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Abstract

Some approximation properties of the MLP (multilayer feedforward perceptron)

model of neural networks have been investigated in a great deal of works over the last

30 years. It has been shown that for a large class of activation functions, a neural

network can approximate arbitrarily well any given continuous function. The most

significant result on this problem belongs to Leshno, Lin, Pinkus and Schocken. They

proved that the necessary and sufficient condition for any single hidden layer network

to have the u.a.p. (universal approximation property) is that its activation function not

be a polynomial.

Some authors (White, Stinchcombe, Ito, and others) showed that a single hidden

layer perceptron with some bounded weights can also have the u.a.p. Thus the weights

required for u.a.p. are not necessary to be of an arbitrarily large magnitude. But what if

they are too restricted? How can one learn approximation properties of networks with

arbitrarily restricted set of weights? The current chapter makes a first step in solving

this general problem. We consider neural networks with sets of weights consisting of

two directions. Our purpose is to characterize all compact sets X in the n-dimensional

space such that the network can approximate any continuous function over X .

Key Words: Neural network, MLP model, activation function, weight, path, orbit.

AMS Subject Classification: 41A30, 41A63, 68T05, 92B20.

1. Introduction

The theory of approximation of multivariate functions using artificial neural networks with

one or more hidden layers is of great interest to both approximation theorists and applied

mathematicians. At present, there are a large number of papers devoted to various problems

in this area (see, e.g., [2-7, 10-14, 16, 17, 20]). We are interested in questions of density of

a single hidden layer perceptron model in neural networks. A typical density result shows

∗E-mail address: vugaris@mail.ru



452 Vugar E. Ismailov

that a network can approximate an arbitrary function in a given class with any degree of

accuracy.

A single hidden layer perceptron model with r units in the hidden layer and input x =

(x1, . . . ,xn) evaluates a function of the form

r

∑
i=1

ciσ(wi·x−θi), (1)

where the weights wi are vectors in R
n, the thresholds θi and the coefficients ci are real

numbers and the activation function σ is a univariate function which is considered to be

continuous in the present note. For various activation functions σ, it has been proved in a

number of papers that one can approximate well to a given continuous function from the

set of functions of the form (1) ( r is not fixed! ) over any compact subset of R
n. In other

words, the set

M (σ) = span {σ(w ·x−θ) : θ ∈ R, w ∈R
n}

is dense in the space C(Rn) in the topology of uniform convergence on all compacta (see,

e.g., [2,3,4,7,10]). More general result of this type belongs to Leshno, Lin, Pinkus and

Schoken [11]. They proved that the necessary and sufficient condition for any continuous

activation function to have the density property is that it not be a polynomial. This result

shows the efficacy of the single hidden layer perceptron model within all possible choices

of the activation function σ, provided that σ is continuous. In fact, density of the set M (σ)

also holds for some reasonable sets of weights and thresholds. (see[17]).

Some authors showed that a single hidden layer perceptron with some restricted set of

weights can also have the u. a. p. (universal approximation property). For example, White

and Stinchcombe [20] proved that a single layer network with a polygonal, polynomial

spline or analytic activation function and a bounded set of weights has the u.a.p. Ito [10]

investigated this property of networks using monotone sigmoidal functions (tending to 0 at

minus infinity and 1 at infinity), with only weights located on the unit sphere. We see that

the weights required for u. a. p. are not necessary to be of an arbitrarily large magnitude.

But what if they are too restricted. How can one learn approximation properties of networks

with an arbitrarily restricted set of weights? This problem is too general to be solved di-

rectly in this form. But there are some cases which deserve a special attention. The most

interesting case is, of course, neural networks with discrete sets of weights. To the best of

our knowledge, approximation capabilities of such nets have not been studied yet. To be

more precise, let W be a set of weights consisting of a finite number of vectors in Rn. It is

clear that if w varies only in W , the set M (σ) can not be dense in the topology of uniform

convergence on all compacta. The problem here is in the determination of boundaries of

efficacy of the model. Over which compact sets X ⊂ Rn does the model preserve its gen-

eral propensity to approximate arbitrarily well every continuous multivariate function? In

Section 2, we will answer this question for a set W of weights consisting of two vectors.

Clearly, well approximation by neural networks with weights varying only on two direc-

tions is not always possible. If such networks cannot approximate a prescribed multivariate

function with arbitrarily small degree of accuracy, one may be interested in the error of

approximation. In Section 3, we will give an explicit lower bound for the approximation

error and find means of deciding if a given network is a best approximation.
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2. Density Results

Before formulating our theorems, we recall which objects are called paths with respect to

two directions a1 and a2 (see [1,8,9]). A path with respect to the directions a1 and a2, or

simply a path if there is no confusion, is a finite or infinite ordered set of points (x1,x2, . . .)
in R

n with xi 6= xi+1 and its units xi+1 −xi alternatively perpendicular to the directions a1

and a2
. The length of a path is the number of its points. A singleton is a path of the unit

length. A path
(

x1, . . . ,xm
)

is closed if m is an even number and the set
(

x1, . . .,xm,x1
)

also

forms a path.

The relation x ∼ y when x and y belong to some path in a given compact set X ⊂ R
n

defines an equivalence relation. The equivalence classes we call orbits.

Let K be a family of functions defined on R
n and X be a subset of R

n. By KX we will

denote the restriction of this family to X .

We start the analysis by defining ridge functions. A ridge function is a multivariate

function of the form

g(a ·x) = g(a1x1 + · · ·+anxn) ,

where g : R → R and a = (a1, . . .,an) is a fixed vector (direction) in Rn\{0}. In other

words, it is a multivariate function constant on the parallel hyperplanes a · x = α,α ∈ R.

Ridge functions and their combinations arise in various contexts. They arise naturally in

problems of partial differential equations (where they are called plane waves), computerized

tomography, statistics, approximation theory, and neural networks (see e.g. [18] for further

details).

Set

R
(

a1
,a2

)

=
{

g1

(

a1·x
)

+g2

(

a2·x
)

: g
i
∈ C(R), i = 1,2

}

.

The following theorem is a special case of the known general result of Marshall and

O’Farrell [15] established for the sum of two algebras.

Theorem 1. Let X be a compact subset of R
n with all its orbits closed. Then the set

RX

(

a1,a2
)

is dense in C(X) if and only if X contains no closed path.

