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Abstract

A family A of sets is said to be intersecting if A ∩ B �= ∅ for every
A, B ∈ A. For a family F of sets, let

ex(F) := {A ⊆ F : A is a largest intersecting subfamily of F}.

For n ≥ 0 and r ≥ 0, let [n] := {i ∈ N : i ≤ n} and
(
[n]
r

)
:= {A ⊆

[n] : |A| = r}. For a sequence {di}i∈N of non-negative integers that is
monotonically non-decreasing (i.e. di ≤ di+1 for all i ∈ N), let P({di}i∈N) :=
{{a1, . . . , ar} ⊂ N : r ∈ N, ai+1 > ai + dai

for each i ∈ [r − 1]}. Let
Pn

(r) := P({di}i∈N) ∩ (
[n]
r

)
. We determine ex(Pn

(r)) for d1 > 0 and any

r, and for d1 = 0 and r ≤ 1
2
max{s ∈ [n] : Pn

(s) �= ∅}. We particularly

have that {A ∈ Pn
(r) : 1 ∈ A} ∈ ex(Pn

(r)); Holroyd, Spencer and Talbot
established this for the case where d1 > 0 and di = d1 for all i ∈ N,
and a part of the paper generalises a compression method that they in-
troduced. The Erdős-Ko-Rado Theorem and the Hilton-Milner Theorem
provide the solution for the case where di = 0 for all i ∈ N.

1 Introduction

We start by setting up some basic notation. Unless otherwise stated, we shall use
small letters such as x to denote non-negative integers or functions or elements
of a set, capital letters such as X to denote sets, and calligraphic letters such as
F to denote families (i.e. sets whose members are sets themselves). The set of
positive integers {1, 2, . . .} is denoted by N. For m, n ∈ N with m ≤ n, the set
{i ∈ N : m ≤ i ≤ n} is denoted by [m, n]; we abbreviate [1, n] to [n], and we take [0]
to be the empty set ∅. For a set X, the power set {A : A ⊆ X} of X is denoted by
2X , and the family {A ⊆ X : |A| = r} is denoted by

(
X
r

)
.

We next develop some notation for certain sets and families defined on a family
F . Let F (r) := {F ∈ F : |F | = r}, α(F) := max{|F | : F ∈ F}, U(F) :=

⋃
F∈F F .
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For any V ⊆ U(F), let

F [V ] := {F ∈ F : V ⊆ F}, F〈V 〉 := {F\V : F ∈ F [V ]},
F(V ) := {F ∈ F : F ∩ V �= ∅}, F(V ) := {F ∈ F : F ∩ V = ∅}.

For u ∈ U(F), we abbreviate F({u}) (= F [{u}]), F〈{u}〉 and F({u}) to F(u), F〈u〉
and F(u), respectively.

Let A be a family. A is said to be intersecting if A ∩ B �= ∅ for every A, B ∈ A.
A is said to be centred if

⋂
A∈A A �= ∅ (i.e. A = A(a) �= ∅ for some a ∈ U(A)), and

non-centred otherwise. Note that a centred family is trivially intersecting.

For a family F , we define

L(F) := {A ⊆ F : A is a largest centred subfamily of F},
ex(F) := {A ⊆ F : A is an extremal (i.e. largest) intersecting subfamily of F}.

One of the most popular endeavours in extremal set theory is that of determining
the size or structure of a largest intersecting subfamily of a given family F . This
originated in [10], which features a classical result that says that if r ≤ n/2, then
the size of a largest intersecting subfamily of

(
[n]
r

)
is the size

(
n−1
r−1

)
of the centred

subfamily {A ∈ (
[n]
r

)
: 1 ∈ A}. Thus, if r ≤ n/2, then L(

(
[n]
r

)
) ⊆ ex(

(
[n]
r

)
); note that

L(
(
[n]
r

)
) = {{A ∈ (

[n]
r

)
: i ∈ A} : i ∈ [n]}. This result is known as the Erdős-Ko-

Rado (EKR) Theorem. Note that if n/2 < r ≤ n, then we trivially have that
(
[n]
r

)
itself is intersecting. There are various proofs of the EKR Theorem, two of which
are particularly short and beautiful: Katona’s [21], introducing the elegant cycle
method, and Daykin’s [8], using the fundamental Kruskal-Katona Theorem [22, 23].
If r < n/2, then, by the Hilton-Milner (HM) Theorem [15], L(

(
[n]
r

)
) = ex(

(
[n]
r

)
). The

EKR Theorem inspired a wealth of results that establish how large a system of sets
can be under certain intersection conditions; see [9, 12, 11, 4].

For a monotonically non-decreasing (mnd) sequence {di}i∈N of non-negative inte-
gers (i.e. 0 ≤ d1 ≤ d2 ≤ · · · ) and a set X ⊂ N, we define

P({di}i∈N) := {{a1, . . . , ar} ⊂ N : r ∈ N, ai+1 > ai + dai
for each i ∈ [r − 1]},

PX({di}i∈N) := P({di}i∈N) ∩ 2X .

If X = [n], then we may write Pn({di}i∈N) instead of PX({di}i∈N). For convenience
and neatness of notation, we assume that {di}i∈N is some fixed mnd sequence, and
we drop the argument ‘({di}i∈N)’ from any of the notation for the families defined
above unless we consider a different sequence.

In this paper we are concerned with the EKR problem for the family Pn
(r). Since

the nature of the problem for the case d1 > 0 is fundamentally different from that
for the case d1 = 0, we will treat the two cases separately. One difference has to do
with the extremal structures. As we will show, if d1 > 0, then Pn

(r)(1) ∈ L(Pn
(r)) ⊆

ex(Pn
(r)) for all r. Now suppose d1 = 0. If r = α(Pn), then 1 ∈ A for all A ∈ Pn

(r),
and hence ex(Pn

(r)) = {Pn
(r)(1)}. We will show that Pn

(r)(1) ∈ ex(Pn
(r)) also if
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r ≤ α(Pn)/2. However, if α(Pn)/2 < r < α(Pn), then L(Pn
(r)) ⊆ ex(Pn

(r)) is not
guaranteed to hold. For example, if di = 0 for all i ∈ N, then Pn

(r) =
(
[n]
r

)
, and

hence, for n/2 < r < n (= α(Pn)), Pn
(r) is non-centred, intersecting, and of course

larger than Pn
(r)(1) (∈ L(Pn

(r))); other examples with 0 = d1 < dn−1 can easily be
constructed.

For the case d1 > 0, we determine every single extremal structure and exactly
when it arises (i.e. for which sequences {di}i∈N it is extremal); the proof is self-
contained.

For the case d1 = 0, we restrict ourselves to r ≤ α(Pn)/2, and in addition to
showing that

L(Pn
(r)) = {{A ∈ Pn

(r) : i ∈ A} : i ∈ [n], either di = 0 or i = n and dn−1 = 0}
⊆ ex(Pn

(r)),

we determine precisely when L(Pn
(r)) = ex(Pn

(r)). The proof makes use of the EKR
Theorem, the HM Theorem and a slight extension [2] of a cross-intersection theorem
of Hilton [13]. For the case where L(Pn

(r)) �= ex(Pn
(r)), we give a characterisation

of the families in ex(Pn
(r)), similar to that in Theorem 1.1(ii) below, in terms of

necessary and sufficient conditions that their sets must satisfy.

Our proofs are based on the compression technique (see Section 4), which was
introduced in the original proof of the EKR Theorem [10]. We remark that although
they may appear somewhat lengthy, an effort has been made to make them as com-
prehensible and as detailed as possible.

Solutions to our problem for the case d1 = · · · = dn−1 = d already exist. If d = 0,
then Pn

(r) =
(
[n]
r

)
, and hence, by the EKR Theorem and the HM Theorem, we have

the following complete solution.

Theorem 1.1 ([10, 15]) Suppose di = 0 for each i ∈ [n − 1].
(i) If 1 ≤ r < n/2, then ex(Pn

(r)) = {Pn
(r)(j) : j ∈ [n]}.

(ii) If r = n/2, then ex(Pn
(r)) = {A ⊂ Pn

(r) : |{A, [n]\A} ∩ A| = 1 for each A ∈
Pn

(r)} ⊃ {Pn
(r)(j) : j ∈ [n]}.

(iii) If n/2 < r ≤ n, then ex(Pn
(r)) = {Pn

(r)}.

For d > 0, Holroyd, Spencer and Talbot showed that Pn
(r)(1) ∈ ex(Pn

(r)) (and hence
L(Pn

(r)) ⊆ ex(Pn
(r))), but they left the problem of determining ex(Pn

(r)) open (this
is solved here).

Theorem 1.2 ([19]) If d ∈ N and di = d for each i ∈ [n − 1], then Pn
(r)(1) ∈

ex(Pn
(r)) for each r ∈ [α(Pn)].

Before stating our main results, for which we need to develop some further nota-
tion and definitions, we describe our problem using a graph-theoretical formulation
that makes it easy for us to relate the work in this paper to certain results that were
of a high degree of inspiration and motivation behind it.
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2 A graph-theoretical interpretation and a brief review of
some motivating results

A graph G is a pair (V (G), E(G)), where V (G) is a set and E(G) ⊆ (
V (G)

2

)
. An

element of V (G) is called a vertex of G, and an element of E(G) is called an edge of
G. A subset I of V (G) is said to be an independent set of G if {v, w} /∈ E(G) for
every v, w ∈ I with v �= w. The size of a largest independent set of G is called the
independence number of G. We denote the family of all independent sets of G by
IG. We may abbreviate α(IG) to α(G); so α(G) denotes the independence number
of G. Let μ(G) denote the size of a smallest maximal independent set of G, where
by ‘maximal’ we mean that it is not a subset of another independent set of G.

A family F is said to have the EKR property if L(F) ⊆ ex(F), and to have the
strict EKR property if L(F) = ex(F); we may abbreviate by saying that F is EKR
if L(F) ⊆ ex(F), and strictly EKR if L(F) = ex(F). It is interesting that many
EKR-type results can be expressed in terms of the EKR or strict EKR property of
IG

(r) for some graph G and r ∈ X ⊆ [α(G)], the simplest case being Theorem 1.1,
which completely solves the problem for the empty graph ([n], ∅). This observation
surfaced in [19, 20], and more examples are given in [7]. The work in this paper
can also be expressed in such graph-theoretical terms; indeed, Pn = IMn for Mn as
defined below.

Definition 2.1 For an mnd sequence {di}i∈N of non-negative integers, let M :=
M({di}i∈N) be the graph such that V (M) = N and, for every a, b ∈ V (M) with
a < b, {a, b} ∈ E(M) if and only if b ≤ a + da. Let Mn := Mn({di}i∈N) be the

subgraph induced from M by the subset [n] of V (M), i.e. Mn =
(
[n], E(M) ∩ (

[n]
2

))
.

We refer to Mn as an mnd graph.

Suppose Mn = Mn({di = d}i∈N), d ∈ N, and G is a copy of Mn. Then G is called a
d’th power of a path, and if d = 1, then G is also simply called a path.

Note that Theorem 1.2 establishes the EKR property of IMn

(r) for the special
case where Mn is a power of a path.

For 1 ≤ k ≤ n, let Ck
n be the graph with V (Ck

n) = [n] and E(Ck
n) = {{a, b} ∈(

[n]
2

)
: |(a − b) mod n| ≤ k}. Ck

n is called a k’th power of a cycle. A conjecture of
Holroyd [18] about intersecting families of separated sets was proved by Talbot [25]
and can be stated as follows.

