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Abstract

Families A1, ...,Ak of sets are said to be cross-intersecting if Ai ∩ Aj 6= ∅ for any

Ai ∈ Ai and Aj ∈ Aj , i 6= j. A nice result of Hilton that generalises the Erd®s-

Ko-Rado (EKR) Theorem says that if r ≤ n/2 and A1, ..., Ak are cross-intersecting

sub-families of
(
[n]
r

)
, then

k∑
i=1

|Ai| ≤
{ (

n
r

)
if k ≤ n

r ;
k
(
n−1
r−1

)
if k ≥ n

r ,

and the bounds are best possible. We give a short proof of a slightly stronger ver-

sion. For this purpose, we extend Daykin's proof of the EKR Theorem to obtain the

following improvement of the EKR Theorem: if r ≤ n/2, A ⊆
(
[n]
r

)
, A∗ := {A∗ ∈

A : A∗ ∩A 6= ∅ for all A ∈ A} and A′ := A\A∗, then

|A∗|+ r

n
|A′| ≤

(
n− 1
r − 1

)
.

1 Introduction

A family A of sets is said to be intersecting if A ∩ B 6= ∅ for any A, B ∈ A. Families
A1, ...,Ak are said to be cross-intersecting if Ai ∩ Aj 6= ∅ for any Ai ∈ Ai and Aj ∈ Aj,

i 6= j. For r, m ∈ [n] := {1, 2, ..., n}, let Sn,r,m be the star family {A ∈
(
[n]
r

)
: m ∈ A}, where(

[n]
r

)
= {A ⊂ [n] : |A| = r}.

The following is a classical result in the literature.
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Theorem 1.1 (Erd®s, Ko, Rado [3], Hilton, Milner [5]) If r ≤ n/2 and A is an in-
tersecting sub-family of

(
[n]
r

)
, then

|A| ≤
(

n− 1

r − 1

)
,

and if n > 2r, then equality holds i� A = Sn,r,m for some m ∈ [n].

The bound was proved by Erd®s, Ko and Rado, and the extremal case was established
later by Hilton and Milner as part of a more general result. Two alternative short and
beautiful proofs of the Erd®s-Ko-Rado (EKR) Theorem were obtained by Katona [6] and
Daykin [2]. In his proof, Katona introduced an elegant technique called the cycle method.
Daykin's proof is based on a fundamental result known as the Kruskal-Katona Theorem
[7, 8] (stated in the next section).

The KK Theorem was also used by Hilton in the proof of the following generalisation
of the EKR Theorem.

Theorem 1.2 (Hilton [4]) Let r ≤ n/2 and k ≥ 2. Let A1, ...,Ak be cross-intersecting
sub-families of

(
[n]
r

)
, where A1 6= ∅. Then

k∑
i=1

|Ai| ≤
{ (

n
r

)
if k ≤ n

r
;

k
(

n−1
r−1

)
if k ≥ n

r
.

If equality holds, then
(i) A1 =

(
[n]
r

)
and Ai = ∅, i = 2, ..., k, if k < n/r;

(ii) |Ai| =
(

n−1
r−1

)
, i = 1, ..., k, if k > n/r;

(iii) A1, ..., Ak are as in (i) or (ii) if k = n/r > 2.

By setting k > n/r and A1 = ... = Ak in the above result, we clearly obtain the EKR
Theorem.

For A ⊆ 2[n] := {A : A ⊆ [n]}, let A := {[n]\A : A ∈ A}, A∗ := {A∗ ∈ A : A∗ ∩ A 6=
∅ for all A ∈ A} and A′ := A\A∗. Let A(r) := {A ∈ A : |A| = r} and ∂rA := {B : B ⊂
A for some A ∈ A, |B| = r}.

We will show that Theorem 1.2 follows from the next result, the proof of which will be
a slight extension of Daykin's proof of the EKR Theorem.

Theorem 1.3 Let r ≤ n/2 and s ≤ n − r. Let A be an intersecting sub-family of
(
[n]
r

)
.

Then

|∂sA| ≥
(

n−1
s

)(
n−1
r−1

) |A|,
and if s < n− r, then equality holds i� A = Sn,r,m for some m ∈ [n].