Proof. Necessity. If X has closed paths, then X has closed paths p′ = (p′
1, . . . ,p

′
2m) such

that all points p′
1, . . . ,p

′
2m are distinct. In fact, such special paths can be obtained from any

closed path p = (p1, . . . ,p2n) by the following simple algorithm: if the points of the path p

are not all distinct, let i and k > 0 be the minimal indices such that pi = pi+2k; delete from

p the subsequence pi+1, . . . ,pi+2k and call p the obtained path; repeat the above step until

all points of p are all distinct; set p′ := p. By Urison’s great lemma, there exist continuous

functions h = h(x) on X such that h(p′
i) = 1, i = 1,3, . . .,2m−1, h(p′

i) =−1, i = 2,4, . . .,2m

and −1 < h(x) < 1 elsewhere. Consider the measure

µp′ =
1

2m

2m

∑
i=1

(−1)i−1δp′
i

,

where δp′
i

is a point mass at p′
i. For this measure,

R

X

hdµp′ = 1 and
R

X

gdµp′ = 0 for all

functions g ∈ RX

(

a1,a2
)

. Thus the set RX

(

a1,a2
)

cannot be dense in C(X).
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Sufficiency. We are going to prove that the only annihilating regular Borel measure for

RX

(

a1,a2
)

is the zero measure. Suppose, contrary to this assumption, there exists a nonzero

annihilating measure on X for RX

(

a1
,a2

)

. The class of such measures with total variation

not more than 1 we denote by S. Clearly, S is weak-* compact and convex. By the Krein-

Milman theorem, there exists an extreme measure µ in S. Since the orbits are closed, µ must

be supported on a single orbit. Denote this orbit by T.

For i = 1,2, let Xi be the quotient space of X obtained by identifying the points y and z

whenever ai·y = ai·z. Let πi be the natural projection of X onto Xi. For a fixed point t ∈ X

set T1 = {t}, T2 = π−1
1 (π1T1), T3 = π−1

2 (π2T2), T4 = π−1
1 (π1T3), . . . Obviously, T1 ⊂ T2 ⊂

T3 ⊂ · · · . Therefore, for some k ∈ N, |µ| (T2k) > 0, where |µ| is a total variation measure of

µ. Since µ is orthogonal to every continuous function of the form g
(

a1·x
)

, µ(T2k) = 0. From

the Haar decomposition µ(T2k) = µ+(T2k)−µ−(T2k) it follows that µ+(T2k) = µ−(T2k) > 0.

Fix a Borel subset S0 ⊂ T2k such that µ+(S0) > 0 and µ−(S0) = 0. Since µ is orthogonal

to every continuous function of the form g
(

a2·x
)

, µ(π−1
2 (π2S0)) = 0. Therefore, one can

chose a Borel set S1 such that S1 ⊂ π−1
2 (π2S0)⊂ T2k+1, S1 ∩S0 = ∅, µ+(S1) = 0, µ−(S1) >

µ+(S0). By the same way one can chose a Borel set S2 such that S2 ⊂ π−1
1 (π1S1) ⊂ T2k+2,

S2 ∩S1 = ∅, µ−(S2) = 0, µ+(S2) > µ−(S1), and so on.

The sets S0,S1,S2, . . . are pairwise disjoint. For otherwise, there would exist positive in-

tegers n and m, with n < m and a path (yn,yn+1, . . .,ym) such that yi ∈ Si for i = n, . . . ,m and

ym ∈ Sm ∩Sn. But then there would exist paths (z1, z2, . . ., zn−1,yn) and (z1, z
′

2, . . ., z
′

n−1,ym)

with zi and z
′

i in Ti for i = 2, . . .,n−1. Hence, the set

{z1, z2, . . . , zn−1,yn,yn+1, . . .,ym, z
′

n−1, . . ., z
′

2, z1}

would contain a closed path. This would contradict our assumption on X .

Now, since the sets S0,S1,S2, . . . are pairwise disjoint, and |µ|(Si)> µ+(S0) > 0 for each

i = 1,2, . . ., it follows that the total variation of µ is infinite. This contradiction completes

the proof.

Now we are able to step forward from ridge function approximation to neural networks.

Theorem 2. Let σ ∈ C(R)∩ Lp(R), where 1 ≤ p < ∞, or σ be a continuous, bounded,

nonconstant function, which has a limit at infinity (or minus infinity). Let W = {a1,a2} ⊂ R
n

be the given set of weights and X be a compact subset of R
n with all its orbits closed. Then

MX (σ;W,R) = span {σ(w ·x−θ) : w ∈W, θ ∈ R}

is dense in the space of all continuous functions over X if and only if X contains no closed

path.

Proof. Sufficiency. Let X be a compact subset of R
n with all its orbits closed. Besides, let X

contain no closed path. By theorem 1, the set RX

(

a1,a2
)

is dense in C(X). This means that

for any positive real number ε there exist continuous univariate functions g1 and g2 such

that
∣

∣ f (x)−g1

(

a1·x
)

−g2

(

a2·x
)
∣

∣ <
ε

3
(2)

for all x∈ X . Since X is compact, the sets Yi = {ai·x : x∈ X}, i = 1,2, are also compacts. In

1947, Schwartz [19] proved that continuous and p-th degree Lebesgue integrable univariate
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functions or continuous, bounded, nonconstant functions having a limit at infinity (or minus

infinity) are not mean-periodic. Note that a function f ∈C(Rn) is called mean periodic if the

set span { f (x−b) : b ∈ R
n} is not dense in C(Rn) in the topology of uniform convergence

on compacta (see [19]). Thus, Schwartz proved that the set

span {σ(y−θ) : θ ∈ R}

is dense in C(R) in the topology of uniform convergence. We learned about this result from

Pinkus [17, page 162]. This density result means that for the given ε there exist numbers

ci j,θi j ∈ R, i = 1,2, j = 1, . . .,mi such that

∣

∣

∣

∣

∣

gi(y)−
mi

∑
j=1

ci jσ(y−θi j)

∣

∣

∣

∣

∣

<
ε

3
(3)

for all y ∈ Yi, i = 1,2. From (2) and (3) we obtain that

∥

∥

∥

∥

∥

f (x)−
2

∑
i=1

mi

∑
j=1

ci jσ(ai·x−θi j)

∥

∥

∥

∥

∥

C(X)

< ε. (4)

Hence MX (σ;W,R) = C(X).

Necessity. Let X be a compact subset of Rn with all its orbits closed and the set

MX(σ;W,R) be dense in C(X). Then for an arbitrary positive real number ε, inequal-

ity (4) holds with some coefficients ci j,θi j, i = 1,2, j = 1, . . .,mi. Since for i = 1,2,

∑
mi

j=1 ci jσ(ai·x− θi j) is a function of the form gi(ai·x), the subspace RX

(

a1
,a2

)

is dense

in C(X). Then by theorem 1, the set X contains no closed path.

Remark 1. It can be shown that the necessity of the theorem is valid without any restrictions

on orbits of X . Indeed if X contains a closed path, then it contains a closed path p =

(x1
, . . . ,x2m) with different points. The functional Gp = ∑

2m
i=1(−1)i−1 f (xi) belongs to the

annihilator of the subspace RX

(

a1,a2
)

. There exist nontrivial continuous functions f0 on

X such that Gp( f0) 6= 0 (take, for example, any continuous function f0 taking values +1

at {x1,x3, . . . ,x2m−1}, −1 at {x2,x4, . . .,x2m} and −1 < f0(x) < 1 elsewhere). This shows

that the subspace RX

(

a1,a2
)

is not dense in C(X). But in this case, the set MX(σ;W,R)

cannot be dense in C(X). The obtained contradiction means that our assumption is not true

and X contains no closed path.