Theorem 2.2 ([25]) If 1 ≤ r ≤ α(Ck
n), then ICk

n

(r) is EKR, and strictly so unless
k = 1 and n = 2r + 2.

The study of the general EKR problem for families of independent sets of graphs
(i.e. for families F of the form IG

(r)) was initially motivated by Holroyd’s conjecture.
This study gave rise to a number of results, which we outline below.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A
graph H is connected if for every v, w ∈ V (H) there exists a subgraph P of H such
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that P is a path and v, w ∈ V (P ). If G is a disjoint union of connected graphs
G1, . . . , Gq (‘disjoint’ here means that V (G1), . . . , V (Gq) are pairwise disjoint), then
we say that Gj (j ∈ [q]) is a component of G. We denote the set of components of
G by C(G).

Theorem 2.2 motivated the investigation of the EKR problem for the more general
case where G is a disjoint union of powers of cycles. The EKR property of IG

(r) for
certain graphs G of this kind is established in [16, 17, 14].

A graph H is said to be complete if E(H) =
(

V (H)
2

)
. A singleton is a component

consisting of just one vertex.

Theorem 2.3 ([19]) Let G be a graph such that C(G) consists of complete graphs,
paths, cycles, and at least one singleton. If 1 ≤ r ≤ |C(G)|/2, then IG

(r) is EKR.

Holroyd and Talbot [20] gave examples of graphs G and values r for which IG
(r)

is EKR or strictly EKR, and others for which IG
(r) is not EKR. Their investigation

led them to the following interesting conjecture.

Conjecture 2.4 ([20]) Let G be a graph. If 1 ≤ r ≤ μ(G)/2, then IG
(r) is EKR,

and strictly so if r < μ(G)/2.

A special case of the main result in [3] is that this conjecture is true when μ(G) ≥
3
2
(r − 1)2(3r − 4) + r. Proving the full conjecture seems very difficult; however,

restricting the problem to some classes of graphs containing singletons makes it
tractable. When an arbitrary number of singletons are allowed in G, IG

(r) may
not be EKR for r > μ(G)/2; in fact, if G consists solely of singletons, then, by
Theorem 1.1(iii), IG

(r) is not EKR for μ(G)/2 < r < α(G). On the other hand,
Theorem 2.2 demonstrates graphs G for which IG

(r) is EKR for all r ≤ α(G) (and
not just r ≤ μ(G)/2).

Note that Theorem 2.3 does not live up to Conjecture 2.4 because μ(G) is at
least as large as |C(G)| and there is no bound as to how much larger it can be. As
pointed out in [7], the consideration of mnd graphs, introduced in this paper1, led to
a proof [7] of the conjecture for a class of graphs that is significantly wider than the
one captured by Theorem 2.3; the trick is to apply a stronger induction hypothesis
by allowing G to have copies of mnd graphs as components.

Conjecture 2.4 has been verified for other classes of graphs containing singletons;
see [6, 24, 26].

3 Main results

For a finite set A ⊂ N, let

l(A) := min{a ∈ A}, u(A) := max{a ∈ A}.
1For the sake of precision, we remark that the work in this paper is actually part of the author’s

Ph.D. thesis [5].
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For i, r ∈ N, define Pi,r := {p1, . . . , pr} ∈ P by p1 := i and pj+1 := pj + dpj
+ 1,

j = 1, . . . , r − 1 (if r > 1). We need to define Pi,0 := ∅.
For 1 ≤ r ≤ α(Pn), let

kn,r := max{i ∈ [n] : u(Pi,r) ≤ n}.

Let e1 := 0, and for i ≥ 2, let

Ei := {a ∈ [i − 1] : a + da ≥ i}, ei := |Ei|.
Clearly, since {di}i∈N is mnd,

either Ei = ∅ or Ei = [j, i − 1] for some j ∈ [i − 1].

For any z ∈ Z := {0} ∪ N ∪ {−n : n ∈ N}, let sz : P → 2N be defined by

sz(A) := {a + z : a ∈ A}.
We will often use the fact that

A ∈ P, l(A) ≥ 2, x ∈ [l(A) − 1] ⇒ s−x(A) ∈ P,

which is again a consequence of {di}i∈N being mnd.

We say that P[x,y] is symmetric if P[x,y] = P[x,y]({d∗
i = d}i∈N) for some d ∈ N∪{0};

otherwise, we say that P[x,y] is asymmetric. Note that if α(P[x,y]) > 1, then P[x,y] is
symmetric if and only if ey = dx.

Suppose d1 = d3 = 1, y ∈ P3,r = s1(P2,r), r ≥ 2, and for

m :=

{
max{a ∈ [y] : da = 1} if Py is asymmetric;
y if Py is symmetric,

m = 2t + 1 for some t ∈ [r]. Then we say that Py
(r) is type I, and we say that

a subfamily A of Py
(r) is special if A = {A1, . . . , Aq} ∪ (Py

(r)(1)\{B1, . . . , Bq}) for
some q ∈ [t], where

A1 := P3,r = P3,t ∪ Pm+2,r−t, Bt := P1,t ∪ Pm+1,r−t,

and for each i ∈ [t − 1] (if t > 1),

Ai+1 := {2j : j ∈ [i]} ∪ {2j + 1: j ∈ [i + 1, t]} ∪ Pm+2,r−t, Bi := s−1(Ai+1).

If Py
(r) is type I and Py is symmetric, then, since d1 = 1 and m = y ∈ P3,r, we have

t = r. Note that a special family A as above is Py
(r)(y) if and only if Py is symmetric

and q = t = r (otherwise, P1,r ∈ A\Py
(r)(y)). Also note that

if Py
(r) is type I, A ⊂ Py

(r), A is special, and either Py is asymmetric or A �= Py
(r)(y),

then Py
(r)(1)(y) ∪ {P1,r, P3,r} ⊆ A. (1)
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That a special family is intersecting is not difficult to check; however, for the sake
of completeness, this is proved in Section 6 (Lemma 6.4).

If Py is asymmetric, k := ky,r ≤ d1 + 1 and y ∈ Pk,r = sk−1(P1,r), then we say
that Py

(r) is type II. Note that Pk,r = sk−1(P1,r) implies that Pi,r = s1(Pi−1,r) for any
i ∈ [2, k]. An example of a type II family is P10

(3)({d∗
i }i∈N) with d∗

1 = d∗
2 = d∗

3 = 2
and d∗

4 = d∗
5 = d∗

6 = 3.

A family Py
(r) cannot be both type I and type II, because if Py

(r) is type I, then
ky,r = 3 > d1 + 1.

This brings us to our first and main result.

Theorem 3.1 Suppose d1 > 0 and 2 ≤ r ≤ α(Pn).

(i) If Pn
(r) is type I, then ex(Pn

(r)) = {Pn
(r)(1)} ∪ {A ⊂ Pn

(r) : A is special}.
(ii) If Pn

(r) is not type I, and either Pn
(r) is type II or Pn is symmetric, then

ex(Pn
(r)) = {Pn

(r)(1),Pn
(r)(n)}.

(iii) In any other case, ex(Pn
(r)) = {Pn

(r)(1)}.

For r = 1, we trivially have ex(Pn
(r)) = {{{j}} : j ∈ [n]} = L(Pn

(r)).

Corollary 3.2 If d1 > 0 and 1 ≤ r ≤ α(Pn), then Pn
(r) is EKR, and strictly so

unless Pn
(r) is type I.

Before stating our result for d1 = 0, we recall that families A1, . . . ,Ak of sets are
said to be cross-intersecting if for every i, j ∈ [k] with i �= j, A ∩ B �= ∅ for every
A ∈ Ai and every B ∈ Aj.

Theorem 3.3 Suppose d1 = 0 < dn−1 and 1 ≤ r ≤ α(Pn)/2. Let m := min{i ∈
[n] : di �= 0}. Let A ⊆ Pn

(r).

(i) If n ∈ P1,2r and m = 2r − 1, then A ∈ ex(Pn
(r)) if and only if

(a) A([2r − 1, n]) =
(
[2r−2]

r

)\{[2r − 2]\A : A ∈ A〈2r − 1〉〈n〉}, A〈2r − 1〉〈n〉 is
intersecting,

(b) A〈i〉 ∩ (
[2r−2]
r−1

)
= A〈n〉 ∩ (

[2r−2]
r−1

) ∈ ex(
(
[2r−2]
r−1

)
), i = 2r − 1, . . . , n − 1, and

(c) A〈n〉 ∩ (
[2r−2]
r−1

)
and A〈2r − 1〉〈n〉 are cross-intersecting.

(ii) If n ∈ P1,2r and r +2 ≤ m ≤ 2r− 2, then A ∈ ex(Pn
(r)) if and only if for some

j ∈ [m−1] and some H0 ⊆
(
[m−1]\{j}

r

)
, A = H0∪(Pn

(r)(j)\{P1,2r\A : A ∈ H0}).

(iii) If either n /∈ P1,2r or m ≤ r +1, then A ∈ ex(Pn
(r)) if and only if A = Pn

(r)(j)
for some j ∈ [m − 1].
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The reason for imposing the condition dn−1 > 0 is that if we instead have dn−1 = 0,
then Pn is as in Theorem 1.1. It is easy to see that the above result and Theorem 1.1
together yield the following.

Corollary 3.4 If d1 = 0 and 1 ≤ r ≤ α(Pn)/2, then Pn
(r) is EKR, and strictly so

unless n ∈ P1,2r and max{i ∈ [2r − 1] : di = 0} ≥ r + 1.

The ‘non-strict’ part was proved in [7] as a special case of a more general result.

4 Some general-purpose compression tools

One of the most powerful techniques in extremal set theory is that of compression,
also known as shifting. The survey paper [12] gives an account of many applications
of this technique.

A compression operation, or simply a compression, is a function that maps a
family to another family while retaining some important properties of the original
family, such as its size or the non-empty intersection of pairs of sets belonging to
it. The idea is that a family resulting from a compression, or from a sequence of
compressions, has key structural properties that the original family might not have.

Various forms of compression have been invented for specific problems. For ex-
ample, the paper [19] features a compression that is defined in a graph-theoretical
setting and yet is widely applicable. We now present a form of compression that is
intended for a general purpose and generalises the one defined in [19].

For a family F and u, v ∈ U(F), u �= v, let Δu,v : 2F → 2F be defined by

Δu,v(A) := {δu,v(A) : A ∈ A} ∪ {A ∈ A : δu,v(A) ∈ A},

where δu,v : F → F is defined by

δu,v(F ) :=

{
(F\{v}) ∪ {u} if u /∈ F , v ∈ F , (F\{v}) ∪ {u} ∈ F ;
F otherwise.

The function Δu,v is a compression operation. The very first thing to be noted is
that

|Δu,v(A)| = |A|.
We say that F is (u, v)-compressed if for every F ∈ F(u)(v), (F\{v})∪{u} ∈ F .

