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Extremal t-intersecting sub-families of hereditary families

Peter Borg

Abstract

A family A of sets is said to be t-intersecting if any two sets in A contain at least t common
elements. A t-intersecting family is said to be trivial if there are at least t elements common to
all its sets. A family H is said to be hereditary if all subsets of any set in H are in H.

For a finite family F , let F (s) be the family of s-element sets in F , and let µ(F) be the
size of a smallest set in F that is not a subset of any other set in F . For any two integers
r and t with 1 � t < r, we determine an integer n0(r, t) such that, for any non-empty subset
S of {t, t + 1, . . . , r} and any finite hereditary family H with µ(H) � n0(r, t), the largest t-
intersecting sub-families of the union

⋃
s∈S H(s) are trivial. The special case H = 2[n] yields a

classical theorem of Erdős, Ko and Rado. On the basis of the complete intersection theorem of
Ahlswede and Khachatrian, we conjecture that the smallest such n0(r, t) is (t + 1)(r − t + 1) + 1,
and we show that this is true if H is compressed.

We apply our main result to obtain new results on t-intersecting families of signed sets,
permutations and separated sets. This work supports some open conjectures.

1. Introduction

1.1. Notation and definitions

Throughout this paper, unless otherwise stated, we shall use small letters such as x to denote
elements of a set or positive integers, capital letters such as X to denote sets, and calligraphic
letters such as F to denote families (that is, sets whose members are sets themselves). Unless
otherwise stated, it is to be assumed that sets and families represented in this way are finite.

The set of positive integers {1, 2, . . .} is denoted by N. For m,n ∈ N, m � n, the set {i ∈
N : m � i � n} is denoted by [m,n]; for m = 1, we also write [n]. For a set X, the power set
{A : A ⊆ X} of X is denoted by 2X , and the sub-families {Y ⊆ X : |Y | = r} and {Y ⊆ X :
|Y | � r} are denoted by

(
X
r

)
and

(
X
�r

)
, respectively. An r-set is a set of size r.

For a family F , we define F (r) := {F ∈ F : |F | = r} and F (�r) := {F ∈ F : |F | � r}. Also,
we define U(F) :=

⋃
F∈F F and, for any subset V of U(F), we define F〈V 〉 := {F ∈ F : V ⊆

F}. We call F〈V 〉 a t-star of F if |V | = t and F〈V 〉 �= ∅. We may call a 1-star simply a star.
A family A is said to be intersecting if any two sets in A have a non-empty intersection.

More generally, A is said to be t-intersecting if the intersection of any two sets in A has size at
least t. A t-intersecting family A is said to be trivial if the sets in A have a common t-subset;
otherwise, A is said to be non-trivial. Note that a t-star of a family F is a maximal trivial
t-intersecting sub-family of F .

We say that a set M is F-maximal if M is not a subset of any set in F\{M}. We define

μ(F) := min{|F | : F ∈ F , F is F-maximal}.
A family F is said to be
– a hereditary family (or an ideal or a downset) if all subsets of any set in F are in F ;
– an antichain or a Sperner family if all sets in F are F -maximal;
– uniform if the sets in F are of the same size, and r-uniform if F = F (r).
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Thus a uniform family is an antichain, whereas a hereditary family H �= {∅} is not.
We will refer to a uniform sub-family F (r) of a family F as a level of F or, more precisely,

the rth level of F .
A family F is said to be compressed if U(F) has a total ordering of its elements induced by

a relation � such that the following holds:

{u1, . . . , ur} ∈ F (r) and U(F) 	 vi � ui for i = 1, . . . , r =⇒ {v1, . . . , vr} ∈ F (r).

1.2. Extremal t-intersecting sub-families of
(
[n]
r

)
,
(
[n]
�r

)
and 2[n]

In the seminal paper [18], Erdős, Ko and Rado initiated the study of intersecting families,
which has yielded a vast amount of beautiful results (the survey papers [15] and [20] are
recommended) and is still a very active field of research. The first of two classical theorems
proved in that paper is that, if n � 2r, then the size of an extremal (meaning largest)
intersecting sub-family of

(
[n]
r

)
is

(
n−1
r−1

)
, which is the size of a star of

(
[n]
r

)
. There are various

proofs of this theorem, two of which are particularly short and beautiful: Katona’s [31]
using the cycle method and Daykin’s [12] using a fundamental result known as the Kruskal–
Katona theorem [30, 33]. Hilton and Milner [25] determined the size of a largest non-trivial
intersecting sub-family of

(
[n]
r

)
, and consequently they established that the extremal intersecting

sub-families are the stars if n > 2r.

Theorem 1.1 (Erdős, Ko and Rado [18]; Hilton and Milner [25]). Let n � 2r, r � 2. Let
A be an intersecting sub-family of

(
[n]
r

)
. Then |A| �

(
n−1
r−1

)
. Moreover, if the bound is attained

and n > 2r, then A is a star of
(
[n]
r

)
.

The following is the second classical result in [18].

Theorem 1.2 (Erdős, Ko and Rado [18]). For t � r, there exists n0(r, t) ∈ N such that,
for all n � n0(r, t), the extremal t-intersecting sub-families of

(
[n]
r

)
are the t-stars of

(
[n]
r

)
.

In view of the above facts, we say that a family F is t-EKR if the set of largest t-intersecting
sub-families of F contains a t-star, and strictly t-EKR if the set of largest t-intersecting sub-
families of F contains only t-stars. We may call a 1-EKR family simply EKR.

Erdős, Ko and Rado also illustrated the fact that
(
[n]
r

)
is not t-EKR for a range of small values

of n. For t � 15, Frankl [19] showed that the smallest n0(r, t) for which Theorem 1.2 holds is
(r − t + 1)(t + 1) + 1, and that

(
[n]
r

)
is t-EKR but not strictly so if n = (r − t + 1)(t + 1). Sub-

sequently, Wilson [45] proved that, for any 1 � t � r and n � (r − t + 1)(t + 1),
(
[n]
r

)
is t-EKR.

Frankl [19] conjectured that, for any 1 � t � r � n, the size of an extremal t-intersecting sub-
family of

(
[n]
r

)
is max{|{A ∈

(
[n]
r

)
: |A ∩ [t + 2i]| � t + i}| : i ∈ {0} ∪ [r − t]}. A proof of this

long-standing conjecture together with a complete characterisation of the extremal structures
was finally obtained by Ahlswede and Khachatrian [2]. The following is part of their result.

Theorem 1.3 (Ahlswede and Khachatrian [2]). Let 1 � t < r < n. Then:

(i)
(
[n]
r

)
is t-EKR if and only if n � (r − t + 1)(t + 1);

(ii)
(
[n]
r

)
is strictly t-EKR if and only if n > (r − t + 1)(t + 1).

Ahlswede, Bey, Engel and Khachatrian [1] considered the extremal problem for t-intersecting
sub-families of

(
[n]
�r

)
. They made a conjecture which, similarly to that of Frankl mentioned
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above, says that the size of an extremal t-intersecting sub-family of
(
[n]
r

)
is max{|{A ∈(

[n]
�r

)
: |A ∩ [t + 2i]| � t + i}| : i ∈ {0} ∪ [r − t]}. They also provided some evidence for their

conjecture. Note that, by Theorem 1.3, the conjecture is true for n � (r − t + 1)(t + 1).
Erdős, Ko and Rado [18] pointed out the simple fact that 2[n] is EKR, and they asked what

is the size of an extremal t-intersecting sub-family of 2[n] for t � 2. The answer in a complete
form was given by Katona [29].

Theorem 1.4 (Katona [29]). Let t � 2. Let A be a largest t-intersecting sub-family of 2[n].

(i) If n + t = 2l, then A = {A ⊆ [n] : |A| � l}.
(ii) If n + t = 2l + 1, then A is isomorphic to the family {A ⊆ [n] : |A ∩ [n − 1]| � l}.

1.3. Extremal-type conjectures on intersecting sub-families of hereditary families

The power set 2X of a set X is the simplest example of a hereditary family, but there are
various other interesting examples, such as the family of independent sets of a graph or matroid.
Clearly, if H is a hereditary family and X1, . . . , Xk are the H-maximal sets in H, then H =
2X1 ∪ . . . ∪ 2Xk ; in other words, a hereditary family is a union of power sets. Also note that
any union of power sets is hereditary.

The following is an outstanding open problem in extremal set theory.

Conjecture 1.5 (Chvátal [10]). If H is a hereditary family, then H is EKR.

