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Abstract

Let F be a family of subsets of a �nite set V . The star of F at

v ∈ V is the sub-family {A ∈ F : v ∈ A}. We denote the sub-family

{A ∈ F : |A| = r} by F (r).

A double partition P of a �nite set V is a partition of V into

large sets that are in turn partitioned into small sets. Given such a

partition, the family F(P) induced by P is the family of subsets of V
whose intersection with each large set is either contained in just one

small set or empty.

Our main result is that, if one of the large sets is trivially parti-

tioned (that is, into just one small set) and 2r is not greater than the

least cardinality of any maximal set of F(P), then no intersecting sub-

family of F(P)(r) is larger than the largest star of F(P)(r). We also

characterise the cases when every extremal intersecting sub-family of

F(P)(r) is a star of F(P)(r).
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1 Introduction

For positive integers m and n such that m < n, we denote the set {m, m +
1, ..., n} by [m,n], and if m = 1 then we also write [n]. For a set X, the
power set {A ⊂ X} of X is denoted by 2X , and the set {Y ⊆ X : |Y | = r} is
denoted by

(
X
r

)
.

Let V be a set, and let F ⊆ 2V . For v ∈ V , denote by Fv the star at v,
that is, the sub-family {A ∈ F : v ∈ A}. If Fv = F (that is, v ∈

⋂
F∈F F ),

then v is said to be a centre of F . If
⋂

F∈F F 6= ∅ then F is said to be
centred ; otherwise F is said to be non-centred.

A family F is intersecting if A ∩ B 6= ∅ for any A, B ∈ F . Then F is
said to have the Erd®s-Ko-Rado property if there is a star that is an extremal
(that is, largest) intersecting sub-family of F , and to have the strict Erd®s-
Ko-Rado property if there is a star that is strictly larger than any non-centred
intersecting sub-family of F . We abbreviate, saying that F is EKR or strictly
EKR, respectively. Furthermore, for an integer r we say that F is (strictly)
r-EKR if the uniform sub-family F (r) := {A ∈ F : |A| = r} is non-empty
and (strictly) EKR.

The above notation permits the use of both subscript and superscript:
that is, F (r)

v := {A ∈ F : v ∈ A, |A| = r}.
A family F is said to be hereditary if any subset of any set in F is also

in F . Chvátal's conjecture [5], which is one of the central conjectures in
extremal set theory, claims that any hereditary family is EKR. In this paper
we are concerned with the r-EKR properties of hereditary families, denoted
by F(P), that have the following particular structure.

A double partition P of a �nite set V is a partition of V into large
sets Vi (0 ≤ i ≤ k) (the top partition), each partitioned into ai small sets
Vi1, . . . , Viai

. The family F(P) induced by P is the family of subsets of V
whose intersection with each large set is either contained in just one small
set or empty.

Let P be a double partition. Throughout the paper, we shall assume that
for 0 ≤ i ≤ k the small sets Vij are presented in non-increasing order of size:
|Vi1| ≥ |Vi2| ≥ . . . ≥ |Viai

| ≥ 1. The elements of each small set Vij are given
some arbitrary ordering and denoted by vij1, . . . , vijnij

where |Vij| = nij.
We denote

∑k
i=0 |Vi1| by α(P) and

∑k
i=0 |Viai

| by µ(P). Thus α(P) is the
largest cardinality of any set in F(P), while µ(P) is the least cardinality of
any maximal set of F(P).

The case V = V0, a0 = 1 gives F(P) = 2V and F(P)(r) =
(

V
r

)
. If

|V |/2 < r < |V |, then
(

V
r

)
is intersecting and hence not EKR. For r ≤ |V |/2,

the solution to our problem in this simple case is the following classical result.
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Theorem 1.1 (Erd®s, Ko, Rado [8], Hilton, Milner [16]) Let X be a
�nite set, and let r ≤ |X|/2. Then:
(i)

(
X
r

)
is EKR;

(ii)
(

X
r

)
is strictly EKR if and only if r < |X|/2.

Part (i) was proved by Erd®s, Ko and Rado, and part (ii) was established
later by Hilton and Milner as part of a more general result. The Erd®s-Ko-
Rado Theorem inspired a wealth of results in extremal set theory; the survey
paper by Deza and Frankl [6] is recommended.

The EKR problem for the case when the small sets are singletons has
attracted much attention. The following is a well-known important result
that was stated by Meyer [20] and proved in di�erent ways by Deza and
Frankl [6] and Bollobás and Leader [3].

Theorem 1.2 (Meyer [20]; Deza, Frankl [6]; Bollobás, Leader [3]) Let
P be a double partition of V into k large sets each of cardinality t ≥ 2, where
each small set is a singleton. Then (i) F(P) is r-EKR (1 ≤ r ≤ k) and (ii)
strictly so unless t = 2 and r = k ≥ 3.