We now prove a number of properties, given by the proposition below, of the
compression operation defined above. The proofs of the main results will be a man-
ifestation of their usefulness and hence the efficacy of this technique. They arise
as generalisations of properties, discovered in [19], of compressions on intersecting
families of independent sets of graphs. We particularly emphasize the importance of
part (iv), which is an observation of a fairly new kind in the literature and has its
roots in the proof of Theorem 1.2 (see [19, First Proof of Theorem 7]); we will use it
repeatedly in the proof of Theorem 3.1.
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Proposition 4.1 Let F be a family, and let u, v ∈ U(F), u �= v. Let A∗ be an
intersecting subfamily of F , and let A := Δu,v(A∗).
(i) A(v) is intersecting.
(ii) If F is (u, v)-compressed, then A is intersecting.
(iii) If F [{u, v}] = ∅ and F is (u, v)-compressed, then A〈v〉 ∪ A(v) is intersecting.
(iv) If F [{u, v}] = ∅ and there exists w ∈ U(F)\{u, v} such that F(w) is (u, v)-
compressed, then A〈v〉 is intersecting.

Proof. Let B1, B2 ∈ A. Then, for each p ∈ [2], there exists Ap ∈ A∗ such that either
Bp = Ap or Bp = δu,v(Ap). Since A∗ is intersecting, A1 ∩ A2 �= ∅.

Trivially, A(v)(u) is intersecting. Now we clearly have that A(v)(u) = A∗(v)(u),
and hence A ∩ A′ �= ∅ for any A ∈ A(v)(u) and any A′ ∈ A. Hence (i).

Suppose F is (u, v)-compressed. It is straightforward that B1 ∩ B2 �= ∅ if either
Bp = Ap, p = 1, 2, or Bp = δu,v(Ap) �= Ap, p = 1, 2. Suppose B1 = A1, B2 =
δu,v(A2) �= A2 (so u /∈ A2) and B1 ∩ B2 = ∅. Then A1 ∩ A2 = {v}, u /∈ A1, and
hence, since F is (u, v)-compressed, A1 �= δu,v(A1) ∈ A. Since A1, δu,v(A1) ∈ A,
A1, δu,v(A1) ∈ A∗. But δu,v(A1)∩A2 = ∅, a contradiction. Similarly, we cannot have
B2 = A2, B1 = δu,v(A1) �= A1 and B1 ∩ B2 = ∅. Hence (ii).

Suppose F [{u, v}] = ∅ and F is (u, v)-compressed. By (i), A(v) is intersecting.
By (ii), A ∩ B �= ∅ for any A ∈ A(v) and any B ∈ A〈v〉. So (iii) follows if we
show that A〈v〉 is intersecting. So suppose B1, B2 ∈ A(v). Then, for each p ∈ [2],
Bp ∈ A∗(v) ⊆ F(v), and u /∈ Bp since F [{u, v}] = ∅. Since F is (u, v)-compressed,
we have Bp �= δu,v(Bp) ∈ A, which implies that δu,v(Bp) ∈ A∗ (since Bp ∈ A).
So (B1 ∩ B2)\{v} = B1 ∩ δu,v(B2) �= ∅ since u /∈ B1, B1, δu,v(B2) ∈ A∗ and A∗ is
intersecting. Hence (iii).

Suppose F [{u, v}] = ∅ and there exists w ∈ U(F)\{u, v} such that F(w) is (u, v)-
compressed. Suppose B1, B2 ∈ A(v). Then, for each p ∈ [2], Bp ∈ A∗(v) ⊆ F(v),
and u /∈ Bp since F [{u, v}] = ∅. Thus, if w /∈ Bp for some p ∈ [2], then, since F(w)
is (u, v)-compressed, we have Bp �= δu,v(Bp) ∈ A, which implies that δu,v(Bp) ∈ A∗

(since Bp ∈ A) and hence (B1 ∩ B2)\{v} = B3−p ∩ δu,v(Bp) �= ∅ (since u /∈ B3−p,
B3−p, δu,v(Bp) ∈ A∗ and A∗ is intersecting). If on the contrary w ∈ Bp for each
p ∈ [2], then trivially w ∈ (B1 ∩ B2)\{v}. Hence (iv). �

5 The key fact and the compression lemma for the main

results

An interesting key fact is that the ‘forward’ mnd separations di induce ‘backward’
mnd separations ei with the following additional property.

Proposition 5.1 For any i ∈ N, ei ≤ ei+1 ≤ ei + 1.

Proof. It is trivial that ei ≤ ei+1 ≤ ei + 1 for i = 1, so we fix i ∈ N\{1}.
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If either Ei = [i − 1] or Ei = ∅, then ei+1 ≤ ei + 1 trivially. Suppose Ei �= [i − 1]
and Ei �= ∅. Then Ei = [j, i − 1] for some j ∈ [2, i − 1]. So (j − 1) + dj−1 < i, and
hence Ei+1 ⊆ Ei ∪ {i}. Therefore, ei+1 ≤ ei + 1.

If Ei = ∅, then ei ≤ ei+1 trivially. Suppose Ei �= ∅. Then Ei = [j, i − 1] for some
j ∈ [i − 1]. Since dj+1 ≥ dj , we thus have (j + 1) + dj+1 ≥ j + dj + 1 ≥ i + 1. So
[j + 1, i] ⊆ Ei+1, and hence |Ei| ≤ |Ei+1|. Therefore, ei ≤ ei+1. �

The above result makes Proposition 4.1 wholly applicable to our problem. For
p, q ∈ N, let Δp,q : 2P → 2P be defined as in the preceding section.

Lemma 5.2 Let A∗ be an intersecting subfamily of P. Let p, q ∈ N such that dp > 0
and dq > 0. Let A := Δp,q(A∗).
(i) If p = q − 1, then A〈q〉 and A(q) are intersecting.
(ii) If p = q − 1 and ep < eq, then A〈q〉 ∪ A(q) is intersecting.
(iii) If p = q + 1 and dp = dq, then A〈q〉 and A(q) are intersecting.

Proof. By Proposition 4.1(i), A(q) is intersecting.

Note that if either p = q − 1 or p = q + 1, then, since dp > 0 and dq > 0,
P[{p, q}] = ∅.

Suppose p = q − 1 and ep < eq. Let P ∈ P(q). Then P ∩ [max{1, q − eq}, p] = ∅.
Since q− eq = p+1− eq ≤ p− ep, we thus have P ∩ [max{1, p− ep}, p] = ∅, implying
that (P\{q}) ∪ {p} ∈ P. So P is (p, q)-compressed. By Proposition 4.1(iii), (ii)
follows.

Suppose p = q−1 and ep ≥ eq. By Proposition 5.1, ep = eq. Since dq−1 = dp > 0,
eq ≥ 1. So ep ≥ 1, and hence p > 1. Let w := max{1, q−eq−1} and let P ∈ P(w)(q).
Then P ∩ [w, p] = ∅ and w = max{1, p − ep} /∈ {p, q}. So (P\{q}) ∪ {p} ∈ P(w).
So P(w) is (p, q)-compressed. By Proposition 4.1(iv), A〈q〉 is intersecting. Together
with (ii), this gives us (i).

Suppose p = q + 1 and dp = dq. Let w := q + dq + 1 and let P ∈ P(w)(q).
Then P ∩ [p, p + dp] = P ∩ [p, w] = P ∩ [p, w − 1] = P ∩ [q + 1, q + dq] = ∅, and
hence (P\{q})∪{p} ∈ P. So P(w) is (p, q)-compressed. By Proposition 4.1(iv), (iii)
follows. �

6 The case d1 > 0

This section is dedicated to the proof of Theorem 3.1. Throughout the section, we
assume that d1 > 0 and α(Pn) ≥ 2. We set

n′ := n − en − 1.

Note that n′ ≥ 1 since α(Pn) ≥ 2. So n′ + dn′ < n, and hence

dn′ ≤ en.
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Lemma 6.1 kn,r = kn′,r−1.

Proof. Let k := kn,r and k′ := kn′,r−1. So u(Pk,r) ≤ n < u(Pk+1,r) and u(Pk′,r−1) ≤
n′ < u(Pk′+1,r−1). Thus, since u(Pk′,r−1)+du(Pk′,r−1)

+1 ≤ n′+dn′+1 ≤ n′+en+1 = n,
we have u(Pk′,r) ≤ n, and hence k′ ≤ k. Now,

u(Pk,r−1) = u(Pk,r) − eu(Pk,r) − 1 ≤ u(Pk,r) − (en − (n − u(Pk,r))) − 1 = n′,

where the first inequality follows by n−u(Pk,r) applications of Lemma 5.1. So k ≤ k′.
Since k′ ≤ k, the result follows. �

Lemma 6.2 Suppose 1 ≤ q ≤ α(Py−1) and either Py is symmetric or Py
(q) is type

II. Then s1(A) ∈ Py
(q) for any A ∈ Py−1

(q).

Proof. If either q = 1 or Py is symmetric, then the result is straightforward. So
consider q ≥ 2 and Py

(q) type II. Setting k := ky,q, we then have y ∈ Pk,q =
sk−1(P1,q) and k ≤ d1 + 1. For each i ∈ [d1 + 1], let pi,1 < · · · < pi,q such that
Pi,q = {pi,1, . . . , pi,q}. By definition of Pi,q, pi,j = pi,j−1 + dpi,j−1

+ 1 for each j =
[2, q]. Since Pk,q = sk−1(P1,q), pk,j = p1,j + k − 1 for each j ∈ [q]. Thus, for each
j ∈ [2, q], pk,j−1 + dpk,j−1

+ 1 = pk,j = (p1,j−1 + dp1,j−1
+ 1) + k − 1, and hence

dpk,j−1
= dp1,j−1

+ p1,j−1 + k − 1 − pk,j−1 = dp1,j−1
. Therefore, for each j ∈ [q − 1],

dpk,j
= dp1,j

, and hence, for each i ∈ [k], dpi,j
= dp1,j

(as dp1,j
≤ dpi,j

≤ dpk,j
= dp1,j

).

Now let A ∈ Py−1
(q), and let a1 < · · · < aq ≤ y − 1 such that A = {a1, . . . , aq}.

Let h ∈ [q] and let Ah := {aq−h+1, . . . , aq}; so |Ah| = h. Since y ∈ Pk,q and k = ky,q,
we have Pky,h,h = {pk,q−h+1, . . . , pk,q} and pk,q = y. Since aq ≤ y − 1 = pk,q − 1 and
{di}i∈N is mnd, it follows that aq−h+1 ≤ pk,q−h+1−1. So aj ≤ pk,j−1 for all j ∈ [q]. It
is straightforward that we also have p1,j ≤ aj for all j ∈ [q]. So p1,j ≤ aj ≤ pk,j−1 for
all j ∈ [q]. Since we established that dpi,j

= dp1,j
for any i ∈ [k] and any j ∈ [q − 1],

the result follows. �

Lemma 6.3 Suppose Pn is asymmetric, Pn〈n〉 (= Pn′) is symmetric and either
Pn〈1〉 (= P[d1+2,n]) is symmetric or d2 > d1. Then α(Pn) ≤ 3.

Proof. Since Pn is asymmetric, we have d1 < en, and hence d1 = · · · = dp < dp+1

for some p ∈ [n′]. Since Pn′ is symmetric, it follows that (p + 1) + dp+1 ≥ n′.
Let p1 < p2 < p3 < p4 such that P1,4 = {p1, p2, p3, p4}. So p1 = 1, p2 = d1 + 2,
p3 = p2 + dp2 + 1, p4 = p3 + dp3 + 1.

