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Abstract

A family 4 of sets is said to beintersectingif any two sets in4 have at least
t common elements. A central problem in extremal set theory is to determine the
size or structure of a largesintersecting sub-family of a given family. We give a
survey of known results, conjectures and open problems for various important families
F, namely, power sets, levels of power sets, hereditary families, families of signed
sets, families of labeled sets, and families of permutations. We also provide some
extensions and consequences of known results.

1 Introduction

Unless otherwise stated, we shall use small letters sughiaadenote elements of a set or
non-negative integers or functions, capital letters suck ssdenote sets, and calligraphic
letters such ag to denotefamilies(i.e. sets whose elements are sets themselves). Itis to
be assumed that arbitrary sets and familiesfimite. We call a sefA anr-element setor
simply anr-set if its size|A| isr (i.e. if it contains exactly elements). A family is said to
beuniformif all its sets are of the same size.

The set{1,2,...} of positive integers is denoted by Form,n € N with m < n, the set
{ie N: m<i <n}isdenoted bym,n|, and ifm= 1 then we also writén|. For a sei, the
power se{A: AC X} of X is denoted by 2, and the uniform sub-familyy C X: |Y| =r}
of 2X is denoted by(Y).
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For a family ¥ of sets, we denote the union of all setgfirby U (¥ ) and we denote the
size of a largest set iff by a(F). For an integer > 0, we denote the uniform sub-family
{FeF:|F|=r}of ¥ by FO (note thatF ) = (¥ if F = 2X), and we callF ") ther'th
level of F. For a se§ we denotelF € F: SC F} by F(S). We may abbreviat& ({x})
to F(x). If xe U(F) then we call¥ (x) astar of . More generally, ifT is at-element
subset of a set i, then we callF (T) at-star of .
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A family 4 is said to bantersectingf ANB # 0 for anyA,B € 4. More generally4
is said to be-intersectingf |ANB| >t for anyA,B € 4. So an intersecting family is a 1-
intersecting family. A-intersecting family4 is said to berivial if |NaczA| >t (i.€. there
are at least elements common to all the setsA); otherwise, 4 is said to benon-trivial.
So at-star of a family¥ is a trivial t-intersecting sub-family off that is not contained in
any other. If there existstasetT such that7 (T) is a largest-intersecting sub-family of
F (i.e. not-intersecting sub-family off has more sets thaf(T)), then we say thaf has
thet-star property at T or we simply say thaff has thet-star property If either ¥ has
not-intersecting sub-families (which is the case if and onlg(ff ) < t) or all the largest
t-intersecting sub-families gf aret-stars, then we say th&t has thestrict t-star property.
We may abbreviate ‘1-star property’ to ‘star property’.

Extremal set theoris the study of how small or how large a system of sets can be under
certain conditions. In this paper we are concerned with the following natural and central
problem in this field.

Problem: Given a family¥ and an integer > 1, determine the size or structure of a largest
t-intersecting sub-family of .

We provide a survey of results that answer this question for families that are of particular
importance, and we also point out open problems and conjectures. The survey papers [25]
and [32] cover a few of the results we mention here and also go into many variations of the
above problem; however, much progress has been made since their publication. Here we
cover many of the important results that have been established to date, restricting ourselves
to the problem stated above.

The most obvious families to consider are the power $ea@d the uniform sub-family
([?}), and in fact the problem for these families has been solved completely. However, there
are other important families on which much progress has been made, and there are others
that are still subject to much investigation. The families defined below are perhaps the ones
that have received most attention and that we will be concerned with.

Hereditary families: A family #{ is said to be dereditary family(also called arndeal or
adownse} if all the subsets of any set i are in#{. Clearly a family is hereditary if and
only if it is a union of power sets. Aaseof # is a set in# that is not a subset of any other
set in#. So a hereditary family is the union of power sets of its bases. An example of a
hereditary family is the family of independent sets gfraphor matroid

Families of signed sets:Let X be anr-set{xs,...,X}. Letys,...,yr € N. We call the
set{(X1,y1),...,(%,Yr)} ak-signed r-setf max{y;: i € [r]} <k. For an integek > 2 we
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definesx k to be the family ok-signedr-sets given by

‘5X~,k = {{(X17y1)7 RS (Xr7Yr)} : yl7 e aYr € [k]}
So a sefAis a member ofx k if and only if it is a subset of the Cartesian prodck k] :=
{(xy): xe X,y € [K]} satisfying|An ({x} x [K])| =1 for all x € X. We shall sefSpx := 0.
With a slight abuse of notation, for a family we define

