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Abstract

A family A of sets is said to bet-intersectingif any two sets inA have at least
t common elements. A central problem in extremal set theory is to determine the
size or structure of a largestt-intersecting sub-family of a given familyF . We give a
survey of known results, conjectures and open problems for various important families
F , namely, power sets, levels of power sets, hereditary families, families of signed
sets, families of labeled sets, and families of permutations. We also provide some
extensions and consequences of known results.

1 Introduction

Unless otherwise stated, we shall use small letters such asx to denote elements of a set or
non-negative integers or functions, capital letters such asX to denote sets, and calligraphic
letters such asF to denotefamilies(i.e. sets whose elements are sets themselves). It is to
be assumed that arbitrary sets and families arefinite. We call a setA an r-element set, or
simply anr-set, if its size|A| is r (i.e. if it contains exactlyr elements). A family is said to
beuniform if all its sets are of the same size.

The set{1,2, . . .} of positive integers is denoted byN. Form,n∈N with m≤ n, the set
{i ∈N : m≤ i ≤ n} is denoted by[m,n], and ifm= 1 then we also write[n]. For a setX, the
power set{A: A⊆X} of X is denoted by 2X, and the uniform sub-family{Y⊆X : |Y|= r}
of 2X is denoted by

(X
r

)
.
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For a familyF of sets, we denote the union of all sets inF byU(F ) and we denote the
size of a largest set inF by α(F ). For an integerr ≥ 0, we denote the uniform sub-family
{F ∈ F : |F |= r} of F by F (r) (note thatF (r) =

(X
r

)
if F = 2X), and we callF (r) ther’th

level ofF . For a setS, we denote{F ∈ F : S⊆ F} by F (S). We may abbreviateF ({x})
to F (x). If x∈U(F ) then we callF (x) a star of F . More generally, ifT is a t-element
subset of a set inF , then we callF (T) a t-star ofF .
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A family A is said to beintersectingif A∩B 6= /0 for anyA,B∈ A . More generally,A
is said to bet-intersectingif |A∩B| ≥ t for anyA,B∈ A . So an intersecting family is a 1-
intersecting family. At-intersecting familyA is said to betrivial if |

T
A∈A A| ≥ t (i.e. there

are at leastt elements common to all the sets inA); otherwise,A is said to benon-trivial.
So at-star of a familyF is a trivial t-intersecting sub-family ofF that is not contained in
any other. If there exists at-setT such thatF (T) is a largestt-intersecting sub-family of
F (i.e. not-intersecting sub-family ofF has more sets thanF (T)), then we say thatF has
the t-star property at T, or we simply say thatF has thet-star property. If either F has
no t-intersecting sub-families (which is the case if and only ifα(F ) < t) or all the largest
t-intersecting sub-families ofF aret-stars, then we say thatF has thestrict t-star property.
We may abbreviate ‘1-star property’ to ‘star property’.

Extremal set theoryis the study of how small or how large a system of sets can be under
certain conditions. In this paper we are concerned with the following natural and central
problem in this field.

Problem: Given a familyF and an integer t≥ 1, determine the size or structure of a largest
t-intersecting sub-family ofF .

We provide a survey of results that answer this question for families that are of particular
importance, and we also point out open problems and conjectures. The survey papers [25]
and [32] cover a few of the results we mention here and also go into many variations of the
above problem; however, much progress has been made since their publication. Here we
cover many of the important results that have been established to date, restricting ourselves
to the problem stated above.

The most obvious families to consider are the power set 2[n] and the uniform sub-family([n]
r

)
, and in fact the problem for these families has been solved completely. However, there

are other important families on which much progress has been made, and there are others
that are still subject to much investigation. The families defined below are perhaps the ones
that have received most attention and that we will be concerned with.

Hereditary families: A family H is said to be ahereditary family(also called anideal or
a downset) if all the subsets of any set inH are inH . Clearly a family is hereditary if and
only if it is a union of power sets. Abaseof H is a set inH that is not a subset of any other
set inH . So a hereditary family is the union of power sets of its bases. An example of a
hereditary family is the family of independent sets of agraphor matroid.

Families of signed sets:Let X be anr-set{x1, . . . ,xr}. Let y1, . . . ,yr ∈ N. We call the
set{(x1,y1), . . . ,(xr ,yr)} a k-signed r-setif max{yi : i ∈ [r]} ≤ k. For an integerk≥ 2 we
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defineSX,k to be the family ofk-signedr-sets given by

SX,k := {{(x1,y1), . . . ,(xr ,yr)} : y1, . . . ,yr ∈ [k]}.

So a setA is a member ofSX,k if and only if it is a subset of the Cartesian productX× [k] :=
{(x,y) : x∈ X,y∈ [k]} satisfying|A∩ ({x}× [k])|= 1 for all x∈ X. We shall setS /0,k := /0.
With a slight abuse of notation, for a familyF we define

SF ,k :=
[

F∈F
SF,k.

Families of labeled sets:For k := (k1, . . . ,kn) with k1, . . . ,kn ∈ N andk1 ≤ ·· · ≤ kn, we
define the familyLk of labeled n-setsby

Lk := {{(1,y1), . . . ,(n,yn)} : yi ∈ [ki ] for eachi ∈ [n]}.