Suppose p ≤ d1 + 1. Then p + 1 ≤ p2, and hence p3 ≥ (p + 1) + dp+1 + 1 ≥ n′ + 1
and p4 ≥ (n′ + 1) + dn′+1 + 1 ≥ n + 1. So u(P1,4) > n, and hence α(Pn) ≤ 3.

Now suppose p ≥ d1 + 2. So d2 = d1 as d1 ≤ d2 ≤ dp = d1. Thus, by the
conditions of the lemma, P[d1+2,n] is symmetric. Since d1 + 2 ≤ p and d1 = · · · = dp,
dd1+2 = d1. So dd1+2 < en, but this is a contradiction since P[d1+2,n] is symmetric. �

Lemma 6.4 Let Py
(r) be a type I family, and let A ⊂ Py

(r) be a special family as
defined in Section 3. Then A is intersecting.
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Proof. We need to show that for each q ∈ [t], the sets in Py
(r) that do not intersect

Aq are members of {B1, . . . , Bq}. Recall that di = 1 for all i ∈ [m] (m = 2t + 1).

Consider first q = 1. So Aq = P3,r. Let B ∈ Py
(r)(1) such that B∩Aq = ∅, and let

B′ := B\{1}. Since B ∩P3,r = ∅ and d1 = 1, l(B′) ≥ 4. So B′′ := B′ ∪ {2} ∈ P[2,y]
(r)

as d2 = 1. Now, given that y ∈ P3,r = s1(P2,r), P2,r is the only set in P[2,y−1]
(r),

and hence, since B ∩ P3,r = ∅ implies that y /∈ B′′, we have B′′ = P2,r. So B =
(P2,r\{2}) ∪ {1} = B1, and hence A is intersecting.

Now consider q > 1. So Aq = {2j : j ∈ [q−1]}∪ ({2j +1: j ∈ [q, t]}∪Pm+2,r−t) =
P2,q−1 ∪ P2q+1,r−q+1. Now P2q+1,r−q+1 = P3,r\P3,q−1. Since y ∈ P3,r = s1(P2,r),
we have y ∈ P2q+1,r−q+1 = s1(P2q,r−q+1), and hence C := P2q,r−q+1 is the only set
in P[2q,y−1]

(r−q+1). Note that C ∩ Aq = ∅. Let D be a set in P[2q−1,y]
(r−q+1)\{C}

such that D ∩ Aq = ∅. Then y /∈ D (since y ∈ Aq) and 2q − 1 ∈ D (otherwise
D ∈ P[2q,y−1]

(r−q+1), which leads to the contradiction that D = C). Now d2q = 1

and, since 2q + 1 ∈ Aq, 2q + 1 /∈ D. So E := (D\{2q − 1}) ∪ {2q} ∈ P[2q,y−1]
(r−q+1),

and hence E = C. So D = (C\{2q})∪{2q−1}. Since P2,q−1 ⊂ Aq, P1,q−1 is the only
set in P[2q−2]

(q−1) that does not intersect Aq. So F1 := P1,q−1∪C and F2 := P1,q−1∪D

are the only sets in Py
(r) that do not intersect Aq. It is clear from the above that

F1 = Bq−1 and F2 = Bq. Hence the result. �

Lemma 6.5 If either Py is symmetric or Py
(r) is a type II family, then |Py

(r)(y)| =
|Py

(r)(1)|.

Proof. If r = 1, then the result is trivial. We now consider r > 1 and proceed by
induction on r. If Py is symmetric, then the result follows immediately by symmetry.
Suppose Py

(r) is a type II family. Clearly, y ≥ u(P1,r). If y = u(P1,r), then Py
(r) =

{P1,r} = Py
(r)(1) = Py

(r)(y). We now consider y > u(P1,r) and proceed by induction
on y. Since Py

(r) is type II, we have y ∈ Pky,r,r = sky,r−1(P1,r) and ky,r ≤ d1 +1; note
that this implies that y ∈ Pky,r,r\{ky,r} = sky,r−1(P1,r\{1}) and d1+2 = l(P1,r\{1}) ≤
l(Pky,r,r\{ky,r}) ≤ (d1 + 1) + dd1+1 + 1 ≤ dd1+2 + (d1 + 2). Since Py〈1〉 = P[d1+2,y],
it follows that either Py〈1〉 is symmetric or Py〈1〉(r−1) is isomorphic to a type II
family in the obvious way. Also, it is fairly straightforward that either Py(1) (=
P[2,y]) is symmetric or Py(1)(r) is isomorphic to a type II family in the obvious way.
Therefore, by the induction hypotheses, we have |Py〈1〉(r−1)(y)| = |Py〈1〉(r−1)(d1+2)|
and |Py(1)(r)(y)| = |Py(1)(r)(2)|. So |Py

(r)(y)| = |Py〈1〉(r−1)(d1 +2)|+ |Py(1)(r)(2)| =

|Py
(r)(1)(d1 + 2)| + |Py

(r)(1)([2, d2 + 2])|, and hence the result follows if d2 = d1.
Since u(P1,r) < y ∈ Pky,r,r, ky,r > 1. Thus, as we showed in the proof of Lemma 6.2,
d2 = d1 indeed. �

We now come to the proof of Theorem 3.1. Recall from Section 3 that s−x(A) ∈ P
if A ∈ P, l(A) ≥ 2 and x ∈ [l(A) − 1]; this tool will be used often in the proof. For
p, q ∈ N, let Δp,q : 2P → 2P be defined as in Section 4.

Proof of Theorem 3.1. Let J := Pn
(r)(1). If Pn

(r) is type I and A∗ ⊂ Pn
(r) is

special, then trivially |A∗| = |J |, and Lemma 6.4 tells us that A∗ is intersecting.



P. BORG/AUSTRALAS. J. COMBIN. 59 (1) (2014), 39–63 51

Lemma 6.5 tells us that |Pn
(r)(n)| = |J | if either Pn is symmetric or Pn

(r) is type II.
Thus, taking

A∗ ∈ ex(Pn
(r)), (2)

the result follows if we show that |A∗| = |J | and that if A∗ �= J , then one of the
following holds:

- Pn
(r) is type I and A∗ is special;

- Pn
(r) is type II and A∗ = Pn

(r)(n);
- Pn is symmetric and A∗ = Pn

(r)(n).

Given that r ≤ α(Pn), we have Pn
(r) �= ∅ and hence A∗ �= ∅.

Suppose r = 2 and A∗ is centred. Then A∗ = Pn
(2)(i) for some i ∈ [n]. If ei < d1,

then, since {di}i∈N is mnd, we clearly must have i ≤ d1, in which case n > i + di as
A∗ �= ∅. So

|A∗| = i − 1 − ei + max{0, n − (i + di)}

=

⎧⎨
⎩

i − 1 − ei if ei ≥ d1, n ≤ i + di;
n − i − di if ei < d1, n > i + di;
n − 1 − di − ei if ei ≥ d1, n > i + di.

So |A∗| ≤ n − 1 − d1 = |J |, and equality holds if and only if either i = 1 or i = n
and en = d1. Thus, by (2), either A∗ = J or A∗ = Pn

(2)(n) and Pn is symmetric.

Next, suppose r = 2 and A∗ is non-centred. Then A∗ can only be of the form
{{a1, a2}, {a1, a3}, {a2, a3}}, where 1 ≤ a1 < a2 < a3 ≤ n. If a3 > a2 + 2, then
|Pn

(2)(a1)| ≥ |{{a1, ah} : h ∈ [a2, a3]}| ≥ 4 > |A∗|, which contradicts (2). So a3 ≤
a2 + 2, and hence da2 ≤ 1. Since 1 ≤ d1 ≤ da2 , da2 = d1 = 1. So |J | = n − 2, and
hence, since |A∗| = 3, n ≤ 5 by (2). Also, n ≥ a3 ≥ a2 + 2 ≥ (a1 + 2) + 2 ≥ 5. So
n = 5, and hence a1 = 1, a2 = 3, a3 = 5, d1 = d3 = 1. Together with the above, this
clearly settles the result for r = 2.

We now consider r ≥ 3 and proceed by induction on r. Since n ≥ u(P1,α(Pn))
and r ≤ α(Pn), n ≥ u(P1,r). If n = u(P1,r), then the result is trivial since we get
A∗ = Pn

(r) = {P1,r}. We now consider n > u(P1,r) and proceed by induction on n.

Let A := Δn−1,n(A∗). Since A(n) ⊆ A∗(n), we have

Δn−1,n(A(n)) ⊆ A∗, (3)

and since A∗ is intersecting, the following holds:

A ∈ A(n), A ∩ B = ∅ for some B ∈ A〈n〉 ⇒ n − 1 ∈ A /∈ A∗, δn,n−1(A) ∈ A∗.
(4)

Note that Pn〈n〉 = Pn′ . Since we are considering 3 ≤ r ≤ α(Pn) and n > u(P1,r),
we clearly have 2 ≤ r − 1 ≤ α(Pn′) and 3 ≤ r ≤ α(Pn−1). So A〈n〉 ⊂ Pn′ (r−1) �= ∅,
J 〈n〉 = Pn′ (r−1)(1) �= ∅, A(n) ⊂ Pn−1

(r) �= ∅, J (n) = Pn−1
(r)(1) �= ∅. Now, by
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Lemma 5.2(i), A〈n〉 and A(n) are intersecting. So the induction hypothesis yields
|A〈n〉| ≤ |J 〈n〉| and |A(n)| ≤ |J (n)|, and hence |A| ≤ |J |. Since |A| = |A∗| and
A∗ ∈ ex(Pn

(r)), we obtain |A| = |J | and

J ∈ ex(Pn
(r)). (5)

So |A〈n〉| = |J 〈n〉|, |A(n)| = |J (n)|, and hence, since the induction hypothesis gives
us J 〈n〉 ∈ ex(Pn′(r−1)) and J (n) ∈ ex(Pn−1

(r)), we have

A〈n〉 ∈ ex(Pn′ (r−1)), (6)

A(n) ∈ ex(Pn−1
(r)). (7)

Thus, by the induction hypothesis again, the following must hold:

A〈n〉 = J 〈n〉 or A〈n〉 = Pn′ (r−1)(n′) or A〈n〉 is special; (8)

A(n) = J (n) or A(n) = Pn−1
(r)(n − 1) or A(n) is special. (9)

Suppose A〈n〉 = J 〈n〉. Then J (n−1) ⊆ Δn−1,n(A(n)), and hence J (n−1) ⊂ A∗

by (3). Suppose A∗(1)(n) �= ∅. Let A ∈ A∗(1)(n) and B := (s−1(A\l(A))) ∪ {1}.
Then B ∈ J (n − 1), and hence B ∈ A∗. But A ∩ B = ∅, a contradiction as A∗ is
intersecting. So A∗(1)(n) = ∅. Next, suppose A∗(1)(n) �= ∅. Let C ∈ A∗(1)(n) and
D := (s−1(C\(l(C) ∪ u(C))) ∪ {1}. So D ∈ A〈n〉, and hence E := D ∪ {n} ∈ A∗.
But C ∩E = ∅, a contradiction. So A∗(1)(n) = ∅. Together with A∗(1)(n) = ∅, this
gives us A∗(1) = ∅. So A∗ ⊆ J . By (2), A∗ = J .

We now consider A〈n〉 �= J 〈n〉. Thus, by (8), either A〈n〉 = Pn′(r−1)(n′) or A〈n〉
is special. We also keep in mind that A(n) is as in (9).

