set marker features

set marker features marker establishes the marker for the field containing miscella-
neous features. (This field is not needed for many words.) The default is \f.

3.2.14.10 set marker gloss

set marker gloss marker establishes the marker for the field containing the word gloss.
The default is \g.

3.2.14.11 set marker record

set marker record marker establishes the field marker that begins a new record in the
lexicon file. This may or may not be the same as the word marker. The default is \w.

3.2.14.12 set marker word

set marker word marker establishes the marker for the word field. The default is \w.

3.2.14.13 set timing

set timing value enables timing mode if value is on, and disables timing mode if value
is off. If timing mode is on, then the elapsed time required to process a command is
displayed when the command finishes. If timing mode is off, then the elapsed time is not
shown. The default is off. (This option is useful only to satisfy idle curiosity.)

3.2.14.14 set top-down-filter

set top-down-filter value enables or disables top-down filtering based on the cate-
gories. set top-down-filter on turns on this filtering, and set top-down-filter off
turns it off. The top-down filter speeds up the parsing of a sentence, but might cause the
parser to miss some valid parses. The default setting is on.

This should not be required in the final version of PC-PATR.

Chapter 3: Running PC-PATR 23

3.2.14.15 set tree

set tree value specifies how parse trees should be displayed.

set tree full turns on the parse tree display, displaying the result of the parse as a full
tree. This is the default setting. A short sentence would look something like this:
Sentence

Declarative

grass
set tree flat turns on the parse tree display, displaying the result of the parse as a
flat tree structure in the form of a bracketed string. The same short sentence would look
something like this:
(Sentence (Declarative (NP
(N cows)) (VP (V eat) (COMP
(NP (N grass))))))
set tree indented turns on the parse tree display, displaying the result of the parse in
an indented format sometimes called a northwest tree. The same short sentence would look

like this:

Sentence
Declarative
NP
N cows
VP
V eat
COMP
NP
N grass

set tree off disables the display of parse trees altogether.

3.2.14.16 set trim-empty-features

set trim-empty-features value disables the display of empty feature values if value is
on, and enables the display of empty feature values if value is off. The default is not to
display empty feature values.

3.2.14.17 set unification

set unification value enables or disables feature unification. set unification on
turns on unification mode. This is the default setting.

24 PC-PATR Reference Manual

set unification off turns off feature unification in the grammar. Only the context-
free phrase structure rules are used to guide the parse; the feature contraints are ignored.
This can be dangerous, as it is easy to introduce infinite cycles in recursive phrase structure
rules.

3.2.14.18 set verbose

set verbose value enables or disables the screen display of parse trees in the file parse
command. set verbose on enables the screen display of parse trees, and set verbose off
disables such display. The default setting is off.

3.2.14.19 set warnings

set warnings value enables warning mode if value is on, and disables warning mode
if value is off. If warning mode is enabled, then warning messages are displayed on the
output. If warning mode is disabled, then no warning messages are displayed. The default
setting is on.

3.2.14.20 set write-ample-parses

set write-ample-parses value enables writing \parse and \features fields at the end
of each sentence in the disambiguated analysis file if value is on, and disables writing these
fields if value is off. The default setting is off.

This variable setting affects only the file disambiguate command.

3.2.15 show

The show commands display internal settings on the screen. Each of these commands is
described below.

3.2.15.1 show lexicon

show lexicon prints the contents of the lexicon stored in memory on the standard out-
put. THIS IS NOT VERY USEFUL, AND MAY BE REMOVED.

3.2.15.2 show status

show status displays the names of the current grammar, sentences, and log files, and
the values of the switches established by the set command.

show (by itself) and status are synonyms for show status.

3.2.16 status

status displays the names of the current grammar, sentences, and log files, and the
values of the switches established by the set command.

Chapter 3: Running PC-PATR 25

3.2.17 system

system [command] allows the user to execute an operating system command (such as
checking the available space on a disk) from within PC-PATR. This is available only for
MS-DOS and Unix, not for Microsoft Windows or the Macintosh.

If no system-level command is given on the line with the system command, then PC-
PATR is pushed into the background and a new system command processor (shell) is started.
Control is usually returned to PC-PATR in this case by typing exit as the operating system
command.

! (exclamation point) is a synonym for system.

3.2.18 take

take [file.tak] redirects command input to the specified file.
The default filetype extension for take is .tak, and the default filename is pcpatr.tak.

take files can be nested three deep. That is, the user types take filel, filel contains
the command take file2, and file2 has the command take file3. It would be an error
for file3 to contain a take command. This should not prove to be a serious limitation.

A take file can also be specified by using the -t command line option when starting PC-
PATR. When started, PC-PATR looks for a take file named ‘pcpatr.tak’ in the current
directory to initialize itself with.

