The maximum product of sizes of cross- t-intersecting uniform families

Peter Borg
Department of Mathematics
University of Malta
Malta
peter. borg@um.edu.mt

Abstract

We verify a conjecture of Hirschorn concerning the maximum product of sizes of cross- t-intersecting uniform families. We say that a set A t-intersects a set B if A and B have at least t common elements. Two families \mathcal{A} and \mathcal{B} of sets are said to be cross-t-intersecting if each set in \mathcal{A} t-intersects each set in \mathcal{B}. For any positive integers n and r, let $\binom{[n]}{r}$ denote the family of all r-element subsets of $\{1,2, \ldots, n\}$. We prove that for any integers r, s and t with $1 \leq t \leq r \leq s$, there exists an integer $n_{0}(r, s, t)$ such that for any integer $n \geq n_{0}(r, s, t)$, if $\mathcal{A} \subseteq\binom{[n]}{r}$ and $\mathcal{B} \subseteq\binom{[n]}{s}$ such that \mathcal{A} and \mathcal{B} are cross- t-intersecting, then $|\mathcal{A}||\mathcal{B}| \leq\binom{ n-t}{r-t}\binom{n-t}{s-t}$, and equality holds if and only if for some $T \in\binom{[n]}{t}, \mathcal{A}=\left\{A \in\binom{[n]}{r}: T \subseteq A\right\}$ and $\mathcal{B}=\left\{B \in\binom{[n]}{s}: T \subseteq B\right\}$.

1 Introduction

Unless otherwise stated, we will use small letters such as x to denote positive integers or elements of a set, capital letters such as X to denote sets, and calligraphic letters such as \mathcal{F} to denote families (that is, sets whose elements are sets themselves). Arbitrary sets and families are taken to be finite and may be the empty set \emptyset. An r-set is a set of size r, that is, a set having exactly r elements. For any $n \geq 1,[n]$ denotes the set $\{1, \ldots, n\}$ of the first n positive integers. For any set $X,\binom{X}{r}$ denotes the family $\{A \subseteq X:|A|=r\}$ of all r-subsets of X. For any family \mathcal{F}, we denote the family $\{F \in \mathcal{F}:|F|=r\}$ by $\mathcal{F}^{(r)}$, and for any t-set T, we denote the family $\{F \in \mathcal{F}: T \subseteq F\}$ by $\mathcal{F}[T]$, and we call $\mathcal{F}[T]$ a t-star of \mathcal{F} if $\mathcal{F}[T] \neq \emptyset$.

Given an integer $t \geq 1$, we say that a set A t-intersects a set B if A and B have at least t common elements. A family \mathcal{A} is said to be t-intersecting if each set in \mathcal{A} t-intersects all the other sets in \mathcal{A} (i.e. $|A \cap B| \geq t$ for every $A, B \in \mathcal{A}$ with $A \neq B$). A 1-intersecting family is also simply called an intersecting family. Note that t-stars are t-intersecting families.

Families $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ are said to be cross-t-intersecting if for every $i, j \in[k]$ with $i \neq j$, each set in $\mathcal{A}_{i} t$-intersects each set in \mathcal{A}_{j} (i.e. $|A \cap B| \geq t$ for every $A \in \mathcal{A}_{i}$ and every $B \in \mathcal{A}_{j}$). Cross-1-intersecting families are also simply called cross-intersecting families.

The study of intersecting families originated in [13], which features the classical result that says that if $r \leq n / 2$, then the size of a largest intersecting subfamily of $\binom{[n]}{r}$ is the size $\binom{n-1}{r-1}$ of every 1-star of $\binom{[n]}{r}$. This result is known as the Erdős-Ko-Rado (EKR) Theorem. There are various proofs of this theorem (see [11, 19, 21, 23]), two of which are particularly short and beautiful: Katona's [21], introducing the elegant cycle method, and Daykin's [11], using the powerful Kruskal-Katona Theorem [22, 25]. Also in [13], Erdős, Ko and Rado proved that for $t \leq r$, there exists an integer $n_{0}(r, t)$ such that for any $n \geq n_{0}(r, t)$, the size of a largest t-intersecting subfamily of $\binom{[n]}{r}$ is the size $\binom{n-t}{r-t}$ of every t-star of $\binom{[n]}{r}$. Frankl [15] showed that for $t \geq 15$, the smallest such $n_{0}(r, t)$ is $(r-t+1)(t+1)$. Subsequently, Wilson [32] proved this for all $t \geq 1$. Frankl [15] conjectured that the size of a largest t-intersecting subfamily of $\binom{[n]}{r}$ is $\max \left\{\left|\left\{A \in\binom{[n]}{r}:|A \cap[t+2 i]| \geq t+i\right\}\right|: i \in\{0\} \cup[r-t]\right\}$. A remarkable proof of this conjecture together with a complete characterisation of the extremal structures was obtained by Ahlswede and Khachatrian [1]. The t-intersection problem for $2^{[n]}$ was completely solved in [23]. These are prominent results in extremal set theory. The EKR Theorem inspired a wealth of results of this kind, that is, results that establish how large a system of sets can be under certain intersection conditions; see $[8,12,14,16]$.