Note thatS[n],k = L(k1,...,kn) with k1 = · · ·= kn = k.
An equivalent formulation forLk is the Cartesian product[k1] × ·· · × [kn] :=

{(y1, . . . ,yn) : yi ∈ [ki ] for eachi ∈ [n]}, but it is more convenient to work withn-sets than
work with n-tuples (the alternative formulation demands that we change the setting of fam-
ilies of sets to one of sets ofn-tuples).

For anyr ∈ [n], we define

Lk,r :=
{
{(x1,yx1), . . . ,(xr ,yxr )} : {x1, . . . ,xr} ∈

(
[n]
r

)
, yxi ∈ [kxi ] for eachi ∈ [r]

}
,

and we setLk,0 = /0. Thus, for any 0≤ r ≤ n, Lk,r is the family ofr-element subsets of the
sets inLk , andLk,n = Lk . We also defineLk,≤r :=

Sr
i=0 Lk,i .

Families of permutations: For anr-setX := {x1, . . . ,xr}, we defineS ∗X,k to be the special
sub-family ofSX,k given by

S ∗X,k := {{(x1,y1), . . . ,(xr ,yr)} : y1, . . . ,yr aredistinctelements of[k]} .

Note thatS ∗X,k 6= /0 if and only if r ≤ k. With a slight abuse of notation, for a familyF we
defineS ∗F ,k to be the special sub-family ofSF ,k given by

S ∗F ,k :=
[

F∈F
S ∗F,k.

An r-partial permutation of a set Nis a pair(A, f ) whereA∈
(N

r

)
and f : A→ N is an

injection. An |N|-partial permutation ofN is simply called apermutation of N. Clearly,
the family of permutations of[n] can be re-formulated asS ∗[n],n, and the family ofr-partial
permutations of[n] can be re-formulated asS ∗([n]

r ),n
.

Let X be as above.S ∗X,k can be interpreted as the family of permutations of sets

in
([k]

r

)
: consider the bijectionβ : S ∗X,k → {(A, f ) : A ∈

([k]
r

)
, f : A→ A is a bijection} de-

fined byβ({(x1,a1), . . . , (xr ,ar)}) := ({a1, . . . ,ar}, f ) where, forb1 < · · · < br such that
{b1, . . . ,br} = {a1, . . . ,ar}, f (bi) := ai for i = 1, . . . , r. S ∗X,k can also be interpreted as the

sub-familyX := {(A, f ) : A∈
([k]

r

)
, f : A→ [r] is a bijection} of the family ofr-partial per-

mutations of[k]: consider an obvious bijection fromS ∗X,k to S ∗([k]
r ),r

and another one from

S ∗([k]
r ),r

to X .
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2 Intersecting Sub-Families of
([n]

r

)
and 2[n]

In this section we taket, r andn to be positive integers such thatt ≤ r ≤ n.
The study of intersecting families took off with the publication of [28], which features

the following classical result, known as the Erdős-Ko-Rado (EKR) Theorem.

Theorem 2.1(EKR Theorem [28]). If r ≤ n/2 andA is an intersecting sub-family of
([n]

r

)
,

then|A | ≤
(n−1

r−1

)
.

This means that forr ≤ n/2,
([n]

r

)
has the star property, because the bound

(n−1
r−1

)
is the

size of any star of
([n]

r

)
. Note that ifr > n/2, then any twor-element subsets of[n] must

intersect, and hence
([n]

r

)
is an intersecting family (also note it is a non-trivial one, so

([n]
r

)
does not have the star property in this case).

In order to prove Theorem 2.1, Erdős, Ko and Rado [28] introduced a method known
ascompressionor shifting; see [32] for a survey on the uses of this powerful technique in
extremal set theory. There are various proofs of Theorem 2.1, two of which are particularly
short and beautiful: Katona’s proof [40], which featured an elegant argument known as
thecycle method, and Daykin’s proof [22] using another fundamental result known as the
Kruskal-Katona Theorem [41, 44]. Hilton and Milner [37] proved that forr ≤ n/2, the

family Nn,r :=
{

A∈
([n]

r

)
: 1∈ A, A∩ [2, r +1] 6= /0

}
∪ {[2, r + 1]} is a largest non-trivial

intersecting sub-family of
([n]

r

)
, and since the size ofNn,r is

(n−1
r−1

)
−

(n−r−1
r−1

)
+1, it follows

that if r < n/2, then the stars of
([n]

r

)
are the largest intersecting sub-families of

([n]
r

)
, i.e.

([n]
r

)
has the strict star property. Note that ifr = n/2, then any sub-familyA of

([n]
r

)
satisfying

|A ∩{A, [2r]\A}| = 1 for all A∈
([n]

r

)
is an intersecting sub-family of

([n]
r

)
of size 1

2

(n
r

)
=

1
2

(2r
r

)
=

(2r−1
r−1

)
, and hence one of maximum size (an example of such a familyA is N2r,r ,

so
([n]

r

)
does not have the strict star property ifr = n/2).