26

PC-PATR Reference Manual

Chapter 4: The PC-PATR Grammar File 27

4 The PC-PATR Grammar File

The following specifications apply generally to the grammar file:

e Blank lines, spaces, and tabs separate elements of the grammar file from one another,
but are ignored otherwise.

e The comment character declared by the set comment command (see Section 3.2.14.4
[set comment|, page 21) is operative in the grammar file. The default comment char-
acter is the semicolon (;). Comments may be placed anywhere in the grammar file.
Everything following a comment character to the end of the line is ignored.

e A grammar file is divided into fields identified by a small set of keywords.

1.

7.

Rule starts a context-free phrase structure rule with its set of feature constraints.
These rules define how words join together to form phrases, clauses, or sentences.
The lexicon and grammar are tied together by using the lexical categories as the
terminal symbols of the phrase structure rules and by using the other lexical fea-
tures in the feature constraints.

Let starts a feature template definition. Feature templates are used as macros
(abbreviations) in the lexicon. They may also be used to assign default feature
structures to the categories.

Parameter starts a program parameter definition. These parameters control vari-
ous aspects of the program.

Define starts a lexical rule definition. As noted in Shieber (1985), something more
powerful than just abbreviations for common feature elements is sometimes needed
to represent systematic relationships among the elements of a lexicon. This need
is met by lexical rules, which express transformations rather than mere abbre-
viations. Lexical rules serve two primary purposes in PC-PATR: modifying the
feature structures associated with lexicon entries and modifying the feature struc-
tures produced by a morphological parser.

Lexicon starts a lexicon section. This is only for compatibility with the original
PATR-II. The section name is skipped over properly, but nothing is done with it.

Word starts an entry in the lexicon. This is only for compatibility with the original
PATR-II. The entry is skipped over properly, but nothing is done with it.!

End effectively terminates the file. Anything following this keyword is ignored.

Note that these keywords are not case sensitive: RULE is the same as rule, and both
are the same as Rule.

e Each of the fields in the grammar file may optionally end with a period. If there is no
period, the next keyword (in an appropriate slot) marks the end of one field and the
beginning of the next.

4.1 Rules

A PC-PATR grammar rule has these parts, in the order listed:

I 'Would this be a useful enhancement to PC-PATR?

28 PC-PATR Reference Manual

the keyword Rule
an optional rule identifier enclosed in braces ({2})
the nonterminal symbol to be expanded

an arrow (=>) or equal sign (=)

Gt o

zero or more terminal or nonterminal symbols, possibly marked for alternation or
optionality

6. an optional colon (:)

7. zero or more feature constraints

8. an optional period (.)

The optional rule identifier consists of one or more words enclosed in braces. Its current
utility is only as a special form of comment describing the intent of the rule. (Eventually it
may be used as a tag for interactively adding and removing rules.) The only limits on the
rule identifier are that it not contain the comment character and that it all appears on the
same line in the grammar file.

The terminal and nonterminal symbols in the rule have the following characteristics:

e Upper and lower case letters used in symbols are considered different. For example,
NOUN is not the same as Noun, and neither is the same as noun.

e The symbol X may be used to stand for any terminal or nonterminal. For example,
this rule says that any category in the grammar rules can be replaced by two copies of
the same category separated by a CJ.

Rule X -> X_1 CJ X_2

<X cat> = <X_1 cat>
<X cat> = <X_2 cat>
<X argl> = <X_1 argl>

<X argl> = <X_2 argl>

The symbol X can be useful for capturing generalities. Care must be taken, since it
can be replaced by anything.

e Index numbers are used to distinguish instances of a symbol that is used more than
once in a rule. They are added to the end of a symbol following an underscore character
(). This is illustrated in the rule for X above.

e The characters (){}[1<>=:/ cannot be used in terminal or nonterminal symbols since
they are used for special purposes in the grammar file. The character _ can be used
only for attaching an index number to a symbol.

e By default, the left hand symbol of the first rule in the grammar file is the start symbol
of the grammar.

The symbols on the right hand side of a phrase structure rule may be marked or grouped
in various ways:

e Parentheses around an element of the expansion (right hand) part of a rule indicate
that the element is optional. Parentheses may be placed around multiple elements.
This makes an optional group of elements.

e A forward slash (/) is used to separate alternative elements of the expansion (right
hand) part of a rule.

Chapter 4: The PC-PATR Grammar File 29

e Curly braces can be used for grouping elements. For example the following says that
an S consists of an NP followed by either a TVP or an IV:

Rule S -> NP {TVP / IV}

e Alternatives are taken to be as long as possible. Thus if the curly braces were omitted
from the rule above, as in the rule below, the TVP would be treated as part of the
alternative containing the NP. It would not be allowed before the IV.