Srki= U SF k-
Fef

Families of labeled sets:For k := (ki,...,ky) with kg, ...k, € N andk; < --- < kg, we
define the familyZy of labeled n-setby

Ly :={{(L,y1),...,(n,yn) }: Vi € [k] for eachi € [n]}.
Note thatS[n]_,k = L(kl-,---,kn) withk; =--- =ky =k

An equivalent formulation forZ, is the Cartesian productk] x --- x [ky] =
{(y1,...,¥n): i € [k for eachi € [n]}, but it is more convenient to work with-sets than
work with n-tuples (the alternative formulation demands that we change the setting of fam-
ilies of sets to one of sets oftuples).

For anyr € [n], we define

Lyy = {{(xl,yxl),...,(xr,yxr)}: {X1,..., %} € <[?]>,y>q € [ky] for eachi € [r]},

and we setly o = 0. Thus, for any &< r < n, £y, is the family ofr-element subsets of the
sets inLy, and L n = Lx. We also definely <, == Uj_q Lk.i-

Families of permutations: For anr-setX := {x1,..., %}, we definaSy , to be the special
sub-family ofSx k given by

Sxk = H{XLy1), -, (%, ¥r) ) Ya,-., Y aredistinctelements ofk] } .

Note thatSy , # 0 if and only if r < k. With a slight abuse of notation, for a family we
definej}’k to be the special sub-family ofr x given by

Syx= U S
FeF

An r-partial permutation of a set Ns a pair(A, f) whereA (';‘) andf: A— Nisan
injection. An|N|-partial permutation oN is simply called gpermutation of N Clearly,
the family of permutations ofn| can be re-formulated a%_n, and the family ofr-partial
permutations ofn| can be re-formulated &%, . '

Let X be as above.5;§7k can be interprreted as the family of permutations of sets
in (M): consider the bijectiof: s5, — {(A f): Ac (¥),f: A— Ais a bijectior} de-
fined byB({(x1,a1),..., (%,&)}) := ({a1,...,&}, f) where, forb; < --- < by such that
{br,....b} ={a,....a}, f(b) :=a fori=1,....r. 5 can also be interpreted as the
sub-family.x := {(A, f): Ac (¥), f: A— [r] is a bijectior} of the family ofr-partial per-
mutations offk|: consider an obvious bijection frog , to 5(*[k]) . and another one from
5(*@); to X.
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2 Intersecting Sub-Families of(I") and 2I"

In this section we taker andn to be positive integers such that r < n.
The study of intersecting families took off with the publication of [28], which features
the following classical result, known as the BsdKo-Rado (EKR) Theorem.

Theorem 2.1(EKR Theorem [28]) If r <n/2and 4 is an intersecting sub-family céﬁ‘})
then|a| < (7-7).

This means that for < n/2, (") has the star property, because the bo(Jhd) is the
size of any star o([?]). Note that ifr > n/2, then any twa-element subsets gfij must

intersect, and henc(é?]) is an intersecting family (also note it is a non-trivial one,(.%)
does not have the star property in this case).

In order to prove Theorem 2.1, His, Ko and Rado [28] introduced a method known
ascompressioror shifting see [32] for a survey on the uses of this powerful technique in
extremal set theory. There are various proofs of Theorem 2.1, two of which are particularly
short and beautiful: Katona's proof [40], which featured an elegant argument known as
the cycle methodand Daykin’s proof [22] using another fundamental result known as the
Kruskal-Katona Theorem [41, 44]. Hilton and Milner [37] proved that fox n/2, the

family Aq, := {Ae (M):1eA AN2r+1] # (Z)} U{[2,r +1]} is a largest non-trivial

intersecting sub-family of "), and since the size aff is (7-3) — (".";Y) +1, it follows

thatifr < n/2, then the stars df"") are the largest intersecting sub- famllles{Bf), i.e. (1)
has the strict star property. Note that i= n/2, then any sub-familyd of ([’r‘]) satisfying
|an{A,[2r)\A}| = 1 for all A (") is an intersecting sub-family ") of size (") =

1(®™) = (*-]), and hence one of maximum size (an example of such a fafily/ Ao,

so (") does not have the strict star property i n/2).