Also in [28], Erd̋os, Ko and Rado initiated the study oft-intersecting families. They
proved that fort < r, there exists an integern0(r, t) such that for alln ≥ n0(r, t), the
largestt-intersecting sub-families of

([n]
r

)
are thet-stars (which are of size

(n−t
r−t

)
). For

t ≥ 15, Frankl [31] showed that the smallest suchn0(r, t) is (r − t + 1)(t + 1) + 1 and
that if n = (r − t + 1)(t + 1), then

([n]
r

)
still has thet-star property but not the strictt-

star property. Subsequently, using algebraic means, Wilson [58] proved that
([n]

r

)
has the

t-star property for anyt andn ≥ (r − t + 1)(t + 1). Frankl [31] conjectured that among
the largestt-intersecting sub-families of

([n]
r

)
there is always at least one of the fami-

lies
{

A∈
([n]

r

)
: |A∩ [t +2i]| ≥ t + i

}
, i = 0,1, . . . , r − t. A remarkable proof of this long-

standing conjecture together with a complete characterisation of the extremal structures was
finally obtained by Ahlswede and Khachatrian [1] by means of thecompressiontechnique
introduced in [28].

Theorem 2.2([1]). Let A be a largest t-intersecting sub-family of
([n]

r

)
.

(i) If (r − t + 1)(2+ t−1
i+1) < n < (r − t + 1)(2+ t−1

i ) for some i∈ {0} ∪N - where, by

convention,(t−1)/i = ∞ if i = 0 - thenA = {A∈
([n]

r

)
: |A∩X| ≥ t + i} for some X∈

( [n]
t+2i

)
.

(ii) If t ≥ 2 and(r−t +1)(2+ t−1
i+1) = n for some i∈ {0}∪N, thenA = {A∈

([n]
r

)
: |A∩X| ≥

t + j} for some j∈ {i, i +1} and X∈
( [n]

t+2 j

)
.
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It is worth mentioning that in [2] Ahlswede and Khachatrian went on to determine the
largest non-trivialt-intersecting sub-families of

([n]
r

)
.

Erdős, Ko and Rado [28] pointed out the simple fact that 2[n] has the star property
(indeed, for any setA in an intersecting sub-familyA of 2[n], the complement[n]\A cannot
be in A , and hence the size ofA is at most1

2|2
[n]| = 2n−1, i.e. the size of a star of 2[n]);

note that there are many non-trivial intersecting sub-families of 2[n] of maximum size 2n−1

(such as{A⊆ [n] : |A∩ [3]| ≥ 2}), so 2[n] does not have the strict star property. They also
asked what the size of a largestt-intersecting sub-family of 2[n] is for t ≥ 2. The answer in
a complete form was given by Katona [42].

Theorem 2.3([42]). Let t≥ 2, and letA be a largest t-intersecting sub-family of2[n].
(i) If n+ t = 2l thenA = {A⊆ [n] : |A| ≥ l}.
(ii) If n+ t = 2l +1 thenA = {A⊆ [n] : |A∩X| ≥ l} for some X∈

( [n]
n−1

)
.

It is interesting that forn > t ≥ 2, 2[n] does not have thet-star property.
Many other beautiful results were inspired by the seminal paper [28], as are the results

we present in the subsequent sections.

3 Intersecting Sub-Families of Hereditary Families

Recall that 2[n] has the star property. Also recall that the power set of a setX is the simplest
example of a hereditary family since 2X is a hereditary family with only one base (X). An
outstanding open problem in extremal set theory is the following conjecture (see [14] for a
more general conjecture).

Conjecture 3.1([19]). If H is a hereditary family, thenH has the star property.

Chvátal [20] verified this conjecture for the case whenH is left-compressed(i.e. H ⊆
2[n] and(H\{ j})∪{i} ∈ H whenever 1≤ i < j ∈ H ∈ H and i /∈ H). Snevily [54] took
this result (together with results in [53, 55]) a significant step forward by verifying Con-
jecture 3.1 for the case whenH is compressed with respect to an element x of U(H )
(i.e. (H\{h})∪{x} ∈ H wheneverh∈ H ∈ H andx /∈ H).

Theorem 3.2([54]). If a hereditary familyH is compressed with respect to an element x
of U(H ), thenH has the star property at{x}.

A generalisation is proved in [14] by means of an alternative self-contained argument.
Snevily’s proof of Theorem 3.2 makes use of the following interesting result of Berge [5]
(a proof of which is also provided in [4, Chapter 6]).

Theorem 3.3([5]). If H is a hereditary family, thenH is a disjoint union of pairs of disjoint
sets, together with/0 if |H | is odd.

This result was also motivated by Conjecture 3.1 as it has the following immediate
consequence.

Corollary 3.4. If A is an intersecting sub-family of a hereditary familyH , then

|A | ≤ 1
2
|H |.
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Proof. For any pair of disjoint sets, at most only one set can be in an intersecting familyA .
By Theorem 3.3, the result follows.

A special case of Theorem 3.2 is a result of Schönheim [53] which says that Conjec-
ture 3.1 is true if the bases ofH have a common element, and this follows immediately
from Corollary 3.4 and the following fact.