Rule S -> NP TVP / IV
e Parentheses group enclosed elements the same as curly braces do. Alternatives and
groups delimited by parentheses or curly braces may be nested to any depth.
A rule can be followed by zero or more feature constraints that refer to symbols used in
the rule. A feature constraint has these parts, in the order listed:

1. a feature path that begins with one of the symbols from the phrase structure rule
2. an equal sign
3. either another path or a value

A feature constraint that refers only to symbols on the right hand side of the rule

constrains their co-occurrence. In the following rule and constraint, the values of the agr
features for the NP and VP nodes of the parse tree must unify:

Rule S -> NP VP
<NP agr> = <VP agr>

If a feature constraint refers to a symbol on the right hand side of the rule, and has an
atomic value on its right hand side, then the designated feature must not have a different
value. In the following rule and constraint, the head case feature for the NP node of the
parse tree must either be originally undefined or equal to NOM:

Rule S -> NP VP
<NP head case> = NOM

(After unification succeeds, the head case feature for the NP node of the parse tree will
be equal to NOM.)

A feature constraint that refers to the symbol on the left hand side of the rule passes
information up the parse tree. In the following rule and constraint, the value of the tense
feature is passed from the VP node up to the S node:

Rule S -> NP VP
<S tense> = <VP tense>

4.2 Feature templates

A PC-PATR feature template has these parts, in the order listed:
the keyword Let
the template name
the keyword be

a feature definition

A

an optional period (.)

30 PC-PATR Reference Manual

If the template name is a terminal category (a terminal symbol in one of the phrase
structure rules), the template defines the default features for that category. Otherwise the
template name serves as an abbreviation for the associated feature structure.

The characters (){}[]<>=: cannot be used in template names since they are used for
special purposes in the grammar file. The characters /_ can be freely used in template
names. The character \ should not be used as the first character of a template name
because that is how fields are marked in the lexicon file.

The abbreviations defined by templates are usually used in the feature field of entries in
the lexicon file. For example, the lexical entry for the irregular plural form feet may have
the abbreviation pl in its features field. The grammar file would define this abbreviation
with a template like this:

Let pl be [number: PL]
The path notation may also be used:
Let pl be <number> = PL
More complicated feature structures may be defined in templates. For example,
Let 3sg be [tense: PRES
agr: 3SG
finite: +
viorm: 8]
which is equivalent to:
Let 3sg be <tense> = PRES

<agr> = 3SG
<finite> = +
<vform> =S

In the following example, the abbreviation irreg is defined using another abbreviation:
Let irreg be <reg> = -
pl
The abbreviation pl must be defined previously in the grammar file or an error will
result. A subsequent template could also use the abbreviation irreg in its definition. In this
way, an inheritance hierarchy features may be constructed.

Feature templates permit disjunctive definitions. For example, the lexical entry for the
word deer may specify the feature abbreviation sg-pl. The grammar file would define this
as a disjunction of feature structures reflecting the fact that the word can be either singular
or plural:

Let sg/pl be {[number:SG]
[number:PL]}

This has the effect of creating two entries for deer, one with singular number and another
with plural. Note that there is no limit to the number of disjunct structures listed between
the braces. Also, there is no slash (/) between the elements of the disjunction as there is
between the elements of a disjunction in the rules. A shorter version of the above template
using the path notation looks like this:

Let sg/pl be <number> = {SG PL}

Abbreviations can also be used in disjunctions, provided that they have previously been
defined:

Chapter 4: The PC-PATR Grammar File 31

Let sg be <number> = SG
Let pl be <number> = PL
Let sg/pl be {[sgl [pll}
Note the square brackets around the abbreviations sg and pl; without square brackets
they would be interpreted as simple values instead.

Feature templates can assign default atomic feature values, indicated by prefixing an
exclamation point (!). A default value can be overridden by an explicit feature assignment.
This template says that all members of category N have singular number as a default value:

Let N be <number> = !SG

The effect of this template is to make all nouns singular unless they are explicitly marked
as plural. For example, regular nouns such as book do not need any feature in their lexical
entries to signal that they are singular; but an irregular noun such as feet would have a
feature abbreviation such as pl in its lexical entry. This would be defined in the grammar
as [number: PL], and would override the default value for the feature number specified by
the template above. If the N template above used SG instead of !SG, then the word feet
would fail to parse, since its number feature would have an internal conflict between SG and
PL.

4.3 Parameter settings

A PC-PATR parameter setting has these parts, in the order listed:
the keyword Parameter
an optional colon (:)
one or more keywords identifying the parameter
the keyword is

the parameter value

A S

an optional period (.)
PC-PATR recognizes the following parameters:

Start symbol
defines the start symbol of the grammar. For example,

Parameter Start symbol is S

declares that the parse goal of the grammar is the nonterminal category S. The
default start symbol is the left hand symbol of the first phrase structure rule in
the grammar file.

Restrictor
defines a set of features to use for top-down filtering, expressed as a list of
feature paths. For example,
Parameter Restrictor is <cat> <head form>

declares that the cat and head form features should be used to screen rules
before adding them to the parse chart. The default is not to use any features
for such filtering. This filtering, named restriction in Shieber (1985), is per-
formed in addition to the normal top-down filtering based on categories alone.