Recall that 2[n] is EKR; so the conjecture is true if there is only one H-maximal set in H.
Chvátal [11] verified his conjecture for the case when H is compressed. Snevily [42] took this
result a significant step forward by verifying the conjecture for H compressed with respect to
an element u of U(H) (that is, h ∈ H ∈ H, u /∈ H ⇒ (H\{h}) ∪ {u} ∈ H). Many other results
have been inspired by this conjecture, and the PhD dissertation [40] is dedicated to it.

Before turning our attention to uniform intersecting sub-families of hereditary families, which
are the theme of this paper, we recall the following. A graph G is a pair (V,E) with E ⊆

(
V
2

)
,

and a set I ⊆ V is said to be an independent set of G if {i, j} /∈ E for any i, j ∈ I.
Let IG denote the family of all independent sets of a graph G. Holroyd and Talbot [28] made

the following interesting but apparently very difficult conjecture.

Conjecture 1.6 (Holroyd and Talbot [28]). If G is a graph with μ(IG) � 2r, then IG
(r)

is EKR, and strictly so if μ(IG) > 2r.

Clearly, the family IG is a hereditary family. In [8], the following generalisation of
Conjecture 1.6 is suggested.

Conjecture 1.7 (Borg [8]). If H is a hereditary family with μ(H) � 2r, then H(r) is EKR,
and strictly so if μ(H) > 2r.

Note that Theorem 1.1 solves the special case H = 2[n].

2. The main result, some consequences and a conjecture

Conjecture 1.5 cannot be generalised to the t-intersection case; indeed, if n > t � 2 and H = 2[n]

then, by Theorem 1.4, H is not t-EKR. In view of Theorem 1.2, it is natural to question whether
this can be done for Conjecture 1.7 or, more precisely, whether there exists an integer n0(r, t)
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such that H(r) is t-EKR for any hereditary H with μ(H) � n0(r, t). Our main result, given
by Theorem 2.1 below and proved in Section 4, gives more than an affirmative answer to this
question. For t � r, we set

n∗
0(r, t) := (r − t)

(
3r − 2t − 1

t + 1

)
+ r.

Theorem 2.1. If t � r, ∅ �= S ⊆ [t, r] and H is a hereditary family with μ(H) � n∗
0(r, t),

then
⋃

s∈S H(s) is strictly t-EKR.

Since n∗
0(r, t) increases with r, Theorem 2.1 can be rephrased as follows.

Theorem 2.1 (Rephrased). If H is a hereditary family, t � r � max{p ∈ N : n∗
0(p, t) �

μ(H)} and ∅ �= S ⊆ [t, r], then
⋃

s∈S H(s) is strictly t-EKR.

Note that Theorem 1.2 follows from the case H = 2[n] and S = {r} in Theorem 2.1. Also note
that Theorem 1.3 illustrates the fact that we cannot do without some condition μ(H) � n0(r, t).

Remark 1. The motivation behind establishing the result for any union of levels of a
hereditary family H within a certain range is that this general form cannot be immediately
deduced from the result for just one level of H (that is, the case S = {r}). As revealed in the
example below, the reason is simply that, if T is a t-set such that H(s)〈T 〉 (s ∈ [t, r]) is a largest
t-star of H(s) then, for p �= s (p ∈ [t, r]), H(p)〈T 〉 not only may not be a largest t-star of the
level H(p) but may be smaller than some non-trivial t-intersecting sub-family of H(p).

Example 1. Consider t = 1, r = 4, S = [3, 4]. Let M1, . . . ,Mm be distinct sets such that
their total intersection X := M1 ∩ . . . ∩ Mm satisfies X = Mi ∩ Mj for any i, j ∈ [m], i �= j. Let
M0 be a set that is disjoint from M1 ∪ . . . ∪ Mm. Let H1 := 2M0 , H2 := 2M1 ∪ . . . ∪ 2Mm . Let
H be the hereditary family H1 ∪H2. Suppose |X| = 3 and |M1| = . . . = |Mm| < |M0|. Note
that μ(H) = |M1|. Let w ∈ M0 and x ∈ X. Hence, for any s ∈ S, L1,s := H1

(s)〈{w}〉 has size(|M0|−1
s−1

)
and is a largest star of H1

(s), and L2,s := H2
(s)〈{x}〉 has size m

(|M1|−1
s−1

)
+ (4 − s)

(1 − m) (that is, |L2,3| = m
(|M1|−1

2

)
+ 1 − m and |L2,4| = m

(|M1|−1
3

)
) and is a largest

star of H2
(s); clearly at least one of L1,s and L2,s is a largest star of H(s). For

each i ∈ [m], let yi ∈ Mi\X and Ai := (X\{x}) ∪ {yi}. Let A be the non-trivial inter-
secting sub-family {A ∈ H2

(3) : x ∈ A, A ∩ (X\{x}) �= ∅} ∪ {Ai : i ∈ [m]} of H2
(3). Thus

|A| = m
((|M1|−1

2

)
−

(|M1|−3
2

))
+ 1. Now suppose |M0| = 4000, |M1| = n∗

0(4, 1) = 112 and
m = 40 000. Then |L1,4| = 10 650 673 999 > |L2,4| = 8872 600 000, and hence L1,4 is a largest
star of H(4) (so, by Theorem 2.1, L1,4 is in fact an extremal intersecting sub-family of H(4)).
However, |L1,3| = 7994 001 < |A| = 8760 001. This proves the claim in Remark 1.

What we have just demonstrated is in fact one of the central difficulties arising from any
EKR-type problem for hereditary families. In the proof of Theorem 2.1, we overcome this
obstacle by showing that, for any non-trivial t-intersecting sub-family A of the union, we can
construct a t-star that is larger than A (and that is not necessarily a largest t-star); this is
the crucial idea presented here. Many other proofs of EKR-type results (such as Theorem 2.7
below) are based on determining at least one largest t-star; as in the case of each theorem
mentioned in Subsection 1.2, the setting is often symmetrical to the extent that all t-stars are
of the same size and of a known size.
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We now present some immediate consequences of Theorem 2.1, the first of which is actually
a special case of the theorem.

Corollary 2.2. Conjecture 1.7 is true if μ(H) � n∗
0(r, 1).

Corollary 2.3. Conjecture 1.5 is true if H = J (�r) for some hereditary family J with
μ(J ) � n∗

0(r, 1).

Proof. Let J be a hereditary family with μ(J ) � n∗
0(r, 1). Let S = [r]. By Theorem 2.1

with t = 1,
⋃

s∈S J (s) is strictly EKR. The result follows since J (�r) =
⋃

s∈S J (s).

Corollary 2.4. Let H be a hereditary sub-family of 2N. For n ∈ N, let Hn := H ∩ 2[n].
Suppose μ(Hn) → ∞ as n → ∞. Then, for any t � r, there exists n0(H, r, t) ∈ N such that, for
any non-empty S ⊆ [t, r] and any n � n0(H, r, t),

⋃
s∈S Hn

(s) is strictly t-EKR.

Proof. Since H is hereditary, Hn is hereditary for all n ∈ N. Having μ(Hn) → ∞ as n → ∞
means that for any m ∈ N there exists n1(H,m) ∈ N such that μ(Hn) � m for all n � n1(H,m).
The result now follows from Theorem 2.1 by setting n0(H, r, t) := n1(H, n∗

0(r, t)).

In the next section, we obtain an inequality that will yield results on ratios of sizes of certain
levels of a hereditary family and on sizes of Sperner sub-families of certain unions of levels of
a hereditary family. The inequality (given in Lemma 3.1) will have a fundamental role in the
proof of Theorem 2.1 and, as we show in the next section, it also happens to be a stepping
stone from Theorem 2.1 to the next theorem.

Theorem 2.5. If t � r and H is a hereditary family with μ(H) � n∗
0(r, t), then the largest

t-intersecting Sperner sub-families of H(�r) are the largest t-stars of H(r).

This result is inspired by the fact that Theorems 1.1 and 1.2 were actually proved in the
more general context of Sperner sub-families of

(
[n]
�r

)
.

We finally suggest the following uniform version of Conjecture 1.5 and natural generalisation
of Conjectures 1.6 and 1.7.

Conjecture 2.6. If t � r, ∅ �= S ⊆ [t, r] and H is a hereditary family with μ(H) �
n0(r, t) := (t + 1)(r − t + 1), then

⋃
s∈S H(s) is t-EKR, and strictly so if μ(H) > n0(r, t) or

S �= {r}.