Proposition 3.5 ([53]). If the bases of a hereditary familyH have a common element x,
then

|H (x)|= 1
2
|H |.

Proof. PartitionH into A := H (x) andB := {B∈ H : x /∈ B}. If A∈ A thenA\{x} ∈ B;
so |A | ≤ |B|. If B ∈ B thenB⊆C for some baseC of H , and henceB∪{x} ∈ A since
x∈C; so|B| ≤ |A |. Thus|A |= |B|= 1

2|H |.

Many other results and problems have been inspired by Conjecture 3.1 or are related to
it; see [21, 51, 57].

Conjecture 3.1 cannot be generalised to thet-intersection case. Indeed, ifn > t ≥ 2 and
H = 2[n], then by Theorem 2.3,H does not have thet-star property.

We now turn our attention to uniform intersecting sub-families of hereditary families,
or rather intersecting sub-families of levels of hereditary families. For any hereditary family
H , let µ(H ) denote the size of a smallest base ofH .

A graph G is a pair(V,E) with E ⊆
(V

2

)
, and a setI ⊆V is said to be anindependent

set of Gif {i, j} /∈ E for any i, j ∈ I . Let JG denote the family of all independent sets of a
graphG. ClearlyJG is a hereditary family. Holroyd and Talbot [39] made a nice conjecture
which claims that ifG is a graph andµ(JG)≥ 2r, thenJG

(r) has the star property, andJG
(r)

has the strict star property ifµ(JG) > 2r. In [11] the author conjectured that this is true for
any hereditary family and that in general the following holds.

Conjecture 3.6([11]). If 1≤ t ≤ r, /0 6= S⊆ [t, r] andH is a hereditary family with µ(H )≥
(t +1)(r− t +1), then:
(i)
S

s∈SH (s) has the t-star property;
(ii)
S

s∈SH (s) has the strict t-star property if either µ(H ) > (t +1)(r− t +1) or S 6= {r}.

Note that Theorem 2.2 solves the special case whenH = 2[n] and tells us that we cannot
improve the conditionµ(H )≥ (t +1)(r−t +1). The author [11] proved that this conjecture
is true ifµ(H ) is sufficiently large.

Theorem 3.7([11]). Conjecture3.6 is true if µ(H )≥ (r− t)
(3r−2t−1

t+1

)
+ r.

The motivation behind establishing this result for any union of levels of a hereditary
family H within a certain range is that this general form cannot be immediately deduced
from the result for just one level ofH (i.e. the caseS= {r} in Conjecture 3.6). As demon-
strated in Example 1 in [11], the reason is simply that ifT is a t-set such thatH (s)(T)
(s∈ [t, r]) is a largestt-star of the levelH (s), then forp 6= s (p∈ [t, r]), H (p)(T) not only
may not be a largestt-star of the levelH (p) but may be smaller than some non-trivialt-
intersecting sub-family ofH (p). This is in fact one of the central difficulties arising from
any EKR-type problem for hereditary families. In the proof of Theorem 3.7, this obstacle
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was overcome by showing that for any non-trivialt-intersecting sub-familyA of the union,
we can construct at-star that is larger thanA (and that is not necessarily a largestt-star).
Many other proofs of EKR-type results are based on determining at least one largestt-star;
as in the case of each theorem mentioned in Section 2, the setting is often symmetrical to
the extent that allt-stars are of the same size and of a known size.

An interesting immediate consequence of Theorem 3.7 is that the union of the firstr ≥ t
levels of a hereditary familyH has the strictt-star property ifµ(H ) is sufficiently larger
thanr.

Corollary 3.8 ([11]). If 1 ≤ t ≤ r and H is a hereditary family with µ(H ) ≥ (r −
t)

(3r−2t−1
t+1

)
+ r, then

Sr
s=0 H (s) has the strict t-star property.

Proof. Let A be at-intersecting sub-family of
Sr

s=0 H (s). Then no set inA is of size less
thant, soA ⊆

S
s∈SH (s) with S= [t, r]. The result follows by Theorem 3.7.

This means that for the special caset = 1, we have the following.

Corollary 3.9 ([11]). Conjecture 3.1 is true ifH =
Sr

s=0 J (s) for some r∈ N and some
hereditary familyJ with µ(J )≥ 3

2(r−1)2(3r−4)+ r.

The following extension of Theorem 2.2 forn≥ (t + 1)(r − t + 1) was also proved in
[11].

Theorem 3.10([11]). Conjecture 3.6 is true ifH is left-compressed.

4 Intersecting Families of Signed Sets

The ‘signed sets’ terminology was introduced in [10] for a setting that can be re-formulated
asS([n]

r ),k, and the general formulationSF ,k was introduced in [13], the theme of which is

the following conjecture.

Conjecture 4.1([13]). For any familyF and any k≥ 2,
(i) SF ,k has the star property;
(ii) SF ,k does not have the strict star property only if k= 2 and there exist at least three
elements u1,u2,u3 of U(F ) such thatF (u1) = F (u2) = F (u3) andSF ,2((u1,1)) is a largest
star ofSF ,2.