Remark 2. The hypothesis of the theorem on orbits of X cannot simply omitted in the suffi-

ciency. The following example due to Marshall and O’Farrell justifies our assertion. For the

sake of simplicity, we restrict ourselves to R2. Let a1 = (1;1), a2 = (1;−1) and the set of

weights W = {a1
,a2}. The set X can be constructed as follows. Let X1 be the union of the

four line segments [(−3;0), (−1;0)], [(−1;2), (1;2)], [(1;0), (3;0)] and [(−1;−2), (1;−2)].

Rotate one segment in X1 90◦ about its center and remove the middle one-third from each

line segment. The obtained set denote by X2. By the same way, one can construct X3,X4,

and so on. It is clear that the set Xi has 2i+1 line segments and every orbit in Xi is a closed

path consisting of 2i+1 points, one in each line segment. Let X be a limit of the sets Xi,
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i = 1,2, . . . . Note that every orbit of X is dense in X , hence not closed. Besides, there are

no closed paths.

By Si, i = 1,4, denote the closed discs with the unit radius and centered at the points

(−2;0), (0;2), (2;0) and (0;−2) respectively. Let P be a parallelogram with sides parallel

to the vectors a1, a2 and containing the disks Si, i = 1,4 (hence all the sets X1,X2, . . ., and

X). Consider a continuous function f0 such that f0(x) = 1 for x∈ (S1∪S3)∩X , f0(x) =−1

for x ∈ (S2 ∪S4)∩X , and −1 < f0(x) < 1 elsewhere. Let p = (y1
,y2

, . . .) be any infinite

path in X . Since the points yi
, i = 1,2, . . ., are alternatively in the sets (S1 ∪ S3)∩X and

(S2 ∪ S4)∩X , the path p is an extremal path for f0. We say that a finite or infinite path

(p1, p2, . . .) is extremal for some function u(x) ∈ C(Q) if u(pi) = (−1)i‖u‖, i = 1,2, . . . or

u(pi) = (−1)i+1 ‖u‖ , i = 1,2, . . . (see definition 2.4 in [8]). Extremal paths are associated

with the following theorem (see theorem 2.5 in [8]):

Let Q ⊂ R
d be a convex compact set with the property: for any path q =

(q1,q2, . . . ,qn) ⊂ Q there exist points qn+1,qn+2, . . . ,qn+s ∈ Q such that (q1,q2, . . . ,qn+s)
is a closed path and s is not more than some positive integer N0 independent of q. Then a

necessary and sufficient condition for a function g0 ∈ RQ (a,b) to be a best approximation

to the given function f (x)∈C(Q) is the existence of a closed or infinite path l = (p1, p2, . . .)

extremal for the function f1(x) = f (x)−g0(x).

By this theorem,

E( f0,P) = inf
g∈RQ(a1,a2)

‖ f0 −g‖C(P) = ‖ f0‖C(P) = 1. (5)

Note that X does not satisfy the hypothesis of this theorem as regards convexity. But in

fact, (5) remains valid for the error of approximation to f0 over the set X . To show this, put

pk = (y1
, . . . ,yk) and consider the path functional

Gpk
( f ) =

1

k

k

∑
i=1

(−1)i−1 f (yi).

Gpk
is a continuous linear functional obeying the following obvious properties:

(1) ‖Gpk
‖ = Gpk

( f0) = 1;

(2) Gpk
(g1 +g2)≤

2
k
(‖g1‖+‖g2‖) for ridge functions g1 = g1

(

a1·x
)

and g2 = g2

(

a2·x
)

.

By property (1), the sequence {Gpk
}∞

k=1 has a weak* cluster point. This point will be

denoted by G. By property (2), G ∈ RX

(

a1,a2
)⊥

. Therefore,

1 = G( f0) = G( f0−g) ≤ ‖ f0 −g‖C(X) for any g ∈ RX

(

a1
,a2

)

.

Taking inf over g in the right-hand side of the last inequality, we obtain that 1 ≤
E( f0,X). Now since E( f0,X)≤ E( f0,P), it follows from (5) that E( f0,X) = 1. Recall that

MX(σ;W,R)⊂ RX

(

a1
,a2

)

. Thus

inf
h∈MX (σ;W,R)

‖ f −h‖C(X) ≥ 1.

The last inequality finally shows that MX (σ;W,R) 6= C(X).

Examples:
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(a) Let a1 and a2 be two noncollinear vectors in R
2
. Let B = B1 · · ·Bk be a broken line with

the sides BiBi+1, i = 1, . . .,k−1, alternatively perpendicular to a1 and a2. Besides,

let B does not contain vertices of any parallelogram with sides perpendicular to these

vectors. Then the set MB(σ;W,R) is dense in C(B).

(b) Let a1 and a2 be two noncollinear vectors in R
2
. If X is the union of two parallel line

segments, not perpendicular to any of the vectors a1 and a2, then the set MX(σ;W,R)

is dense in C(X).

(c) Let now a1 and a2 be two collinear vectors in R
2. Note that any path consisting of two

points is automatically closed. Thus the set MX (σ;W,R) is dense in C(X) if and only

if X contains no path different from a singleton. A simple example is a line segment

not perpendicular to the given direction.

(d) Let X be any compact set with interior points. Then theorem 1 fails, since any such

set contains the vertices of some parallelogram with sides perpendicular to the given

directions a1 and a2, that is a closed path.

Assume MX (σ;W,R) is dense in C(X). Is it necessarily closed? The following theorem

may describe cases when it is not.

Theorem 3. Let a1 and a2 be fixed vectors in Rn, W = {k1a1,k2a2: k1,k2 ∈ R} and

MX(σ;W,R) = C(X). Then X contains no closed path and the lengths of all paths in X

are bounded by some positive integer.

Proof. Let MX(σ;W,R) = C(X). Then R1 +R2 = C (X), where

Ri = {gi(ai·x) : gi ∈C(R)}, i = 1,2.

Consider the linear operator

A : R1×R2 → C (X) , A [(g1,g2)] = g1 +g2,

where g1 ∈ R1,g2 ∈ R2. The norm on R1×R2 we define as

‖(g1,g2)‖ = ‖g1‖+‖g2‖ .

It is obvious that the operator A is continuous with respect to this norm. Besides, since

C (X) = R1 +R2, A is a surjection. Consider the conjugate operator

A∗ : C (X)∗ → [R1 ×R2]
∗
, A∗ [G] = (G1,G2) ,

where the functionals G1 and G2 are defined as follows

G1 (g1) = G(g1) ,g1 ∈ R1; G2 (g2) = G(g2) ,g2 ∈ R2.