This claims that Theorem 2.1 remains true if n∗
0(r, t) is replaced by (t + 1)(r − t + 1) + 1.

Clearly, Theorem 1.3 implies that the conjecture is true for H = 2[n] and that the lower bound
(t + 1)(r − t + 1) cannot be replaced by a smaller one. In Section 5, we support the conjecture
with the following result, the proof of which is in fact based on Theorem 1.3.

Theorem 2.7. Conjecture 2.6 is true if H is compressed.
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In Section 6, we apply Theorem 2.1 to obtain new results on t-intersecting families of signed
sets, permutations and separated sets.

3. A Sperner-type inequality for hereditary families, and some corollaries

For any pair of families A and F , let

∂
(s)
F A := {F ∈ F (s) : there exists an A ∈ A such that A ⊆ F or F ⊆ A}.

For A ⊆
(
[n]
r

)
and r < n, the following holds:

|∂(r+1)

2[n] A| � n − r

r + 1
|A|.

This is called a local LYM inequality; see [5, p. 12]. Sperner [43] determined this inequality in
order to prove his classical result that Sperner sub-families of 2[n] have size at most

(
n

�n/2�
)
.

The lemma below generalises the above inequality to one for sub-families of hereditary families.
The lemma and the subsequent corollaries will lead us to Theorems 2.1 and 2.5.

Lemma 3.1. If H is hereditary, A ⊆ H(p) and p < q � μ(H), then

|∂(q)
H A| �

(
μ(H)−p

q−p

)
(

q
q−p

) |A|.

Proof. For any A ∈ A, let MA be some H-maximal set in H such that A ⊂ MA. Hence
|MA| � μ(H), and

(
MA

q

)
⊆ H(q) since H is hereditary. Therefore(

μ(H) − p

q − p

)
|A| �

∑
A∈A

(
|MA| − p

q − p

)
=

∑
A∈A

|(∂(q)
H {A}) ∩

(
MA

q

)
|

�
∑
A∈A

|∂(q)
H {A}| =

∑
B∈∂

(q)
H A

|∂(p)
A {B}| �

∑
B∈∂

(q)
H A

(
q

p

)

=
(

q

q − p

)
|∂(q)

H A|,

and hence the result.

Corollary 3.2. If H is hereditary and p < q � μ(H), then

|H(q)| �
(
μ(H)−p

q−p

)
(

q
q−p

) |H(p)|.

Proof. This follows immediately from Lemma 3.1 as ∂
(q)
H H(p) ⊆ H(q).

We point out that Lemma 3.1 and Hall’s marriage theorem [24] also yield the following
strong corollary which, however, we will not need to apply here.

Corollary 3.3. Let H be a hereditary family, and let p < q � μ(H) − p. Then there exists
an injection f : H(p) → H(q) such that A ⊂ f(A) for all A ∈ H(p). If q < μ(H) − p then f is
not a bijection.
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Corollary 3.4. Let H be a hereditary family with μ(H) � 2r, and let A be a Sperner

sub-family of H(�r) such that A ∩H(�r−1) �= ∅. Then |∂(r)
H A| > |A|.

Proof. Set m := min{|A| : A ∈ A}. Thus
⋃r

s=m A(s) is a partition for A. Since A ∩
H(�r−1) �= ∅, it follows that m � r − 1. Take 1A := (A\A(m)) ∪ ∂

(m+1)
H A(m). Since A is

Sperner, we have (∂(m+1)
H A(m)) ∩ A = ∅, and hence |1A| > |A| since |∂(m+1)

H A(m)| > |A(m)| by
Lemma 3.1. Also note that 1A is Sperner. Repeating the same procedure r − m − 1 more times,
we obtain a family qA ⊂ H(r) (where q = r − m) such that |qA| > |A|. Clearly, qA = ∂

(r)
H A.

Corollary 3.5. Let H be a hereditary family with μ(H) � 2r, and let A be a largest
t-intersecting Sperner sub-family of H(�r). Then A ⊂ H(r).

Proof. Suppose A ∩H(�r−1) �= ∅. Trivially, ∂
(r)
H A is a t-intersecting Sperner sub-family of

H(r). By Corollary 3.4, |∂(r)
H A| > |A|, which is a contradiction.

Proof of Theorem 2.5. The result is trivial if t = r, so we assume t < r. Let H be a hereditary
family with μ(H) � n∗

0(r, t). Therefore μ(H) > 2r. Let A be a largest t-intersecting Sperner sub-
family of H(�r). By Corollary 3.5, we then have A ⊂ H(r), and hence A is a largest t-intersecting
sub-family of H(r). By Theorem 2.1 with S = {r}, A is a t-star of H(r).

4. Proof of the main result

Lemma 4.1. Let r � t + 1 and ∅ �= S ⊆ [t + 1, r]. Let H be a hereditary family with μ(H) �
r + 1. Suppose ∅ �= A ⊆

⋃
s∈S H(s) such that, for some J ⊆ U(H), |A ∩ J | � t + 1 for all A ∈ A.

Then there exists a T ∈
(
J
t

)
such that

|A| <
r − t

μ(H) − r

(
|J |

t + 1

) ∣∣∣∣∣
⋃
s∈S

H(s)〈T 〉
∣∣∣∣∣ .

Proof. Choose I0 ∈
(

J
t+1

)
such that

∑
s∈S

|H(s)〈I〉| �
∑
s∈S

|H(s)〈I0〉| for all I ∈
(

J

t + 1

)
.

Choose i0 ∈ I0, and let T := I0\{i0}. Let R := {s ∈ S : H(s)〈I0〉 �= ∅}.
Given that ∅ �= A ⊆

⋃
s∈S H(s) and |A ∩ J | � t + 1 for all A ∈ A, we have

1 � |A| =

∣∣∣∣∣
⋃

I∈( J
t+1)

A〈I〉
∣∣∣∣∣ �

∑
I∈( J

t+1)
|A〈I〉| �

∑
I∈( J

t+1)

∑
s∈S

|H(s)〈I〉|

�
∑

I∈( J
t+1)

∑
s∈S

|H(s)〈I0〉| =
(

|J |
t + 1

) ∑
s∈R

|H(s)〈I0〉|. (4.1)

Let I := {H\I0 : H ∈ H〈I0〉}. Since H is hereditary, I is hereditary.
If M ∈ H〈I0〉 and N ∈ H such that M ⊆ N , then N ∈ H〈I0〉, and hence N = M if M is

H〈I0〉-maximal. Thus the H〈I0〉-maximal sets in H〈I0〉 are also H-maximal, and hence, since
(4.1) gives us H〈I0〉 �= ∅, we have μ(H〈I0〉) � μ(H). Now clearly μ(I) = μ(H〈I0〉) − |I0| =
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μ(H〈I0〉) − t − 1. Therefore
μ(I) � μ(H) − t − 1. (4.2)

Note that (4.1) implies R �= ∅. Let s ∈ R, and let p := s − |I0| = s − t − 1, q := p + 1 = s − t.
Given that μ(H) � r + 1, it follows by (4.2) that

μ(I) � (r + 1) − t − 1 � s − t = q.

Therefore, by Corollary 3.2, we have

|I(q)| � μ(I) − p

q
|I(p)|,

and hence, since |I(p)| = |H(s)〈I0〉| and |I(q)| = |H(s+1)〈I0〉| (by definition of I, p and q),

|H(s+1)〈I0〉| � μ(I) − p

q
|H(s)〈I0〉|

� (μ(H) − t − 1) − (s − t − 1)
s − t

|H(s)〈I0〉| (by (4.2))

=
μ(H) − s

s − t
|H(s)〈I0〉|

� μ(H) − r

r − t
|H(s)〈I0〉|. (4.3)

Let B := {A\{i0} : A ∈ H(s+1)〈I0〉}. Note that, for all B ∈ B, we have T ⊂ B, |B| = s
and, since H is hereditary, B ∈ H; so B ⊆ H(s)〈T 〉. Since H(s)〈I0〉 �= ∅ (as s ∈ R) and
H(s)〈I0〉 ⊆ H(s)〈T 〉\B, we actually have B � H(s)〈T 〉 and hence |B| < |H(s)〈T 〉|. Thus, since
|B| = |H(s+1)〈I0〉|, we have |H(s+1)〈I0〉| < |H(s)〈T 〉|. From this strict inequality and (4.3)
(which gives us |H(s)〈I0〉| � ((r − t)/(μ(H) − r))|H(s+1)〈I0〉|), we immediately obtain

|H(s)〈I0〉| <
r − t

μ(H) − r
|H(s)〈T 〉|. (4.4)

Finally, by (4.1) and (4.4), we have

|A| �
(

|J |
t + 1

) ∑
s∈R

|H(s)〈I0〉|

<

(
|J |

t + 1

) ∑
s∈R

r − t

μ(H) − r
|H(s)〈T 〉|

=
r − t

μ(H) − r

(
|J |

t + 1

) ∑
s∈S

|H(s)〈T 〉|,

which establishes the result since
∑

s∈S |H(s)〈T 〉| = |
⋃

s∈S H(s)〈T 〉|.