32 PC-PATR Reference Manual

RESTRICTION IS NOT YET IMPLEMENTED. SHOULD IT BE INSTEAD OF NORMAL
FILTERING RATHER THAN IN ADDITION TO?

Attribute order
specifies the order in which feature attributes are displayed. For example,

Parameter Attribute order is cat lex sense head
first rest agreement

declares that the cat attribute should be the first one shown in any output from
PC-PATR, and that the other attributes should be shown in the relative order
shown, with the agreement attribute shown last among those listed, but ahead
of any attributes that are not listed above. Attributes that are not listed are
ordered according to their character code sort order. If the attribute order is not
specified, then the category feature cat is shown first, with all other attributes
sorted according to their character codes.

Category feature
defines the label for the category attribute. For example,
Parameter Category feature is Categ

declares that Categ is the name of the category attribute. The default name
for this attribute is cat.

Lexical feature
defines the label for the lexical attribute. For example,

Parameter Lexical feature is Lex

declares that Lex is the name of the lexical attribute. The default name for
this attribute is lex.

Gloss feature
defines the label for the gloss attribute. For example,
Parameter Gloss feature is Gloss

declares that Gloss is the name of the gloss attribute. The default name for
this attribute is gloss.

4.4 Lexical rules

LEXICAL RULES ARE NOT WORKING PROPERLY; THEY NEED TO BE REIMPLEMENTED,
AND SOME OTHER MECHANISM USED TO MAP PC-KIMMO FEATURES ONTO PC-PATR
FEATURES.

Chapter 4: The PC-PATR Grammar File

Figure 7. PC-PATR lexical rule example

; lexicon entry

\w stormed

\c V

\f Transitive AgentlessPassive
<head trans pred> = storm

; definitions from the grammar file
Let Transitive be
<subcat first cat> = NP
<subcat rest first cat> = NP
<subcat rest rest> = end
<head trans argl>
<head trans arg2>

Define AgentlessPassive as
<out cat> = <in cat>

33

<subcat first head trans>
<subcat rest first head trans>.

<out subcat> = <in subcat rest>

<out lex> = <in lex> ;
<out head> = <in head>

added for PC-PATR

<out head form> => passiveparticiple.

Figure 8. Feature structure before lexical rule

[lex: stormed
cat: v
head: [trans: [argl: $1 []

arg2: $2 []
pred: storm]]
subcat: [first: [cat: NP

head: [tramns: $1]]
rest: [first: [cat: NP

head: [trams: $2]]

rest: end

Figure 9. Feature structure after lexical rule

[lex: stormed
cat: Vv
head: [trans: [argl: []

arg2: $1 []
pred: storm]
form: passiveparticiple]
subcat: [first: [cat: NP

head: [trams: $1]]

rest: end

111

11

A PC-PATR lexical rule has these parts, in the order listed:

the keyword Define
the name of the lexical rule

the keyword as

=W o=

the rule definition

34 PC-PATR Reference Manual

5. an optional period (.)

The rule definition consists of one or more mappings. Each mapping has three parts:
an output feature path, an assignment operator, and the value assigned, either an input
feature path or an atomic value. Every output path begins with the feature name out and
every input path begins with the feature name in. The assignment operator is either an
equal sign (=) or an equal sign followed by a “greater than” sign (=>).2

Consider the information shown in figure 7. When the lexicon entry is loaded, it is
initially assigned the feature structure shown in figure 8, which is the unification of the
information given in the various fields of the lexicon entry. Since one of the the labels
stored in the \f (feature) field is actually the name of a lexical rule, after the complete
feature structure has been built, the named lexical rule is applied. After the rule has been
applied, the feature structure has been changed to the one shown in figure 9. Note that all
of the information in the output feature structure is from the input feature structure, but
not all of the input feature information is found in the the output feature structure.

Figure 10. PC-PATR lexical rule for using PC-Kimmo
Define MapKimmoFeatures as

<out cat> = <in head pos>
<out head> = <in head>
<out gloss> = <in root>

<out root_pos> <in root_pos>

Figure 11. Feature structure received from PC-Kimmo

[cat: Word
clitic: -
drvstem: -
head: [agr: [3sg: + 1]
finite: +
pos: v
tense: PRES
vform: S]
root: ‘sleep
root_pos: V]
Figure 12. Feature structure sent to PC-PATR
[cat: v
gloss: ‘sleep
head: [agr: [3sg: + 1]
finite: +
pos: v
tense: PRES
vform: S]
lex: sleeps
root_pos: V]

Using a lexical rule in conjunction with the PC-Kimmo morphological parser within
PC-PATR is illustrated in figures 10-12. Figure 10 shows the lexical rule for mapping

2 These two operators are equivalent in PC-PATR, since the implementation treats each
lexical rule as an ordered list of assignments rather than using unification for the map-
pings that have an equal sign operator.