Also in [28], Erdds, Ko and Rado initiated the study Bintersecting families. They
proved that fort < r, there exists an integen(r,t) such that for alln > no(r,t), the
largestt-intersecting sub-families o([?]) are thet-stars (which are of siz§"})). For
t > 15, Frankl [31] showed that the smallest sugfir,t) is (r —t+1)(t+1)+ 1 and
that if n = (r —t + 1)(t + 1), then (™) still has thet-star property but not the strict
star property. Subsequently, using algebraic means, Wilson [58] prove(j[:ﬂbldtas the
t-star property for any andn > (r —t+1)(t +1). Frankl [31] conjectured that among
the largestt-intersecting sub-families o([?]) there is always at least one of the fami-

lies {AE (") 1AN [t +2i]) >t+|} i=0,1,...,r —t. A remarkable proof of this long-
standing conjecture together with a complete characterisation of the extremal structures was

finally obtained by Ahlswede and Khachatrian [1] by means ofcthrapressionechnique
introduced in [28].

Theorem 2.2([1]). Let 4 be a largest t—intersecting sub-family 61’

@ If(r—t+1)(2+ |+1) <n< (r—t+1)(2+ %) for some i€ {0} UN - where, by
convention(t —1)/i = ifi =0-then4 = {A¢c (”]) IANX]| > t+i} for some Xe (,,).
(ii) Ift > 2and(r —t+1)(2+ 1) =n for some i {0} UN, thena = {A€ (M) |ANX| >
t+ j} for some je {i,i+ 1} and Xe (tﬂj).
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It is worth mentioning that in [2] Ahlswede and Khachatrian went on to determine the
largest non-triviat-intersecting sub-families of").

Erdés, Ko and Rado [28] pointed out the simple fact thdt Bas the star property
(indeed, for any seA in an intersecting sub-familg of 2I", the complemenjin]\A cannot
be in 4, and hence the size ol is at most|2"| = 21, j.e. the size of a star of®);
note that there are many non-trivial intersecting sub-familiesS®®b2maximum size 21
(such as{A C [n]: |AN[3]| > 2}), so 2" does not have the strict star property. They also
asked what the size of a largésntersecting sub-family of @ is fort > 2. The answer in
a complete form was given by Katona [42].

Theorem 2.3([42)]). Lett> 2, and let4 be a largest t-intersecting sub-family af".
(i) fn+t=2thena={AC[n]: |A| >1}.
(i) Ifn+t=2+1thena = {AC [n]: |JANX| > 1} for some Xe (")).

It is interesting that fon >t > 2, 2" does not have thiestar property.
Many other beautiful results were inspired by the seminal paper [28], as are the results
we present in the subsequent sections.

3 Intersecting Sub-Families of Hereditary Families

Recall that #/ has the star property. Also recall that the power set of X sethe simplest
example of a hereditary family sincé€ 2 a hereditary family with only one bas¥), An
outstanding open problem in extremal set theory is the following conjecture (see [14] for a
more general conjecture).

Conjecture 3.1([19]). If A is a hereditary family, thert has the star property.

Chvatal [20] verified this conjecture for the case whrnis left-compressefi.e. # C
2N and (H\{j}) U {i} € A whenever I<i < j € H € # andi ¢ H). Snevily [54] took
this result (together with results in [53, 55]) a significant step forward by verifying Con-
jecture 3.1 for the case wheH is compressed with respect to an element x @)
(i.e. (H\{h}) U{x} € #H wheneveh € H € H andx ¢ H).

Theorem 3.2([54]). If a hereditary family# is compressed with respect to an element x
of U(H), then# has the star property afx}.

A generalisation is proved in [14] by means of an alternative self-contained argument.
Snevily’s proof of Theorem 3.2 makes use of the following interesting result of Berge [5]
(a proof of which is also provided in [4, Chapter 6]).

Theorem 3.3([5]). If # is a hereditary family, thert is a disjoint union of pairs of disjoint
sets, together with if | #/| is odd.

This result was also motivated by Conjecture 3.1 as it has the following immediate
consequence.

Corollary 3.4. If 4 is an intersecting sub-family of a hereditary famft, then

1
< Z|H].
4] < 5191
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Proof. For any pair of disjoint sets, at most only one set can be in an intersecting family
By Theorem 3.3, the result follows. O

A special case of Theorem 3.2 is a result of Schénheim [53] which says that Conjec-
ture 3.1 is true if the bases @i have a common element, and this follows immediately
from Corollary 3.4 and the following fact.