Other proofs of this result are found in [4, 7, 10]. The special case r = k was
also treated in [1, 13, 19, 21]. Holroyd, Spencer and Talbot [17] showed that
Theorem 1.2(i) still holds if the cardinalities of the large sets are not all the
same but at least 2. The case r = k of this extension implies that F(P) is
α(P)-EKR for any P .

We now state two theorems that will both be generalised in this paper:
the �rst one is for the case when all small sets are again singletons but at
least one large set is also a singleton, and the second one is for the case when
the small sets are not necessarily singletons but there are just two large sets.

Theorem 1.3 (Bey [2]; Holroyd, Spencer, Talbot [17]) Let P be a dou-
ble partition of V into k large sets, where at least one large set is a singleton
and each small set is a singleton. Then F(P) is r-EKR if r ≤ k/2.

Theorem 1.4 (Holroyd, Talbot [18]) Let P be the double partition V =
V0 ∪ V1 with a1 > 1.
(i) If r ≤ µ(P)/2, then F(P) is r-EKR;
(ii) if r < µ(P)/2, then F(P) is strictly r-EKR.

Suppose no large set is trivially partitioned, that is, ai > 1 for each
i ∈ {0, 1, ..., k}. Then the problem immediately reduces to one with ai = 1
for some i if and only if k ≤ 1 as in the result above; see [18]. We mention
that, if k = 1, then, for the "reduced" problem with say a0 = 1, the family
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{V0∪V11, ..., V0∪V1a1} of maximal sets of F(P) is what is commonly referred
to as a sun�ower or delta-system. The Erd®s-Rado Theorem [9] is an example
of a well-known result about sun�owers. Sun�owers are used in the kernel
method introduced by Hajnal and Rothschild [14]; a brief review together
with another application of this method is given in [11].

The main contribution of the present paper is to develop the method
used in [18], to allow us to prove quite a general result concerning double
partitions. Before proceeding, we note that there is a considerable di�erence
between the case when there is a set Vi that is not further partitioned (that
is, Vi is both a large and a small set, so ai = 1) and the case where this is
not so. This requires the following modi�cation of our notation.

Suppose that for some non-empty S ⊆ {0} ∪ [k] and for all i ∈ S, ai = 1.
Then replacing the large sets Vi, i ∈ S, by the single large set

⋃
i∈S Vi does

not alter F(P). Thus we adopt the following convention: The set V0 is the
unique large set that is trivially partitioned (i.e., also a small set), and also
the only large set that is allowed to be empty. We say that P is anchored
if V0 6= ∅, and unanchored if V0 = ∅. A double partition that is given to be
unanchored may, if convenient, be described by a top partition V =

⋃k
j=1 Vi

and the empty V0 ignored.
The width of a double partition P is the number of non-trivially parti-

tioned large sets.
Our main theorem concerns anchored double partitions and is as follows.

Theorem 1.5 Let P be an anchored double partition of width k > 0. Let
1 ≤ r ≤ µ(P)/2. Then:
(i) F(P) is r-EKR;
(ii) F(P) fails to be strictly r-EKR if and only if 2r = µ(P) = α(P),
3 ≤ |V0| ≤ r, and k = 1.

Clearly, this result signi�cantly generalises Theorems 1.3 and 1.4 (recall that
Theorem 1.4 follows immediately from the statement of Theorem 1.5 with
k = 1). We remark that, unlike Theorem 1.2, this result in general does not
hold for µ(P)/2 < r < α(P); examples can be constructed easily, especially
for anchored partitions of width 1 (see also [18]).

Removing the anchor condition from Theorem 1.5 seems to make the
problem much harder. However, in the special case of an unanchored double
partition of width 3 where all the Vij have the same cardinality, we have the
following result.

Theorem 1.6 Let P be an unanchored double partition of width 3 such that
every small set is of size c. Then F(P) is strictly r-EKR for all r ≤ µ(P)/2 =
3c/2.
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2 Crossing sets

Let Y := {X0, X1, . . . , Xl} be a family of disjoint non-empty �nite sets,
Y :=

⋃l
i=0 Xi, xi := |Xi| (0 ≤ i ≤ l), y := |Y |. A subset A of Y is a

crossing set of Y if A ∩Xi 6= ∅ (0 ≤ i ≤ l). We denote by C(Y) the family
of crossing sets of Y ; thus, for l + 1 ≤ m ≤ y, C(Y)(m) is the family of
crossing m-sets of Y . We denote |C(Y)(m)| by (x0, . . . , xl)

(m) or, where the
xi are clear from context, by y(m). These numbers mimic the behaviour of
the binomial coe�cients

(
y
m

)
in some respects; in particular, they have the

following property.