The converse of (ii) is true, and the proof is simply that{A ∈ SF ,2 : |A ∩
{(u1,1),(u2,1),(u3,1)}| ≥ 2} is a non-trivial intersecting sub-family ofSF ,2 that is as large
asSF ,2((u1,1)).

In [14] a similarity between the intersection problem for hereditary families and the one
presented above is demonstrated, and in fact a conjecture generalising both Conjecture 3.1
and the above conjecture is suggested.

Recall that a familyF is said to be compressed with respect to an elementx of U(F )
if (F\{u})∪{x} ∈ F wheneveru∈ F ∈ F andx /∈ F . The following is the main result in
the paper featuring the above conjecture.
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Theorem 4.2([13]). Conjecture4.1 is true if F is compressed with respect to an element
x of U(F ), andSF ,k has the star property at{(x,1)}.

Since
([n]

r

)
is compressed with respect to any element of[n], the above result has the

following immediate consequence, which is a well-known result that was first stated by
Meyer [50] and proved in different ways by Deza and Frankl [25], Bollobás and Leader
[10], Engel [27] and Erd̋os et al. [29].

Theorem 4.3([10, 25, 27, 29]). Let r∈ [n] and let k≥ 2. Then:
(i) S([n]

r ),k has the star property;

(ii) if (r,k) 6= (n,2) thenS([n]
r ),k has the strict star property.

Thus the size of an intersecting sub-family ofS([n]
r ),k is at most

(n−1
r−1

)
kr−1, i.e. the size

of any star ofS([n]
r ),k. Berge [6] and Livingston [49] had proved (i) and (ii), respectively, for

the special caseF = {[n]} (other proofs are found in [36, 52]).
In [13] Conjecture 4.1 is also verified for the case whenF is uniform and has the star

property; Holroyd and Talbot [39] had essentially proved part (i) of the conjecture for such
a family F in a graph-theoretical context.

The t-intersection problem for sub-families ofS[n],k has also been solved. Frankl and
Füredi were the first to investigate it. In [33] they conjectured that among the largestt-
intersecting sub-families ofS[n],k there is always one of the familiesAi := {A∈ S[n],k : |A∩
([t + 2i]× [1])| ≥ t + i}, i = 0,1,2, . . . , and they proved that ifk≥ t + 1≥ 16, thenA0 is
extremal and henceS[n],k has the star property. The conjecture was proved independently
by Ahlswede and Khachatrian [3] and Frankl and Tokushige [34] (Kleitman [43] had long
established this result fork = 2). As in Theorem 2.2, Ahlswede and Khachatrian [3] also
determined the extremal structures.

Theorem 4.4([3]). Let1≤ t ≤ n and k≥ 2. Let m be the largest integer such that t+2m<
min{n+1, t +2 t−1

k−2} (by convention,t−1
k−2 = ∞ if k = 2).

(i) If (k, t) 6= (2,1) and t−1
k−2 is not integral, thenA is a largest t-intersecting sub-family of

S[n],k if and only if

A = {A∈ S[n],k : |A∩X| ≥ t +m}

for some X∈ SY,k with Y∈
( [n]

t+2m

)
.

(ii) If (k, t) 6= (2,1) and t−1
k−2 is integral, thenA is a largest t-intersecting sub-family ofS[n],k

if and only if

A = {A∈ S[n],k : |A∩X| ≥ t + j}

for some j∈ {m,m+1} and some X∈ SY,k with Y∈
( [n]

t+2 j

)
.

(iii) If (k, t) = (2,1), thenA is a largest t-intersecting sub-family ofS[n],k if and only if for
any y1, . . . ,yn ∈ [2], exactly one of{(1,y1), . . . ,(n,yn)} and{(1,3− y1), . . . ,(n,3− yn)} is
in A .
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Note that (iii) follows trivially from the fact that for any setA := {(1,y1), . . . ,(n,yn)} in
S[n],2, {(1,3−y1), . . . ,(n,3−yn)} is the only set inS[n],2 that does not intersectA. The rest
of the theorem is highly non-trivial!

What led to Theorem 4.4 was the accomplishment of Theorem 2.2. The following is an
immediate consequence of Theorem 4.4.

Corollary 4.5. Let1≤ t ≤ n and k≥ 2. Then:
(i) S[n],k has the t-star property if and only if k≥ t +1;
(ii) S[n],k has the strict t-star property if and only if k≥ t +2.

We point out that Bey and Engel [9] extended Theorem 4.4 by determining the size of
a largest non-trivialt-intersecting sub-family ofS[n],k (see Examples 10, 11 and Lemma 18
in [9]).

Note thatS[n],k = S([n]
r ),k with r = n. For the caset ≤ r < n, Bey [8] proved the following.

Theorem 4.6([8]). Let 1≤ t ≤ r < n. S([n]
r ),k has the t-star property if and only if n≥

(r−t+k)(t+1)
k .

Thus, if t ≤ r < n andn≥ (r−t+k)(t+1)
k , then the size of at-intersecting sub-family of

S([n]
r ),k is at most

(n−t
r−t

)
kr−t , i.e. the size of anyt-star ofS([n]

r ),k. From Corollary 4.5 and

Theorem 4.6 we immediately obtain the following.