An element (G1,G2) from [R1 ×R2]
∗

has the norm

‖(G1,G2)‖ = max{‖G1‖ ,‖G2‖} . (6)
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Let now p = (p1, . . . , pm) be a path with different points: pi 6= p j for any i 6= j, 1 ≤
i, j ≤ m. We associate with p the following functional over C (X)

L [ f ] =
1

m

m

∑
i=1

(−1)i−1
f (pi) .

Since |L( f )| ≤ ‖ f‖ and |L(g)|= ‖g‖ for a continuous function g(x) such that g(pi) = 1, for

odd indices i, g(p j) = −1, for even indices j and −1 < g(x) < 1 elsewhere, we obtain that

‖L‖ = 1. Let A∗ [L] = (L1,L2). One can easily verify that

‖Li‖ ≤
2

m
, i = 1,2.

Therefore, from (6) we obtain that

‖A∗ [L]‖ ≤
2

m
. (7)

Since A is a surjection, there exists δ > 0 such that

‖A∗ [G]‖ ≥ δ‖G‖ for any functional G ∈C (X)∗

Hence

‖A∗ [L]‖ ≥ δ. (8)

Now from (7) and (8) we conclude that

m ≤
2

δ
.

This means that the length of any path with different points is not more than
[

2
δ

]

+1.

Let now p = (p1, . . ., pm) be a path with at least two coinciding points. Then we can

form a closed path with different points. This may be done by the following way: let i and

j be indices such that pi = p j and j − i takes its minimal value. Note that in this case

all the points pi, pi+1, . . . , p j−1 are distinct. Now if j− i is an even number, then the path

(pi, pi+1, . . ., p j−1) , and if j− i is an odd number, then the path (pi+1, . . . , p j−1) is a closed

path with different points. It remains to show that X can not possess closed paths with

different points. Indeed, if q = (q1, . . . ,q2k) is a path of this type, then the functional L,

associated with q, annihilates all functions from R1 + R2. On the other hand, L [ f ] = 1 for

a continuous function f on X satisfying the conditions f (t) = 1 if t ∈ {q1,q3, . . . ,q2k−1} ;

f (t) = −1 if t ∈ {q2,q4, . . . ,q2k} ; f (t) ∈ (−1;1) if t ∈ X\q . This implies that R1 + R2 6=
C (X). Since MX(σ;W,R)⊆ R1 +R2, we obtain that MX(σ;W,R) 6= C (X) on the contrary

to our assumption.

For example, let a1 = (1;−1), a2 = (1;1), W = {a1
,a2} and σ be any continuous,

bounded and nonconstant function, which has a limit at infinity. Consider the set

X =
{(

2;
2

3

)

,

(2

3
;

2

3

)

, (0;0), (1;1),
(

1+
1

2
;1−

1

2

)

,

(

1+
1

2
+

1

4
;1−

1

2
+

1

4

)

,

(

1+
1

2
+

1

4
+

1

8
;1−

1

2
+

1

4
−

1

8

)

, . . .

}

.

It is clear that X is a compact set with all its orbits closed. (In fact, there is only one

orbit, which coincides with X). Hence, by theorem 2, MX(σ;W,R)= C(X). But by theorem

3, MX (σ;W,R) 6= C(X). Therefore, the set MX (σ;W,R) is not closed in C(X).
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3. Approximation Error and Extremal Networks

If well approximation by neural networks is not possible, one may be interested in the

error of this approximation. Below for one special class of bivariate functions, we give an

easily calculable lower bound for the error of approximation by neural networks with any

continuous activation function and weights consisting of two directions.

Let σ be any continuous univariate function on the real line, W = {ka, tb : k, t ∈ R}

is the set of weights, where a,b are linearly independent vectors in R
2. For a compact

set Ω in R
2, the error of approximation of a given function f ∈ C(Ω) with networks from

MΩ(σ;W,R) is denoted by E( f ,M ).That is,

E( f ,M )
de f
= inf

g∈MΩ(σ;W,R)
‖ f −g‖ .

Theorem 4. Let

Ω =
{

x ∈ R
2 : c1 ≤ a ·x ≤ d1, c2 ≤ b ·x ≤ d2

}

,

where a = (a1,a2) and b = (b1,b2) are linearly independent vectors, c1 < d1 and c2 < d2.

Let a function f (x) ∈ C(Ω) have the continuous partial derivatives
∂2 f

∂x2
1

,
∂2 f

∂x1∂x2
,

∂2 f

∂x2
2

and for

any x = (x1,x2) ∈ Ω

∂2 f

∂x1∂x2

(a1b2 +a2b1)−
∂2 f

∂x2
1

a2b2 −
∂2 f

∂x2
2

a1b1 ≥ 0.

Then

E( f ,M ) ≥
1

4
( f1(c1,c2)+ f1(d1,d2)− f1(c1,d2)− f1(d1,c2)) ,

where

f1(y1,y2) = f

(

y1b2 −y2a2

a1b2 −a2b1

,
y2a1−y1b1

a1b2−a2b1

)

.

Proof. Introduce the new variables

y1 = a1x1 +a2x2, y2 = b1x1 +b2x2. (9)

Since the vectors (a1,a2) and (b1,b2) are linearly independent, for any (y1,y2) ∈ Y ,

where Y = [c1,d1]× [c2,d2], there exists only one solution (x1,x2) ∈ Ω of the system (9).

The coordinates of this solution are

x1 =
y1b2−y2a2

a1b2−a2b1

, x2 =
y2a1 −y1b1

a1b2 −a2b1

. (10)

The linear transformation (10) transforms the function f (x1,x2) to the function

f1(y1,y2). Consider the approximation of f1(y1,y2) from the set

Z = {z1(y1)+ z2(y2) : zi ∈C(R), i = 1,2} .
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It is easy to see that

E ( f ,M ) ≥ E ( f1,Z) . (11)

With each rectangle S = [u1,v1]× [u2,v2]⊂ Y we associate the functional

L(h,S) =
1

4
(h(u1,u2)+h(v1,v2)−h(u1,v2)−h(v1,u2)) , h ∈C(Y ).

This functional has the following obvious properties:

(i) L(z,S) = 0 for any z ∈ Z and S ⊂ Y .

(ii) For any point (y1,y2) ∈ Y , L( f1,Y ) =
4

∑
i=1

L( f1,Si), where S1 = [c1,y1]× [c2,y2],

S2 = [y1,d1]× [y2,d2], S3 = [c1,y1]× [y2,d2], S4 = [y1,d1]× [c2,y2].

By the conditions of the theorem, it is not difficult to verify that

∂2 f1

∂y1∂y2

≥ 0 for any (y1,y2) ∈ Y.

Integrating both sides of the last inequality over arbitrary rectangle S = [u1,v1] ×

[u2,v2] ⊂ Y , we obtain that

L( f1,S) ≥ 0. (12)

Set the function

f2(y1,y2) = L( f1,S1)+L( f1,S2)−L( f1,S3)−L( f1,S4) .