Lemma 2.1 If l + 1 ≤ m < y/2 and m < n ≤ y −m, then

y(m) ≤ y(n)

with equality if and only if n = y −m and l = 0.

Proof. For each A ∈ C(Y)(m) there are
(

y−m
n−m

)
sets B ∈ C(Y)(n) that contain

A (since every n-subset of Y containing A is also a crossing set). Moreover,
any such set B has at most

(
n
m

)
subsets that belong to C(Y)(m). Counting in

two ways the pairs (A, B) with A ∈ C(Y)(m), B ∈ C(Y)(n), we obtain

y(m)

(
y −m

n−m

)
≤ y(n)

(
n

m

)
. (1)

Since
(

n
m

)
=

(
n

n−m

)
, the inequality holds under the stated conditions and is

strict when n < y −m.

Now consider the case n = y−m. If l = 0, then y(m) =
(

x0

m

)
=

(
x0

n

)
= y(n);

so assume l ≥ 1. We shall show that the inequality (1) is strict by �nding
some B ∈ C(Y)(n) having an m-subset A such that A /∈ C(Y)(m).

There exists Xi ∈ Y such that |Xi| ≤ y/2. Let z := |Xi|. Choose
B ∈ C(Y)(n) such that |B ∩Xi| is as small as possible; that is,
|B ∩Xi| = max{1, n− |Y \Xi|} = max{1, n− y + z}. Then, since m < y/2,
we conclude

|B ∩ (Y \Xi)| = min{n− 1, y − z} ≥ min{n− 1, y/2} ≥ m.

Thus there exists A ⊆ B ∩ (Y \Xi) with |A| = m. Then A /∈ C(Y)(m), as
required. 2

Remark 2.2 We note that (1) still holds if we replace C(Y)(m) by any subset
M of C(Y)(m) and C(Y)(n) by N := {B ∈ C(Y)(n) : A ⊂ B for some A ∈M}.
Thus, by Hall's Marriage Theorem [15], there is an injection f : C(Y)(m) →
C(Y)(n) such that A ⊂ f(A) for any A ∈ C(Y)(m).
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Let l + 1 ≤ r ≤ y and v ∈ X0. The crossing r-star with centre v is the
sub-family of C(Y)(r) consisting of those sets containing v, and is denoted by
C(Y)

(r)
v . A family F of crossing sets of Y is said to be strongly intersecting

if, for any A, B ∈ F , A ∩B ∩X0 6= ∅.
We now prove an `EKR-type' theorem for strongly intersecting families

of crossing sets. (The proof is actually the most technically complex part of
proving Theorem 1.5.)

Theorem 2.3 Let Y := {X0, . . . , Xk} be a family of disjoint non-empty sets
and let Y :=

⋃k
i=0 Xi, 2 ≤ k + 1 ≤ r ≤ |Y |/2. Then:

(i) the crossing r-stars with centres in X0 are extremal strongly intersecting
sub-families of C(Y)(r);
(ii) these are the only extremal such families, unless 3 ≤ |X0| ≤ r = |Y |/2
and k = 1.

Proof. Let F be a strongly intersecting sub-family of C(Y)(r). A necessary
condition for it to be extremal is that it be a maximal such family, and we
may therefore assume this. Let G := {A∩X0 : A ∈ F}; then by maximality,
F = {A ∈ C(Y)(r) : A ∩X0 ∈ G}.

Thus, for any P ∈ G with |P | = p and any crossing (r − p)-set Q of
{X1, . . . , Xl}, we have P ∪Q ∈ F so that

|{A ∈ F : A ∩X0 = P}| = (x1, . . . , xk)
(r−p).

Similarly, let C(Y)
(r)
v be a crossing r-star with v ∈ X0 and let

H := {A ∩X0 : A ∈ C(Y)
(r)
v }. For any P ∈ H with |P | = p we obtain

|{A ∈ Y (r)
v : A ∩X0 = P}| = (x1, . . . , xk)

(r−p).

We shall denote (x1, . . . , xk) by x.
We thus have a weighted Erd®s-Ko-Rado problem to solve concerning

intersecting families of subsets of X0.
It is convenient to set w := x0, x := y−w. Observe that for any crossing

r-set A of Y , we have s ≤ |A ∩X0| ≤ t, where s := max{1, r − x},
t := min{r − k, w}. Thus, partitioning G,H by cardinality, and noting that
|H(p)| =

(
w−1
p−1

)
, we need to show that

t∑
p=s

|G(p)|x(r−p) ≤
t∑

p=s

(
w − 1

p− 1

)
x(r−p) (2)

and that, if G is non-centred, then the inequality is strict unless k = 1 and
3 ≤ w ≤ r = |Y |/2.