For t-intersecting subfamilies of a given family \mathcal{F}, the natural question to ask is how large they can be. For cross- t-intersecting families, two natural parameters arise: the sum and the product of sizes of the cross- t-intersecting families (note that the product of sizes of k families $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ is the number of k-tuples $\left(A_{1}, \ldots, A_{k}\right)$ such that $A_{i} \in \mathcal{A}_{i}$ for each $i \in[k]$). It is therefore natural to consider the problem of maximising the sum or the product of sizes of k cross- t-intersecting subfamilies (not necessarily distinct or non-empty) of a given family \mathcal{F}. The paper [9] analyses this problem in general and reduces it to the t-intersection problem for k sufficiently large. In this paper we are concerned with the family $\binom{[n]}{r}$. We point out that the maximum product problem for $2^{[n]}$ and $k=2$ is solved in [26], and the maximum sum problem for $2^{[n]}$ and any k is solved in [9] via the results in [23, 24, 31].

Wang and Zhang [31] solved the maximum sum problem for $\binom{[n]}{r}$ using an elegant combination of the method in $[3,4,5,6]$ and an important lemma that is found in $[2,10]$ and referred to as the 'no-homomorphism lemma'. The solution for the case $t=1$ had been obtained by Hilton [18] and is the first result of this kind.

The maximum product problem for $\binom{[n]}{r}$ was first addressed by Pyber [28], who proved that for any r, s and n such that either $r=s \leq n / 2$ or $r<s$ and $n \geq$ $2 s+r-2$, if $\mathcal{A} \subseteq\binom{[n]}{r}$ and $\mathcal{B} \subseteq\binom{[n]}{s}$ such that \mathcal{A} and \mathcal{B} are cross-intersecting, then $|\mathcal{A}||\mathcal{B}| \leq\binom{ n-1}{r-1}\binom{n-1}{s-1}$. Subsequently, Matsumoto and Tokushige [27] proved this for any $r \leq s \leq n / 2$, and they also determined the optimal structures. This brings us to the main result of this paper, namely Theorem 1.1, which solves the cross-t-
intersection problem for n sufficiently large and consequently verifies a conjecture of Hirschorn [20, Conjecture 3].

For $t \leq r \leq s$, let

$$
n_{0}(r, s, t)=\max \left\{r(s-t)\binom{r+s-t}{t},(r-t)\binom{r}{t}\binom{r+s-t}{t+1}\right\}+t+1
$$

Theorem 1.1 Let $t \leq r \leq s$ and $n \geq n_{0}(r, s, t)$. If $\mathcal{A} \subseteq\binom{[n]}{r}$ and $\mathcal{B} \subseteq\binom{[n]}{s}$ such that \mathcal{A} and \mathcal{B} are cross-t-intersecting, then

$$
|\mathcal{A}||\mathcal{B}| \leq\binom{ n-t}{r-t}\binom{n-t}{s-t}
$$

and equality holds if and only if for some $T \in\binom{[n]}{t}, \mathcal{A}=\left\{A \in\binom{[n]}{r}: T \subseteq A\right\}$ and $\mathcal{B}=\left\{B \in\binom{[n]}{s}: T \subseteq B\right\}$.

The special case $r=s$ is treated in [17, 29, 30], which establish values of $n_{0}(r, r, t)$ that are close to best possible. Hirschorn made a conjecture [20, Conjecture 4] for any n, r, s and t.

From Theorem 1.1 we immediately obtain the following generalisation to any number of cross- t-intersecting families.

Theorem 1.2 Let $k \geq 2, t \leq r_{1} \leq \cdots \leq r_{k}$ and $n \geq n_{0}\left(r_{k-1}, r_{k}, t\right)$. If $\mathcal{A}_{1} \subseteq$ $\binom{[n]}{r_{1}}, \ldots, \mathcal{A}_{k} \subseteq\binom{[n]}{r_{k}}$, and $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ are cross-t-intersecting, then

$$
\prod_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq \prod_{i=1}^{k}\binom{n-t}{r_{i}-t}
$$

and equality holds if and only if for some $T \in\binom{[n]}{t}, \mathcal{A}_{i}=\left\{A \in\binom{[n]}{r_{i}}: T \subseteq A\right\}$ for each $i \in[k]$.