As a consequence of the above result, we have the following extension of Theorem 1.1.
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Corollary 1.4 Let r ≤ n/2, and let A ⊆
(
[n]
r

)
. Then

|A∗|+ r

n
|A′| ≤

(
n− 1

r − 1

)
,

and if n > 2r and A∗ 6= ∅, then equality holds i� A = Sn,r,m for some m ∈ [n].

Proof. By de�nition, A′ ⊆
(
[n]
r

)
\(A∗ ∪ ∂rA∗). So by Theorem 1.3 with r = s,

|A′| ≤
(

n

r

)
− (|A∗|+ |∂rA∗|) ≤

(
n

r

)
−

(
|A∗|+ (n− r)|A∗|

r

)
=

(
n

r

)
− n|A∗|

r
,

and if n > 2r and A∗ 6= ∅, then equality holds i� A∗ = Sn,r,m for some m ∈ [n]. Now

|A′| ≤
(

n
r

)
− n|A∗|

r
implies r

n
|A′| ≤

(
n−1
r−1

)
− |A∗|. Hence result. 2

Note that Theorem 1.1 is the special case A = A∗ in the above corollary. We will show
that this corollary leads to Theorem 1.2 and the following re�nement.

Theorem 1.5 (Extension of Theorem 1.2) Suppose equality holds in Theorem 1.2.
(I) If k > n/r, then A1 = ... = Ak, A1 is intersecting and |A1| =

(
n−1
r−1

)
; and if moreover

n > 2r, then A1 = Sn,r,m for some m ∈ [n].
(II) If k = n/r > 2, then A1, ..., Ak are as in (I) or Theorem 1.2(i).

2 Proofs

We �rst prove Theorems 1.2 and 1.5 from Corollary 1.4, and we prove Theorem 1.3 later.
We need the following result, which is often useful for determining the structure of extremal
intersecting families. The proof is an easy exercise, but we shall give it for completeness.

Proposition 2.1 Let ∅ 6= A ⊆
(
[n]
r

)
, 2r < n, such that, for any A ∈ A and B ∈

(
[n]\A

r

)
,

B ∈ A. Then A =
(
[n]
r

)
.

Proof. Let A ∈ A. Let B be an arbitrary set in
(
[n]
r

)
that intersects A in r − 1 elements.

Since n ≥ 2r + 1, we can choose C ∈
(
[n]
r

)
such that C is disjoint from A ∪ B. By the

assumption of the proposition, we have C ∈ A, which in turn implies B ∈ A. Repeated
application of this step gives us that any set in

(
[n]
r

)
is also in A. 2

Proof of Theorems 1.2, 1.5. LetA :=
⋃k

i=1Ai. ClearlyA∗ =
⋃k

i=1A∗
i andA′ =

⋃k
i=1A′

i.
Suppose A′

i ∩ A′
j 6= ∅, i 6= j. Let A ∈ A′

i ∩ A′
j. Then there exists Ai ∈ A′

i such that
A ∩Ai = ∅, which is a contradiction because A ∈ Aj. So A′

i ∩A′
j = ∅ for i 6= j, and hence

|A′| =
∑k

i=1 |A′
i|. Note that Corollary 1.4 gives us |A′|+ n

r
|A∗| ≤

(
n
r

)
. So we have

k∑
i=1

|Ai| =
k∑

i=1

|A′
i|+

k∑
i=1

|A∗
i | ≤ |A′|+ k|A∗| ≤

(
n

r

)
+ (k − n

r
)|A∗|. (1)
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If k < n
r
then

∑k
i=1 |Ai| ≤

(
n
r

)
, and equality holds i� A∗ = ∅ and A = A′ =

(
[n]
r

)
. If

A ∈ A1 and B ∈
(
[n]\A

r

)
\A1, then B /∈ Ai, i = 2, ..., k, and hence B ∈

(
[n]
r

)
\A. Thus,

if A =
(
[n]
r

)
then the conditions of Proposition 2.1 hold for A1 (recall that A1 6= ∅), and

therefore A1 = A =
(
[n]
r

)
. Hence (i).