To establish (2), it is su�cient to show that:
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1. if either p = t = w or p ≤ w/2, then
|G|(p)x(r−p) ≤

(
w−1
p−1

)
x(r−p)

(that is, |G(p)| ≤
(

w−1
p−1

)
);

2. if w/2 < p ≤ min{t− 1, w}, then
|G(p)|x(r−p) + |G(w−p)|x(r−(w−p)) ≤

(
w−1
p−1

)
x(r−p) +

(
w−1

w−p−1

)
xr−(w−p)).

Statement 1 follows easily since if p = w then
(

w−1
p−1

)
= 1 and G(p) is either

empty or consists of the single set X0, and if p ≤ w/2 then |G(p)| ≤
(

w−1
p−1

)
by

Theorem 1.1(i).
We now prove Statement 2. So suppose w/2 < p ≤ min{t−1, w}. Observe

that the strong intersection condition implies that no set in G(p) can be the
complement in X0 of a set in G(w−p), and hence |G(p)|+ |G(w−p)| ≤

(
w
p

)
. Thus,

for such a pair p, w − p:

|G(p)|x(r−p) + |G(w−p)|x(r−(w−p)) ≤
((

w

p

)
− |G(w−p)|

)
x(r−p) + |G(w−p)|x(r−(w−p)).

Since k ≤ w − p < y/2 and w − p < p ≤ y − (w − p), the conditions of
Lemma 2.1 hold with l = k− 1, m = r− p, n = r− (w− p). Therefore, since
Theorem 1.1(i) gives us |G(w−p)| ≤

(
w−1

w−p−1

)
=

(
w−1

p

)
(note that w−p < w/2 as

p > w/2), the maximum value of |G(p)|x(r−p) + |G(w−p)|x(r−(w−p)) is obtained
when |G(w−p)| =

(
w−1

p

)
= |H(w−p)| and |G(p)| =

(
w
p

)
−

(
w−1

p

)
=

(
w−1
p−1

)
= |H(p)|,

and, unless x(r−p) = x(r−(w−p)), this is the only way to achieve the maximum.
This already veri�es (2) and hence part (i) of the theorem.

We now prove part (ii) of the theorem, and we therefore assume that the
bound in (2) is attained. Observe that (unless |X0| = 1, when the theorem
is trivial) p < w/2 for at least one p ∈ [s, t]. Thus, unless x(r−(w−p)) = x(r−p),
we know from Theorem 1.1(ii) that G(p) is a star, centred (say) on v, and
hence, since every other set of G must intersect each element of G(p), F must
be C(Y)

(r)
v . So the only possibility for an extremal non-star occurs when:

(a) x(r−(w−p)) = x(r−p) for every p ∈ [s, t] with p < w/2 < w − p;
(b) there is no p < w/2 with w − p > t.
By Lemma 2.1, (a) happens only if 2r − w = x (that is, r = |Y |/2) and
k = 1. Clearly we also require w ≥ 3 in order to obtain a non-star for G.
Finally, (b) requires w ≤ r.

Now, if k = 1 and 3 ≤ w ≤ r = |Y |/2, then we may construct a non-
star family A of crossing r-sets such that |A| = |C(Y)

(r)
v | (where v ∈ X0) as

follows. Let B1 := {A ∈ C(Y)
(r)
v : A ∩ X0 = {v}}, B2 := {Y \A : A ∈ B1}.

Then de�ne A := (C(Y)
(r)
v \B1) ∪ B2. 2
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3 Double partitions and compressions

We shall now develop some further notation.
Let P be a double partition. Recall that, within each large set, the small

sets are ordered by size. The set V0 and the small sets Vi1, 1 ≤ i ≤ k, are said
to be the �oor sets, while the remaining small sets Vij, 1 ≤ i ≤ k, 2 ≤ j ≤ ai,
are said to be the upper sets. The union of the �oor sets is said to be the
�oor and is denoted by F .

We now de�ne compressions ; see [12] for an excellent survey on the uses
of the compression (also known as shifting) technique in extremal set theory.

For i = 1, ..., k, j = 2, ..., ai, de�ne δij : V → V by δij(vijp) := vi1p

(p = 1, ..., nij), and δij(v) := v otherwise. Thus, each δij maps an upper set
to the corresponding �oor set and leaves all other small sets una�ected.

Let A ∈ F(P). We may denote {δij(x) : x ∈ A} by δij(A); note that
δij(A) ∈ F(P). De�ne the compression operation ∆ij on sub-families A of
F(P) by

∆ij(A) := {δij(A) : A ∈ A} ∪ {A ∈ A : δij(A) ∈ A}.