Proof. For each $i \in[k]$, let $a_{i}=\left|\mathcal{A}_{i}\right|, b_{i}=\binom{n-t}{r_{i}-t}$ and $\mathcal{F}_{i}=\binom{[n]}{r_{i}}$. Note that $n_{0}\left(r_{i}, r_{j}, t\right) \leq n_{0}\left(r_{k-1}, r_{k}, t\right)$ for every $i, j \in[k]$ with $i<j$. Thus, by Theorem 1.1, for every $i, j \in[k]$ with $i<j$, we have $a_{i} a_{j} \leq b_{i} b_{j}$, and equality holds if and only if for some $T_{i, j} \in\binom{[n]}{t}, \mathcal{A}_{i}=\mathcal{F}_{i}\left[T_{i, j}\right]$ and $\mathcal{A}_{j}=\mathcal{F}_{j}\left[T_{i, j}\right]$. We have

$$
\left(\prod_{i=1}^{k} a_{i}\right)^{k-1}=\prod_{i \in[k-1]} \prod_{j \in[k] \backslash[i]} a_{i} a_{j} \leq \prod_{i \in[k-1]} \prod_{j \in[k] \backslash[i]} b_{i} b_{j}=\left(\prod_{i=1}^{k} b_{i}\right)^{k-1} .
$$

So $\prod_{i=1}^{k} a_{i} \leq \prod_{i=1}^{k} b_{i}$. Suppose equality holds. Then, for every $i, j \in[k]$ with $i<j, a_{i} a_{j}=b_{i} b_{j}$ and hence there exists $T_{i, j} \in\binom{[n]}{t}$ such that $\mathcal{A}_{i}=\mathcal{F}_{i}\left[T_{i, j}\right]$ and $\mathcal{A}_{j}=\mathcal{F}_{j}\left[T_{i, j}\right]$. Let $h \in[k] \backslash\{1\}$. We have $\mathcal{F}_{1}\left[T_{1,2}\right]=\mathcal{A}_{1}=\mathcal{F}_{1}\left[T_{1, h}\right]$ and $\mathcal{A}_{h}=\mathcal{F}_{h}\left[T_{1, h}\right]$. It is easy to check that $n_{0}\left(r_{k-1}, r_{k}, t\right)>r_{k}$. So $n>r_{1}$. Since $\mathcal{F}_{1}\left[T_{1,2}\right]=\mathcal{F}_{1}\left[T_{1, k}\right]$, it follows that $T_{1,2}=T_{1, h}$. So $\mathcal{A}_{h}=\mathcal{F}_{h}\left[T_{1,2}\right]$. Hence the result.

2 The compression operation

For any $i, j \in[n]$, let $\delta_{i, j}: 2^{[n]} \rightarrow 2^{[n]}$ be defined by

$$
\delta_{i, j}(A)= \begin{cases}(A \backslash\{j\}) \cup\{i\} & \text { if } j \in A \text { and } i \notin A \\ A & \text { otherwise }\end{cases}
$$

and let $\Delta_{i, j}: 2^{2^{[n]}} \rightarrow 2^{2^{[n]}}$ be the compression operation (see [13]) defined by

$$
\Delta_{i, j}(\mathcal{A})=\left\{\delta_{i, j}(A): A \in \mathcal{A}, \delta_{i, j}(A) \notin \mathcal{A}\right\} \cup\left\{A \in \mathcal{A}: \delta_{i, j}(A) \in \mathcal{A}\right\} .
$$

Note that $\left|\Delta_{i, j}(\mathcal{A})\right|=|\mathcal{A}|$. A survey on the properties and uses of compression (also called shifting) operations in extremal set theory is given in [16].

If $i<j$, then we call $\Delta_{i, j}$ a left-compression. A family $\mathcal{F} \subseteq 2^{[n]}$ is said to be compressed if $\Delta_{i, j}(\mathcal{F})=\mathcal{F}$ for every $i, j \in[n]$ with $i<j$. In other words, \mathcal{F} is compressed if it is invariant under left-compressions.

The following lemma captures some well-known fundamental properties of compressions, and we will prove it for completeness.

Lemma 2.1 Let \mathcal{A} and \mathcal{B} be cross-t-intersecting subfamilies of $2^{[n]}$.
(i) For any $i, j \in[n], \Delta_{i, j}(\mathcal{A})$ and $\Delta_{i, j}(\mathcal{B})$ are cross-t-intersecting subfamilies of $2^{[n]}$.
(ii) If $t \leq r \leq s \leq n, \mathcal{A} \subseteq\binom{[n]}{r}, \mathcal{B} \subseteq\binom{[n]}{s}$, and \mathcal{A} and \mathcal{B} are compressed, then $|A \cap B \cap[r+s-t]| \geq t$ for any $A \in \mathcal{A}$ and any $B \in \mathcal{B}$.