Proposition 3.5([53]). If the bases of a hereditary famiBf have a common element X,
then

9x)| = 5191

Proof. Partition# into 4 := H(x) andB := {B € #: x ¢ B}. If A€ 4 thenA\{x} € B;
so 4| < |B|. If Be B thenB C C for some bas€ of A, and hencdU {x} € 4 since
x € C; s0|B| < |4|. Thus|4| = |B| = 3|#]. O

Many other results and problems have been inspired by Conjecture 3.1 or are related to
it; see [21, 51, 57].

Conjecture 3.1 cannot be generalised tottirgersection case. Indeedyif>t > 2 and
H = 2" then by Theorem 2.34 does not have thiestar property.

We now turn our attention to uniform intersecting sub-families of hereditary families,
or rather intersecting sub-families of levels of hereditary families. For any hereditary family
H, letu(#) denote the size of a smallest baserof

A graph Gis a pair(V,E) with E C (%), and a set C V is said to be aindependent
set of Gif {i, j} ¢ E for anyi, j € 1. Let Js denote the family of all independent sets of a
graphG. Clearly js is a hereditary family. Holroyd and Talbot [39] made a nice conjecture
which claims that ifG is a graph angi(g) > 2r, then4c(") has the star property, arsg")
has the strict star property i Jc) > 2r. In [11] the author conjectured that this is true for
any hereditary family and that in general the following holds.

Conjecture 3.6([11]). If 1<t <r, 0#£ SC [t,r] and 4 is a hereditary family with () >
(t+1)(r—t+1),then:

(i) UsesH'® has the t-star property;

(i) UsesH® has the strict t-star property if either(ft) > (t 4 1)(r —t +1) or S# {r}.

Note that Theorem 2.2 solves the special case wifiea2l" and tells us that we cannot
improve the conditiop(#) > (t+1)(r —t+1). The author [11] proved that this conjecture
is true if u(#) is sufficiently large.

Theorem 3.7([11]). Conjecture3.6is true if p(#) > (r —t) (¥ 271 +r.

The motivation behind establishing this result for any union of levels of a hereditary
family A within a certain range is that this general form cannot be immediately deduced
from the result for just one level off (i.e. the cas&= {r} in Conjecture 3.6). As demon-
strated in Example 1 in [11], the reason is simply thaT ifs at-set such that®(T)

(s€ [t,r]) is a largest-star of the levelH®, then forp # s (p € [t,r]), #P(T) not only

may not be a largeststar of the level#/(P but may be smaller than some non-trivial
intersecting sub-family of{(P). This is in fact one of the central difficulties arising from
any EKR-type problem for hereditary families. In the proof of Theorem 3.7, this obstacle
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was overcome by showing that for any non-tritidhtersecting sub-family? of the union,
we can construct &star that is larger tharl (and that is not necessarily a largestar).
Many other proofs of EKR-type results are based on determining at least one tastast
as in the case of each theorem mentioned in Section 2, the setting is often symmetrical to
the extent that ali-stars are of the same size and of a known size.
An interesting immediate consequence of Theorem 3.7 is that the union of threfitst
levels of a hereditary family/ has the strict-star property ifu(#) is sufficiently larger
thanr.

Corollary 3.8 ([11]). If 1 <t <r and # is a hereditary family with () > (r —
t) (321 + 1, thenUs_o 4 has the strict t-star property.

Proof. Let 4 be at-intersecting sub-family of)5_,#®. Then no set im is of size less
thant, s0.4 C Js.sH® with S= [t,r]. The result follows by Theorem 3.7. O

This means that for the special cdse 1, we have the following.

Corollary 3.9 ([11]). Conjecture 3.1 is true iff = |JL_,7(® for some re N and some
hereditary family7 with p(7) > %(r —1)%(3r —4) +r.

The following extension of Theorem 2.2 far> (t+ 1)(r —t + 1) was also proved in
[11].

Theorem 3.10([11]). Conjecture 3.6 is true if{ is left-compressed.

4 Intersecting Families of Signed Sets

The ‘signed sets’ terminology was introduced in [10] for a setting that can be re-formulated
as.S([n])'k, and the general formulatiay- x was introduced in [13], the theme of which is

the following conjecture.