It is not difficult to verify that the function f1 − f2 belongs to Z. Hence

E ( f1,Z) = E ( f2,Z) . (13)

Calculate the norm ‖ f2‖. From the property (ii), it follows that

f2(y1,y2) = L( f1,Y)−2(L( f1,S3)+L( f1,S4))

and

f2(y1,y2) = 2(L( f1,S1)+L( f1,S2))−L( f1,Y) .

From the last equalities and (12), we obtain that

| f2(y1,y2)| ≤ L( f1,Y ) , for any (y1,y2) ∈ Y.

On the other hand, one can check that

f2(c1,c2) = f2(d1,d2) = L( f1,Y) (14)

and

f2(c1,d2) = f2(d1,c2) = −L( f1,Y ) . (15)

Therefore,

‖ f2‖ = L( f1,Y) . (16)
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Note that the points (c1,c2), (c1,d2), (d1,d2), (d1,c2) in the given order form a closed path

with respect to the directions (0;1) and (1;0). We conclude from (14)-(16) that this path is

extremal for f2. It is not difficult to verify that z0 = 0 is a best approximation to f2. Hence

E ( f2,Z) = L( f1,Y) . (17)

Now from (11),(13) and (17) we finally conclude that

E ( f ,M ) ≥ L( f1,Y) =
1

4
( f1(c1,c2)+ f1(d1,d2)− f1(c1,d2)− f1(d1,c2)) .

The last inequality completes the proof.

Let, for example, (a1,a2) and (b1,b2) be basic vectors (1,0) and (0,1) correspondingly.

As a set Ω take the unit square [0,1]2. Let σ be any continuous function on [0,1] and

f0(x1,x2) = (x1 −
1
2
)(x2 −

1
2
). The function f0 satisfies all the conditions of theorem 4. The

approximating set of networks M has members of the form

n1

∑
i=1

ciσ(kix1 −θi)+
n2

∑
j=1

d jσ(t jx2 −λ j), (18)

where ci,d j,θi,λ j are arbitrary real numbers, ki and t j are real numbers different from zero

and n1,n2 are positive integers. Applying theorem 4, we obtain that the error of approxi-

mation E( f0,M ) of the function f0 by networks of the form (18) is not less than 1
4
. On the

other hand note that E( f0,M ) ≤ ‖ f0‖= 1
4
. Thus, E( f0,M ) = 1

4
.

At the end we are going to find conditions for characterization of extremal networks

with weights from two directions. Fix a function σ ∈ C(R) and vectors a1,a2 ∈ Rd\{0}.

Consider neural networks from the set M (σ;W,R), where W = {k1a1
,k2a2: k1,k2 ∈ R}.

Let f (x) be a given continuous function on some compact subset Q of Rd. We want to

find sufficient conditions for a network Ξ ∈ MQ(σ;W,R) to be an extremal element (or a

best approximation) to f . In other words, we want to characterize networks Ξ = Ξ(x) =

∑
2
i=1 ∑

mi

j=1 ci jσ(ai·x−θi j) such that

‖ f −Ξ‖ = max
x∈Q

| f (x)−Ξ(x)|= E ( f ) ,

where

E ( f ) = E( f ,MQ)
de f
= inf

g∈MQ(σ;W,R)
‖ f −g‖

is the error in approximating from MQ(σ;W,R).

Theorem 5. Let Q ⊂ R
d be a compact set with the property: for any path q =

(q1,q2, ...,qn) ⊂ Q there exist points qn+1,qn+2, ...,qn+s ∈ Q such that (q1,q2, ...,qn+s)

is a closed path and s is not more than some positive integer N0 independent of q. Then

a sufficient condition for a network Ξ(x) ∈ MQ(σ;W,R) to be extremal to the given func-

tion f (x) ∈ C(Q) is the existence of a closed or infinite path l = (p1,p2, . . .) such that

f (pi)−Ξ(pi) = (−1)i‖ f −Ξ‖ , i = 1,2, . . . or f (pi)−Ξ(pi) = (−1)i+1‖ f −Ξ‖ , i = 1,2, . . .
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Proof. Let f ∈ C(Q), Ξ ∈ MQ(σ;W,R), l = (p1,p2, . . .,p2n) be closed path in Q and

f (pi) − Ξ(pi) = (−1)i‖ f −Ξ‖ , i = 1,2, . . . or f (pi) − Ξ(pi) = (−1)i+1‖ f −Ξ‖ , i =

1,2, . . ..

Consider the functional

Gl( f ) =
1

2n

2n

∑
k=1

(−1)k+1 f (pk).

Note that for any network g ∈ MQ(σ;W,R), Gl(g) = 0. That is, the functional Gl

belongs to the annihilator of the set MQ(σ;W,R).

It can be easily verified that

|Gl( f )|= ‖ f −Ξ‖ . (19)

and

|Gl( f )| ≤ E( f ). (20)

It follows from (19),(20) and the definition of E( f ) that Ξ is an extremal element.

Let now a path l = (p1,p2, . . . ,pn, . . .) be infinite and f (pi) − Ξ(pi) =
(−1)i‖ f −Ξ‖ , i = 1,2, . . . or f (pi) − Ξ(pi) = (−1)i+1‖ f −Ξ‖ , i = 1,2, . . .. With-

out loss of generality we may assume that all the points pi are distinct (in the other case, we

could form a closed path and prove in a few lines as above that Ξ is an extremal element).

Consider the sequence ln = (p1,p2, ...,pn), n = 1,2, ..., of finite paths. By the condition,

for each ln there exists a closed path lmn
n = (p1,p2, ...,pn,qn+1, ...,qn+mn

), where mn ≤ N0.

Then for any positive integer n,

∣

∣Gl
mn
n

( f )
∣

∣ =
∣

∣Gl
mn
n

( f −Ξ)
∣

∣ ≤
n‖ f −Ξ‖+mn ‖ f −Ξ‖

n+mn

= ‖ f −Ξ‖ (21)

and
∣

∣Gl
mn
n

( f )
∣

∣ ≥
n‖ f −Ξ‖−mn ‖ f −Ξ‖

n+mn

=
n−mn

n+mn

‖ f −Ξ‖ . (22)

It follows from (21) and (22) that

sup
l
mn
n

∣

∣Gl
mn
n

( f )
∣

∣ = ‖ f −Ξ‖ . (23)

Note that

sup
p⊂Q

|Gp( f )| ≤ E ( f ) , (24)

where the sup is taken over all closed paths of Q. Now we deduce from (23) and (24) that

‖ f −Ξ‖ ≤ E( f ).