Suppose kn′,r−1 = 1. Then A〈n〉 is not special. So A〈n〉 = Pn′(r−1)(n′). By
(6) and the induction hypothesis, either Pn′ is symmetric or Pn′ (r−1) is type II. So
u(Pkn′,r−1,r−1) = n′. Together with kn′,r−1 = 1, this gives us A〈n〉 = {P1,r−1} = J 〈n〉,
a contradiction. So

kn′,r−1 ≥ 2. (10)

Thus, by Lemma 6.1,

kn,r ≥ 2. (11)

We will consider the case where Pn is symmetric separately from the case where
Pn is asymmetric.

Case 1: Pn is symmetric. Clearly, we then have n ∈ Pkn,r ,r. By (11), kn,r ≥ 2.

The case kn,r = 2 is trivial since then Pn
(r) = Pn

(r)(1)(n)∪{P1,r, P2,r} and either
A∗ = Pn

(r)\{P2,r} = J or A∗ = Pn
(r)\{P1,r} = Pn

(r)(n).

Consider next kn,r = 3 and d1 = 1. Since Pn is symmetric, n = 2r +1. Note that
this is the unique case where Pn is symmetric and Pn

(r) is type I. Let A1 := P3,r,
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Ar+1 := P2,r and Ai+1 := {2j : j ∈ [i]} ∪ {2j + 1: j ∈ [i + 1, r]}, i = 1, . . . , r − 1.
Let Br+1 := {1} ∪ P5,r−1 and Bi := s−1(Ai+1), i = 1, . . . , r. Now, for each i ∈ [r],
let Si be the special family {A1, . . . , Ai} ∪ (J \{B1, . . . , Bi}). For each i ∈ [r + 1],
|A∗ ∩ {Ai, Bi}| ≤ 1 as Ai ∩ Bi = ∅. Since |A∗| = |J | (by (2), (5)) and Pn

(r)\J =
{A1, . . . , Ar+1}, we actually have |A∗ ∩ {Ai, Bi}| = 1 for all i ∈ [r + 1]. Suppose
A∗ �= J . Then Aq ∈ A∗ for some q ∈ [r + 1]; assume that q is the largest such
integer. Suppose q > 1 and there exists p ∈ [2, q] such that Ap ∈ A∗ and Ap−1 /∈ A∗;
then, since Bp−1 ∩ Ap = ∅, we get the contradiction that |A∗ ∩ {Ap−1, Bp−1}| = 0.
So Ap ∈ A∗ for all p ∈ [q]. Since A1 ∩ Ar+1 = ∅, q ≤ r. Therefore A∗ is the special
family Sq.

Now consider any of the remaining cases. So either d1 = 1 and kn,r ≥ 4 or
d1 > 1 and kn,r ≥ 3. By Lemma 6.1, Pn′ (r−1) is not type I, and hence A〈n〉 is
not special. So A〈n〉 = Pn′(r−1)(n′), and hence A1 := Pkn′,r−1,r−1 ∪ {n} ∈ A∗,
A2 := (A1\l(A1))∪{l(A1)−1} ∈ A∗ (we have l(A2) ≥ 2 because, since l(A1) = kn′,r−1

and kn,r ≥ 3, l(A1) ≥ 3 by Lemma 6.1). Let A′ := Δ2,1(A∗). By Lemma 5.2(iii),
A′〈1〉 and A′(1) are intersecting. By an argument similar to the one for A above,
A′〈1〉 and A′(1) must obey conditions similar to (8) and (9); in particular, A′〈1〉
must be one of P[d1+2,n]

(r−1)(d1 + 2) and P[d1+2,n]
(r−1)(n) (note that, since Pn is

symmetric, A′〈1〉 cannot be isomorphic to a special family, just like A〈n〉 cannot be
special). Suppose A′〈1〉 = P[d1+2,n]

(r−1)(d1 +2). Taking A3 := s−1(A1), we then have
A4 := (A3\{l(A3), l(A3\l(A3))})∪{1, d1+2} ∈ A∗. If l(A1) = d1+2, then A2∩A4 = ∅,
otherwise A1 ∩ A4 = ∅; this is a contradiction. So A′〈1〉 = P[d1+2,n]

(r−1)(n). Since
Pn is symmetric, we can use an argument similar to the one we applied for the case
A〈n〉 = J 〈n〉 to obtain A∗ = Pn

(r)(n).

Case 2: Pn is asymmetric. Note that we therefore have en > 1. As we showed
above, the following are the cases that must be investigated.

Sub-case 2.1: A〈n〉 = Pn′ (r−1)(n′). By (6) and the induction hypothesis, either
Pn′ is symmetric or Pn′(r−1) is type II. So

n′ ∈ Pkn′,r−1,r−1 = skn′,r−1−1(P1,r−1). (12)

Suppose A(n) is special but not Pn−1
(r)(n − 1). By definition, we have kn−1,r =

3, d1 = 1, u(P3,r) = n − 1, and hence u(P1,r+1) = u({1} ∪ P3,r) = n − 1. So
u(P1,r) = (n − 1) − en−1 − 1 ≤ n − en − 1 = n′, where the inequality follows by
Proposition 5.1. Since kn′,r−1 = kn,r ≥ kn−1,r = 3 > d1 + 1 (the first equality is
given by Lemma 6.1), Pn′ (r−1) is not type II. So Pn′ is symmetric, and we thus
have en′ = d1 = 1. Suppose u(P1,r) < n′. Since Pn′ is symmetric, we then have
P2,r = s1(P1,r) and u(P2,r) ≤ n′. So A1 := P2,r−2∪{n′} ∈ A〈n〉. By (1), P1,r ∈ A(n).
Since A1 ∩ P1,r = ∅, (4) gives us n − 1 ∈ P1,r, which contradicts u(P3,r) = n − 1.
So u(P1,r) = n′. Since P3,r−1 = P1,r\{1} and A〈n〉 = Pn′(r−1)(n′), we therefore
have P3,r−1 ∈ A〈n〉, and hence A2 := P3,r−1 ∪ {n} ∈ A∗. Since P3,r = δn−1,n(A2), we
obtain P3,r ∈ A∗ by (3). Now, since A(n) is special, P3,r = s1(P2,r) and, by (1), A3 :=
{1, n − 1} ∪ (P2,r−1\{2}) ∈ A(n). So A2 ∩ A3 = ∅, and hence A4 := δn,n−1(A3) ∈ A∗
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by (4). But then P3,r ∩ A4 = ∅, a contradiction. We therefore conclude that either
A(n) = J (n) or A(n) = Pn−1

(r)(n − 1).

Sub-sub-case 2.1.1: A(n) = J (n). Let A1 := (Pkn′,r−1−1,r−1\{n′ − 1}) ∪ {n′}.
Note that n′ − 1 ∈ Pkn′,r−1−1,r−1 by (12). Since A〈n〉 = Pn′(r−1)(n′), we thus have
A1 ∈ A〈n〉. Suppose kn′,r−1 > 2. Then A2 := (Pkn′,r−1−2,r−1\{kn′,r−1 − 2}) ∪ {1, n −
2} ∈ A(n). By (12), we have Pkn′,r−1−1,r−1 = s1(Pkn′,r−1−2,r−1), and hence A1∩A2 = ∅.
But then (4) gives us n−1 ∈ A2, a contradiction. So kn′,r−1 ≤ 2. By (10), kn′,r−1 = 2.
So u(P2,r−1) = n′ by (12). Thus, A3 := P2,r−1 ∈ A〈n〉 and, by (12), n′−1 = u(P1,r−1).
Suppose dn′−1 < en. Then (n′ − 1) + dn′−1 + 1 ≤ n′ + en − 1 = n − 2, and hence
A4 := P1,r−1 ∪{n− 2} ∈ P (as n′− 1 = u(P1,r−1)). So A4 ∈ A(n). Since (12) implies
that A3∩A4 = ∅, (4) gives us n−1 ∈ A4, a contradiction. So dn′−1 = dn′ = en. Thus,
since u(P1,r−1) = n′−1 and P2,r−1 = s1(P1,r−1) (by (12)), we have P1,r = P1,r−1∪{(n′−
1)+en +1} = P1,r−1∪{n−1}, P2,r = P2,r−1∪{n′ +en +1} = P2,r−1∪{n}, and hence
P2,r = s1(P1,r−1∪{n−1}) = s1(P1,r). So Pn

(r) is type II. Now u(P1,r) = n−1 implies
that A(n) = {P1,r}. Since P2,r−1 ∈ Pn′ (r−1)(n′) = A〈n〉 ⊆ A∗〈n〉 and P1,r∩P2,r−1 = ∅,
it follows by (4) that A∗(n) = ∅ and A∗(n′)(n) = {(P1,r\{n − 1}) ∪ {n}}. So
A∗(n′)(n) = Pn

(r)(n′)(n) as u(P1,r\{n−1}) = u(P1,r−1) = n′−1. Since A(n′)(n−1) =
∅, we have A∗(n′)(n) = A(n′)(n), and hence A∗(n′)(n) = Pn

(r)(n′)(n). Therefore
A∗ = Pn

(r)(n).

Sub-sub-case 2.1.2: A(n) = Pn−1
(r)(n − 1). Suppose dn′ < en. Then A1 :=

Pkn′,r−1,r−1 ∪ {n − 1} ∈ A(n). Recall that A〈n〉 = Pn′ (r−1)(n′). Thus, by (12),
A2 := Pkn′,r−1,r−1∪{n} ∈ A(n), and hence A2 ∈ A∗. Since A1 = δn−1,n(A2), A1 ∈ A∗

by (3). By (10), kn′,r−1 − 1 ≥ 1; so let A3 := Pkn′,r−1−1,r−1 ∪ {n − 1}. We have
A3 ∈ A(n), and A2 ∩ A3 = ∅ since A2 = s1(A3) by (12). So A4 := δn,n−1(A3) ∈ A∗

by (4). But A1 ∩A4 = A2 ∩A3 = ∅, a contradiction. So dn′ = en, which implies that
en−1 ≥ en. By Proposition 5.1, en−1 = en.

Let A ∈ A(n). Since n− 1 ∈ A and (n− 1)− en−1 − 1 = n− en − 2 ≤ n′ − 1, we

have n′ /∈ A and B := A\{n−1} ∈ P(r−1)
n′−1 . Since either Pn′ is symmetric or Pn′ (r−1) is

type II, Lemma 6.2 gives us s1(B) ∈ Pn′ (r−1). So C := (s1(B)\u(s1(B))) ∪ {n′, n} ∈
Pn

(r)(n′)(n). Since Pn
(r)(n′)(n) = A(n) ⊆ A∗(n), C ∈ A∗. Since A ∩ C = ∅, it

follows by (4) that A /∈ A∗ and δn,n−1(A) ∈ A∗(n′)(n). We have therefore shown
that A(n)(n′) = ∅, A∗(n) = ∅ and A∗(n′)(n) = Δn,n−1(A(n)) = Δn,n−1(Pn−1

(r)(n −
1)) = Pn

(r)(n′)(n). Since A(n)(n′) = ∅ implies that A∗(n′)(n) = A(n′)(n), we have
A∗(n′)(n) = Pn

(r)(n′)(n). So A∗ = Pn
(r)(n).

We now show that Pn
(r) is type II. Recall from Section 3 that Pn

(r)(n) is special
only if Pn is symmetric. However, Pn is asymmetric. So Pn

(r)(n) is not special.