Proof. (i) Let $i, j \in[n]$. Suppose $A \in \Delta_{i, j}(\mathcal{A})$ and $B \in \Delta_{i, j}(\mathcal{B})$. If $A \in \mathcal{A}$ and $B \in \mathcal{B}$, then $|A \cap B| \geq t$ since \mathcal{A} and \mathcal{B} are cross- t-intersecting. Suppose that either $A \notin \mathcal{A}$ or $B \notin \mathcal{B}$; we may assume that $A \notin \mathcal{A}$. Then $A=\delta_{i, j}\left(A^{\prime}\right) \neq A^{\prime}$ for some $A^{\prime} \in \mathcal{A}$. So $i \notin A^{\prime}, j \in A^{\prime}, i \in A$ and $j \notin A$. Suppose $|A \cap B| \leq t-1$. Then $i \notin B$ and hence $B \in \mathcal{B}$. So $B \in \mathcal{B} \cap \Delta_{i, j}(\mathcal{B})$ and hence $B, \delta_{i, j}(B) \in \mathcal{B}$. So $\left|A^{\prime} \cap B\right| \geq t$ and $\left|A^{\prime} \cap \delta_{i, j}(B)\right| \geq t$. From $|A \cap B| \leq t-1$ and $\left|A^{\prime} \cap B\right| \geq t$ we get $A^{\prime} \cap B=(A \cap B) \cup\{j\}$ and hence $A^{\prime} \cap \delta_{i, j}(B)=A \cap B$, but this contradicts $|A \cap B| \leq t-1$ and $\left|A^{\prime} \cap \delta_{i, j}(B)\right| \geq t$. So $|A \cap B| \geq t$. Therefore, $\Delta_{i, j}(\mathcal{A})$ and $\Delta_{i, j}(\mathcal{B})$ are cross- t-intersecting.
(ii) Suppose $t \leq r \leq s \leq n, A \in \mathcal{A} \subseteq\binom{[n]}{r}, B \in \mathcal{B} \subseteq\binom{[n]}{s}$, and \mathcal{A} and \mathcal{B} are compressed. Since \mathcal{A} and \mathcal{B} are cross- t-intersecting, $|A \cap B| \geq t$. Let $X=$ $(A \cap B) \cap[r+s-t], Y=(A \cap B) \backslash[r+s-t]$ and $Z=[r+s-t] \backslash(A \cup B)$. If $Y=\emptyset$, then $X=A \cap B$ and hence $|X| \geq t$. Now consider $Y \neq \emptyset$. Let $p=|Y|$. Since

$$
\begin{aligned}
|Z| & =r+s-t-|(A \cup B) \cap[r+s-t]| \geq r+s-t-|X|-|A \backslash B|-|B \backslash A| \\
& =r+s-t-|X|-|A \backslash(X \cup Y)|-|B \backslash(X \cup Y)| \\
& =r+s-t-|X|-(r-|X|-|Y|)-(s-|X|-|Y|)=2|Y|+|X|-t \\
& =|Y|+|Y \cup X|-t=p+|A \cap B|-t \geq p,
\end{aligned}
$$

$\binom{Z}{p} \neq \emptyset$. Let $W \in\binom{Z}{p}$. Let $C:=(B \backslash Y) \cup W$. Let y_{1}, \ldots, y_{p} be the elements of Y, and let w_{1}, \ldots, w_{p} be those of W. So $C=\delta_{w_{1}, y_{1}} \circ \cdots \circ \delta_{w_{p}, y_{p}}(B)$. Note that
$\delta_{w_{1}, y_{1}}, \ldots, \delta_{w_{p}, y_{p}}$ are left-compressions as $W \subseteq[r+s-t]$ and $Y \subseteq[n] \backslash[r+s-t]$. Since \mathcal{B} is compressed, $C \in \mathcal{B}$. So $|A \cap C| \geq t$. Now clearly $|A \cap C|=|X|$. So $|X| \geq t$.

Suppose a subfamily \mathcal{A} of $2^{[n]}$ is not compressed. Then \mathcal{A} can be transformed to a compressed family through left-compressions as follows. Since \mathcal{A} is not compressed, we can find a left-compression that changes \mathcal{A}, and we apply it to \mathcal{A} to obtain a new subfamily of $2^{[n]}$. We keep on repeating this (always applying a left-compression to the last family obtained) until we obtain a subfamily of $2^{[n]}$ that is invariant under every left-compression (such a point is indeed reached, because if $\Delta_{i, j}(\mathcal{F}) \neq \mathcal{F} \subseteq 2^{[n]}$ and $i<j$, then $\left.0<\sum_{G \in \Delta_{i, j}(\mathcal{F})} \sum_{b \in G} b<\sum_{F \in \mathcal{F}} \sum_{a \in F} a\right)$.

Now consider $\mathcal{A}, \mathcal{B} \subseteq 2^{[n]}$ such that \mathcal{A} and \mathcal{B} are cross- t-intersecting. Then, by Lemma 2.1(i), we can obtain $\mathcal{A}^{*}, \mathcal{B}^{*} \subseteq 2^{[n]}$ such that \mathcal{A}^{*} and \mathcal{B}^{*} are compressed and cross-t-intersecting, $\left|\mathcal{A}^{*}\right|=|\mathcal{A}|$ and $\left|\mathcal{B}^{*}\right|=|\mathcal{B}|$. Indeed, similarly to the above procedure, if we can find a left-compression that changes at least one of \mathcal{A} and \mathcal{B}, then we apply it to both \mathcal{A} and \mathcal{B}, and we keep on repeating this (always performing this on the last two families obtained) until we obtain $\mathcal{A}^{*}, \mathcal{B}^{*} \subseteq 2^{[n]}$ such that both \mathcal{A}^{*} and \mathcal{B}^{*} are invariant under every left-compression.