If k > n
r
then, by (1) and Corollary 1.4,

k∑
i=1

|Ai| ≤
(

n

r

)
+ (k − n

r
)

(
n− 1

r − 1

)
= k

(
n− 1

r − 1

)
,

and equality holds i� A∗
1 = ... = A∗

k = A∗ and |A∗| =
(

n−1
r−1

)
= |A|. Also by Corollary 1.4,

if |A∗| =
(

n−1
r−1

)
and n > 2r, then A∗ = Sn,r,m for some m ∈ [n]. Hence (I).

Suppose k = n
r

> 2. Then, by (1),
∑k

i=1 |Ai| ≤ |A′| + n
r
|A∗| ≤

(
n
r

)
. So |A∗| + r

n
|A′| ≤(

n−1
r−1

)
. It is immediate by Corollary 1.4 that if A∗ 6= ∅ then A∗ is as in the case k > n

r
. If

A∗ = ∅ then A is as in the case k < n
r
. Hence (II). 2

We now work towards the proof of Theorem 1.3. The proof is based on the two well-
known results below, the �rst of which is a deep and fundamental theorem. For 1 ≤ p ≤ m
and 1 ≤ q ≤

(
m
p

)
, denote the family of the �rst q sets in

(
[m]
p

)
in colex order by C(p, q).

Theorem 2.2 (KK Theorem) Let 1 ≤ s < p ≤ m, and let ∅ 6= F ⊆
(
[m]
p

)
. Then

|∂sF| ≥ |∂sC(p, |F|)|.

If p ≤ l ≤ m and |F| =
(

l
p

)
, then equality holds i� F is isomorphic to

(
[l]
p

)
.

Lemma 2.3 Let 1 ≤ s < p ≤ m, and let ∅ 6= F ⊆
(
[m]
p

)
. Then

|∂sF| ≥
(

m
s

)(
m
p

) |F|,
and equality holds i� F =

(
[m]
p

)
.

For easy-to-read proofs of the above results, we refer the reader to [1, Chapter 5] and [1,
Chapter 3] respectively. We point out that Lemma 2.3 follows by a short and standard
double-counting argument.

Proof of Theorem 1.3. If s = n − r then ∂sA = A and hence |∂sA| = |A| =
(n−1

s )
(n−1

r−1)
|A|.

Now consider s < n − r. By Theorem 2.2 (with p = n − r, m = n and F = A), we have
|∂sA| ≥ |∂sC(n− r, |A|)|.

Suppose |A| >
(

n−1
n−r

)
. Then |∂rC(n − r, |A|)| >

(
n−1

r

)
, and hence, since |A| = |A| and

|∂rA| ≥ |∂rC(n−r, |A|)|, we get |A|+ |∂rA| >
(

n−1
n−r

)
+

(
n−1

r

)
=

(
n
r

)
, which is a contradiction

because, since A is intersecting, A and ∂rA are disjoint sub-families of
(
[n]
r

)
.
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Therefore, |A| ≤
(

n−1
n−r

)
. By Lemma 2.3 (with p = n−r, m = n−1 and F = C(n−r, |A|))

and the above, we have

|∂sA| ≥ |∂sC(n− r, |A|)| ≥
(

n−1
s

)(
n−1
n−r

) |C(n− r, |A|)| =
(

n−1
s

)(
n−1
n−r

) |A| = (
n−1

s

)(
n−1
r−1

) |A|.
So we have proved the bound in the theorem. If A = Sn,r,m for some m ∈ [n], then clearly
the bound is attained. We now prove the converse. So suppose the bound is attained.
Then

|∂sA| = |∂sC(n− r, |A|)| =
(

n−1
s

)(
n−1
n−r

) |C(n− r, |A|)|,

and Lemma 2.3 tells us that the second equality implies C(n− r, |A|) =
(
[n−1]
n−r

)
. So we have

|∂sA| = |∂sC(n − r, |A|)| with |A| =
(

n−1
n−r

)
, and hence, by Theorem 2.2 (with p = n − r,

l = n− 1, m = n and F = A), A is isomorphic to
(
[n−1]
n−r

)
. It follows that A is isomorphic

to Sn,r,n, i.e. A = Sn,r,m for some m ∈ [n]. 2
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