Since en−1 = en and Pn is asymmetric, Pn−1 is asymmetric. So Pn−1
(r)(n − 1) is

not special. Since Pn−1
(r)(n − 1) = A(n) ∈ ex(Pn−1

(r)), it follows by the induction
hypothesis that Pn−1

(r) is type II, and hence kn−1,r ≤ d1 + 1. By the induction
hypothesis for A〈n〉 = Pn′(r−1)(n′) ∈ ex(Pn′ (r−1)), either Pn′ (r−1) is type II or Pn′ is
symmetric. If Pn′ (r−1) is type II, then, by definition, kn′,r−1 ≤ d1 + 1. We now show
that this inequality also holds if Pn′ is symmetric.
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Suppose Pn′ is symmetric and kn′,r−1 > d1 + 1. Then {1, n} ∪ Pkn′,r−1,r−1 ∈
P(r+1)

n , and hence r < α(Pn). If either Pn〈1〉 is symmetric or d2 > d1, then
Lemma 6.3 gives us α(Pn) ≤ 3, and hence r ≤ 2; however, we are consider-
ing r ≥ 3. So Pn〈1〉 is asymmetric and d2 = d1. Let A′ := Δ2,1(A∗). By
Lemma 5.2(iii), A′〈1〉 and A′(1) are intersecting. The induction hypothesis gives
us |A′〈1〉| ≤ |Pn〈1〉(r−1)(d1 + 2)| = |Pn

(r)(1)(d1 + 2)|, |A′(1)| ≤ |Pn(1)(r)(2)| =
|Pn

(r)(1)([2, 2 + d2])| ≤ |Pn
(r)(1)([2, d1 + 2])|, and therefore |A′| ≤ |Pn

(r)(1)(d1 +
2)| + |Pn

(r)(1)([2, d1 + 2])| = |Pn
(r)(1)|. Since |A′| = |A| and A ∈ ex(Pn

(r)), it
follows that |A′〈1〉| = |Pn〈1〉(r−1)(d1 + 2)| and |A′(1)| = |Pn(1)(r)(2)|. Since the
induction hypothesis gives us Pn〈1〉(r−1)(d1 + 2) ∈ ex(Pn〈1〉(r−1)), we therefore have
A′〈1〉 ∈ ex(Pn〈1〉(r−1)). Thus, by the induction hypothesis, one of the following holds:
(a) A′〈1〉 = Pn〈1〉(r−1)(d1 + 2), (b) A′〈1〉 = Pn〈1〉(r−1)(n), (c) A′〈1〉 is isomorphic to
a special family. Suppose (a) holds. Then Pd1+2,r−1 ∈ A′〈1〉, and hence P1,r ∈ A′(1).
So P1,r ∈ A∗ as A′(1) ⊂ A∗; but this clearly contradicts A∗ = Pn

(r)(n) and (11).
Suppose (c) holds. Since Pn〈1〉 is asymmetric, (1) then gives us Pd1+2,r−1 ∈ A′〈1〉;
but, as we have just shown, this leads to a contradiction. So (b) holds. Since P〈1〉
is asymmetric, it follows by the induction hypothesis that Pn〈1〉(r−1) is isomorphic
to a type II family, and hence, by definition of a type II family, we must have
r − 1 = α(Pn〈1〉); but this clearly contradicts r < α(Pn).

Therefore, as we claimed earlier, kn′,r−1 ≤ d1 +1. So kn,r ≤ d1 +1 by Lemma 6.1.
Now, since Pn−1

(r) is type II, n − 1 ∈ Pkn−1,r ,r = skn−1,r−1(P1,r). Since en−1 = en,
it follows that n′ − 1 = (n − 1) − en−1 − 1 ∈ Pkn−1,r ,r−1 = skn−1,r−1(P1,r−1). Since

either Pn′ (r−1) is type II or Pn′ is symmetric, n′ ∈ Pkn′,r−1,r−1 = skn′,r−1−1(P1,r−1).
So Pkn′,r−1,r−1 = s1(Pkn−1,r ,r−1) and kn−1,r = kn′,r−1 − 1. Since dn′ = en, we have
n′+dn′ +1 = n, and hence Pkn,r,r = Pkn′,r−1,r−1∪{n} as n′ = u(Pkn′,r−1,r−1). Bringing
together the relations we have just established, we get

Pkn,r,r = s1(Pkn−1,r ,r−1) ∪ {n} = s1(Pkn−1,r ,r−1 ∪ {n − 1}) = s1(Pkn−1,r,r)

= s1(skn−1,r−1(P1,r)) = skn−1,r(P1,r) = skn′,r−1−1(P1,r).

Together with Lemma 6.1, this gives us Pkn,r ,r = skn,r−1(P1,r). Since we also estab-

lished that kn,r ≤ d1 + 1 and n ∈ Pkn,r,r, Pn
(r) is type II.

Sub-case 2.2: A〈n〉 is special and A〈n〉 �= Pn′ (r−1)(n′). By (6) and the induction
hypothesis, Pn′ (r−1) is type I. So n′ ∈ P3,r−1 = s1(P2,r−1) and, by (1), P1,r−1, P3,r−1 ∈
A〈n〉. Taking Q1 := P1,r−1∪{n} and Q3 := P3,r−1∪{n}, we then have Q1, Q3 ∈ A∗(n)
(as A〈n〉 ⊆ A∗〈n〉).

Suppose A(n) = Pn−1
(r)(n − 1). So A1 := s−1(Q3) = P2,r−1 ∪ {n − 1} ∈ A(n)

and A2 := P1,r−1 ∪ {n − 1} ∈ A(n). Since A2 = δn−1,n(Q1), it follows by (3) that
A2 ∈ A∗. Since A1 ∩ Q3 = ∅, we have A3 := P2,r−1 ∪ {n} ∈ A∗ by (4). Now, by (7)
and the induction hypothesis, we should have that either Pn−1

(r) is type II or Pn−1

is symmetric, and hence P2,r = s1(P1,r); but then A2 ∩ A3 = ∅, a contradiction. So
A(n) �= Pn−1

(r)(n − 1).

Next, suppose A(n) is special. Let A1 := s1(P2,r) and A2 := {1, n − 1} ∪
(P2,r−1\{2}). Then A1 = P3,r = P3,r−1 ∪ {n − 1} ∈ A(n) and, by (1), A2 ∈ A(n).
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Since A1 = δn−1,n(Q3), (3) gives us A1 ∈ A∗. Since A2 ∩ Q3 = A2 ∩ δn,n−1(A1) = ∅,
(4) gives us A3 := δn,n−1(A2) ∈ A∗. But A1 ∩ A3 = ∅, a contradiction.

Therefore, A(n) = J (n). Suppose dn′−1 < en. Then (n′ − 1) + dn′−1 + 1 ≤
n′ + en − 1 = n − 2. Now n′ − 1 ∈ P2,r−1 as n′ ∈ P3,r−1 = s1(P2,r−1). Taking
A1 := {1, n − 2} ∪ (P2,r−1\{2}), we thus get A1 ∈ A(n) ∩ A∗. However, since
Q3 � n′ ≤ n− 2− dn′−1 ≤ n− 3 implies that n− 2 /∈ Q3, we also get A1 ∩Q3 = ∅, a
contradiction. So dn′−1 = en, and hence dn′−1 = dn′ = en (as dn′ ≤ en). Thus, since
u(P2,r−1) = n′−1 and u(P3,r−1) = n′, u(P2,r) = (n′−1)+dn′−1 +1 = n′ + en = n−1
and similarly u(P3,r) = n. So P3,r = P3,r−1 ∪ {n} = s1(P2,r−1 ∪ {n − 1}) = s1(P2,r).
Since Pn′ (r−1) is type I, d1 = d3 = 1. Since Pn is asymmetric, we therefore have
en > 1, and hence, since dn′−1 = en, m := max{a ∈ [n] : da = 1} ≤ n′ − 2. Thus,
since Pn′(r−1) is type I, m = 2t+1 for some t ∈ [r−1] (note that if Pn′ is symmetric,
then n′ = 2(r− 1) + 1, dn′−2 = d1, and hence m = n′ − 2 = 2(r − 2) + 1). So Pn

(r) is
type I.

It remains to show that A∗ is special. Let A1, . . . , At, B1, . . . , Bt be as in the def-
inition of a special family with y = n in Section 3. Since n ∈ P3,r = P3,t∪Pm+2,r−t =
s1(P2,r) = s1(P2,t ∪ Pm+1,r−t), we have n ∈ Pm+2,r−t = s1(Pm+1,r−t), and hence, for
each i ∈ [t], n ∈ Ai and n − 1 ∈ Pm+1,r−t ⊂ Bi. For each i ∈ [t], let A′

i := Ai\{n},
B′

i := Bi\{n − 1}, B′′
i := B′

i ∪ {n}. Since t ∈ [r − 1], r ≥ t + 1. If r = t + 1,
then Pm+2,r−t = Pm+2,1 = {m + 2}, and hence n = m + 2; however, this contradicts
m ≤ n′ − 2 < n− 2. So r ≥ t + 2. Thus Pm+2,r−t−1 �= ∅ and Pm+1,r−t−1 �= ∅. Clearly,
for each i ∈ [t], A′

i = (Ai\Pm+2,r−t)∪Pm+2,r−t−1 and B′
i = (Bi\Pm+1,r−t)∪Pm+1,r−t−1

(recall that Pm+1,r−t ⊂ Bi). Therefore, since A〈n〉 is special and A〈n〉 �= Pn′ (r−1)(n′),
A〈n〉 = {A′

1, . . . , A
′
q} ∪ (Pn′ (r−1)(1)\{B′

1, . . . , B
′
q}) for some q ∈ [t] (note that if Pn′

is symmetric, then, since Pn′ (r−1) is type I, we have n′ = 2(r − 1) + 1, t = r − 2, and
hence A〈n〉 = {A′

1, . . . , A
′
h}∪(Pn′ (r−1)(1)\{B′

1, . . . , B
′
h}) for some h ∈ [t+1] = [r−1],

where A′
t+1 = {2j : j ∈ [r − 2]} ∪ {n′} and B′

t+1 = P1,r−1; however, if h = t + 1,

then A〈n〉 = Pn′(r−1)(n′), a contradiction). So A∗
1 := A(n) = {A1, . . . , Aq} ∪

(Pn
(r)(1)(n)\{B′′

1 , . . . , B
′′
q }). Since A(n) ⊆ A∗(n), A∗

1 ⊆ A∗. Now, we also have

A(n) = J (n) = Pn−1
(r)(1). So A∗

2 := Pn−1
(r)(1)(n − 1) = A(n)(n − 1) ⊂ A∗. Fi-

nally, consider A ∈ A(n)(n−1) = Pn−1
(r)(1)(n−1). If A = Bi for some i ∈ [q], then,

since Ai∩Bi = ∅ and Ai ∈ A∗
1, we must have A /∈ A∗ and (A\{n−1})∪{n} ∈ A∗. If

A /∈ {B1, . . . , Bq}, then (A\{n − 1}) ∪ {n} ∈ A∗
1, and hence A ∈ A∗ by (3). Setting

A∗
3 := A∗\(A∗

1 ∪ A∗
2), we therefore have A∗

3 = (Pn−1
(r)(1)(n − 1)\{B1, . . . , Bq}) ∪

{B′′
1 , . . . , B′′

q }. So A∗ = A∗
1 ∪ A∗

2 ∪ A∗
3 = {A1, . . . , Aq} ∪ (Pn

(r)(1)\{B1, . . . , Bq}). So
A∗ is special. �

7 The case d1 = 0

This section is dedicated to the proof of Theorem 3.3. We start with a lemma con-
cerning sets in hereditary families. A family F is said to be a hereditary family (also
called an ideal, a downset, and an abstract simplicial complex ) if for each member
F of F , all the subsets of F are members of F . Clearly, for any X ⊆ N, PX is a
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hereditary family.