3 Proof of Theorem 1.1

We will need the following lemma only when dealing with the characterisation of the extremal structures in the proof of Theorem 1.1.

Lemma 3.1 Let r, s, t and n be as in Theorem 1.1, and let $i, j \in[n]$. Let $\mathcal{H}=2^{[n]}$. Let $\mathcal{A} \subseteq \mathcal{H}^{(r)}$ and $\mathcal{B} \subseteq \mathcal{H}^{(s)}$ such that \mathcal{A} and \mathcal{B} are cross-t-intersecting. Suppose $\Delta_{i, j}(\mathcal{A})=\mathcal{H}^{(r)}[T]$ and $\Delta_{i, j}(\mathcal{B})=\mathcal{H}^{(s)}[T]$ for some $T \in\binom{[n]}{t}$. Then $\mathcal{A}=\mathcal{H}^{(r)}\left[T^{\prime}\right]$ and $\mathcal{B}=\mathcal{H}^{(s)}\left[T^{\prime}\right]$ for some $T^{\prime} \in\binom{[n]}{t}$.

We prove the above lemma using the following special case of [7, Lemma 5.6].
Lemma 3.2 Let $r \geq t+1$ and $n \geq 2 r-t+2$. Let $\mathcal{H}=2^{[n]}$. Let \mathcal{G} be at-intersecting subfamily of $\mathcal{H}^{(r)}$. Let $i, j \in[n]$. Suppose $\Delta_{i, j}(\mathcal{G})$ is a largest t-star of $\mathcal{H}^{(r)}$. Then \mathcal{G} is a largest t-star of $\mathcal{H}^{(r)}$.

Proof of Lemma 3.1. We are given that $t \leq r \leq s$.
Consider first $r=t$. Then $\Delta_{i, j}(\mathcal{A})=\{T\}$. So $\mathcal{A}=\left\{T^{\prime}\right\}=\mathcal{H}^{(r)}\left[T^{\prime}\right]$ for some $T^{\prime} \in\binom{[n]}{t}$. Since \mathcal{A} and \mathcal{B} are cross- t-intersecting, $T^{\prime} \subseteq B$ for all $B \in \mathcal{B}$. So $\mathcal{B} \subseteq \mathcal{H}^{(s)}\left[T^{\prime}\right]$. Since $\binom{n-t}{s-t}=\left|\mathcal{H}^{(s)}[T]\right|=\left|\Delta_{i, j}(\mathcal{B})\right|=|\mathcal{B}| \leq\left|\mathcal{H}^{(s)}\left[T^{\prime}\right]\right|=\binom{n-t}{s-t}$, $|\mathcal{B}|=\binom{n-t}{s-t}$. So $\mathcal{B}=\mathcal{H}^{(s)}\left[T^{\prime}\right]$.

Now consider $r \geq t+1$. Note that $T \backslash\{i\} \subseteq E$ for all $E \in \mathcal{A} \cup \mathcal{B}$.
Suppose \mathcal{A} is not t-intersecting. Then there exist $A_{1}, A_{2} \in \mathcal{A}$ such that $\left|A_{1} \cap A_{2}\right| \leq$ $t-1$. So $T \nsubseteq A_{l}$ for some $l \in\{1,2\}$; we may (and will) assume that $l=1$. Thus,
since $\Delta_{i, j}(\mathcal{A})=\mathcal{H}^{(r)}[T]$, we have $A_{1} \notin \Delta_{i, j}(\mathcal{A}), A_{1} \neq \delta_{i, j}\left(A_{1}\right) \in \Delta_{i, j}(\mathcal{A}), \delta_{i, j}\left(A_{1}\right) \notin \mathcal{A}$ (because otherwise $A_{1} \in \Delta_{i, j}(\mathcal{A})$), $i \in T, j \notin T, j \in A_{1}$ and $A_{1} \cap T=T \backslash\{i\}$. Since $T \backslash\{i\} \subseteq A_{1} \cap A_{2}$ and $\left|A_{1} \cap A_{2}\right| \leq t-1$, we have $A_{1} \cap A_{2}=T \backslash\{i\}$. So $j \notin A_{2}$ and hence $A_{2}=\delta_{i, j}\left(A_{2}\right)$. Since $\delta_{i, j}\left(A_{2}\right) \in \Delta_{i, j}(\mathcal{A})=\mathcal{H}^{(r)}[T], T \subseteq A_{2}$. Let $X=[n] \backslash\left(A_{1} \cup A_{2}\right)$. We have

$$
\begin{aligned}
|X| & =n-\left|A_{1} \cup A_{2}\right|=n-\left(\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|\right)=n-2 r+t-1 \\
& \geq n_{0}(r, s, t)-2(r-t)-t-1 \geq r(s-t)\binom{r+s-t}{t}-2(r-t) .
\end{aligned}
$$