Chapter 4: The PC-PATR Grammar File 35

from the top-level feature structure produced by the morphological parser to the bottom-
level feature structure used by the sentence parser. Note that this rule must be named
MapKimmoFeatures (unorthodox capitalization and all). Figure 11 shows the feature struc-
ture created by the PC-Kimmo parser. After the lexical rule shown in figure 10 has been
applied (and after some additional automatic processing), the feature structure shown in
figure 12 is passed to the PC-PATR parser.

Note that the feature structure passed to the PC-PATR parser always has both a lex
feature and a gloss feature, even if the MapKimmoFeatures lexical rule does not create
them. The default value for the lex feature is the original word from the sentence being
parsed. The default value for the gloss feature is the concatenation of the glosses of the
individual morphemes in the word.

In contrast to the lex and gloss features which are provided automatically by default,
the cat feature must be provided by the MapKimmoFeatures lexical rule. There is no way
to provide this feature automatically, and it is required for the phrase structure rule portion

of PC-PATR.

36

PC-PATR Reference Manual

Chapter 5: Standard format 37

5 Standard format

Some of the input control files that PC-PATR reads are standard format files. This
means that the files are divided into records and fields. A standard format file contains
at least one record, and some files may contain a large number of records. Each record
contains one or more fields. Each field occupies at least one line, and is marked by a field
code at the beginning of the line. A field code begins with a backslash character (\), and
contains 1 or more printing characters (usually alphabetic) in addition.

If the file is designed to have multiple records, then one of the field codes must be
designated to be the record marker, and every record begins with that field, even if it is
empty apart from the field code. If the file contains only one record, then the relative order
of the fields is constrained only by their semantics.

It is worth emphasizing that field codes must be at the beginning of a line. Even a single
space before the backslash character prevents it from being recognized as a field code.

It is also worth emphasizing that record markers must be present even if that field has

no information for that record. Omitting the record marker causes two records to be merge
into a single record, with unpredictable results.

38

PC-PATR Reference Manual

Chapter 6: The PC-PATR Lexicon File 39

6 The PC-PATR Lexicon File

The lexicon file is a standard format database file consisting of any number of records,
each of which represents one word. These records are divided into fields, each of which
begins with a standard format marker at the beginning of a line. These markers begin with
the \ (backslash) character followed by one or more alphanumeric characters. Each record
begins with a designated field. PC-PATR recognizes four different fields, with these default
field markers:

\w the lexical form of the word, spelled exactly as it will appear in any sentences
or phrases input to PC-PATR!

\c word category (part of speech)
\g word gloss
\f additional features of this word

Note that the fields containing the lexical form of the word and its category must be
present for each word (record) in the lexicon. The other two fields (glosses and features)
are optional, as are additional fields that may be present for other purposes.

Each word loaded from the lexicon file is assigned certain features based on the fields
described above.

e The value of the lex feature is the lexical form of the word, taken from the lexical form
field of the word’s entry in the lexicon.

e The value of the cat feature is the lexical category of the word, for example, Noun,
Verb, Adjective, and so on. This is taken from the category field of the word’s entry in
the lexicon. Note that the same lexical form can appear multiple times in the lexicon,
with a different category for each occurrence.

e The value of the gloss feature is the gloss of the word, taken from the gloss field of the
word’s entry in the lexicon. Unlike the previous two items, this feature is optional.

These feature names should be treated as reserved names and not used for other purposes.
For example, consider these entries for the words fox and foxes:

\w fox

\c N

\g canine

\f <number> = singular

\w foxes

\c N

\g canine+PL

\f <number> = plural

When these entries are used by the grammar, they are represented by these feature
structures:

! By default, \w also marks the initial field of each word’s record.

40 PC-PATR Reference Manual

[cat: N
gloss: canine
lex: foxes

number: singular]

[cat: N
gloss: canine+PL
lex: foxes

number: plurall
The lexicon entries can be simplified by defining feature templates in the grammar file.
Consider the following templates:

Let PL be <number> = plural
Let N be <number> !'singular

With these two templates, defining an abbreviation for “plural” and defining a default
feature for category N (noun), the lexicon entries can be rewritten as follows:

\w fox
\c N
\g canine

\f

\w foxes
\c N
\g canine+PL
\f PL
Note that the feature (\f) field of the first entry could be omitted altogether since it is
now empty.

Chapter 7: The AMPLE Analysis File 41

7 The AMPLE Analysis File

Rather than using a dedicated lexicon file, PC-PATR can load its internal lexicon from
one or analysis files produced by the AMPLE morphological analysis program. AMPLE
writes a standard format database for its output, each record of which corresponds to a
word of the source text. The first field of each entry contains the analysis. Other fields,
which may or may not occur, contain additional information.