Hence Ξ is an extremal element.
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Abstract

We develop the relation between space-time and state-space quantum geometries

with torsion fields (the so-called Riemann-Cartan-Weyl (RCW) geometries), statistical

thermodynamics -and particularly the second law of thermodynamics- and their asso-

ciated Brownian motions. In this setting, the metric conjugate of the trace-torsion one-

form is the drift vector field of the Brownian motions. Thus, in the present approach

Brownian motions are -in distinction with Nelson’s Stochastic Mechanics- space-time

structures. We extend this to the state-space of non-relativistic quantum mechanics

and discuss the relation between a non-canonical quantum RCW geometry in state-

space associated with the gradient of the quantum-mechanical expectation value of a

self-adjoint operator. A particular case is given by the generalized laplacian opera-

tor defined by a RCW geometry, which is the generator of the space-time Brownian

motions. We discuss the reduction of the wave function in terms of a RCW quantum

geometry in state-space. We characterize the Schroedinger equation in terms of the

RCW geometries and Brownian motions, for systems under observation as well as

those unobserved. Thus, in this work, the Schroedinger field is a torsion generating

field. In this work the U and R processes -in the sense of R. Penrose- are associated

to RCW geometries and their Brownian motions, the former to RCW space-time ge-

ometries and their associated Brownian motions, and the latter to their extension to

the state-space of nonrelativistic quantum mechanics given by the projective Hilbert

space. In this setting, the Schroedinger equation can be either linear or nonlinear. We

discuss the problem of the many times variables and the relation with dissipative pro-

cesses. We present as an additional example of RCW geometries and their Brownian

motions, the dynamics of viscous fluids obeying the invariant Navier-Stokes equations.

We introduce in the present setting an extension of R. Kiehn’s approach to dynamical

systems starting from the notion of the topological dimension of one-forms, to apply

it to the trace-torsion one-form whose metric conjugate is the Brownian motion’s drift

vector-field and discuss the topological notion of turbulence. In our setting, whenever

the metric is not rivial, the quantum potential is found to coincide (up to a conformal

factor) with the metric scalar curvature. We discuss the possible relations between the

present approach and the nonlocal universal correlations between dissipative systems,

first found by Kozyrev, and subsequently in diverse geophysical, solar and ionospheric

∗E-mail address: diego.rapoport@gmail.com
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observations. We introduce statistical thermodynamics in relation to fluctuations of

systems, and its relations with the RCW geometries. We analyze the relations between

these geometries and the fluctuation-dissipation relations. In the case of linear torsion

we obtain the Onsager relations. We prove a non-linear Boltzmann theorem. We find

that the free energy of the non-equilibrium systems decreases but on the zeros of the

torsion-drift, signalling the onset of syntropic processes which in the case of dimen-

sion four we relate to the topological torsion introduced by Kiehn and the structure of

the singularities associated to it. We discuss the relation with a time-arrow determined

by the final equilibrium state and its associated torsion geometry.

1. Introduction

In a series of articles [63] [65] (and references therein) we have presented a fusion between

space-time structures and Brownian motions, in which a complementarity of the objects

characterizing the Brownian motion, i.e. the noise tensor which produces a metric, and the

drift vector field which describes the average velocity of the Brownian motion whenever

this takes place in space-time. These space and time structures, which can be defined start-

ing from flat Euclidean or Minkowski space-time, have in addition to a metric, a torsion

tensor which is formed from the metric conjugate of the drift vector field, and the laplacian

operator defined by this geometrical structure is the differential generator of the Brownian

motions. Thus , in this equivalence, one can choose the Brownian motions as the original

structures determining a space-time structure, or conversely, the space-time structures pro-

duce a Brownian motion process. Thus, in view that the space and time geometries can

be seen as associated with an extension of the theory of gravitation which in fact was first

explored in joint work by Einstein with Cartan [14], then the foundations for the gravita-

tional field, at least those associated to this restricted case of torsion reduced to the trace,

can be found in these Brownian motions. Thus, in this equivalence, lies a characterization

of the Universe in which due to the self-similarity of Brownian motions with its associated

fractal structures, and the infinite velocity propagation of diffusion processes, point to a

phenomenology which is not the classical mechanical metaphor, but one in which interac-

tions at a point are imparted in no time to the whole Universe, while an hologram picture

of reality (which recalls the Bohm conception of implicit order [7]), appears as its natu-

ral expression of universal scales that have been gauged to produce the actual geometries

and the associated Brownian motions. Indeed, these space-time geometrical structures can

be introduced by the Einstein λ transformations on the tetrad fields [14], from which the

usual Weyl scale transformations can be deduced, but contrarily to Weyl geometries, these

structures have torsion and they are integrable [65,79] in contrast with Weyl’s theory [94].

We have called these connections as RCW structures (short for Riemann-Cartan-Weyl);

see [63, 65] and references therein. We have shown that light waves satisfying the wave-

propagation equation and the eikonal ray equations of geometrical optics, already in the

case of Mikowski spacetime generate these geometries, and still that the singularities of the

torsion are the loci for quantum jumps [76].We have characterized the spinor and twistor

geometries in the case of quaternionic waves [74] and related it to the multivalued Matrix

Logic that has for particular cases quantum, fuzzy and Boolean logics [75]. We have fur-

ther related them to the existence of a universal map of the body’s sensorium and vortical
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structures on the neurocortex, as well as vortical structures in Matrix Logic which exist

at the basis of cognition associated to Brownian motions as the neurocortex correlates of

spacetime Brownian motions produced by photons [76–78].

This description in terms of gauging the scale transformations, begs the question about

how universal scales can be to be able to produce a Universe of diversity which gives place

to the phenomenae we call life, the quantum mechanical scales and still the planetary and

galactic scales?1

We can further enquire what is the relation between the aether and a Universe described

in terms of this equivalence, in which due to the fact that torsion is a non-metric geomet-

rical object describing a topological obstruction to triviality, i.e. the breaking of closure of

infinitesimal parallelograms in the particular scale we are describing this equivalence, so

that the presence of a flow is intuitively evoked by this geometry, and the aether. This may

seem strange to most of the readers, since the Michelson-Morley experiments seemingly

disproved the existence of a background fluid, which years later reappeared in quantum

field theory in the guise of the vacuum fluctuations 2

This negative result called for the fusion of space and time, in a single structure which

we know as Minkowski space, which the founding fathers of modern physics found it ab-

struse at the beginning. The fact is that the Lorentz group does not depend on the existence

or not of an aether, and it has been associated by V. Fock to particles as space-time struc-

tures associated with solutions of the eikonal equation for which in Minkowski space this

equation is Lorentz-invariant; see [19]. Furthermore, if an aether would exist, the Lorentz

transformations, in contrary to common belief, does not lose its place, because they become

the set of transformations by which two arbitrary observers can agree in the existence of a

lump of space-time associated to the solution of the eikonal equation. Furthermore, the ve-

locity of light as a universal factor does not loose its place. What about General Relativity

(GR), vis-a-vis the existence of background Brownian motions, where we recall that GR