The following lemma outlines the fundamental properties of ∆ij(A).

Lemma 3.1 Let A be an intersecting sub-family of F(P). Then
(i) ∆ij(A) ⊆ F(P).
(ii) |∆ij(A)| = |A|,
(iii) ∆ij(A) is intersecting,
(iv) if V ′ is a union of upper sets of F(P) such that (A ∩ B)\V ′ 6= ∅ for all
A, B ∈ A, then (C ∩D)\(V ′ ∪ Vij) 6= ∅ for all C, D ∈ ∆ij(A).

Proof. (i) and (ii) are straightforward, and (iii) follows from (iv) by setting
V ′ = ∅. We now prove (iv).

Let C, D ∈ ∆ij(A). If C /∈ A, let A ∈ A such that δij(A) = C. If D ∈ A,
let G := δij(D) (note that in this case G ∈ A); otherwise, let B ∈ A such
that δij(B) = D.

If at least one of C, D belongs to A, we may assume D ∈ A. If also C ∈ A
then (C∩D)\(V ′∪Vij) ⊇ (C∩G)\V ′ (since G∩Vij = ∅), and C, G ∈ A; hence
(C ∩D)\(V ′∪Vij) 6= ∅. If C /∈ A then (C ∩D)\(V ′∪Vij) ⊇ (A∩G)\V ′ 6= ∅.

If C, D /∈ A then (A ∩ B)\V ′ 6= ∅; moreover, C ∩ D = δij(A ∩ B) and
hence (C ∩D)\(V ′ ∪ Vij) 6= ∅. 2

Lemma 3.2 Let A∗ := ∆12 ◦ ... ◦∆1a1 ◦ ... ◦∆k2 ◦ ... ◦∆kak
(A), where A is

an intersecting subfamily of F(P). Then
(i) A∗ ⊆ F(P),
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(ii) |A∗| = |A|,
(iii) A∗ is an intersecting sub-family of F(P),
(iv) A ∩B ∩ F 6= ∅ for any A, B ∈ A∗.

Proof. Each part follows by repeated application of the corresponding part
of Lemma 3.1. 2

Throughout the remainder of the paper, we use A∗ as in the statement
of Lemma 3.2.

LetA ⊆ F(P)(r) be an intersecting family. By (i) and (ii) of Lemma 3.1, if
A is non-centred and ∆ij(A) is a star of largest size, then F(P) is not strictly
r-EKR. Thus, in order to demonstrate the strict r-EKR property of F(P)
by considering families that are obtained through compression operations,
we must �rst show that a star of largest size cannot be obtained from a
compression operation on a non-centred intersecting family. Now when P is
anchored, then a star with centre in V0 certainly cannot be obtained through
a compression operation ∆ij on any other sub-family of F(P)(r). Moreover,
if x ∈ V0, y /∈ V0, and r ≤ µ(P), then more sets of F(P)(r) contain x but
not y than contain y but not x, and hence the stars with centres in V0 are
precisely those of maximum size. Thus, for an anchored double partition,
a star of largest size can never result from a compression operation on a
non-centred intersecting family. However, for the more general case when
the double partition may be unanchored, we require the following less trivial
result. (In the statement and proof of this lemma, we abbreviate F(P) to
F .)

Lemma 3.3 Let P be a double partition, let r ≤ µ(P)/2, and suppose that

A is an intersecting sub-family of F (r) such that A 6= ∆ij(A) = F (r)
x for

some x ∈ V and some compression ∆ij. Then |Vij| = |Vi1| and A = F (r)
y ,

where y ∈ Vij and x = δij(y) (∈ Vi1).

We need the following simple lemma, which is often useful for determining
the structure of extremal intersecting families.

Lemma 3.4 Suppose ∅ 6= A ⊆
(

X
r

)
, 2r < n := |X|, such that if A ∈ A and

B ∈
(

X\A
r

)
then B ∈ A. Then A =

(
X
r

)
.

Proof. Let A0 ∈ A and B ∈
(

X
r

)
such that 1 ≤ q0 := |A0 ∩ B| ≤ r − 1, i.e.

B 6= A0 and B /∈
(

X\A
r

)
. It is required to show that B ∈ A. We claim that

the following procedure takes a �nite number of steps k, and we �rst assume
the claim is true. For i = 1, 2, ..., k, choose Ai ∈

(
X\Ai−1

r

)
such that |Ai ∩ B|
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is a minimum if i is odd, and |Ai ∩ B| is a maximum if i is even, where k is
the �rst even integer that gives Ak = B. So Ai ∈ A for all i ∈ [k], and hence
we are done.