The utility of this command has been greatly reduced by the availability of the
load ample and load kimmo commands which allow morphological analysis on demand
to populate PC-PATR’s word lexicon. However, the file disambiguate command also
operates on AMPLE analysis files, so this information is still of interest.

7.1 AMPLE analysis file fields

This section describes the fields that AMPLE writes to the output analysis file. The
only field that is guaranteed to exist is the analysis (\s) field. All other fields are either
data dependent or optional.

7.1.1 Analysis: \a

The analysis field (\a) starts each record of the output analysis file. It has the following
form:

\a PFX IFX PFX < CAT root CAT root > SFX IFX SFX

where PFX is a prefix morphname, IFX is an infix morphname, SFX is a suffix morphname,
CAT is a root category, and root is a root gloss or etymology. In the simplest case, an
analysis field would look like this:

\a < CAT root >

The \rd field in the analysis data file can replace the characters used to bracket the root
category and gloss/etymology; see section “Root Delimiter Characters: \rd” in AMPLE
Reference Manual. The dictionary field code mapped to M in the dictionary codes file con-
trols the affix and default root morphnames; see section “Morphname (internal code M)” in
AMPLE Reference Manual. If the AMPLE ‘-g’ command line option was given, the output
analysis file contains glosses from the root dictionary marked by the field code mapped to G
in the dictionary codes file; see section “AMPLE Command Options” in AMPLE Reference
Manual, and section “Root Gloss (internal code G)” in AMPLE Reference Manual.

7.1.2 Decomposition (surface forms): \d

The morpheme decomposition field (\d) follows the analysis field. It has the following
form:

42 PC-PATR Reference Manual

\d anti-dis-establish-ment-arian-ism-s

where the hyphens separate the individual morphemes in the surface form of the word.

The \dsc field in the text input control file can replace the hyphen with another character
for separating the morphemes; see section “Decomposition Separation Character: \dsc” in
AMPLE Reference Manual.

The morpheme decomposition field is optional. It is enabled either by an AMPLE
‘~w d’ command line option (see section “AMPLE Command Options” in AMPLE Reference
Manual), or by an interactive query.

7.1.3 Category (possible word or morpheme): \cat

The category field (\cat) provides rudimentary category information. It has the follow-
ing form:

\cat CAT
where CAT is the proposed word category. A more complex example is
\cat CO C1/C0=C2=C2/C1=C1/C1

where CO is the proposed word category, C1/CO0 is a prefix category pair, C2 is a root category,
and C2/C1 and C1/C1 are suffix category pairs. The equal signs (=) serve to separate the
category information of the individual morphemes.

The \cat field of the analysis data file controls whether the category field is written to
the output analysis file; see section “Category output control: \cat” in AMPLE Reference
Manual.

7.1.4 Properties: \p

The properties field (\p) contains the names of any allomorph or morpheme properties
found in the analysis of the word. It has the form:

\p ==propl prop2=prop3=

where prop1, prop2, and prop3 are property names. The equal signs (=) serve to separate
the property information of the individual morphemes. Note that morphemes may have
more than one property, with the names separated by spaces, or no properties at all.

By default, the properties field is written to the output analysis file. The ‘-w 0’ command
option, or any ‘-w’ option that does not include ‘p’ in its argument disables the properties
field.

Chapter 7: The AMPLE Analysis File 43

7.1.5 Feature Descriptors: \fd

The feature descriptor field (\fd) contains the feature names associated with each mor-
pheme in the analysis. It has the following form:

\fd ==featl feat2=feat3=

where feat1, feat?2, and feat3 are feature descriptors. The equal signs (=) serve to separate
the feature descriptors of the individual morphemes. Note that morphemes may have more
than one feature descriptor, with the names separated by spaces, or no feature descriptors
at all.

The dictionary field code mapped to F in the dictionary code table file controls whether
feature descriptors are written to the output analysis file; if this mapping is not defined,
then the \fd field is not written. See section “Feature Descriptor (internal code F)” in
AMPLE Reference Manual.

7.1.6 Underlying forms (decomposition): \u

The underlying form field (\u) is similar to the decomposition field except that it shows
underlying forms instead of surface forms. It looks like this:

\u a-para-a-i-ri-me

where the hyphens separate the individual morphemes.

The \dsc field in the text input control file can replace the hyphen with another character
for separating the morphemes; see section “Decomposition Separation Character: \dsc” in
AMPLE Reference Manual.

The dictionary field code mapped to U in the dictionary code table file controls whether
underlying forms are written to the output analysis file; if this mapping is not defined,
then the \u field is not written. section “Underlying Form (internal code U)” in AMPLE
Reference Manual.

7.1.7 Word (before decapitalization and orthography changes): \w

The original word field (\w) contains the original input word as it looks before decapi-
talization and orthography changes. It looks like this:

\w The

Note that this is a gratuitous change from earlier versions of AMPLE, which wrote the
decapitalized form.