Thus, since $t+1 \leq r \leq s$, we have $|X|>s-t$ and hence $\binom{X}{s-t} \neq \emptyset$. Let $C \in\binom{X}{s-t}$ and $D=C \cup T$. So $D \in \mathcal{H}^{(s)}[T]$ and $D \cap A_{1}=T \backslash\{i\}$, meaning that $D \in \Delta_{i, j}(\mathcal{B})$ and $\left|D \cap A_{1}\right|=t-1$. Thus, since \mathcal{A} and \mathcal{B} are cross- t-intersecting, we obtain $D \notin \mathcal{B}$ and $(D \backslash\{i\}) \cup\{j\} \in \mathcal{B}$, which is a contradiction since $\left|((D \backslash\{i\}) \cup\{j\}) \cap A_{2}\right|=|T \backslash\{i\}|=$ $t-1$.

Therefore, \mathcal{A} is t-intersecting. Similarly, \mathcal{B} is t-intersecting. Now $\mathcal{H}^{(r)}[T]$ and $\mathcal{H}^{(s)}[T]$ are largest t-stars of $\mathcal{H}^{(r)}$ and $\mathcal{H}^{(s)}$, respectively. So $\Delta_{i, j}(\mathcal{A})$ and $\Delta_{i, j}(\mathcal{B})$ are largest t-stars of $\mathcal{H}^{(r)}$ and $\mathcal{H}^{(s)}$, respectively. Since $t+1 \leq r \leq s, n_{0}(r, s, t) \geq$ $(t+1)(s-t)\binom{t+2}{t}+t+1 \geq 6(s-t)+t+1=2 s+4(s-t)-t+1 \geq 2 s-t+5$. Since $n \geq n_{0}(r, s, t)$, we obtain $n \geq 2 s-t+5$ and $n \geq 2 r-t+5$. By Lemma 3.2, for some $T^{\prime}, T^{*} \in\binom{[n]}{t}, \mathcal{A}=\mathcal{H}^{(r)}\left[T^{\prime}\right]$ and $\mathcal{B}=\mathcal{H}^{(s)}\left[T^{*}\right]$.

Suppose $T^{\prime} \neq T^{*}$. Let $z \in T^{*} \backslash T^{\prime}$. Since $n \geq 2 r-t+5>r$, we can choose $A^{\prime} \in \mathcal{H}^{(r)}\left[T^{\prime}\right]$ such that $z \notin A^{\prime}$. Since $n \geq 2 s-t+5 \geq r+s-t+5>r+s-t$ and $z \in T^{*} \backslash A^{\prime}$, we can choose $B^{*} \in \mathcal{H}^{(s)}\left[T^{*}\right]$ such that $\left|A^{\prime} \cap B^{*}\right| \leq t-1$; however, this is a contradiction since $\mathcal{A}=\mathcal{H}^{(r)}\left[T^{\prime}\right], \mathcal{B}=\mathcal{H}^{(s)}\left[T^{*}\right]$, and \mathcal{A} and \mathcal{B} are cross- t-intersecting. Therefore, $T^{\prime}=T^{*}$.

Proof of Theorem 1.1. Let $\mathcal{H}=2^{[n]}$. Then $\binom{[n]}{r}=\mathcal{H}^{(r)}$ and $\binom{[n]}{s}=\mathcal{H}^{(s)}$. If either $\mathcal{A}=\emptyset$ or $\mathcal{B}=\emptyset$, then $|\mathcal{A}||\mathcal{B}|=0$. Thus we assume that $\mathcal{A} \neq \emptyset$ and $\mathcal{B} \neq \emptyset$.

As explained in Section 2, we apply left-compressions to \mathcal{A} and \mathcal{B} simultaneously until we obtain two compressed families \mathcal{A}^{*} and \mathcal{B}^{*}, respectively, and we know that \mathcal{A}^{*} and \mathcal{B}^{*} are cross- t-intersecting, $\mathcal{A}^{*} \subseteq \mathcal{H}^{(r)}, \mathcal{B}^{*} \subseteq \mathcal{H}^{(s)},\left|\mathcal{A}^{*}\right|=|\mathcal{A}|$ and $\left|\mathcal{B}^{*}\right|=|\mathcal{B}|$. In view of Lemma 3.1, we may therefore assume that \mathcal{A} and \mathcal{B} are compressed.