1The answer to this may come from the research by Hartmutt Muller, currently called Global Scaling, start-

ing from research by the Russian biologist, Cislenko. This researcher discovered that biological species sizes

can be represented in a logarithmic scale where they appear concentrated in specific equally distanced intervals;

see. Cislenko, Structure of Fauna And Flora With Regard to Body Size of Organisms ( Lomonosov-University

Moscow, 1980). Analysis of data of natural processes and structures on all scales, from the cosmological to

the quantum, have shown a similar behavior. The scales in which the Universe appears to be related to a fractal

structure on this logarithmic scale, and the void sets of this vacuum are nodal sets for a stationary wave that

appears from a model of interacting classical particles, and associated with the creation or annhilitation of par-

ticles, or, more universally, of structures. Thus, one can apply as a general method Muller’s findings, to the

analysis with this fractal structure of a time series of experimental data of arbitrary phenomenae, and thus to be

able to deduce the possibility of creation (or annihilation) of hitherto unkwown structures; see [49]. Remark-

ably, this resonant effects of the vacuum through the nodes, has allowed to produce transference of information,

concretely, computer files between computers unconnected through internet or other tangible communication

scheme; see [50]. In the context of our theory, the logarithmic scale is gauged and introduces the exact term

of the trace-torsion one-form, whose metric conjugate is part of the drift of the underlying Brownian motion

through which the teleportation may be produced. Thus, the universality of global scaling laws lead to gauge

dependent Brownian motions of all systems.
2There is a strong controversy about the interpretations of the Michelson-Morley experiments. The ex-

periments were repeated extensively by Miller who interpreted his results as yielding a positive result for the

existance of the aether [47]. More contemporary experiments with different settings, may point out to the

existence of the aether [2, 8]. Einstein did not come to terms with the abandonment of the aether, as can be

testimonied in his Leyden lectures [15].
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appeared to give a geometrical invariant extension of Minkowksi space-time precisely to

account of the existence of massive objects as deformations of the flat space-time? Does

the principle of general covariance looses its ground as a basic tenant for the universality

of the laws of physics? In this regard the fact that the theory of Brownian motion cannot

be formulated without a diffeomorphism invariant distinction between the first and second

moments, i.e. between the drift and the noise tensor, for which it is indispensable to in-

troduce the notion of a linear connection as proved by Rapoport; see [63, 65, 67, 68]. This

gives further support, albeit from an unexpected quantum status, to the relevance of the gen-

eral principle of covariance, but now stemming from a more fundamental non-differentiable

fractal level 3.

In this article we shall treat the problem of non-relativistic quantum mechanics in terms

of diffusion processes both in spacetime and the state-space of quantum mechanics. Thus,

in this approach, it will appear that the Schroedinger field can be associated with a scale

field producing a distortion in the vacuum, and introducing as well the associated Brownian

motions. There have been numerous attempts to relate non-relativistic quantum mechanics

to diffusion equations; the most notable of them is Stochastic Mechanics , due to Nel-

son [52]. Already Schroedinger proposed in 1930-32 that his equation should be related

to the theory of Brownian motions, and proposed a scheme he was not able to achieve,

the so-called interpolation problem which requires to describe the Brownian motion and

the wave functions in terms of interpolating the initial and final densities in a given time-

interval [88]. More recently Nagasawa presented a solution to this interpolation pr oblem

and further elucidated that the Schroedinger equation is in fact a Boltzmann equation [51].

Neither Nagasawa nor Nelson presented these Brownian motions as spacetime structures,

but rather as matter fields on the vacuum. While Nelson introduced artificially a forward

and backward stochastic derivatives to be able to reproduce the Schroedinger equation as

a formally time-symmetric equation, Nagasawa was able to solve the interpolation prob-

lem in terms of the forward diffusion process and its adjoint backward process, from which

without resort to the ad-hoc constructions due to Nelson, he was able to prove that this was

related to the Kolmogorov characterization of time-irreversibility of diffusion processes in

terms of the non-exact terms of the drift, here related to the trace-torsion. In spite of the

ad-hoc character of Nelson’s approach, a similar approach to quantization in terms of an ini-

tial fractal structure of space-time and the introduction of Nelson’s forward and backward

stochastic derivatives, was developed by Nottale in his Scale Theory of Relativity [55].

Remarkably, his approach has promoted the Schroedinger equation as valid for large scale

structures, and predicted the existence of exo-solar planets which were observationally ver-

ified to exist [56]. This may further support the idea that the RCW structures introduced in

the vacuum by scale transformations, are valid, as any topological approach would be, inde-

pendently of the scale in which the associated Brownian motions and equations of quantum

mechanics are posited. Furthermore, Kiehn has proved that the Schroedinger equation in

3Einstein somewhat conceded to the criticism of the so called operationalists, as Bridgeman and

Kretschmann, on downplaying the role of the Principle of General Covariance; see E. Kretschmann, Ann.der

Physik53, 575 (1917), P.W. Bridgeman, Natural of Physical Theory, Princeton Univ. Press (1936); if it would

not have been by the developments of the mathematical theory of Brownian motions, and still, the inception

of gauge-theoretical geometrical methods in statistical and condensed matter physics at its very roots, this

criticism of the geometrical approach, and further, of a topological approach, would have prevailed.
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spatial 2D can be exactly transformed into the Navier-Stokes equation for a compressible

fluid, if we further take the kinematical viscosity ν to be ~

m
with m the mass of the elec-

tron. As we proved in [65, 67] the Navier-Stokes equations share with the Schroedinger

equation, that both have a RCW geometry at their basis; while in the Navier-Stokes equa-

tions the trace-torsion is −1
2ν u with u the time-dependent velocity one-form of the viscous

fluid, in the Schroedinger equation, the trace-torsion one-form incorporates the logarithmic

differential of the wave function -just like in Nottale’s theory [55]- and further the electro-

magnetic potential terms of the trace-torsion. This correspondence between trace-torsion

one-forms is what lies at the base of Kiehn’s correspondance, with an important addendum:

While in the approach of the Schroedinger equation the probability density is related to the

Schroedinger scale factor (in incorporating the complex phase) and the Born formula turns

out to be a formula and not an hypothesis, under the transformation to the Navier-Stokes

equations it turns out that the probability density of non-relativistic quantum mechanics,

is the entrosphy density of the fluid, i.e. the square of the vorticity, which thus plays a

geometrical role that substitutes the probability density. Thus, in this approach, while there

may be virtual paths sustaining the random behaviour of particles (as is the case also of the