Corollary 4.7. For any1≤ t ≤ r ≤ n and k≥ t +1, S([n]
r ),k has the t-star property.

To the best of the author’s knowledge, no completet-intersection theorem forS([n]
r ),k

has been obtained.
For the case whenF is any family, the author [15] suggested the following general

conjecture.

Conjecture 4.8([15]). For any integer t≥ 1, there exists an integer k0(t) such that for any
k≥ k0(t) and any familyF , SF ,k has the t-star property.

In view of Corollary 4.7, we conjecture that the smallestk0(t) is t +1. In [15] it is actu-
ally conjectured that for some integerk′0(t), SF ,k has the strictt-star property for anyF , and
hence, in view of Corollary 4.5(ii), we conjecture that the smallestk′0(t) is t +2. Note that
Conjecture 4.1 claims that the smallest values ofk0(1) andk′0(1) are 2 and 3, respectively.
The author [15] proved the following relaxation of the statement of Conjecture 4.8.

Theorem 4.9([15]). For any integers r and t with1≤ t < r, let k0(r, t) :=
(r

t

)( r
t+1

)
. For

any k≥ k0(r, t) and any familyF with α(F )≤ r, SF ,k has the strict t-star property.

The general idea behind the proof of this result is similar to that behind the proof of
Theorem 3.7, described in Section 3.

Corollary 4.10. Conjecture4.1 is true if k≥ α(F )
(α(F )

2

)
.
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5 Intersecting Families of Labeled Sets

Consider the familyLk , k = (k1, . . . ,kn), of labeled n-sets. If k1 = 1 then all the sets inLk

contain the point(1,1) and henceLk has the strict star property. Berge [6] proved that for
anyk, Lk has the star property, and hence the size of an intersecting sub-family ofLk is at
most the size1

k1
|Lk |= k2k3 . . .kn of the starLk((1,1)), as this is clearly a largest star (since

k1 ≤ ·· · ≤ kn). We shall reproduce the remarkably short proof of this result.
Let mod∗ be the usual modulo operation with the exception that for any integera,

a mod∗ a is a instead of 0. For any integerq, let θq
k : Lk → Lk be thetranslation oper-

ationdefined by

θq
k(A) := {(a,(b+q) mod∗ ka) : (a,b) ∈ A},

and defineΘq
k : 2Lk → 2Lk by

Θq
k(F ) := {θq

k(A) : A∈ F }.

Let A be an intersecting sub-family ofLk . For anyA∈A andq∈ [k1−1], we haveθq
k(A)∩

A= /0 and henceθq
k(A) /∈A . ThereforeA ,Θ1

k(A), . . . ,Θk1−1
k (A) arek1 disjoint sub-families

of Lk . Sok1|A | ≤ |Lk | and hence|A | ≤ 1
k1
|Lk |.

Livingston [49] proved that for 3≤ k1 = · · ·= kn, Lk has the strict star property. Using
the shifting technique (see [32]) in an inductive argument, the author [12] extended Liv-
ingston’s result for the case when 3≤ k1 ≤ ·· · ≤ kn. The above results sum up as follows.

Theorem 5.1([6, 12, 49]). Let1≤ k1 ≤ ·· · ≤ kn and letk := (k1, . . . ,kn). Then:
(i) Lk has the star property at{(1,1)};
(ii) if k1 6= 2 thenLk has the strict star property.

If k1 = 2 thenLk may not have the strict star property; indeed, ifk1 = k2 = k3 then
{A∈Lk : |A∩{(1,1),(2,1),(3,1)| ≥ 2} is a non-trivial intersecting sub-family ofLk whose
size is 1

k1
|Lk | (i.e. the maximum).

Recall thatS[n],k = L(k1,...,kn) with k1 = · · · = kn = k. The same argument used in [12]
to extend Livingston’s result [49] gives the following extension of part (the sufficiency
conditions) of Corollary 4.5 and generalisation of Theorem 5.1 withk1 ≥ 2.

Theorem 5.2. Let2≤ t +1≤ k1 ≤ ·· · ≤ kn and letk := (k1, . . . ,kn). Then:
(i) Lk has the t-star property at{(1,1), . . . ,(t,1)};
(ii) if k1 ≥ t +2 thenLk has the strict t-star property.

As we can see from Theorem 4.4 and Corollary 4.5,Lk may not have thet-star property
when 2≤ k1 ≤ t. Recall that for the casek1 = · · ·= kn, the extremal structures are given in
Theorem 4.4, and they are all non-trivial when 2≤ k1 ≤ t.

The intersection problem for the familiesLk,r , r = 1, . . . ,n, has also been treated to a
significant extent. Note thatS([n]

r ),k = L(k1,...,kn),r with k1 = · · ·= kn = k. Using the shifting

technique (see [32]) in an inductive argument, Holroyd, Spencer and Talbot [38] extended
Theorem 4.3(i) as follows.