Lemma 7.1 Let F be a hereditary family with α(F) ≥ 1. If there exist F1, F2 ∈ F
such that F1 ∩ F2 = ∅ and |F1| = |F2| = α(F), then for every non-empty F ∈ F
there exists F ′ ∈ F such that F ∩ F ′ = ∅ and |F | + |F ′| > α(F).

Proof. Let F ∈ F , F �= ∅. If F ⊆ F1, then the result follows immediately by taking
F ′ ∈ (

F2

α(F)+1−|F |
)
. If F � F1, then |F1\F | ≥ |F1| − (|F | − 1) = α(F ) + 1 − |F |, and

hence the result follows by taking F ′ ∈ (
F1\F

α(F)+1−|F |
)
. �

The converse of this result is not true; to see this, take F to be 2[n+1]\{[n + 1]}.
Also, the conditions on F1 and F2 are sharp; by considering F = 2F1 ∪ 2F2 and
F = {x}, it is easy to see that we can neither allow F1 and F2 to have a non-empty
intersection nor allow F1 or F2 to be of size less than α(F).

Lemma 7.2 If d1 > 0, α(Pn) ≥ 3 and n ∈ P1,α(Pn), then for any non-empty A ∈
Pn(2) there exists A′ ∈ Pn(2) such that A ∩ A′ = ∅ and |A| + |A′| ≥ α(Pn).

Proof. Let 1 = p1 < p2 < · · · < pα(Pn) such that P1,α(Pn) = {p1, . . . , pα(Pn)}. We
have Pn〈2〉 ⊂ 2[a,n], where a := 2 + d2 + 1. Let a =: q1 < · · · < qα(Pn)−2 such that
Pa,α(Pn)−2 = {q1, . . . , qα(Pn)−2}. So

p2 = 1 + d1 + 1 < 2 + d2 + 1 = q1 < p2 + dp2 + 1 = p3, (13)

and if α(Pn) ≥ 4, then, proceeding inductively, we also get

pi = pi−1 + dpi−1
+ 1 < qi−2 + dqi−2

+ 1 = qi−1 < pi + dpi
+ 1 = pi+1, (14)

i = 3, . . . , α(Pn) − 1. Let F1 := Pp3,α(Pn)−2 = P\{p1, p2}, F2 := Pa,α(Pn)−2. By (13)
and (14), F1, F2 ∈ Pn〈2〉 and F1 ∩ F2 = ∅. Since |F1| = α(Pn) − 2, α(Pn〈2〉) ≥
α(Pn) − 2 ≥ 1. By definition of a, Pa,α(Pn〈2〉) ∈ Pn〈2〉 (for the same reason that
P1,α(Pn) ∈ Pn, being that {di}i∈N is mnd). So u(Pa,α(Pn〈2〉)) ≤ n. Now n = pα(Pn) as
we are given that n ∈ P1,α(Pn).

Suppose α(Pn〈2〉) > α(Pn) − 2. Then qα(Pn)−2 ∈ Pa,α(Pn〈2〉)\{u(Pa,α(Pn〈2〉))}.
Together with (13) and (14), this gives us u(Pa,α(Pn〈2〉)) ≥ qα(Pn)−2 + dqα(Pn)−2

+ 1 >
pα(Pn), contradicting u(Pa,α(Pn〈2〉)) ≤ n = pα(Pn). So α(Pn〈2〉) = α(Pn) − 2 = |F1| =
|F2|.

Let ∅ �= A ∈ Pn(2). Suppose A ∈ Pn〈2〉. By Lemma 7.1, there exists A′′ ∈ Pn〈2〉
such that A ∩ A′′ = ∅ and |A| + |A′′| ≥ α(Pn〈2〉) + 1 = α(Pn) − 1. Hence A′ :=
A′′ ∪ {2} ∈ Pn(2), A ∩ A′ = ∅ and |A| + |A′| ≥ α(Pn). Now suppose A /∈ Pn〈2〉. We
have A∗ := A ∩ [a, n] ∈ Pn〈2〉 ∪ {∅}. If A∗ �= ∅, then we apply the argument above
to get |A∗| + |A′| ≥ α(Pn) for some A′ ∈ Pn(2) such that A∗ ∩ A′ = ∅, and clearly
this yields the result. Suppose A∗ = ∅. Let A′ := F1 ∪ {2}. So A ∩ A′ = ∅ and
|A| + |A′| ≥ 1 + (α(Pn) − 1) = α(Pn). �

In the proof of Theorem 3.3, we will use the following slightly improved version
[2] of a result of Hilton [13] for cross-intersecting families.
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Theorem 7.3 ([13, 2]) Let r ≤ n/2 and k ≥ 2. Let A1, . . . ,Ak be cross-intersect-
ing subfamilies of

(
[n]
r

)
. Then

k∑
i=1

|Ai| ≤
{ (

n
r

)
if k ≤ n

r
;

k
(

n−1
r−1

)
if k ≥ n

r
.

Moreover, if equality holds and (k, n
r
) �= (2, 2), then one of the following holds:

(i) k > n/r and A1 = · · · = Ak ∈ ex(
(
[n]
r

)
);

(ii) k < n/r, Aj =
(
[n]
r

)
for some j ∈ [k], and Ai = ∅ for each i ∈ [k]\{j};

(iii) k = n/r and A1, . . . ,Ak are as in (i) or (ii).

For p, q ∈ N, let Δp,q : 2P → 2P be defined as in Section 4.

Proof of Theorem 3.3. We start with (i), for which we have d2r−2 = 0 and
d2r−1 = n − 2r. Note that r ≥ 2 since d1 = 0 < dm = d2r−1. We first consider
A ∈ ex(Pn

(r)) and prove the necessary condition. Let B := Pn
(r)(1). Let A0 =

A ∩ (
[2r−2]

r

)
, A2 := A(2r − 1)(n) and A1,i := A(i)\A2, i = 2r − 1, . . . , n. Define B0,

B2, and B1,i similarly. Note that since (2r − 1) + d2r−1 + 1 = n (and di ≥ d2r−1 for
all i ≥ 2r), if A ∈ A and |A ∩ [2r − 1, n]| > 1, then A ∩ [2r − 1, n] = {2r − 1, n}. So
A0 ∪ A2 ∪

⋃n
i=2r−1 A1,i is a partition for A. Let A′

2 := A〈2r − 1〉〈n〉 ⊆ (
[2r−2]
r−2

)
and

A′
1,i := A〈i〉∩(

[2r−2]
r−1

)
= A1,i〈i〉, i = 2r−1, . . . , n. Define B′

2 and B′
1,i (i = 2r−1, . . . , n)

similarly. So

|A| = |A0| + |A′
2| +

n∑
i=2r−1

|A′
1,i|, |B| = |B0| + |B′

2| +
n∑

i=2r−1

|B′
1,i| (15)

Clearly, A0 and A′
2 must be cross-intersecting. So

|{A, [2r − 2]\A} ∩ (A0 ∪ A′
2)| ≤ 1 for all A ∈

(
[2r − 2]

r − 2

)
∪

(
[2r − 2]

r

)
, (16)

and hence

|A0| + |A′
2| ≤

(
2r − 2

r

)
= |B0| + |B′

2|. (17)

Let us now consider A′
1,i, i = 2r − 1, . . . , n. These families must also be cross-

intersecting. Thus, by Theorem 7.3, we have

n∑
i=2r−1

|A′
1,i| ≤ (n − 2r + 2)

(
2r − 3

r − 2

)
=

n∑
i=2r−1

|B′
1,i|. (18)

By (15), (17) and (18), we have |A| ≤ |B|. Thus, since A ∈ ex(Pn
(r)), we actually

have |A| = |B|. It follows that the inequalities in (17) and (18) are actually equalities.
By Theorem 7.3 and the EKR Theorem, an equality in (18) yields A′

1,2r−1 = · · · =

A′
1,n ∈ ex(

(
[2r−2]
r−1

)
); hence (b).
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Since dn−1 > 0 and 2r ≤ α(Pn), n ≥ 2r + 1. So the sets of A1,2r do not intersect
with those of A2 on [2r − 1, n], and hence A′

1,2r and A′
2 are cross-intersecting. By

the equalities in (b), (c) follows.

Since we established equality in (17), we also have equality in (16), which implies
that A0 =

(
[2r−2]

r

)\{[2r − 2]\A : A ∈ A′
2}. Thus, to obtain (a), it remains to show

that A′
2 is intersecting. Suppose there exist A1, A2 ∈ A′

2 such that A1 ∩ A2 = ∅. So
[2r − 2]\(A1 ∪A2) = {x, y} for some distinct x, y ∈ [2r − 2]. Let A3 := A1 ∪ {x} and
A4 := A2 ∪ {y}. So A3 ∩ A2 = ∅ and A4 ∩ A1 = ∅. Since A′

1,2r and A′
2 are cross-

intersecting (see above), we therefore get A3, A4 /∈ A′
1,2r. Since A4 = [2r − 2]\A3,

this implies that A′
1,2r /∈ ex(

(
[2r−2]
r−1

)
) (see Theorem 1.1(ii)), a contradiction to (b). So

A′
2 is intersecting. Hence (a).

We now prove the sufficiency condition in (i). So let A be a subfamily of Pn
(r)

that obeys (a), (b) and (c). Define A0, A2 and A1,i, i = 2r − 1, . . . , n, as above. As
we showed above, A0 ∪A2 ∪

⋃n
i=2r−1 A1,i is a partition for A. By definition, A0, A2,

A1,2r−1, . . . ,A1,n are intersecting. By (a), A0 ∪ A2 is intersecting. By (b) and (c),
A2 ∪

⋃n
i=2r−1 A1,i is intersecting. If A ∈ ⋃n

i=2r−1 A1,i, then |A∩ [2r− 2]| = r− 1, and

hence A intersects each set in
(
[2r−2]

r

)
; so A0 and

⋃n
i=2r−1 A1,i are cross-intersecting.

Therefore, A is intersecting. Now, it is immediate from (a), (b) and (c) that the
bounds in (17) and (18) are attained. So A ∈ ex(Pn

(r)).