The original word field is optional. It is enabled either by an AMPLE ‘-w w’ command
line option (see section “AMPLE Command Options” in AMPLE Reference Manual), or
by an interactive query.

44 PC-PATR Reference Manual

7.1.8 Formatting (junk before the word): \f

The format information field (\f) records any formatting codes or punctuation that
appeared in the input text file before the word. It looks like this:

\f \\id MAT 5 HGMTO05.SFM, 14-feb-84 D. Weber, Huallaga Quechua\n
\\c 5\n\n
\\s

where backslashes (\) in the input text are doubled, newlines are represented by \n, and
additional lines in the field start with a tab character.

The format information field is written to the output analysis file whenever it is needed,
that is, whenever formatting codes or punctuation exist before words.

7.1.9 Capitalization flag: \c

The capitalization field (\c) records any capitalization of the input word. It looks like
this:

\c 1

where the number following the field code has one of these values:

1 the first (or only) letter of the word is capitalized

2 all letters of the word are capitalized

4--32767 some letters of the word are capitalized and some are not

Note that the third form is of limited utility, but still exists because of the author’s last
name.

The capitalization field is written to the output analysis file whenever any of the letters
in the word are capitalized; see section “Prevent Any Decapitalization: \nocap” in AMPLE
Reference Manual, and section “Prevent Decapitalization of Individual Characters: \noin-
cap” in AMPLE Reference Manual.

7.1.10 Nonalphabetic (junk after the word): \n

The nonalphabetic field (\n) records any trailing punctuation, bar code (see section “Bar
Code Format Code Characters: \barcodes” in AMPLE Reference Manual), or whitespace
characters. It looks like this:

\n |r.\n

where newlines are represented by \n. The nonalphabetic field ends with the last white-
space character immediately following the word.

The nonalphabetic field is written to the output analysis file whenever the word is
followed by anything other than a single space character. This includes the case when
a word ends a file with nothing following it.

Chapter 7: The AMPLE Analysis File 45

7.2 Ambiguous analyses

The previous section assumed that AMPLE produced only one analysis for a word. This
is not always possible since words in isolation are frequently ambiguous. AMPLE handles
multiple analyses by writing each analysis field in parallel, with the number of analyses at
the beginning of each output field. For example,

\a %2%< AO imaika > CNJT AUG/< AO imaika > ADVSJ
\d %2%imaika-Npa-ni%imaika-Npani%

\cat %2%A0 A0=A0/A0=A0/A0%A0 A0=A0/A0Y%

\p %h2%=="h="%

\fd %2%==%=%

\u %2%imaika-Npa-ni%imaika-Npani’

\w Imaicampani

\f \\vi24

\c 1

\n \n

where the percent sign (%) separates the different analyses in each field. Note that only those
fields which contain analysis information are marked for ambiguity. The other fields (\w,
\f, \¢c, and \n) are the same regardless of the number of analyses that AMPLE discovers.

The \ambig field in the text input control file can replace the percent sign with another
character for separating the analyses; see section “Ambiguity Marker Character: \ambig”
in AMPLE Reference Manual, for details.

7.3 Analysis failures

The previous sections assumed that AMPLE successfully analyzed a word. This does not
always happen. AMPLE marks analysis failures the same way it marks multiple analyses,
but with zero (0) for the ambiguity count. For example,

\a %0%tal

\d %0%ta%
\cat %0%%

\p %0%%

\fd %0%%

\u %0%%

\w TA

\f \\v 12 |b
\c 2

\n |r\n

Note that only the \a and \d fields contain any analysis information, and those both have
the decapitalized word as a place holder.

The \ambig field in the text input control file can replace the percent sign with another
character for marking analysis failures and ambiguities; see section “Ambiguity Marker
Character: \ambig” in AMPLE Reference Manual, for details.

46

PC-PATR Reference Manual

Chapter 8: Using the Embedded Morphological Parsers 47

8 Using the Embedded Morphological Parsers

Normally, PC-PATR requires the linguist to develop a full-fledged lexicon of words with
their features. This may be unnecessary if a morphological analysis, and a comprehensive
lexicon of morphemes, has already been developed using either PC-Kimmo (version 2) or
AMPLE (version 3). These morphological parsing programs are also available from SIL.

8.1 PC-Kimmo

Version 2 of PC-Kimmo supports a PC-PATR style grammar for defining word structure
in terms of morphemes. This provides a straightforward way to obtain word features as
a result of the morphological analysis process. For best results, the (PC-Kimmo) word
grammar and the (PC-PATR) sentence or phrase grammar should be developed together.

When using the PC-Kimmo morphological parser, PC-PATR requires a special lexical
rule in the (sentence level) grammar file. This rule is named MapKimmoFeatures and is used
automatically to map from the features produced by the word parse to the features needed
by the sentence parse. For example, consider the following definition:

Define MapKimmoFeatures as
<out cat> = <in head pos>
<out lex> <in lex>
<out head> <in head>

This lexical rule uses the <head pos> feature produced by the PC-Kimmo parser as the
<cat> feature for the PC-PATR parser, and passes the <lex> and <head> features from the
morphological parser to the sentence parser unchanged.

