Elasticity

Definition

If forces are applied to a material deformation will occur. In its simplest term a **tension** force will cause an **increase** in the length (extension) while a **compressive force** will give rise to a **reduction** in the length (negative extension).

A.

Stress	Force per unit area of crossection. Units: Pascals, Pa or N/m ² .
Strain	<u>Change in Length</u> Original Length (Pure Number)
	It is the degree or ratio of deformation in a body on which a force is being applied.
Elasticity	A material is said to be elastic if it returns to its original size and shape once the distorting or deforming force would have been removed.
Hooke's Law	Up to a maximum load (referred to as the limit of proportionality) the extension of a wire /or spring would be proportional to the magnitude of the applied force.
Elastic Limit	This is the maximum load that a body can experience and still be able to regain its original dimensions and shape once the deforming force would have been removed.
Yield Point	If the stress is increased beyond the elastic limit a point is reached at which the there is a marked increase in the length. At the yield point there will be a permanent change in the internal crystalline structure of the material. Effectively the crystalline planes of the material would have slid over each other taking a new configuration giving rise to a phenomenon referred to as the plastic stage marked by a pronounced increase in the deformation with the application of small forces.

Strength This relates to the maximum force which can be applied to a material before breaking. Therefore the larger the breaking force required is the stronger will be the material.

Breaking Stress This is also refereed to as the ultimate tensile stress in a material and is the maximum limit of force that can be applied to material before it breaks.

Stiffness This relates to the maximum force which can be applied to a material before it breaks.

Ductility A ductile material is one which can be permanently stretched.

Brittleness A brittle material cannot be permanently stretched. It breaks soon after the elastic limit has been reached. Brittle materials on the other hand tend to withstand strong compressions.