By Lemma 2.1(ii),

$$
\begin{equation*}
|A \cap[r+s-t]| \geq t \text { for each } A \in \mathcal{A} \tag{1}
\end{equation*}
$$

Case 1: $\left|A^{*} \cap[r+s-t]\right|=t$ for some $A^{*} \in \mathcal{A}$. Then $A^{*} \cap[r+s-t]=T^{*}$ for some $T^{*} \in\binom{[r+s-t]}{t}$. By Lemma 2.1(ii), $t \leq\left|A^{*} \cap B \cap[r+s-t]\right|=\left|B \cap T^{*}\right| \leq t$ for each $B \in \mathcal{B}$. Thus, for each $B \in \mathcal{B},\left|B \cap T^{*}\right|=t$ and hence $T^{*} \subseteq B$. Therefore, $\mathcal{B} \subseteq \mathcal{H}^{(s)}\left[T^{*}\right]$.

If $T^{*} \subseteq A$ for each $A \in \mathcal{A}$, then $|\mathcal{A}||\mathcal{B}| \leq\left|\mathcal{H}^{(r)}\left[T^{*}\right]\right|\left|\mathcal{H}^{(s)}\left[T^{*}\right]\right|=\binom{n-t}{r-t}\binom{n-t}{s-t}$, and equality holds if and only if $\mathcal{A}=\mathcal{H}^{(r)}\left[T^{*}\right]$ and $\mathcal{B}=\mathcal{H}^{(s)}\left[T^{*}\right]$.

Suppose $T^{*} \nsubseteq A^{\prime}$ for some $A^{\prime} \in \mathcal{A}$. Then $\left|A^{\prime} \cap T^{*}\right| \leq t-1$. Let $C=A^{\prime} \cap T^{*}$ and $D=A^{\prime} \backslash C$. For each $B \in \mathcal{B}$, we have $t \leq\left|B \cap A^{\prime}\right|=|B \cap C|+|B \cap D|=|C|+|B \cap D| \leq$ $t-1+|B \cap D|$ and hence $|B \cap D| \geq 1$. So $\mathcal{B} \subseteq\left\{B \in \mathcal{H}^{(s)}\left[T^{*}\right]:|B \cap D| \geq 1\right\}=$ $\bigcup_{X \in\binom{D}{1}} \mathcal{H}^{(s)}\left[T^{*} \cup X\right]$ and hence

$$
\begin{aligned}
|\mathcal{B}| & \leq \sum_{X \in\binom{D}{1}}\left|\mathcal{H}^{(s)}\left[T^{*} \cup X\right]\right| \\
& =\sum_{X \in\binom{D}{1}}\binom{n-t-1}{s-t-1} \\
& =\binom{|D|}{1}\binom{n-t-1}{s-t-1} \leq r\binom{n-t-1}{s-t-1} .
\end{aligned}
$$

Now, by (1), $\mathcal{A}=\bigcup_{T \in\binom{[r+s-t]}{t}} \mathcal{A}[T] \subseteq \bigcup_{T \in\binom{[r+s-t]}{t}} \mathcal{H}^{(r)}[T]$ and hence

$$
|\mathcal{A}| \leq \sum_{T \in\binom{[r+s-t]}{t}}\left|\mathcal{H}^{(r)}[T]\right|=\sum_{T \in\binom{[r+s-t])}{t}}\binom{n-t}{r-t}=\binom{r+s-t}{t}\binom{n-t}{r-t} .
$$

Therefore,

$$
\begin{aligned}
|\mathcal{A}||\mathcal{B}| & \leq r\binom{r+s-t}{t}\binom{n-t}{r-t}\binom{n-t-1}{s-t-1} \\
& =r\binom{r+s-t}{t}\binom{n-t}{r-t} \frac{s-t}{n-t}\binom{n-t}{s-t} \\
& \leq \frac{r(s-t)}{n_{0}(r, s, t)-t}\binom{r+s-t}{t}\binom{n-t}{r-t}\binom{n-t}{s-t} \\
& <\binom{n-t}{r-t}\binom{n-t}{s-t} .
\end{aligned}
$$

Case 2: $|A \cap[r+s-t]| \geq t+1$ for all $A \in \mathcal{A}$. So $\mathcal{A}=\bigcup_{Z \in\binom{[r+s-t]}{t+1}} \mathcal{A}[Z] \subseteq$ $\bigcup_{Z \in\binom{[r+s-t]}{t+1}} \mathcal{H}^{(r)}[Z]$. Let $A^{*} \in \mathcal{A}$. Since $\left|A^{*} \cap B\right| \geq t$ for all $B \in \mathcal{B}$, we have $\mathcal{B}=\bigcup_{T \in\binom{A^{*}}{t}} \mathcal{B}[T] \subseteq \bigcup_{T \in\binom{A^{*}}{t}} \mathcal{H}^{(s)}[T]$. Therefore,

$$
\begin{aligned}
|\mathcal{A} \| \mathcal{B}| & \leq\binom{ r+s-t}{t+1}\binom{n-t-1}{r-t-1}\binom{r}{t}\binom{n-t}{s-t} \\
& =\binom{r+s-t}{t+1} \frac{r-t}{n-t}\binom{n-t}{r-t}\binom{r}{t}\binom{n-t}{s-t} \\
& \leq \frac{r-t}{n_{0}(r, s, t)-t}\binom{r}{t}\binom{r+s-t}{t+1}\binom{n-t}{r-t}\binom{n-t}{s-t} \\
& <\binom{n-t}{r-t}\binom{n-t}{s-t} .
\end{aligned}
$$

This completes the proof of the theorem.