8.2 AMPLE

The only thing necessary to use the AMPLE morphological parser inside PC-PATR is
to load the appropriate control files and dictionaries. This will not be too useful, however,
unless the AMPLE dictionaries contain feature descriptors to pass through to PC-PATR.
It is also required for the AMPLE data to define the word category. (Either the word-final
suffix category or the word-initial prefix category can be designated in the analysis data
file). Consult the AMPLE documentation for more details on either of these issues.

48

PC-PATR Reference Manual

Chapter 9: Index

9 Index

= 15
—afilename............oi i 15
-gfilename.......................i 15
-l filename. ...ttt e 15
-t filename.......... ...t 15
-Z address,countiiiiiiiian... 15
-~z filename.......... ... 15

49
Nt 44
NCat e 42
A .o 41
L 44
NEd. e 43
|« TP 44
D e ettt 42
AU e 43
A 278 P 43
S
standard format 37

50

PC-PATR Reference Manual

Table of Contents

1 Introduction to the PC-PATR program..... 1
2 The PATR-II Formalism 3
2.1 Phrase structurerules 3
2.2 Feature structures.......... ... 6
2.3 Unification......... 7
2.4 Feature constraints............ 8
2.5 ThelexXiConcouiiii et 13
3 Running PC-PATR 15
3.1 PC-PATR Command Line Options 15
3.2 Interactive Commands.................cooviiieinernn.... 15
321 cd . 15

3.2.2 clear. 16

3.2.3 CloSe. .. 16

324 directoryot 16

325 edit. ..o 16

326 eXib. .. 16

327 file ..o 16

3.2.7.1 file disambiguate...................... 17

3272 fileparse..........o i 17

328 helpo 17

3.29 load 17

3.2.9.1 load ample control 17

3.2.9.2 load ample dictionary 18

3.2.9.3 load ample text-control................ 18

3.2.94 load analysis.......................... 18

3.29.5 load grammar......................... 18

3.2.9.6 load kimmo grammar.................. 18

3.2.9.7 load kimmo lexicon.................... 19

3.2.9.8 load kimmo rules...................... 19

3.2.99 load lexicon 19

3210 108 oo 19

3211 PATSE .o oot 19

3212 quit .. 20

3213 SAVE . e 20
3.2.13.1 savelexicon 20

3.2.13.2 savestatus 20

3214 st oo 20
3.2.14.1 set ambiguities. 20

3.2.14.2 set ample-dictionary.................. 20

3.2.14.3 set check-cycles...................... 21

ii

PC-PATR Reference Manual

3.2.144 setcomment................. 21
3.2.14.5 set failuresl 21
3.2.14.6 set features.......................... 21
3.214.7 setgloss. ... 22
3.2.14.8 set marker category 22
3.2.14.9 set marker features................... 22
3.2.14.10 set marker gloss..................... 22
3.2.14.11 set marker record 22
3.2.14.12 set marker word 22
3.2.14.13 settiming 22
3.2.14.14 set top-down-filter 22
3.2.14.15 settree........ ...l 23
3.2.14.16 set trim-empty-features.............. 23
3.2.14.17 set unification 23
3.2.14.18 set verbose 24
3.2.14.19 set warnings.............. 24
3.2.14.20 set write-ample-parses............... 24
3215 ShOW ...t 24
3.2.15.1 show lexicon......................... 24
3.2.15.2 showstatus.......................... 24
3.216 status ... 24
3217 system......... 25
3218 take 25
The PC-PATR Grammar File 27
4.1 Rules. ... 27
4.2 Feature templates 29
4.3 Parameter settings i 31
4.4 Lexical rules...... ... 32
Standard format.......................... 37
The PC-PATR Lexicon File 39
The AMPLE Analysis File................ 41
7.1 AMPLE analysis file fields 41
711 Analysis: \a......ooii 41
7.1.2 Decomposition (surface forms): \d.............. 41
7.1.3 Category (possible word or morpheme): \cat 42
7.1.4 Properties: \p......cooiiii 42
7.1.5 Feature Descriptors: \fd 43
7.1.6 Underlying forms (decomposition): \u........... 43
7.1.7 Word (before decapitalization and orthography
changes): \w i 43
7.1.8 Formatting (junk before the word): \f........... 44
7.1.9 Capitalization flag: \c 44

7.1.10 Nonalphabetic (junk after the word): \n 44

7.2 Ambiguous analyses 45
7.3 Analysis failures. 45

8 Using the Embedded Morphological Parsers

.. 47
81 PC-KImmoOcotii i 47
8.2 AMPLE 47

O IndeX ..ovviiei ittt et ettt ettt 49

v

PC-PATR Reference Manual