We now prove the claim. Let qi := |Ai∩B| if i is even, and qi := r−|Ai∩B|
if i is odd. If i is even then qi = r − |Ai−1 ∩ B| = qi−1. If i is odd then
qi = r − max{0, r − ((n − |Ai−1 ∪ B|))} = min{r, n − (2r − |Ai−1 ∩ B|)} =
min{r, (n− 2r) + qi−1} > qi−1. So the claim holds. 2

Proof of Lemma 3.3. Let A∗ ∈ A\∆ij(A). So δij(A
∗) ∈ ∆ij(A). Since

∆ij(A) = F (r)
x , x ∈ δij(A

∗). Since A∗ /∈ ∆ij(A) = F (r)
x , x /∈ A∗. So

x ∈ δij(A
∗)\A∗. So x = δij(y) for some y ∈ A∗ ∩ Vij, j > 1, and x ∈ Vi1.

Let M be any maximal set of F that contains A∗∪Vij, and letAM := {A ∈
A∩F (r)

y : A ⊂ M}. Let N := M\{y} and A′
M := {A\{y} : A ∈ AM} ⊆

(
N
r′

)
,

where r′ = r − 1 ≤ µ(P)/2 − 1 ≤ |M |/2 − 1 = (|M | − 1)/2 − 1/2 < |N |/2.
Suppose A′ ∈ A′

M and B′ /∈ A′
M for some B′ ∈

(
N\A′

r′

)
. Then A′′ := A′∪{y} ∈

AM , B′′ := B′ ∪ {y} /∈ A, and δij(B
′′) /∈ A since δij(B

′′) ∩ A′′ = ∅. So
δij(B

′′) ∈ F (r)
x \∆ij(A), a contradiction. Therefore, if A′ ∈ A′

M then B′ /∈ A′
M

for all B′ ∈
(

N\A′

r′

)
. Also, A∗\{y} ∈ A′

M . By Lemma 3.4, A′
M =

(
N
r′

)
. Hence

AM = {A ∈ F (r)
y : A ⊂ M}.

Since 2r ≤ µ(P), for any A ∈ F (r)\F (r)
y there exists B ∈ AM such that

A ∩ B = ∅. So A ⊆ F (r)
y . Since |F (r)

x | ≥ |F (r)
y | (as |Vi1| ≥ |Vij|) and

|A| = |∆ij(A)| = |F (r)
x |, it follows that |A| = |F (r)

y | = |F (r)
x |, and hence

|Vij| = |Vi1|. 2

4 Proof of Theorem 1.5

Let P be anchored. In the proof that follows, we abbreviate F(P) to F .
If r = 1, there is nothing to prove, so we may assume r ≥ 2 and thus

µ(P) ≥ 4. Moreover, |V | ≥ 5 since V1 is non-trivially partitioned. Since a
non-centred family of 2-sets must be of size 3, it immediately follows that F
is strictly 2-EKR. We therefore assume 3 ≤ r ≤ µ(P)/2.

Now let A be an intersecting sub-family of F (r) such that

|A′| ≤ |A| for any intersecting family A′ ⊂ F (r). (3)

By Lemmas 3.2 and 3.3, we may assume that A = A∗ and hence that

A ∩B ∩ F 6= ∅ for any A, B ∈ A (4)

(by Lemma 3.2(iv)).
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Let x be a �xed element of V0, and let J := F (r)
x .

We now develop a notation for partitioning sub-families of F (r) in accor-
dance with their intersections with the upper sets.

Let U := {(i, j) : 1 ≤ i ≤ k, 2 ≤ j ≤ ai}; that is, U is the set of subscript
pairs associated with the upper sets of P . By (4), each set of A intersects at
least one �oor set and thus at most r − 1 upper sets. This is true also of J .
Thus, let

U := {S ⊆ U : |S| < r, (i, j), (i′, j′) ∈ S and (i, j) 6= (i′, j′) implies i 6= i′}

(note that ∅ ∈ U). Then a family B of members of F (r) each intersecting at
least one �oor set is partitioned as follows: B =

⋃
S∈U BS where BS is the

sub-family of B whose sets intersect all the sets Vij, (i, j) ∈ S, and no other
upper sets. For S ∈ U , let FS denote the union of those �oor sets that are
not `under' any of the upper sets of S: FS = F\

⋃
(i,j)∈S Vi1. Then, for S 6= ∅,

a sub-family BS is a family of crossing r-sets in which FS takes the role of X0

and the upper sets take the role of the Xi for i ≥ 1 (see Section 2); moreover,
for BS = AS, we have BS strongly intersecting by (4).