Conjecture 4.1([13]). For any family# and any k> 2,

(i) S¢ k has the star property;

(i) S#k does not have the strict star property only itk2 and there exist at least three
elements y up, uz of U(F) such that¥ (uy) = F (u2) = ¥ (u3) andSy 2((uy, 1)) is a largest
star of Sy 5.

The converse of (ii) is true, and the proof is simply thgh € Syo: |AN
{(u1,1), (uz,1), (u3,1)}| > 2} is a non-trivial intersecting sub-family of; , that is as large
asSr 2((ug,1)).

In [14] a similarity between the intersection problem for hereditary families and the one
presented above is demonstrated, and in fact a conjecture generalising both Conjecture 3.1
and the above conjecture is suggested.

Recall that a family¥ is said to be compressed with respect to an elemefit (F)
if (F\{u})U{x} € F wheneveru e F € ¥ andx ¢ F. The following is the main result in
the paper featuring the above conjecture.
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Theorem 4.2([13]). Conjecture4.1is true if ¥ is compressed with respect to an element
x of U(F ), and Sy k has the star property aft(x,1)}.

Since([?]) is compressed with respect to any elemenindf the above result has the
following immediate consequence, which is a well-known result that was first stated by
Meyer [50] and proved in different ways by Deza and Frankl [25], Bollobas and Leader
[10], Engel [27] and Erds et al. [29].

Theorem 4.3([10, 25, 27, 29]) Letr € [n] and let k> 2. Then:
0] 5([“J),k has the star property;

(i) if (r,k) # (n,2) thenS([n]) « has the strict star property.

Thus the size of an intersecting sub-family, f « Is at most( )kr 1 i.e. the size
of any star ots([n]) « Berge [6] and Livingston [49] had proved (i) and (ii), respectively, for

the special casg = {[n]} (other proofs are found in [36, 52]).

In [13] Conjecture 4.1 is also verified for the case wiers uniform and has the star
property; Holroyd and Talbot [39] had essentially proved part (i) of the conjecture for such
a family F in a graph-theoretical context.

Thet-intersection problem for sub-families ¢f; « has also been solved. Frankl and
Furedi were the first to investigate it. In [33] they conjectured that among the ldrgest
intersecting sub-families ofy « there is always one of the familie% := {A € Sy k@ [AN
(t+2i] x [1])] > t+i}, i =0,1,2,..., and they proved that i >t + 1 > 16, then4y is
extremal and hencé,  has the star property. The conjecture was proved independently
by Ahlswede and Khachatrian [3] and Frankl and Tokushige [34] (Kleitman [43] had long
established this result fde= 2). As in Theorem 2.2, Ahlswede and Khachatrian [3] also
determined the extremal structures.

Theorem 4.4([3]). Let1 <t <nand k> 2. Let m be the largest integer such that 2m <
min{n+1,t + 2=%} (by conventioni=} = w0 if k = 2).

@) If (k,t) # (2,1) and % is not mtegral, thenq is a largest t-intersecting sub-family of
Sin .k if and only if

A = {AES[n},k: ‘AﬂX| 2t+m}

for some Xe Syx withY € (t-q[-z}m>

(ii) If (k,t) # (2,1) and =5 |s integral, then4 is a largest t-intersecting sub-family s «
if and only if

A={AE Sk [ANX|>t+ ]}

for some je {m m+ 1} and some X Sy with Y € (tﬂj).

(i) If (k,t) = (2,1), thenA is a largest t-intersecting sub-family gf;  if and only if for
any y].a tee 7Yn € [2]7 exaCtly one O{(layl)a AR (nv)/n)} and {(173—)’1), AR (n73_yl’l)} iS
in 4.
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Note that (iii) follows trivially from the fact that for any sét:= {(1,y1),...,(n,yn)} in
Sin2 {(L,3=Y1),.--,(n,3—Yn)} is the only set insy, » that does not interseét The rest
of the theorem is highly non-trivial!

What led to Theorem 4.4 was the accomplishment of Theorem 2.2. The following is an
immediate consequence of Theorem 4.4.

Corollary 4.5. Letl <t <nandk> 2. Then:
() Sy k has the t-star property if and only ifk t +1;
(i) Sk has the strict t-star property if and only ifk t + 2.

We point out that Bey and Engel [9] extended Theorem 4.4 by determining the size of
a largest non-trivial-intersecting sub-family ofj « (see Examples 10, 11 and Lemma 18
in [9]).

Note thatSy, x = 5([”])~k with r =n. For the case<r < n, Bey [8] proved the following.