Proof of Theorem 2.1. If S = {t}, then the result is trivial; so we consider t < r and S ⊆ [t, r]
such that S ∩ [t + 1, r] �= ∅. Let H be a hereditary family with μ(H) � n∗

0(r, t). Let A be a
(non-empty) non-trivial t-intersecting sub-family of

⋃
s∈S H(s).

We first show that there exists a set J ⊂ U(H) of size at most 3r − 2t − 1 such that
|A ∩ J | � t + 1 for all A ∈ A (this idea was used in [18] for the proof of Theorem 1.2). If
A is (t + 1)-intersecting, then we just take J to be an arbitrary set in A. Hence suppose A
is not (t + 1)-intersecting. Then there exist A1, A2 ∈ A such that |A1 ∩ A2| = t. Since A is a
non-trivial t-intersecting family, there exists an A3 ∈ A such that A1 ∩ A2 � A3, and hence
|A1 ∩ A2 ∩ A3| � t − 1. Take J to be A1 ∪ A2 ∪ A3. Therefore |A ∩ J | � t for all A ∈ A. Sup-
pose there exists an A ∈ A such that |A ∩ J | = t. Then t � |A ∩ (A1 ∪ A2)| = |A ∩ A1| + |A ∩
A2| − |A ∩ A1 ∩ A2| � 2t − |A ∩ A1 ∩ A2|, and hence |A ∩ A1 ∩ A2| � t. Also |A ∩ A1 ∩ A2| �
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|A ∩ J | = t; so |A ∩ A1 ∩ A2| = |A ∩ J |, and hence A ∩ J = A ∩ A1 ∩ A2 (as A1 ∩ A2 ⊂ J).
Thus we have t � |A ∩ A3| = |A ∩ (A3 ∩ J)| = |(A ∩ J) ∩ A3| = |(A ∩ A1 ∩ A2) ∩ A3| � |A1 ∩
A2 ∩ A3|, which contradicts |A1 ∩ A2 ∩ A3| � t − 1. Therefore |A ∩ J | � t + 1 for all A ∈
A. Now |J | = |A1 ∪ A2| + |A3| − |A3 ∩ (A1 ∪ A2)|. Since |A1 ∪ A2| = 2r − |A1 ∩ A2| = 2r −
t and |A3 ∩ (A1 ∪ A2)| = |A3 ∩ A1| + |A3 ∩ A2| − |A3 ∩ A2 ∩ A1| � 2t − |A1 ∩ A2 ∩ A3| � 2t −
(t − 1) = t + 1, we obtain |J | � (2r − t) + r − (t + 1) = 3r − 2t − 1.

Since we established the existence of a set J such that |A ∩ J | � t + 1 for all A ∈ A, we
may assume that S ⊆ [t + 1, r]. Since μ(H) � n∗

0(r, t), it follows by Lemma 4.1 that, for some
T ∈

(
J
t

)
,

|A| <
r − t

μ(H) − r

(
|J |

t + 1

) ∣∣∣∣∣
⋃
s∈S

H(s)〈T 〉
∣∣∣∣∣

� r − t

n∗
0(r, t) − r

(
3r − 2t − 1

t + 1

) ∣∣∣∣∣
⋃
s∈S

H(s)〈T 〉
∣∣∣∣∣

=

∣∣∣∣∣
⋃
s∈S

H(s)〈T 〉
∣∣∣∣∣ .

We have therefore shown that, for any non-trivial t-intersecting sub-family A of
⋃

s∈S H(s),
there exists a trivial t-intersecting sub-family of

⋃
s∈S H(s) that is a larger than A. The result

follows.

5. Proof of Theorem 2.7

The proof that we now present is based on the compression (also known as shifting) technique,
which was introduced in [18]. Frankl’s survey paper [20] gives an excellent account of the
efficacy of this technique in extremal set theory.

For i, j ∈ [n], the compression operation Δi,j : 22[n] → 22[n]
is defined by

Δi,j(A) := {δi,j(A) : A ∈ A} ∪ {A ∈ A : δi,j(A) ∈ A},

where δi,j : 2[n] → 2[n] is defined by

δi,j(A) =

{
(A\{j}) ∪ {i} if i /∈ A and j ∈ A,

A otherwise.

Note that |Δi,j(A)| = |A|.
If i < j, then Δi,j is said to be a left-compression. A family F ⊆ 2[n] is said to be left-

compressed if Δi,j(F) = F for any left-compression Δi,j .
The following lemma captures some well-known fundamental properties of compressions.

Lemma 5.1. Let t < n. Let H be a left-compressed sub-family of 2[n]. Suppose that A is a
non-empty t-intersecting sub-family of

⋃
s∈S H(s), where S ⊆ [t, n].

(i) If 1 � i < j � n, then Δi,j(A) is a t-intersecting sub-family of
⋃

s∈S H(s).
(ii) If A is left-compressed and s ∈ S, then |A ∩ B ∩ [2s − t]| � t for any A,B ∈ A(s).

Proof. Let 1 � i < j � n. Since H is left-compressed and A ⊆
⋃

s∈S H(s), it is
straightforward that Δi,j(A) ⊆

⋃
s∈S H(s). Let A,B ∈ Δi,j(A). If A,B ∈ A, then |A ∩ B| � t

as A is t-intersecting. Suppose A,B /∈ A. Then, for some C,D ∈ A, A = δi,j(C) �= C and
B = δi,j(D) �= D. Hence |A ∩ B| = |C ∩ D| � t. Finally, suppose without loss of generality that
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A ∈ A and B /∈ A. Then δi,j(A) ∈ A and B = δi,j(E) �= E for some E ∈ A. Thus |A ∩ B| �
|δi,j(A) ∩ E| � t. Hence (i).

Suppose that A is left-compressed. Let s ∈ S such that A(s) �= ∅, and let A,B ∈ A(s).
Therefore |A ∩ B| � t. Let X := (A ∩ B) ∩ [2s − t], Y := (A ∩ B)\[2s − t], Z := [2s − t]\(A ∪
B). If Y = ∅, then X = A ∩ B and hence |X| � t. Now consider Y �= ∅. Let p := |Y |. Since

|Z| = 2s − t − |(A ∪ B) ∩ [2s − t]| � 2s − t − |X| − |A\B| − |B\A|
= 2s − t − |X| − |A\(X ∪ Y )| − |B\(X ∪ Y )|
= 2s − t − |X| − 2(s − |X| − |Y |) = 2|Y | + |X| − t

= |Y | + |Y ∪ X| − t = p + |A ∩ B| − t � p,(
Z
p

)
�= ∅. Let W ∈

(
Z
p

)
. Let C := (B\Y ) ∪ W . Let y1, . . . , yp be the elements of Y , and let

w1, . . . , wp be those of W . Therefore C = δw1,y1 ◦ . . . ◦ δwp,yp
(B). Note that δw1,y1 , . . . , δwp,yp

are left-compressions as W ⊆ [2s − t] and Y ⊆ [n]\[2s − t]. Since A is left-compressed, C ∈
A. Thus |A ∩ C| � t as A is t-intersecting. Now clearly |A ∩ C| = |X|, and so |X| � t.
Hence (ii).

Lemma 5.2. Let F ⊆ 2[n] be left-compressed. Let Z ⊆ [n], 1 � i < j � n, and Y := δi,j(Z).
Then |F〈Z〉| � |F〈Y 〉|.

Proof. Suppose Y �= Z. Setting W := Z ∩ Y , we therefore have Z = W ∪ {j} �= W and Y =
W ∪ {i} �= W . Let D := {F ∈ F〈Z〉 : i /∈ F} and E := {F ∈ F〈Y 〉 : j /∈ F}. Since F is left-
compressed, we have Δi,j(D) ⊆ E , and hence |E| � |D|. Thus |F〈Y 〉| − |F〈Z〉| � 0 as |F〈Y 〉| −
|F〈Z〉| = (|F〈W ∪ {i, j}〉| + |E|) − (|F〈W ∪ {i, j}〉| + |D|) = |E| − |D|.