Acknowledgements

The author is indebted to the anonymous referees for checking the paper carefully and providing remarks that led to an improvement in the presentation.

References

[1] R. Ahlswede and L.H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), 125-136.
[2] M.O. Albertson and K.L. Collins, Homomorphisms of 3-chromatic graphs, Discrete Math. 54 (1985), 127-132.
[3] P. Borg, A short proof of a cross-intersection theorem of Hilton, Discrete Math. 309 (2009), 4750-4753.
[4] P. Borg, Cross-intersecting families of permutations, J. Combin. Theory Ser. A 117 (2010), 483-487.
[5] P. Borg, Cross-intersecting families of partial permutations, SIAM J. Disc. Math. 24 (2010), 600-608.
[6] P. Borg, Cross-intersecting sub-families of hereditary families, J. Combin. Theory Ser. A 119 (2012), 871-881.
[7] P. Borg, Extremal t-intersecting sub-families of hereditary families, J. London Math. Soc. 79 (2009), 167-185.
[8] P. Borg, Intersecting families of sets and permutations: a survey, in: Advances in Mathematics Research (A.R. Baswell Ed.), Volume 16, Nova Science Publishers, Inc., 2011, pp. 283-299.
[9] P. Borg, The maximum sum and the maximum product of sizes of crossintersecting families, European J. Combin. 35 (2014), 117-130.
[10] P.J. Cameron and C.Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003), 881-890.
[11] D.E. Daykin, Erdős-Ko-Rado from Kruskal-Katona, J. Combin. Theory Ser. A 17 (1974), 254-255.
[12] M. Deza and P. Frankl, The Erdős-Ko-Rado theorem-22 years later, SIAM J. Algebr. Discrete Methods 4 (1983), 419-431.
[13] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961), 313-320.
[14] P. Frankl, Extremal set systems, in: R.L. Graham, M. Grötschel and L. Lovász (Eds.), Handbook of Combinatorics, Vol. 2, Elsevier, Amsterdam, 1995, pp. 1293-1329.
[15] P. Frankl, The Erdős-Ko-Rado Theorem is true for $n=c k t$, Proc. Fifth Hung. Comb. Coll., North-Holland, Amsterdam, 1978, pp. 365-375.
[16] P. Frankl, The shifting technique in extremal set theory, in: C. Whitehead (Ed.), Surveys in Combinatorics, Cambridge Univ. Press, London/New York, 1987, pp. 81-110.
[17] P. Frankl, S.J. Lee, M. Siggers and N. Tokushige, An Erdős-Ko-Rado theorem for cross t-intersecting families, arXiv:1303.0657.
[18] A.J.W. Hilton, An intersection theorem for a collection of families of subsets of a finite set, J. London Math. Soc. (2) 15 (1977), 369-376.
[19] A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967), 369-384.
[20] J. Hirschorn, Asymptotic upper bounds on the shades of t-intersecting families, arXiv:0808.1434.
[21] G.O.H. Katona, A simple proof of the Erdős-Chao Ko-Rado theorem, J. Combin. Theory Ser. B 13 (1972), 183-184.
[22] G.O.H. Katona, A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, Akadémiai Kiadó, 1968, pp. 187-207.
[23] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964), 329-337.
[24] D.J. Kleitman, On a combinatorial conjecture of Erdős, J. Combin. Theory Ser. A 1 (1966), 209-214.
[25] J.B. Kruskal, The number of simplices in a complex, in: Mathematical Optimization Techniques, University of California Press, Berkeley, California, 1963, pp. 251-278.
[26] M. Matsumoto and N. Tokushige, A generalization of the Katona theorem for cross t-intersecting families, Graphs Combin. 5 (1989), 159-171.
[27] M. Matsumoto and N. Tokushige, The exact bound in the Erdős-Ko-Rado theorem for cross-intersecting families, J. Combin. Theory Ser. A 52 (1989), 90-97.
[28] L. Pyber, A new generalization of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 43 (1986), 85-90.
[29] N. Tokushige, On cross t-intersecting families of sets, J. Combin. Theory Ser. A 117 (2010), 1167-1177.
[30] N. Tokushige, The eigenvalue method for cross t-intersecting families, J. Algebr. Comb. 38 (2013), 653-662.
[31] J. Wang and H. Zhang, Cross-intersecting families and primitivity of symmetric systems, J. Combin. Theory Ser. A 118 (2011), 455-462.
[32] R.M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984), 247-257.
(Received 12 Dec 2013; revised 4 June 2014)