Theorem 4.6([8]). Let1l <t <r <n. 5([n]) « has the t-star property if and only if r
(r—t4K) (t+1) r
—k

Thus, ift <r < nandn> UKD then the size of &intersecting sub-family of

Sy 1S at most(!—{)K', i.e. the size of any-star of (i), From Corollary 4.5 and
Theorem 4.6 we immediately obtain the following.

Corollary 4.7. Foranyl<t<r<nand k>t-+1, 5([n])  has the t-star property.

To the best of the author’s knowledge, no compleiatersection theorem fQE([n]) K

has been obtained.
For the case wherf is any family, the author [15] suggested the following general
conjecture.

Conjecture 4.8([15]). For any integer t> 1, there exists an integepk) such that for any
k> ko(t) and any familyF, Sy  has the t-star property.

In view of Corollary 4.7, we conjecture that the smallest) ist 4+ 1. In [15] it is actu-
ally conjectured that for some integg(t), S« k has the strict-star property for any', and
hence, in view of Corollary 4.5(ii), we conjecture that the smakgft) ist + 2. Note that
Conjecture 4.1 claims that the smallest valueky§l) andkj(1) are 2 and 3, respectively.
The author [15] proved the following relaxation of the statement of Conjecture 4.8.

Theorem 4.9([15]). For any integers r and t with <t <r, let ko(r,t) := (}) (,{,). For

any k> ko(r,t) and any family# with a(F) <r, S¢ « has the strict t-star property.

The general idea behind the proof of this result is similar to that behind the proof of
Theorem 3.7, described in Section 3.

Corollary 4.10. Conjecture4.1is true if k> a(F)(*)).
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5 Intersecting Families of Labeled Sets

Consider the familyy, k = (ki,...,kn), of labeled n-setsIf k; = 1 then all the sets iy
contain the point1,1) and hencely has the strict star property. Berge [6] proved that for
anyk, £y has the star property, and hence the size of an intersecting sub-fanilyioht
most the sizq}z|£4<| = koks. ..k, of the starfy ((1,1)), as this is clearly a largest star (since
ki <--- <kn). We shall reproduce the remarkably short proof of this result.

Let mod be the usual modulo operation with the exception that for any intager
amod' ais a instead of 0. For any integey, let 8, : £x — Ly be thetranslation oper-
ation defined by

0%(A) := {(a, (b+q) mod ka): (a,b) € A},
and defined) : 2% — 2% py
Of(F) = {Bi(A): Ac 7}.

Let 4 be an intersecting sub-family di. For anyA € 4 andq € [k — 1], we havedj} (A) N
A=0and henc®}(A) ¢ 4. Therefore2,0}(4),..., G)El’l(ﬂl) arek; disjoint sub-families
of Lx. Soky| 4| <|L| and henced| < & |Ly|.

Livingston [49] proved that for X k; = --- = k, Lk has the strict star property. Using
the shifting technique (see [32]) in an inductive argument, the author [12] extended Liv-
ingston’s result for the case when<3k; < --- < k,. The above results sum up as follows.

Theorem 5.1([6, 12, 49]) Letl<kj <--- <kyand letk := (ky,...,kn). Then:
(i) L« has the star property aft(1,1)};
(i) if kg ## 2 then Ly has the strict star property.

If k1 = 2 then£x may not have the strict star property; indeedkiif= ko = ks then
{Ae Lx: |AN{(1,1),(2,1),(3,1)| > 2} is a non-trivial intersecting sub-family aj whose
size isi:| Lx| (i.e. the maximum).
to extend LivingSton’s result [49] gives the following extension of part (the sufficiency
conditions) of Corollary 4.5 and generalisation of Theorem 5.1 wjith 2.

Theorem 5.2. Let2<t+1<k; <--- <k,and letk := (kg,...,ky). Then:
(i) L« has the t-star property af(1,1),...,(t,1)};
(i) if ky >t + 2 then £k has the strict t-star property.

As we can see from Theorem 4.4 and Corollary £4,6may not have the-star property
when 2< k; <t. Recall that for the cadq = - - - = kj, the extremal structures are given in
Theorem 4.4, and they are all non-trivial whertk; <t.

The intersection problem for the familieg ,, r = 1,...,n, has also been treated to a
significant extent. Note tha{<[n])7k = Liky,... kn)r With kg = --- = kn = k. Using the shifting
technique (see [32]) in an inductive argument, Holroyd, Spencer and Talbot [38] extended
Theorem 4.3(i) as follows.