Theorem 5.3([38]). Let 2≤ k1 ≤ ·· · ≤ kn and letk := (k1, . . . ,kn). Then for any r∈ [n],
Lk,r has the star property at{(1,1)}.
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The proof of their result can be easily extended to obtain thatLk,r has the strict star
property if (r,k1) 6= (n,2) (see, for example, the proof of [12, Theorem 1.4]). The case
k1 = 1 proved to be harder, and Bey [7] solved it by applying the idea ofgenerating sets
introduced in [1].

Theorem 5.4 ([7]). Let 1 = k1 = · · · = km < km+1 ≤ ·· · ≤ kn and let k := (k1, . . . ,kn).
Let p := b(m+ 1)/2c, and for each i∈ [p], let Ai := {A ∈ Lk,r : (1,1) ∈ A, i ≤ |A∩
{(1,1), . . . ,(m,1)}| ≤ m− i}∪{A∈ Lk,r : |A∩{(1,1), . . . ,(m,1)}| ≥ m− i +1}. Then one
of the familiesA1, . . . ,Ap is a largest intersecting sub-family ofLk,r .

Bey [7] also showed that whenr ≤ n/2 in the above theorem,Lk,r has the star property
at (1,1) (this is also proved in [38], and in [16] it is shown thatLk,r has the strict star
property ifr < n/2).

For the case whenk1 can be any positive integer butn is sufficiently large, Theorem 3.7
gives us the followingt-intersection result.

Theorem 5.5. Let 1≤ t ≤ r and let n≥ (r− t)
(3r−2t−1

t+1

)
+ r. Let 1≤ k1 ≤ ·· · ≤ kn and let

k := (k1, . . . ,kn). Then:
(i) Lk,r has the t-star property at{(1,1), . . . ,(t,1)}.
(ii) Lk,r has the strict t-star property.

Proof. Let H := Lk,≤n. Then clearlyH is a hereditary family withµ(H ) = n. Thus,
by Theorem 3.7 (withS= {r}), H (r) has the strictt-star property. Part (ii) follows since
H (r) = Lk,r . This in turn proves (i) since the familyLk,r(T) with T := {(1,1), . . . ,(t,1)} is
clearly a largestt-star ofLk,r .

We mention that Erd̋os, Seress, and Székely [30] determined non-trivialt-intersecting
sub-families ofLk,r of maximum size for the case whenn is sufficiently large.

Finally, for the familyLk,≤n of all labeled sets defined on then-tuple k, we have the
following immediate consequence of Theorems 3.2 and 5.3.

Theorem 5.6. For any1≤ k1 ≤ ·· · ≤ kn, L(k1,...,kn),≤n has the star property at{(1,1)}.

Proof. Let k := (k1, . . . ,kn). If k1 = 1 thenLk,≤n is compressed with respect to(1,1)
and hence, sinceLk,≤n is hereditary, the result follows by Theorem 3.2. Now suppose
k1 ≥ 2. Let A be an intersecting sub-family ofLk,≤n. So /0 /∈ A . By Theorem 5.3,
|A(r)| ≤ |Lk,r((1,1))| for all r ∈ [n]. Thus, we have|A |= ∑n

r=1 |A(r)| ≤∑n
r=1 |Lk,r((1,1))|=

|Lk,≤n((1,1))|.

The above fact was also observed in [7], and it implies that the size of an intersecting
sub-family ofLk,≤n is at most 1

k+1|Lk,≤n|, i.e. the size of the starLk,≤n((1,1)) (indeed, the
k1 + 1 familiesLk,≤n((1,1)), . . . ,Lk,≤n((1,k1)) andL(k2,...,kn),≤n−1 partition Lk,≤n and are
of the same size). In view of the above-mentioned fact thatLk,r has the strict star property
whenk1 ≥ 2 and(r,k1) 6= (n,2) (in particular, when 1≤ r ≤ n−1), one can go on to show
thatLk,≤n has the strict star property ifk1 ≥ 2. If k1 = 1 thenLk,≤n may not have the strict
star property; indeed, ifk1 = k2 = k3 = 1 then{A∈ Lk,≤n : |A∩{(1,1),(2,1),(3,1)}| ≥ 2}
is a non-trivial intersecting sub-family that is as large as the largest starLk,≤n((1,1)).

To the best of the author’s knowledge, no generalt-intersection theorem forLk,≤n is
known.
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6 Intersecting Families of Permutations and Partial Permuta-
tions

In [23, 24] the study of intersecting permutations was initiated. Deza and Frankl [24]
showed thatS ∗[n],n has the star property. So the size of an intersecting sub-family ofS ∗[n],n is
at most(n−1)!. The argument of the proof of this result is the same translation argument,
given in the previous section, that yields Berge’s intersection result for labeled sets [6], and
it also gives us that forn≤ k, S ∗[n],k has the star property (recall thatS ∗[n],k = /0 if n > k).

Indeed, it gives us that for any intersecting sub-familyA of S ∗[n],k, k|A | ≤ |S ∗[n],k| =
k!

(k−n)!

and hence|A | ≤ (k−1)!
(k−n)! .

The question of whetherS ∗[n],n has the strict star property proved to be much more dif-
ficult to answer. Cameron and Ku [18] and Larose and Malvenuto [47] independently gave
an affirmative answer (other proofs are given in [35, 56]). Larose and Malvenuto [47] also
proved the following generalisation (another proof is found in [17]).