Corollary 5.3. Let F ⊆ 2[n] be left-compressed. Let Z ⊆ [n] and Y := [|Z|]. Then
|F〈Z〉| � |F〈Y 〉|.

Proof. Clearly, we can construct a composition of operations δi,j , i < j, that gives Y when
applied to Z. Thus the result follows by repeated application of Lemma 5.2.

Next we present the key tool for obtaining Theorem 2.7 from Theorem 1.3.

Lemma 5.4. Let F be a left-compressed sub-family of 2[n] such that [n] /∈ F . Let E :=
{F ∈ F : n /∈ F}. Then μ(E) � μ(F).

Proof. Let M ∈ E be E-maximal. Suppose |M | < μ(F). Then there exists an N ∈ F such
that n ∈ N and M � N . Let X := [n]\N . Since [n] /∈ F , X �= ∅. Let x ∈ X and L := δx,n(N) =
(N\{n}) ∪ {x}. Given that F is left-compressed, L ∈ F . Since n /∈ L, L ∈ E . Now M � L, but
this is a contradiction since M is E-maximal; so |M | � μ(F). Hence result.

The remaining lemmas will be used for obtaining the strict t-EKR part of Theorem 2.7.

Lemma 5.5. Let r � t. Let F be a family such that
(
M
s

)
⊆ F for some s ∈ [t, r] and some set

M with |M | � max{2r − t, 2s − t + 1}. Let T ∈
(
M
t

)
, and let A be a t-intersecting sub-family

of F (�r) such that A contains B := {B ∈
(
M
s

)
: T ⊆ B}. Then A ⊆ F〈T 〉.
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Proof. Let F be a set in F (�r) not containing T . If we show that |B ∩ F | � t − 1 for some
B ∈ B, then since A is t-intersecting and contains B, we get F /∈ A, and the result follows.

Let L be a largest subset of M such that T ⊆ L and |L ∩ F | � t − 1 (such a set L exists as
T � F ). If |F ∩ M | � t − 1, then L = M , and hence |L| � 2r − t � r. If instead |F ∩ M | � t,
then L = (M\F ) ∪ K for some set K that is in

(
F∩M
t−1

)
and contains F ∩ T , and hence

|L| = |M | − |F ∩ M | + |K| � max{2r − t, 2s − t + 1} − r + (t − 1) =

{
r if s = r,

r − 1 if s � r − 1.

Thus
(
L
s

)
�= ∅. Let B ∈

(
L
s

)
such that T ⊆ B. Then |B ∩ F | � |L ∩ F | � t − 1. Hence the

result.

Lemma 5.6. Let t � r, S ⊆ [t + 1, r] and p := min{s ∈ S}. Let H ⊆ 2[n] be a hereditary
family with μ(H) > max{2r − t, 2p − t + 1}. Let A be a t-intersecting sub-family of

⋃
s∈S H(s).

Suppose that, for some {i, j} ∈
(
[n]
2

)
, Δi,j(A) is a largest t-star of

⋃
s∈S H(s). Then A is a largest

t-star of
⋃

s∈S H(s).

We base the proof of the above lemma on the following simple-but-useful result.

Lemma 5.7. Suppose ∅ �= F ⊆
(
X
q

)
, 2q < |X|, such that, for any A ∈ F and B ∈

(
X\A

q

)
,

B ∈ F . Then F =
(
X
q

)
.

Proof. Let A1 ∈ F . Let A2 be an arbitrary set in
(
X
q

)
that intersects A1 in exactly q − 1

elements. Since |X| � 2q + 1, we can choose A3 ∈
(
X
q

)
such that A3 is disjoint from A1 ∪ A2.

By the assumption of the proposition, we have A3 ∈ F , which in turn implies A2 ∈ F . By
repeated application of this step, we get that any set in

(
X
q

)
is also in F .

Proof of Lemma 5.6. Let G :=
⋃

s∈S H(s) and D := Δi,j(A). Given that D is a t-star of G,
D = G〈T 〉 for some t-subset T of some H-maximal set N ∈ H. Let N be the t-star {A ∈

(
N
p

)
:

T ⊂ A} of
(
N
p

)
. Since H is hereditary, N ⊆ D(p). Also, N �= ∅ as t < p < μ(H) � |N |.

If A = D, then there is nothing to prove (as we are given that D is a largest t-star).
Suppose A �= D. Then there exists a set A ∈ A such that j ∈ A, i /∈ A, δi,j(A) ∈ Δi,j(A)\A

and A /∈ Δi,j(A); so T � A (as otherwise, since A ⊂ G, we get A ∈ G〈T 〉, contradicting A /∈
Δi,j(A) = G〈T 〉). Since Δi,j(A) = G〈T 〉, we have T ⊂ δi,j(A), and (together with T � A) this
implies i ∈ T, j /∈ T . Let R := T\{i} ∪ {j} = δj,i(T ), L := δj,i(N) (towards the end of the proof
we discover that L �= N , that is, i ∈ N , j /∈ N).

Suppose A(p) has a member A0 not containing R. Then, by definition of R and the equality
Δi,j(A) = G〈T 〉, we must have T ⊂ A0 and j /∈ A0. Let M ∈ H be an H-maximal set such that
A0 ⊂ M . Let K := M\(T ∪ {j}) and q := p − t. Then, given that μ(H) � 2p − t + 2, we have
2(p − t) < 2p − 2t + 1 � μ(H) − (t + 1) � |M | − (t + 1) and hence 2q < |K|. Let K :=

(
K∪T

p

)
and B := {A\T : A ∈ A(p) ∩ K〈T 〉}; so B ⊆

(
K
q

)
, and B �= ∅ as A0\T ∈ B. We will actually

arrive at the equality B =
(
K
q

)
.

Let B ∈ B and C ∈
(
K\B

q

)
(C exists as 2q < |K|). By definition of B, the set D := B ∪ T is

in A(p). We have C ⊂ M\D and T ⊂ M (as T ⊂ A0 ⊂ M). Since H is hereditary and the set
E := C ∪ T is a p-subset of M ∈ H, E ∈ H(p)〈T 〉; so E ∈ D. Suppose E /∈ A; then δj,i(E) ∈ A
and |D ∩ δj,i(E)| = |T\{i}| = t − 1, which is a contradiction as A is t-intersecting and contains
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also D. Therefore E ∈ A and hence C ∈ B. Thus, by Lemma 5.7 (with F = B, X = K),
B =

(
K
q

)
.

Now B =
(
K
q

)
implies {A ∈

(
K∪T

p

)
: T ⊂ A} ⊆ A(p) (by definition of B). Since |K ∪ T | �

|M | − 1 � μ(H) − 1 � max{2r − t, 2p − t + 1}, we therefore get A ⊆ H〈T 〉 by Lemma 5.5.
Given that Δi,j(A) = G〈T 〉, we should then have A = Δi,j(A), but this contradicts A �= D.

Therefore, all sets in A(p) contain R. Thus any set P in N is a p-set in Δi,j(A)\A (as
N ⊆ D(p) = H(p)〈T 〉) and hence P = δi,j(Q) �= Q, where Q = P\{i} ∪ {j} ∈ A. This clearly
means that R := {A ∈

(
L
p

)
: R ⊂ A} is a sub-family of A(p) (and the sub-family N of Δi,j(A)

is the result of the compression Δi,j on R). By Lemma 5.5, A ⊆ G〈R〉. Since D is a largest
t-star of G and |D| = |A|, it follows that A = G〈R〉 and that G〈R〉 is a largest t-star of G as
required.

Proof of Theorem 2.7. Fix t ∈ N. If r = t, then the result is trivial. Thus we assume r > t,
and we prove the result by induction on r.

Let H be a compressed hereditary family with μ(H) � (t + 1)(r − t + 1). Let n := |U(H)|.
It is easy to see that H is isomorphic to a left-compressed family H′ ⊆ 2[n] with U(H) = [n]; so
we may assume H = H′. Let S ⊆ [t, r] and G :=

⋃
s∈S H(s). Let A be an extremal t-intersecting

sub-family of G. If t ∈ S and A(t) has a member A, then, since A is t-intersecting, all sets in A
must contain A, and hence A can only be a t-star of G. Therefore we assume S ⊆ [t + 1, r]. Let
T := [t], and let T := G〈T 〉. For m ∈ N, let n1(m) := (t + 1)(m − t + 1). Thus μ(H) � n1(r)
and hence n � n1(r).