Therefore, by Theorem 2.3(i), |AS| ≤ |JS| for each S ∈ U\{∅}. By
Theorem 1.1(i), we also have |A∅| ≤ |J∅|. Thus |A| ≤ |J | (which proves (i)).
By (3), |A| = |J |, and hence |AS| = |JS| for each S ∈ U .

For any S ∈ U , if we can show that AS = (F (r)
v )S for some v ∈ F , then

it follows that A ⊆ F (r)
v , since for all A ∈ F (r)\F (r)

v there exists B ∈ (F (r)
v )S

such that A ∩ B = ∅, as every maximal set is of size ≥ 2r. By (3) and the
fact that, as we noted in Section 3, |F (r)

v | is maximised only if v ∈ V0, we
may conclude that A = F (r)

v where v ∈ V0.
If r < µ(P)/2 or r = µ(P)/2 < α(P)/2 = |F |/2, then, since |AS| = |JS|,

by taking S = ∅ and applying Theorem 1.1(ii) we indeed obtain AS = (F (r)
v )S

for some v ∈ F .
If r = µ(P)/2 = α(P)/2 and k > 1, then we choose S such that |S| ≥ 2.

By Theorem 2.3, AS = (F (r)
v )S for some v ∈ F .

It remains to consider the case k = 1. Recall that we are assuming
r ≥ 3. If |V0| < 3 or |V0| > r, then we take S = {(1, j)}, j > 1, and again
apply Theorem 2.3. If 3 ≤ |V0| ≤ r then the non-centred intersecting family
(J \{A ∈ J : A∩ V0 = {x}})∪ {A ∈ F (r) : A∩ V0 = V0\{x}} ⊂ F (r) has size
equal to |J |. Thus the strict EKR property fails only in the cases stated in
the theorem. 2
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5 Proof of Theorem 1.6

Recall that P is unanchored with k = 3, nij = c (j = 1, ..., ai, i = 1, 2, 3),
and V0 = ∅. For simplicity, we assume that a1 ≤ a2 ≤ a3. As in Section 3,
V11 ∪ V21 ∪ V13 is the �oor, denoted by F , and as in Section 4, we abbreviate
F(P) to F .

Let r ≤ µ(P)/2, and let A be an intersecting sub-family of F (r) that is
not a star. By Lemma 3.3, A∗ is not a star either. Thus, using Lemma 3.2,
we may assume that A = A∗ and that A ∩B ∩ F 6= ∅ for any A, B ∈ A.

Let Di := {0, ..., ai} (i = 1, 2, 3). For any (d1, d2, d3) ∈ D1×D2×D3, let
Ad1,d2,d3 be the sub-family of sets A ∈ A such that A∩ Vidi

6= ∅ for all i such
that di 6= 0, and A ∩ Vij = ∅ otherwise. So the families Ad1,d2,d3 partition A.
Let J := F (r)

v111 and partition it similarly. Note that J is a star of largest
size.

By Lemma 3.2(iv), for any (d1, d2, d3), (d′1, d
′
2, d

′
3) ∈ D1 × D2 × D3 such

thatAd1,d2,d3 6= ∅ andAd′1,d′2,d′3
6= ∅, we must have di = d′i = 1 for some i ∈ [3].

We now consider two cases.

Case 1: {i ∈ [3] : di = 1} = {i′} for some Ad1,d2,d3 6= ∅. Then di′ = 1 for
any Ad1,d2,d3 6= ∅. Thus, let Q be the double partition obtained from P by
deleting the small sets V12, . . . , V1a1 ; then A is a subfamily of G := F(Q).
Now Q is an anchored partition of width 2, and so by Theorem 1.5, G is
strictly r-EKR. So |A| < |F (r)

vi′11| ≤ |J |.

Case 2: |{i ∈ [3] : di = 1}| > 1 whenever Ad1,d2,d3 6= ∅. So the non-empty
classes can only be A1,1,1, Ad1,1,1, A1,d2,1, and A1,1,d3 , di ∈ Di (i = 1, 2, 3).

Let A0 := A1,1,1 ∪ A0,1,1 ∪ A1,0,1 ∪ A1,1,0 and, similarly,
J0 := J1,1,1 ∪ J0,1,1 ∪ J1,0,1 ∪ J1,1,0. (These are the subfamilies of A and J
that consist of r-subsets of F ). By Theorem 1.1, |A0| ≤ |J0|.

Now, for d2 > 1, A1,d2,1 is a family of crossing r-sets for Y := {V11 ∪
V13, Vd2}, obeying the conditions of Theorem 2.3. Thus, for all d2 ∈ [2, a2],
we have |A1,d2,1| ≤ |C(Y)

(r)
v111 | = |J1,d2,1 ∪ J1,d2,0|. Similarly, if d3 > 1, then

|A1,1,d3 | ≤ |J1,1,d3 ∪ J1,0,d3|. In particular, we note that, if a3 > a1, then
|A1,1,d3 | ≤ |J1,1,d3 ∪ J1,0,d3| (a1 + 1 ≤ d3 ≤ a3).