We now prove (ii) and (iii) by induction on n. The case r = 1 is trivial, so
we assume that r ≥ 2. We first consider A∗ ∈ ex(Pn

(r)) and prove the neces-
sary conditions for A∗. Unlike we did in the Proof of Theorem 3.1, we do not
use Δn−1,n because if α(Pn)/2 = r > α(Pn−1)/2 (which is possible), then we can-
not apply the induction hypothesis. Instead, we work with A := Δm,m+1(A∗).
By Lemma 5.2(ii), A(m + 1) ∪ A〈m + 1〉 is intersecting. We have A(m + 1) ⊂
Pn

(r)(m + 1) = Pn(m + 1)(r) and A〈m + 1〉 ⊂ Pn
(r)〈m + 1〉 = Pn〈m + 1〉(r′′), where

r′′ = r − 1. Since m, m + dm + 1 ∈ P1,α(Pn) ∈ Pn, we have α(Pn) = α(Pn(m + 1))
and

r′′ ≤ (α(Pn) − 2)/2 = α(Pn〈m〉〈m + dm + 1〉)/2 ≤ α(Pn〈m + 1〉)/2. (19)

Observe that Pn(m + 1) and Pn〈m + 1〉 are isomorphic to Pn′({d′
i}i∈N) and

Pn′′({d′′
i }i∈N), respectively, where n′ = n − 1, n′′ = max{m − 1, n − dm+1 − 2},

and {d′
i}i∈N and {d′′

i }i∈N are mnd sequences given by

d′
i :=

⎧⎨
⎩

di = 0 if i ∈ [m − 1];
dm − 1 if i = m;
di+1 if i ∈ N\[m],

and d′′
i :=

{
di = 0 if i ∈ [m − 1];
di+dm+1+2 if i ∈ N\[m − 1].

Therefore, we can apply the induction hypothesis or Theorem 1.1 to each of A(m + 1)
and A〈m + 1〉 to get

|A(m + 1)| ≤ |Pn
(r)(m + 1)(1)|, |A〈m + 1〉| ≤ |Pn

(r)〈m + 1〉(1)|, (20)

and hence |A| ≤ |Pn
(r)(1)|. Since |A| = |A∗| and A∗ ∈ ex(Pn

(r)), A ∈ ex(Pn
(r)). So

we actually have equalities in (20), and hence

A(m + 1) ∈ ex(Pn
(r)(m + 1)), A〈m + 1〉 ∈ ex(Pn

(r)〈m + 1〉). (21)
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Claim 7.4 Suppose a ∈ [m] and A(m + 1) = Pn
(r)(m + 1)(a). Then a ∈ [m − 1]

and A = Pn
(r)(a).

Proof. Suppose A(m + 1) = Pn
(r)(m + 1)(a), a ∈ [m]. Then, since a ∈ P1,α(Pn) ∈

Pn and r ≤ α(Pn)/2, for any A ∈ Pn
(r)〈m + 1〉(a) there exists A′ ∈ A(m + 1)

such that A ∩ A′ = ∅. Since A(m + 1) ∪ A〈m + 1〉 is intersecting, it follows that
A〈m + 1〉 ⊆ Pn

(r)〈m + 1〉(a). So A = Pn
(r)(a) as A ∈ ex(Pn

(r)). If a = m, then
A〈m + 1〉 = ∅, and hence |A| = |Pn

(r)(m + 1)(a)| ≤ |Pn
(r)(m + 1)(1)| < |Pn

(r)(1)|,
contradicting A ∈ ex(Pn

(r)). �

Claim 7.5 Suppose n ∈ P1,2r and m ≤ 2r − 2. Let j ∈ [m − 1]. Let A ∈
Pn

(r)(j)(m + 1) such that A ∩ [m, n] �= ∅. Then there exists A′ ∈ Pn
(r)(j)(m + 1)

such that A ∩ A′ = ∅.

Proof. Let Q := Pn ∩ 2[m,n]. So Q is isomorphic to Pn−(m−1)({di+m−1}i∈N). Clearly,
n ∈ P1,2r implies that n ∈ Pm,α(Q) and α(Pn) = 2r. Since m ≤ 2r − 2 and α(Q) =
α(Pn) − (m − 1) = 2r − (m − 1), α(Q) ≥ 2r − (2r − 3) = 3. Let B := A ∩ [m, n] ∈
Q(m + 1). By the given conditions on A, B �= ∅. Thus, by Lemma 7.2, there exists
B′ ∈ Q(m+1) such that B∩B′ = ∅ and |B|+|B′| = α(Q). Let A′ := B′∪([m−1]\A).
So |A′| = |B′|+|[m−1]\A| = (α(Q)−|B|)+((m−1)−(r−|B|)) = α(Q)+m−1−r = r.
Since j /∈ A, j ∈ A′. The truth of the claim is now clear. �

Note that P1,2r ∈ Pn since 2r ≤ α(Pn).

Consider first n /∈ P1,2r. Since m ∈ P1,2r, m+1 /∈ P1,2r. So P1,2r ∈ Pn(m + 1)(n).
By (21) and the induction hypothesis, it follows that A(m + 1) = Pn

(r)(m + 1)(j)
for some j ∈ [m] (note that if dm = 1, then d′

m = 0 and d′
m+1 > 0). By Claim 7.4,

A = Pn
(r)(j) and j ∈ [m − 1].

Now consider n ∈ P1,2r and m ≤ 2r−2. We have P1,2r = [m−1]∪Pm,α(Q), where
Q is as in the Proof of Claim 7.5, and hence α(Q) ≥ 3. Let m =: p1 < p2 < · · · <
pα(Q) := n such that Pm,α(Q) = {p1, . . . , pα(Q)}. Let m′′ := (m + 1) + dm+1 + 1. Let
m′′ =: q1 < · · · < qα(Q)−2 such that Pm′′,α(Q)−2 = {q1, . . . , qα(Q)−2}. Similarly to (13)
and (14), we have

p2 = m + dm + 1 < (m + 1) + dm+1 + 1 = q1 < p2 + dp2 + 1 = p3, (22)

and if α(Q) ≥ 4, then

pi = pi−1 + dpi−1
+ 1 < qi−2 + dqi−2

+ 1 = qi−1 < p2 + dp2 + 1 = pi+1, (23)

i = 3, . . . , α(Q) − 1. Let P ′′
1,2r′′ := {p′′1, . . . , p′′2r′′} ∈ P({d′′

i }i∈N), where p′′1 := 1 and
p′′l+1 := p′′l + d′′

p′′l
+ 1, l = 1, . . . , 2r′′ − 1. Clearly, p′′j = j, j = 1, . . . , m − 1, and

p′′l = ql−m+1−dm+1 −2, l = m, . . . , 2r′′. Note that 2r′′ = 2r−2 = (m−1)+α(Q)−2
(as P1,2r = [m − 1] ∪ Pm,α(Q)). Now, by (22) and (23), qα(Q)−2 < pα(Q). So we
have p′′2r′′ = p′′m+α(Q)−3 = qα(Q)−2 − dm+1 − 2 < n − dm+1 − 2 = n′′. By the induction

hypothesis, it follows that A〈m+1〉 = Pn
(r)〈m+1〉(j) for some j ∈ [m−1]. Therefore,

A(m + 1) = Pn
(r)(m + 1)(j). (24)
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Let H0 ∪H1 ∪H2 be the partition of A(m + 1) given by H0 := A(m + 1) ∩ (
[m−1]

r

)
,

H1 := {A ∈ A(m + 1): Pm,α(Q) ⊆ A} and H2 := A(m + 1)\(H0 ∪ H1). Define a

partition I0 ∪ I1 ∪ I2 of Pn
(r)(m + 1)(j) similarly. Since A is intersecting, it follows

by (24) and Claim 7.5 that

H1 ⊆ I1 and H2 ⊆ I2. (25)

Suppose m ≤ r + 1. If m < r + 1, then H0 = ∅. If m = r + 1, then H0 =
{[m−1]} ∈ Pn

(r)(m + 1)(j). Together with (24) and (25), this gives us A ⊆ Pn
(r)(j).

Since A ∈ ex(Pn
(r)), A = Pn

(r)(j).

Now suppose m ≥ r+2. If A ∈ H0\I0, then P1,2r\A ∈ I1\H1. Thus, |H0|+|H1| ≤
|I0|+ |I1| as H1 ⊆ I1 (by (25)). By (20), (21) and (25), it follows that H2 = I2 and
|H0|+ |H1| = |I0|+ |I1|. We now prove that A = (Pn

(r)(j)\{P1,2r\A : A ∈ H0})∪H0

by showing that for any A ∈ (
[m−1]

r

)
, P1,2r\A is the unique set in Pn

(r) that does

not intersect A. Indeed, let A′ ∈ Pn
(r) such that A ∩ A′ = ∅. Then A′ = A′

1 ∪ A′
2

for some A′
1 ⊆ [m − 1]\A and A′

2 ∈ Q. Suppose that either A′
1 �= [m − 1]\A or

|A′
2| < α(Q) (= 2r−m+1); then |A′| < (m−1−r)+(2r−m+1) = r, a contradiction.

So A′
1 = [m − 1]\A and |A′

2| = α(Q). Clearly, since n ∈ Pm,α(Q) = P1,2r\[m − 1],
Pm,α(Q) is the only set in Q of size α(Q). So A′

2 = Pm,α(Q), and hence A′ = P1,2r\A.

We conclude the proof of the necessary conditions in (ii) and (iii) by showing
that A∗ = A. Suppose A∗ �= A. Then there exists A∗ ∈ A∗\A such that A :=
δm,m+1(A

∗) ∈ A\A∗. Now we have shown that for some j ∈ [m − 1] and H0 ⊆(
[m−1]\{j}

r

)
, A = (Pn

(r)(j)\{P1,2r\A : A ∈ H0})∪H0 (where H0 = ∅ if either n /∈ P1,2r

or m ≤ r + 1). Thus, since m ∈ A, A ∈ Pn
(r)(j)(m). So A∗ ∈ Pn

(r)(j)(m + 1)\A,
but this is a contradiction because, since m + 1 /∈ P1,2r, Pn

(r)(j)(m + 1) ⊂ A.

It remains to prove the sufficiency conditions in (ii) and (iii). We have shown
that for any intersecting family A ⊂ Pn

(r), |A| ≤ |Pn
(r)(1)|. This already proves the

sufficiency condition in (iii) because for any j ∈ [2, m − 1], Pn
(r)(j) is isomorphic

to Pn
(r)(1). Therefore, the sufficiency condition in (ii) follows from the already

established fact that if n ∈ P1,2r, r + 2 ≤ m ≤ 2r − 2 and A ∈ (
[m−1]

r

)
, then P1,r\A

is the unique set in Pn
(r) that does not intersect A. �

8 The remaining problem

Since Pn =
⋃α(Pn)

r=1 Pn
(r), it is immediate from Theorem 3.1 that

ex(Pn) = {Pn(1)} if d1 > 0.

As noted in [10], 2[n](1) ∈ ex(2[n]) holds because for any A ∈ ex(2[n]), [n]\A /∈ A for
all A ∈ A. Now Pn = 2[n] if di = 0 for all i ∈ [n − 1]. By an inductive argument
similar to the one used in Theorem 3.3 for showing that Pn

(r)(1) ∈ ex(Pn
(r)), we

therefore obtain that
Pn(1) ∈ ex(Pn) if d1 = 0.
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For the case d1 = 0 and α(Pn)/2 < r < α(Pn), investigating the nature of families
in ex(Pn

(r)) seems to be a daunting task; recall from Section 1 that in this case we
may have Pn

(r)(1) /∈ ex(Pn
(r)) in this case. An achievable target, though, might be

to determine a list of families such that ex(Pn
(r)) must contain a family in the list.

An example of an accomplishment of this kind is [1, Theorem 6], and it may well be
that the extremal structures for our remaining problem are similar to those in that
result.
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[9] M. Deza and P. Frankl, The Erdős-Ko-Rado theorem – 22 years later, SIAM J. Alge-
braic Discrete Methods 4 (1983), 419–431.
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