We first consider n = n1(r); so μ(H) = n and hence [n] ∈ H. Thus, since H is hereditary,
H(m) =

(
[n]
m

)
for all m ∈ [n]. For s ∈ S, n1(s) � n1(r). By Theorem 1.3, |A(s)| � |T (s)| for all

s ∈ S, and hence |A| � |T |. This proves that G is t-EKR.
Suppose S �= {r}. Since A is extremal, we actually have |A| = |T | and hence |A(s)| = |T (s)|

for all s ∈ S. Fix p ∈ S\{r}. Since n1(p) < n1(r) and |A(p)| = |T (p)|, it follows by Theorem 1.3
that A(p) = {A ∈

(
[n]
p

)
: Z ⊂ A} for some t-subset Z of [n]. By Lemma 5.5, A ⊆ H〈Z〉.

Therefore A is a t-star of G, and hence G is strictly t-EKR.
We now consider n > n1(r) and proceed by induction on n. If [n] ∈ H, then the result follows

by Theorem 1.3 as in the case n = n1(r) above; so we consider [n] /∈ H.
We start by applying left-compressions Δi,j to A until we obtain a left-compressed family B;

so |B| = |A|. By Lemma 5.1(i), B is a t-intersecting sub-family of G. Moreover, by Lemma 5.1(ii),
|A ∩ B ∩ [2r − t]| � t for any A,B ∈ B, and hence, since n > n1(r) � 2r − t,

|A ∩ B ∩ [n − 1]| � t for any A,B ∈ B. (5.1)

Let B1 := {B ∈ B : n /∈ B} and B2 := {B\{n} : n ∈ B ∈ B}. Define H1 and H2 similarly.
Hence B1 ⊂

⋃
s∈S H1

(s) and B2 ⊂
⋃

s∈S H2
(s−1). By (5.1), B1 and B2 are t-intersecting. It

is straightforward that, since H is a left-compressed hereditary sub-family of 2[n], H1 and H2

are left-compressed hereditary sub-families of 2[n−1]. By Lemma 5.4, we have μ(H1) � μ(H),
and hence μ(H1) � n1(r). Since U(H) = [n], H2 �= ∅. Therefore, similarly to (4.2), we have
μ(H2) � μ(H) − 1, and hence μ(H2) > n1(r − 1). We can now apply the inductive hypothesis
to obtain the following:

– for each s ∈ S, there exists a T1,s ∈
(
[n−1]

t

)
such that |B1

(s)| � |H1
(s)〈T1,s〉| and H1

(s)〈T1,s〉
is an extremal t-intersecting sub-family of H1

(s);
– for each s ∈ S, there exists a T2,s ∈

(
[n−1]

t

)
such that |B2

(s−1)| � |H2
(s−1)〈T2,s〉| and

H2
(s−1)〈T2,s〉 is an extremal t-intersecting sub-family of H2

(s−1).
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For s ∈ S, since H(s) is left-compressed, H1
(s) and H2

(s−1) are left-compressed, and hence
by Corollary 5.3, |H1

(s)〈T1,s〉| � |H1
(s)〈T 〉| and |H2

(s−1)〈T2,s〉| � |H2
(s−1)〈T 〉|. Thus we have

|B(s)| = |B1
(s)| + |B2

(s−1)| � |H1
(s)〈T1,s〉| + |H2

(s−1)〈T2,s〉|
� |H1

(s)〈T 〉| + |H2
(s−1)〈T 〉| = |T (s)|

for each s ∈ S, and hence |B| � |T | as |B| =
∑

s∈S |B(s)| and |T | =
∑

s∈S |T (s)|. This proves
that G is t-EKR as |A| = |B|.

We now prove the strict t-EKR part. Suppose μ(H) > n1(r) or S �= {r}. Taking p := min{s ∈
S}, we then have μ(H) � max{n1(r), n1(p) + 1}, and so μ(H1) � max{n1(r), n1(p) + 1} (as
μ(H1) � μ(H) by Lemma 5.4). Since A is extremal and |B| = |A|, B is extremal and hence |B| =
|T |. Thus, for all s ∈ S, |B1

(s)| = |H1
(s)〈T1,s〉| and hence, by the above, B1

(s) is an extremal t-
intersecting sub-family of H1

(s). Let us focus on s = p. By the inductive hypothesis, there exists
a T ′ ∈

(
[n−1]

t

)
such that B1

(p) = H1
(p)〈T ′〉 and H1

(p)〈T ′〉 is an extremal t-intersecting sub-
family of H1

(p). Therefore |H1
(p)〈T ′〉| = |H1

(p)〈T 〉| because, as is clear from the above, H1
(p)〈T 〉

is also extremal. We therefore establish that H1
(p)〈T ′〉 �= ∅ by showing that H1

(p)〈T 〉 �= ∅.
Clearly, [μ(H1)] ∈ H1 since H1 is left-compressed. Thus, since T ⊂ [p] ⊂ [μ(H1)] and H1 is

hereditary, [p] ∈ H1
(p)〈T 〉. Hence H1

(p)〈T ′〉 �= ∅ as claimed.
Let A ∈ H1

(p)〈T ′〉, and let M be an H1-maximal set in H1 such that A ⊂ M . Then
T ′ ∈

(
M
t

)
. Given that μ(H1) � n1(r), we have |M | > 2r − t. Since H1 is hereditary,

(
M
p

)
⊆

H1
(p), and so {B ∈

(
M
p

)
: T ′ ⊂ B} ⊆ H1

(p)〈T ′〉. Since H1
(p)〈T ′〉 = B1

(p) ⊆ B and μ(H) �
max{n1(r), n1(p) + 1} > max{2r − t, 2p − t + 1}, it follows by Lemma 5.5 that B ⊆ H〈T ′〉.
Since B is an extremal t-intersecting sub-family of G, B = G〈T ′〉 and B is a largest t-star
of G. By Lemma 5.6, A is a largest t-star of G. This proves that G is strictly t-EKR.

6. Applications of the main result

6.1. Extremal t-intersecting families of signed sets

Let X be an n-set {x1, . . . , xn}. If y1, . . . , yn ∈ N and |{y1, . . . , yn}| � k, then we call the set
{(x1, y1), . . . , (xn, yn)} a k-signed n-set. For k � 2, we define SX,k to be the family of k-signed
n-sets given by

SX,k := {{(x1, a1), . . . , (xn, an)} : a1, . . . , an ∈ [k]}.

The Cartesian product X × Y of sets X and Y is the set {(x, y) : x ∈ X, y ∈ Y }. Hence
SX,k = {A ∈

(
X×[k]
|X|

)
: |A ∩ ({x} × [k])| = 1 for all x ∈ X}.

For a family F of sets, we define

SF,k :=
⋃

F∈F
SF,k.

The ‘signed sets’ terminology was introduced in [6] for a setting that can be re-formulated
as S([n]

r ),k
, and the general formulation SF,k was introduced in [7], the theme of which is the

following conjecture.

Conjecture 6.1 (Borg [7]). Let F be any family, and let k � 2. Then:
(i) SF,k is EKR;
(ii) SF,k is not strictly EKR if and only if k = 2 and there exist at least three elements

u1, u2, u3 of U(F) such that F〈{u1}〉 = F〈{u2}〉 = F〈{u3}〉 and SF,2〈{(u1, 1)}〉 is a
largest star of SF,2.
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The main result in the same paper [7] is that the above conjecture is true if F is compressed
with respect to some element of U(F). This generalises a well-known result that was first
stated by Meyer [39] and proved in different ways by Deza and Frankl [15], Bollobás and
Leader [6], Engel [16] and Erdős et al. [17], and that can be perfectly described as saying that
the conjecture is true for F =

(
[n]
r

)
. We point out that Berge [4] and Livingston [38] had proved

(i) and (ii), respectively, for the special case F = {[n]} (other proofs are found in [23, 41]).
The t-intersection problem for sub-families of S[n],k has also been solved. Frankl and Füredi

[21] were the first to investigate it, and they conjectured that an extremal t-intersecting
sub-family of S[n],k has size max{|{A ∈ S[n],k : |A ∩ ([t + 2i] × [1])| � t + i}| : i ∈ {0} ∪ N}. The
conjecture claims that S[n],k is t-EKR if k � t + 1, and they showed that this is true if t � 15. A
result of Kleitman [32], which is known to be equivalent to Theorem 1.4, had long established
the truth of the conjecture for the special case k = 2. After the complete intersection theorem
[2] was established, Ahlswede and Khachatrian [3] and Frankl and Tokushige [22] were able
to prove this conjecture independently and by different methods; Ahlswede and Khachatrian
also determined the extremal structures.