The remaining subfamilies Ad1,d2,d3 that need to be compared with sub-
families of J are {A1,1,d,Ad,1,1 : 2 ≤ d ≤ a1}. Our strategy is to show that
|A1,1,d| + |Ad,1,1| < |J1,0,d| + |J1,1,d| + |J1,2,d|, d = 2, ..., a1, from which the
result clearly follows, since we shall have made comparisons linking all the
subfamilies of A with subfamilies of J , and at least one of these comparisons
involves a strict inequality.

Let us �x d ∈ [2, a1] and de�ne A′ := A1,1,d ∪ Ad,1,1. We now de�ne two
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bijections, δ1 : V31 → V11 and δ2 : V1d → V3d, as follows.

δ1(v31p) = v11p (p = 1, . . . , c);

δ2(v1dp) = v3dp (p = 1, . . . , c).

For any X1 ⊆ V31, X2 ⊆ V1d, we may denote {δ1(x) : x ∈ X1} and
{δ2(x) : x ∈ X2} by δ1(X1) and δ2(X2) respectively. Now de�ne an injective
mapping δ : Ad,1,1 →

(
V11∪V21∪V3d

r

)
by

δ(A) = δ1(A ∩ V31) ∪ (A ∩ V21) ∪ δ2(A ∩ V1d) (A ∈ Ad,1,1).

De�ne the compression ∆ on A′ by

∆(A′) = A1,1,d ∪ {δ(A) : A ∈ Ad,1,1} ∪ {A ∈ Ad,1,1 : δ(A) ∈ A1,1,d}.

Now let B := ∆(A′). Thus, B = B1,1,d ∪ Bd,1,1 where B1,1,d = A1,1,d ∪ (B\A)
and Bd,1,1 = B\B1,1,d.

Claim 5.1 (i) |B| = |A|.
(ii) A ∩B ∩ (V11 ∪ V21) 6= ∅ for any A, B ∈ B.

Proof. (i) is straightforward.
We now de�ne f : A′ → B by: f(A) = δ(A) if A ∈ Ad,1,1 and δ(A) /∈

A1,1,d, and f(A) = A otherwise. So f is a bijection. We prove (ii) by showing
that

f(A) ∩ f(B) ∩ (V11 ∪ V21) 6= ∅ for any A, B ∈ A′. (5)

We recall that, by Lemma 3.2(iv), A ∩ B ∩ F 6= ∅ for any A, B ∈ A. If
A, B ∈ A1,1,d then (5) is immediate. If A ∈ A1,1,d and B ∈ Ad,1,1 then
f(A)∩ f(B)∩ V21 = A∩B ∩ V21 6= ∅, and hence (5). Suppose A, B ∈ Ad,1,1.
Since A∩B∩(V21∪V31) 6= ∅, if δ(A), δ(B) /∈ A1,1,d then (5) is straightforward.
Suppose δ(A) ∈ A1,1,d and δ(B) /∈ A1,1,d. Since δ(A) ∩B ∩ V21 6= ∅, we have
A ∩ δ(B) ∩ V21 6= ∅, and hence (5). Finally, suppose δ(A), δ(B) ∈ A1,1,d. So
A ∩B ∩ V21 6= ∅ because A ∩ δ(B) ∩ V21 6= ∅; hence (5). 2

By Theorem 2.3,

|B1,1,d| ≤ |J1,0,d|+ |J1,1,d|. (6)

By Claim 5.1(ii), we have A ∩ B ∩ V21 6= ∅ for all A, B ∈ Bd,1,1. By Theo-
rem 2.3, |Bd,1,1| ≤ |J1,2,d|. If |Bd,1,1| < |J1,2,d| then we are done.

Suppose |Bd,1,1| = |J1,2,d|. By Theorem 2.3(ii), there exists v′ ∈ V21 such
that Bd,1,1 = Kd,1,1 where K := F (r)

v′ . Let E := {A ∈ Bd,1,1 : A ∩ V21 = v′}.
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E 6= ∅ since 2r ≤ µ(P) = 3c. Let E ∈ E . If there exists A ∈ B1,1,d such
that v′ /∈ A, then A ∩ E = ∅, a contradiction. So B1,1,d ⊆ K1,1,d, and hence
|B1,1,d| ≤ |K1,1,d| = |J1,1,d|. Since 2r ≤ 3c, we have |J1,0,d| > 0, and hence a
strict inequality in (6). It follows that |A| < |J |. 2
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