Theorem 6.1([47]). For 1≤ n≤ k, S ∗[n],k has the strict star property.

Ku and Leader [46] investigated partial permutations. Using Katona’s cycle method
[40], they proved thatS ∗([n]

r ),n
has the star property for allr ∈ [n−1] (note thatS ∗([n]

r ),n
= S ∗[n],n

if r = n), and they also showed thatS ∗([n]
r ),n

has the strict star property for allr ∈ [8,n−3].

Naturally, they conjectured thatS ∗([n]
r ),n

has the strict star property for the few remaining

values ofr too. This was settled by Li and Wang [48] using tools forged by Ku and Leader.
So the intersection results forS ∗[n],n andS ∗([n]

r ),n
(r ∈ [n−1]) sum up as follows.

Theorem 6.2([18, 46, 47, 48]). For any r∈ [n], S ∗([n]
r ),n

has the strict star property.

When it comes tot-intersecting families of permutations, things are of course much
harder. Solving a long-standing conjecture of Deza and Frankl [24], Ellis, Friedgut and
Pilpel [26] recently managed to prove the following.

Theorem 6.3([26]). For any integer t≥ 1, there exists an integer n0(t) such that for any
n≥ n0(t), S ∗[n],n has the strict t-star property.

Their remarkable proof is based on eigenvalue techniques and representation theory of
the symmetric group. The conditionn≥ n0(t) is necessary. Indeed, letPj := {(i, i) : i ∈ [ j]}
for any integerj ≥ 1, and let

Gn,k,t :=
{
{A∈ S[n],k : |A∩Pn| ≥ (n+ t)/2} if n− t is even;
{A∈ S[n],k : |A∩Pn−1| ≥ (n+ t−1)/2} if n− t is odd.

Deza and Frankl [24] showed that whent = n−s for somes≥ 3 andn is sufficiently large
(depending ons), Gn,n,t is a largestt-intersecting sub-family ofS ∗[n],n and is larger than the
t-stars. Brunk and Huczynska [17] extended this result as follows.

Theorem 6.4([17, 24]). For any integers p≥ 0 and q≥ 2 with (p,q) 6= (0,2), there exists
an integer n∗0(p,q) such that for any n≥ n∗0(p,q), any largest(n−q)-intersecting sub-family
of S ∗[n],n+p is a copy ofGn,n+p,n−q.
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They also conjectured that for anyn≤ k andk≥ 8, the extremal structures are similar
to those in Theorem 2.2.

Conjecture 6.5 ([17]). Let 1≤ t ≤ n≤ k and k≥ 8. Let p:= b(n− t)/2c, and for any

integer i with0≤ i ≤ p, letAi :=
{

A∈ S ∗[n],k : |A∩Pt+2i | ≥ t + i
}

. Then:

(i) one of the familiesA0, . . . ,Ap is a largest t-intersecting sub-family ofS ∗[n],k;
(ii) any largest t-intersecting sub-family ofS ∗[n],k is a copy of one of the familiesA0, . . . ,Ap.

For the general case whenF is any family, a conjecture fort-intersecting sub-families
of S ∗F ,k similar to Conjecture 4.8 was suggested in [15].

Conjecture 6.6([15]). For any integer t≥ 1, there exists an integer k∗0(t) such that for any
k≥ k∗0(t) and any familyF , S ∗F ,k has the strict t-star property.

Theorem 6.3 solves the special caseF = {[n]} and k = n ≥ k∗0(t). The author [15]
proved the following relaxation of the statement of the conjecture.

Theorem 6.7 ([15]). For any integers r and t with1 ≤ t < r, let k∗0(r, t) :=(r
t

)(3r−2t−1
b 3r−2t−1

2 c
)

r!
(r−t−1)! + r +1. For any k≥ k∗0(r, t) and any familyF with α(F )≤ r, S ∗F ,k has

the strict t-star property.

This is an analogue of Theorem 4.9, and the general idea behind its proof is similar to
that behind the proofs of Theorems 3.7 (see Section 3) and 4.9.

By takingF = [n] andk≥ k∗0(n, t) in Theorem 6.7, we obtain the following.

Corollary 6.8. Let k≥ k∗0(n, t), where k∗0(n, t) is as in Theorem6.7. ThenS ∗[n],k has the strict
t-star property.

Thus, whenk is sufficiently large, the size of at-intersecting sub-family ofS ∗[n],k is at

most (k−t)!
(k−n)! .

The followingt-intersection result for partial permutations is another immediate conse-
quence of Theorem 6.7, obtained by takingn≥ k∗0(r, t) andF =

([n]
r

)
.

Corollary 6.9. Let n≥ k∗0(r, t), where k∗0(r, t) is as in Theorem6.7. ThenS ∗([n]
r ),n

has the

strict t-star property.

Thus, whenn is sufficiently large, the size of at-intersecting sub-family ofS ∗([n]
r ),n

is at

most
(n−t

r−t

) (n−t)!
(n−r)! . This was also proved in [45].
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