To the best of the author’s knowledge, other than the following consequence of Theorem 2.1,
no result of ‘t-EKR’ type for SF,k, where F is some family containing more than one set, has
been published yet.

Theorem 6.2. If t � r, S ⊆ [t, r] and F =
⋃

s∈S H(s) for some hereditary family H with
μ(H) � n∗

0(r, t), then SF,k is strictly t-EKR for all k.

Proof. Clearly, for any family G, μ(SG,k) = μ(G), and SG,k is hereditary if and only if G is
hereditary. Let F and H be as in the theorem; so SF,k = S⋃

s∈S H(s),k =
⋃

s∈S SH,k
(s) and SH,k

is hereditary. The result now follows by Theorem 2.1.

Note that the above result with H = 2[n] (n � n∗
0(r, t)) tells us that the extremal t-

intersecting sub-families of S([n]
r ),k

are the t-stars. It also yields the following.

Corollary 6.3. Conjecture 6.1 is true if F =
⋃

s∈S H(s) for some hereditary family H
with μ(H) � n∗

0(r, 1) and some S ⊆ [r].

Proof. The only thing we need to check is that, for F as in the corollary, the condition
in Conjecture 6.1(ii) holds. We prove more by showing that F〈{u}〉 �= F〈{v}〉 for any distinct
u, v ∈ U(F). Indeed, let u, v ∈ U(F), u �= v. Then u ∈ E and v ∈ F for some E,F ∈

⋃
s∈S H(s).

If {u, v} � E ∩ F , then clearly F〈{u}〉 �= F〈{v}〉; so suppose {u, v} ⊆ E ∩ F . Let M be an H-
maximal set in H such that E ⊆ M . Since |{u, v}| � |E| � r and n∗

0(r, 1) � μ(H) � |M |, we
have 2 � r < n∗

0(r, 1) � |M |. Hence E � M . Let w ∈ M\E, and let D := (E\{v}) ∪ {w}. Since
D ⊂ M and H is hereditary, D ∈ H. Thus, since |D| = |E| and E ∈

⋃
s∈S H(s) = F , we have

D ∈ F . By definition of D, it follows that D ∈ F〈{u}〉\F〈{v}〉, and so F〈{u}〉 �= F〈{v}〉.

6.2. Extremal t-intersecting families of permutations and partial permutations

For an n-set X := {x1, . . . , xn}, we define S∗
X,k to be the special sub-family of SX,k given by

S∗
X,k := {{(x1, a1), . . . , (xn, an)} : a1, . . . , an are distinct elements of [k]}.

Therefore S∗
X,k =

{
{(x1, a1), . . . , (xn, an)} : {a1, . . . , an} ∈

(
[k]
n

)}
. Note that S∗

X,k �= ∅ if and
only if n � k.
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For a family F , we define S∗
F,k to be the special sub-family of SF,k given by

S∗
F,k :=

⋃
F∈F

S∗
F,k.

An r-partial permutation of an n-set N is a pair (A, f), where A ∈
(
N
r

)
and f : A → N is

an injection. An n-partial permutation of N is simply called a permutation of N . Clearly,
the family of permutations of [n] can be re-formulated as S∗

[n],n, and the family of r-partial
permutations of [n] can be re-formulated as S∗

([n]
r ),n

.
For X as above, S∗

X,k can be interpreted as the family of permutations of sets in(
[k]
n

)
: consider the bijection β : S∗

X,k → {(A, f) : A ∈
(
[k]
n

)
, f : A → A is a bijection} defined by

β({(x1, a1), . . . , (xn, an)}) := ({a1, . . . , an}, f) where, for b1 < . . . < bn such that {b1, . . . , bn} =
{a1, . . . , an}, f(bi) := ai for i = 1, . . . , n. Now, S∗

X,k can also be interpreted as the sub-family
X := {(A, f) : A ∈

(
[k]
n

)
, f : A → [n] is an injection} of the family of n-partial permutations of

[k]: consider an obvious bijection from S∗
X,k to S∗

([k]
n ),n

and another one from S∗
([k]

n ),n
to X .

In [13, 14], the study of intersecting permutations was initiated. Deza and Frankl [14] showed
that S∗

[n],n is EKR. Cameron and Ku [9] proved that actually S∗
[n],n is strictly EKR; this result

was also deduced from a more general result on certain vertex transitive graphs in [36].
Ku and Leader [35] investigated the intersection problem for partial permutations. They

established that S∗
([n]

r ),n
is EKR, and strictly so for r ∈ [8, n − 3]. Naturally, they conjectured

that S∗
([n]

r ),n
is strictly EKR for all r ∈ [n], and this was settled by Li and Wang [37].

Concerning t-intersecting families of permutations, the most interesting challenge comes from
the following open conjecture.

Conjecture 6.4 (Deza and Frankl [14]). For any integer t � 2, there exists an n0(t) ∈ N
such that, for any n � n0(t) and any t-intersecting sub-family A of S∗

[n],n, |A| � (n − t)!.

In other words, this conjecture claims that S∗
[n],n is t-EKR for n sufficiently large, and hence

also suggests the strict t-EKR property. It is worth pointing out that the condition n � n0(t) is
necessary; [34, Example 3.1.1] is a simple illustration of this fact. Ku [34] proved an analogue
of the statement of the conjecture for partial permutations.

Theorem 6.5 (Ku [34]). Let 2 � t � r, and let Fn =
(
[n]
�r

)
. Then there exists an n0(r, t) ∈

N such that, for all n � n0(r, t), the t-stars of S∗
Fn,n

(r) = S∗
([n]

r ),n
are among the largest t-

intersecting Sperner sub-families of S∗
Fn,n.

The above result follows from the case I = 2[n] and k = n in the following consequence of
Theorem 2.5.

Theorem 6.6. Let t � r. Let I be a hereditary family with μ(I) � n∗
0(r, t), and let F :=

I(�r). Then, for k � n∗
0(r, t), the largest t-intersecting Sperner sub-families of S∗

F,k are the

largest t-stars of S∗
F,k

(r) = S∗
F(r),k

.

Proof. Let m := n∗
0(r, t). Let G := I(�m) and H := S∗

G,k. Since r � m, we have F = G(�r).
Now S∗

G(�r),k
= S∗

G,k
(�r), that is, S∗

F,k = H(�r). Since I is hereditary, G is hereditary and hence
H is hereditary. Clearly μ(H) = μ(G). Hence the result follows by Theorem 2.5 if we show that
μ(G) = m. Since μ(I) � m, there exists an I-maximal set M in I of size at least m, and hence,
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since I is hereditary, ∅ �=
(
M
m

)
⊆ I. By definition of G, any set in

(
M
m

)
is a G-maximal set in G.

Therefore μ(G) = m as required.

From Theorem 2.1, we obtain the following analogue of Theorem 6.2.

Theorem 6.7. Let t � r, S ⊆ [t, r] and F =
⋃

s∈S I(s) for some hereditary family I with
μ(I) � n∗

0(r, t). Then, for k � n∗
0(r, t), S∗

F,k is strictly t-EKR.

Proof. Let m := n∗
0(r, t). Let G := I(�m) and H := S∗

G,k. Since r � m, we have F =⋃
s∈S G(s). Now S∗⋃

s∈S G(s),k
=

⋃
s∈S S∗

G,k
(s), that is, S∗

F,k =
⋃

s∈S H(s). Since I is hereditary, G
is hereditary and hence H is hereditary. As we showed in the preceding proof, μ(H) = μ(G) =
n∗

0(r, t). Therefore the result follows by Theorem 2.1.

6.3. Extremal t-intersecting families of separated sets

For a sequence {di}i∈N of non-negative integers, we define

P({di}i∈N) := {{a1, . . . , ar} ⊂ N : r ∈ N, ai+1 > ai + dai
, i = 1, . . . , r − 1},

Pn({di}i∈N) := P({di}i∈N) ∩ 2[n],

Pn,r({di}i∈N) := P({di}i∈N) ∩
(

[n]
r

)
.

Holroyd, Spencer and Talbot [27] proved that Pn,r({di = d}i∈N) is EKR for any d, r ∈ N. The
author has tackled the wider problem of determining the EKR and strict EKR properties of
Pn,r({di}i∈N) for the case when {di}i∈N is a monotonic non-decreasing sequence with d1 > 0; it
turns out that Pn,r({di}i∈N)) is also EKR in this case. For the very general case where {di}i∈N

is any sequence, we prove the following t-intersection result using Theorem 2.1.