Theorem 5.3([38]). Let2 <k; <--- < kyand letk := (ki,...,ky). Then for any re [n],
Ly r has the star property af(1,1)}.
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The proof of their result can be easily extended to obtain thathas the strict star
property if (r,k1) # (n,2) (see, for example, the proof of [12, Theorem 1.4]). The case
ki = 1 proved to be harder, and Bey [7] solved it by applying the idegenferating sets
introduced in [1].

Theorem 5.4([7]). Letl=k; = -+ = km < k1 < -+ < ky and letk := (ky,...,kn).
Let p:= [(m+1)/2], and for each ic [p|, let 4 := {A € Li,: (1,1) € Aji <|AN
{(1,2),....(mD)} <m—i}U{Ae L, : |AN{(1,1),...,(m1)}| > m—i+1}. Then one
of the families4y, ..., 4, is a largest intersecting sub-family af .

Bey [7] also showed that whan< n/2 in the above theorenxy ; has the star property
at (1,1) (this is also proved in [38], and in [16] it is shown that, has the strict star
property ifr < n/2).

For the case wheky can be any positive integer bais sufficiently large, Theorem 3.7
gives us the following-intersection result.

Theorem 5.5. Letl <t <randletn> (r—t)(* %) +r. Let1<k; < --- < ky and let
k:=(ki,...,kn). Then:

(i) L has the t-star property aft(1,1),...,(t,1)}.

(i) Lk r has the strict t-star property.

Proof. Let H := L <n. Then clearlyH is a hereditary family withu(#) = n. Thus,
by Theorem 3.7 (witts= {r}), #(") has the strict-star property. Part (ii) follows since
H") = £y ;. This in turn proves (i) since the familgi (T) with T := {(1,1),...,(t,1)} is
clearly a largest-star of Ly ;. O

We mention that Er@is, Seress, and Székely [30] determined non-triviatersecting
sub-families ofzy , of maximum size for the case wherns sufficiently large.

Finally, for the family £, <, of all labeled sets defined on timetuple k, we have the
following immediate consequence of Theorems 3.2 and 5.3.

Theorem 5.6. For any1 < kj <--- < kn, L, k.),<n has the star property af(1,1)}.

Proof. Let k := (ky,...,ka). If kg =1 then 4 <, is compressed with respect {&,1)

and hence, sincéy <n is hereditary, the result follows by Theorem 3.2. Now suppose
ki > 2. Let A4 be an intersecting sub-family ofx <,. So 0 ¢ 4. By Theorem 5.3,
40] < | Lis ((1,2))| for all r € [n]. Thus, we haved| = 371|200 < 514 | L ((1,1)] =

| Le<n((1,))]. O

The above fact was also observed in [7], and it implies that the size of an intersecting
sub-family of £ <, is at mostwllm%n , i.e. the size of the stafx <x((1,1)) (indeed, the
ki + 1 families L <n((1,1)),..., Lk <n((1,k1)) @and L, . k),<n—1 partition Ly < and are
of the same size). In view of the above-mentioned fact thathas the strict star property
whenk; > 2 and(r, k1) # (n,2) (in particular, when X r <n-— 1), one can go on to show
that £ <, has the strict star propertyki > 2. If ky = 1 thenZ, <, may not have the strict
star property; indeed, K; =k, = ks =1 then{A e 4 <n: |AN{(1,1),(2,1),(3,1)}| > 2}
is a non-trivial intersecting sub-family that is as large as the largestgtaf((1,1)).

To the best of the author’s knowledge, no genevialtersection theorem fary <, is
known.
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6 Intersecting Families of Permutations and Partial Permuta-
tions

In [23, 24] the study of intersecting permutations was initiated. Deza and Frankl [24]
showed thalS[*;]]’n has the star property. So the size of an intersecting sub—fami%gfis

at most(n— 1)!. The argument of the proof of this result is the same translation argument,
given in the previous section, that yields Berge’s intersection result for labeled sets [6], and
it also gives us that fon < k, 5[71].]( has the star property (recall thSIF]’k =0if n>K).

Indeed, it gives us that for any intersecting sub-fandihyof Sp, . K|A| < [Sy, | = (kf—'n).
_1)!