Theorem 6.8. Let {di}i∈N be a sequence of non-negative integers, and let t � r. Then
there exists n0 := n0({di}i∈N, r, t) ∈ N such that n0 = min{n ∈ N : μ(Pn({di}i∈N)) � n∗

0(r, t)}
and, for any n � n0 and any S ⊆ [t, r],

⋃
s∈S Pn,s({di}i∈N) is strictly t-EKR.

Before proving this result, we illustrate the fact that we cannot do without some condition
n � n0({di}i∈N, r, t). For example, since Pn,r({di = 0}i∈N) =

(
[n]
r

)
, the smallest n0({di =

0}i∈N, r, t) is (r − t + 1)(t + 1) + 1 by Theorem 1.3. To take another example, let t � 4 and
let P := P2t+5,t+1({di = 1}i∈N). For each j ∈ [t + 3], let Pj := {2i − 1 : i ∈ [j]}; so Pj ∈ P(j).
It is easy to see that P〈Pt〉 is a largest t-star of P. Let A :=

(
Pt+2
t+1

)
. Clearly, A is a non-trivial

t-intersecting sub-family of P and |A| − |P〈Pt〉| = (t + 2) − |[2t + 1, 2t + 5]| = t − 3 � 1. Thus,
for t � 4, the smallest n0({di = 1}i∈N, t + 1, t) is larger than 2t + 5, which is the value of the
smallest n0({di = 0}i∈N, t + 1, t) (by Theorem 1.3 as remarked above).

We now work towards the proof of Theorem 6.8, which requires two lemmas about the nature
of μ(Pn({di}i∈N)).

Lemma 6.9. Let {di}i∈N be a sequence of non-negative integers, and let m ∈ N. Then there
exists n0(m) ∈ N such that μ(Pn({di}i∈N)) � m for all n � n0(m).

Proof. The result is trivial if m = 1; so suppose m � 2. Let a0 := 0, a1 := 1, a2 := 1 +
d1, and let ai := ai−1 + max{dj : j ∈ [ai−2 + 1, ai−1]} + 1 for i = 3, . . . , 2m. Let n � n0(m) :=
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a2m. Let P ∈ Pn := Pn({di}i∈N) such that P ∩ [a2i′ + 1, a2i′+2] = ∅ for some i′ ∈ {0} ∪ [m − 1].
It is clear from the choice of the integers a0, a1, . . . , a2m that we then have P ∪ {a2i′+1} ∈ Pn,
and hence P is not Pn-maximal. Thus any Pn-maximal set in Pn must intersect [a2i + 1, a2i+2]
for each i ∈ {0} ∪ [m − 1]. Therefore μ(Pn) � m.

Note that Corollary 2.4 and the above lemma already imply that, for any sequence {di}i∈N

of non-negative integers and any t, r ∈ N, t � r, there exists n0({di}i∈N, r, t) ∈ N such that, for
any S ∈ [t, r] and any n � n0({di}i∈N, r, t),

⋃
s∈S Pn,s({di}i∈N) is strictly t-EKR. To establish

the slightly stronger fact given by Theorem 6.8, we need the next lemma, which says that
{μ(Pn)}n∈N (Pn := Pn({di}i∈N)) is a monotonic non-decreasing sequence.

Lemma 6.10. Let {di}i∈N be a sequence of non-negative integers, and let n ∈ N. Then
μ(Pn+1({di}i∈N)) � μ(Pn({di}i∈N)).

Proof. For any m ∈ N, let Pm := Pm({di}i∈N). Suppose μ(Pn+1) < μ(Pn) for some n ∈
N. Let 1 � p1 � . . . � pμ(Pn+1) � n + 1 such that P1 := {p1, . . . , pμ(Pn+1)} is Pn+1-maximal.
If pμ(Pn+1) �= n + 1, then P1 is a Pn-maximal set in Pn, and hence μ(Pn) � |P1|; but this
contradicts μ(Pn) > μ(Pn+1) as |P1| = μ(Pn+1). Thus pμ(Pn+1) = n + 1. Let P2 := P1\{n + 1};
so P2 ∈ Pn. If P2 is Pn-maximal, then μ(Pn) � |P2|; but this contradicts |P2| + 1 = |P1| =
μ(Pn+1) < μ(Pn), and so P2 is not Pn-maximal. Therefore there exists a non-empty set Q ⊆
[n]\P2 such that P3 := P2 ∪ Q is a Pn-maximal set in Pn. Thus, since μ(Pn) > μ(Pn+1), we have
|P3| > |P1|, which implies |Q| > 1 as |P1| > |P2|. Let q1, q2 ∈ Q, q1 < q2. Suppose q < pμ(Pn)−1

for some q ∈ {q1, q2}. Then q + dq + 1 � pμ(Pn)−1 (since q, pμ(Pn)−1 ∈ P3 ∈ Pn), and hence
P1 ∪ {q} ∈ Pn+1; but this is a contradiction since P1 is Pn+1-maximal. So q > pμ(Pn)−1 for
each q ∈ {q1, q2}. Since q1, q2 ∈ P3 ∈ Pn, q1 + dq1 + 1 � q2. Thus, since q2 < n + 1, we have
P2 ∪ {q1, n + 1} ∈ Pn+1, and hence P1 ∪ {q1} ∈ Pn+1; but this is a contradiction since P1 is
Pn+1-maximal. We therefore conclude that μ(Pn+1) � μ(Pn).

Proof of Theorem 6.8. For n ∈ N, let Pn := Pn({di}i∈N). By Lemma 6.9, min{n ∈ N :
μ(Pn({di}i∈N)) � n∗

0(r, t)} exists; let n0 be this integer. Clearly, P({di}i∈N) is hereditary, and
so Pn is hereditary. If n � n0, then μ(Pn) � μ(Pn0) by Lemma 6.10, and hence μ(Pn) � n∗

0(r, t)
as μ(Pn0) = n∗

0(r, t). The result now follows by Theorem 2.1.

Finally, let us quickly demonstrate another application of Theorem 2.1 for families whose sets
obey a slightly different separation condition. For 1 � k � n, let Cn,k be the family consisting
of all subsets A of [n] such that, if |A| � 2, then k < |a − b| < n − k for any a, b ∈ A, a �= b.
Solving the problem in [26], Talbot [44] proved the following result.

Theorem 6.11 (Talbot [44]). For any n, k, r ∈ N, C(r)
n,k is EKR, and strictly so unless

n = 2r + 2 and k = 1.

Clearly, Cn,k is a hereditary family. It is also easy to see that {μ(Cn,k)}n∈N is a monotonic
non-decreasing sequence and that μ(Cn,k) → ∞ as n → ∞. Thus, for the general t-intersection
case, Theorem 2.1 gives us the following.

Theorem 6.12. For any k, r ∈ N and n � min{m ∈ N : μ(Cm,k) � n∗
0(r, t)}, C

(r)
n,k is strictly

t-EKR.
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Again, if t � 2, then the above equality does not hold for certain small values of n. Indeed, let
t � 2 and C := C2t+4,1. For each j ∈ [t + 2], let Cj := {2i − 1 : i ∈ [j]}; so Cj ∈ C(j). It is easy
to see that C(t+1)〈Ct〉 is a largest t-star of C(t+1). Let A :=

(
Ct+2
t+1

)
. Clearly, A is a non-trivial t-

intersecting sub-family of C(t+1) and |A| − |C(t+1)〈Ct〉| = (t + 2) − |[2t + 1, 2t + 3]| = t − 1 � 1.
Therefore C(t+1) is not t-EKR.
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discussions. The author is also indebted to the anonymous referee for carefully checking the
paper and providing remarks that led to an improvement in the presentation.
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35. C. Y. Ku and I. Leader, ‘An Erdős–Ko–Rado theorem for partial permutations’, Discrete Math. 306

(2006) 74–86.
36. B. Larose and C. Malvenuto, ‘Stable sets of maximal size in Kneser-type graphs’, European J. Combin.

25 (2004) 657–673.
37. Y. -S. Li and J. Wang, ‘Erdős-Ko-Rado-type theorems for colored sets’, Electron. J. Combin. 14 (2007)

R1.
38. M. L. Livingston, ‘An ordered version of the Erdős–Ko–Rado Theorem’, J. Combin. Theory Ser. A 26
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1986.
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