The questlon of Whethe? , has the strict star property proved to be much more dif-
ficult to answer. Cameron and Ku [18] and Larose and Malvenuto [47] independently gave
an affirmative answer (other proofs are given in [35, 56]). Larose and Malvenuto [47] also
proved the following generalisation (another proof is found in [17]).

Theorem 6.1([47]). For 1 <n <Kk, 5[’;]].k has the strict star property.

Ku and Leader [46] investigated partial permutations. Using Katona’s cycle method
[40], they proved thas&k ) has the star property for alle [n— 1] (note thatSik ").n :5[’;]7n
if r =n), and they also showed thaf,, has the strict star property for alle [8,n— 3].
Naturally, they conjectured that/,, has the strict star property for the few remaining

values ofr too. This was settled by L| and Wang [48] using tools forged by Ku and Leader.
So the intersection results f(S[;]_n andS( ") (r € [n—1]) sum up as follows.

Theorem 6.2([18, 46, 47, 48]) For any re [n], SE*M) .

When it comes td-intersecting families of permutations, things are of course much
harder. Solving a long-standing conjecture of Deza and Frankl [24], Ellis, Friedgut and
Pilpel [26] recently managed to prove the following.

has the strict star property.

Theorem 6.3([26]). For any integer t> 1, there exists an integern(t) such that for any

n>ngp(t), .Sf;]].n has the strict t-star property.

Their remarkable proof is based on eigenvalue techniques and representation theory of
the symmetric group. The condition> ng(t) is necessary. Indeed, Iet:= {(i,i): i € [j]}
for any integerj > 1, and let

Goe = 4 TAE S [ANPR = (n+1)/2} if n—tis even;
k=) {AE Sk AP > (n+t—1)/2} if n—tis odd

Deza and Frankl [24] showed that whiee: n— sfor somes > 3 andn is sufficiently large
(depending ors), Gnnt is a largest-intersecting sub-family Q‘s , and is larger than the
t-stars. Brunk and Huczynska [17] extended this result as fo Iows

Theorem 6.4([17, 24]). For any integers p> 0 and gq> 2 with (p,q) # (0, 2), there exists
an integer g§(p,q) such that for any 2 n§(p, g), any larges{n— g)-intersecting sub-family
of Sﬁ]]’nw is a copy ofGn nypn—q-
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They also conjectured that for any< k andk > 8, the extremal structures are similar
to those in Theorem 2.2.

Conjecture 6.5([17]). Let1 <t <n<k and k> 8. Let p:=|(n—t)/2], and for any
integer i with0 <i < p, let.3, := {Ae S[’;,]_’k: Nalz¥1 2t+i}. Then:

(i) one of the familiesi, ..., 4 is a largest t-intersecting sub-family f, ,;

(ii) any largest t-intersecting sub—family.%’k is a copy of one of the familiegy, ..., 4p.

For the general case whehis any family, a conjecture fdrintersecting sub-families
of $%  similar to Conjecture 4.8 was suggested in [15].

Conjecture 6.6([15]). For any integer t> 1, there exists an integef k) such that for any
k> ks(t) and any familyf, S , has the strict t-star property.

Theorem 6.3 solves the special cage= {[n|} andk = n > kj(t). The author [15]
proved the following relaxation of the statement of the conjecture.

Theorem 6.7 ([15]). For any integers r and t withl <t < r, let kj(r,t) =
(t) (f@%ﬁﬁ)ﬁJrrJrl. For any k> kj(r,t) and any family# witha(F) <r, S; |, has
the strict t-star property.

This is an analogue of Theorem 4.9, and the general idea behind its proof is similar to
that behind the proofs of Theorems 3.7 (see Section 3) and 4.9.
By taking F = [n] andk > k§(n,t) in Theorem 6.7, we obtain the following.

Corollary 6.8. Letk> kj(n,t), where K(n,t) is as in Theorerg.7. ThenSf;Lk has the strict
t-star property.

Thus, wherk is sufficiently large, the size of mintersecting sub-family of , is at

k—1)!
most ((kf;))! .

The followingt-intersection result for partial permutations is another immediate conse-
quence of Theorem 6.7, obtained by taking kj(r,t) and F = (I").

Corollary 6.9. Let n> k{(r,t), where g(r,t) is as in Theoren®.7. ThenSE‘M) | has the

strict t-star property.

Thus, whem is sufficiently large, the size oftaintersecting sub-family of . is at

()

most (7 ) E;‘j%', This was also proved in [45].
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