Navier-Stokes equations [63,67] and the interference such as in the two-slit experiments can

be interpreted as a superposition of Brownian paths [51], the probability density has a purely

geometrical fluid-dynamical meaning (the squared length of the vorticity vector field). We

shall present the relation between what we can now call RCW quantum geometries, with the

representation of the Schroedinger equation in the projective state-space of non-relativistic

quantum mechanics, and further present the problem of the reduction of the wave function,

as related to a non-canonical geometry in state-space. This quantum RCW geometry has

a metric which is not the usual Fubini-Study metric, but is related to an extension of the

classical symplectic geometry treatment of the Schroedinger function in state-space, to in-

clude the observation process in terms of a noise term and a trace-torsion drift given by (a

modification of) the gradient of the Hamiltonian function corresponding to the symplectic

formalism. This Hamiltonian function is none other that the quantum mechanical expecta-

tion function defined by the quantum Hamiltonian operator, or more specifically, it can be

the Laplacian operator associated to the RCW geometry which has a correlate as a Brown-

ian motion in space-time. Thus, if one incorporates the observation process into the theory,

still RCW geometries will play an important role, since the Schroedinger symplectic vector

field is the natural drift vector field in state-space whenever the noise coefficient is zero. We

shall extend this the relations between RCW geometries, their Brownian motions and the

Schroedinger equation, to the strong interactions in the framework of Hadronic Mechanics

and the isoSchroedinger equation. Finally, we shall relate non-equilibrium statistical ther-

modynamics to the RCW geometries and further apply this to characterize the behaviour of

entropy in terms of the RCW geometries, particularly of the zeros of the torsion.

2. Riemann-Cartan-Weyl Geometry of Diffusions

In this section we follow our articles in [63]. In this article M denotes a smooth connected

compact orientable n-dimensional manifold (without boundary). While in our initial works,

we took for M to be spacetime, there is no intrinsic reason for this limitation, in fact if can

be an arbitrary configuration manifold and still a phase-space associated to a dynamical
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system. The paradigmatical example of the latter, is the projective space associated to a

finite-dimensional Hilbert-space of a quantum mechanical system. We shall further provide

M with a linear connection described by a covariant derivative operator ∇ which we assume

to be compatible with a given metric g on M, i.e. ∇g = 0. Given a coordinate chart (xα)

(α = 1, . . .,n) of M, a system of functions on M (the Christoffel symbols of ∇) are defined

by ∇ ∂

∂xβ

∂
∂xγ = Γ(x)α

βγ
∂

∂xα . The Christoffel coefficients of ∇ can be decomposed as:

Γα
βγ =

{
α

βγ

}
+

1

2
Kα

βγ. (1)

The first term in (12) stands for the metric Christoffel coefficients of the Levi-Civita con-

nection ∇g associated to g, i.e.
{α

βγ

}
= 1

2
( ∂

∂xβ gνγ + ∂
∂xγ gβν − ∂

∂xν gβγ)gαν, and

Kα
βγ = T α

βγ +Sα
βγ +Sα

γβ, (2)

is the cotorsion tensor, with Sα
βγ = gανgβκT κ

νγ, and T α
βγ = (Γα

βγ −Γα
γβ) the skew-symmetric

torsion tensor. We are interested in (one-half) the Laplacian operator associated to ∇, i.e.

the operator acting on smooth functions on M defined as

H(∇) := 1/2∇2 = 1/2gαβ∇α∇β. (3)

A straightforward computation shows that H(∇) only depends in the trace of the torsion

tensor and g, since it is

H(∇) = 1/24g + Q̂, (4)

with Q := Qβdxβ = T ν
νβdxβ the trace-torsion one-form and where Q̂ is the vector field

associated to Q via g: Q̂( f ) = g(Q,d f ), for any smooth function f defined on M.

Finally, 4g is the Laplace-Beltrami operator of g: 4g f = divg grad f , f ∈ C∞(M),

with divg the Riemannian divergence. Thus for any smooth function, we have 4g f =

1/[det(g)]
1
2 gαβ ∂

∂xβ ([det(g)]
1
2

∂
∂xα f ). Furthermore, the second term in (14), i.e. Q̂ coincides

with the Lie-derivative with respect to the vectorfield Q̂: LQ̂ = iQ̂d + diQ̂, where iQ̂ is the

interior product with respect to Q̂: for arbitrary vectorfields X1, . . . ,Xk−1 and φ a k-form

defined on M, we have (iQ̂φ)(X1, . . . ,Xk−1) = φ(Q̂,X1, . . . ,Xk−1). Then, for f a scalar field,

iQ̂ f = 0 and

LQ̂ f = (iQ̂d +diQ̂) f = iQ̂d f = g(Q,d f ) = Q̂( f ). (5)

Thus, our laplacian operator admits being written as

H0(g,Q) =
1

2
4g +LQ̂. (6)

Consider the family of zero-th order differential operators acting on smooth k-forms, i.e.

differential forms of degree k (k = 0, . . .,n) defined on M:

Hk(g,Q) := 1/24k +LQ̂, (7)
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In the first summand of the r.h.s. of (7) we have the Hodge operator acting on k-forms:

4k = (d−δ)2 = −(dδ+δd), (8)

with d and δ the exterior differential and codifferential operators respectively, i.e. δ

is the adjoint operator of d defined through the pairing of k-forms on M: (ω1,ω2) :=
R

⊗kg−1(ω1,ω2)volg, for arbitrary k-forms ω1,ω2, where volg(x) = det(g(x))
1
2 dx is the

volume density, g−1 denotes the induced metric on 1-forms and ⊗kg−1 the induced metric

on k-forms . The last identity in eq. (7) follows from the fact that d2 = 0 so that δ2 = 0.

Since this operator when k = 0 coincides with the Laplace-Beltrami operator 4g, we see

that from the family defined in eq. (7) we retrieve for scalar fields (k = 0) the operator

H(∇) defined in (4). The Hodge laplacian can be further written expliciting the Weitzen-

bock metric curvature term, so that when dealing with M = Rn provided with the Euclidean

metric, 4k is the standard Euclidean laplacian acting on the components of a k-form defined

on Rn (0 ≤ k ≤ n).

Therefore, assuming that g is non-degenerate, we have defined a one-to-one mapping

∇ 7→ Hk(g,Q) = 1/24k +LQ̂

between the space of g-compatible linear connections ∇ with Christoffel coefficients of the

form

Γα
βγ =

{
α

βγ

}
+

2

(n−1)

{
δα

β Qγ − gβγ Qα
}

, n 6= 1 (9)

and the space of elliptic second order differential operators on k-forms (k = 0, . . .,n).

Remarkably enough, the full torsion does not appear in the Laplacian operator associ-

ated to the connection, only the trace-torsion one-form Q that gives rise through its metric

conjugate, to the drift interaction term. But the torsion tensor has as irreducible decompo-

sition the form

T α
βγ =

2

n−1
δα
[βQγ] +

1

n−1
εn

βγδT̂ δ + T̄ α
βγ, (10)

where

T̂β =
1

2
ε jinsT ins (11)

is the pseudovector term and the completely skew-symmetric term, T̄ m
αβ which then satisfies

T̄αβγ + T̄βγα +Tγαβ = 0, (12)

where T̄αβγ = gαδT̄ δ
βγ. This is the term that was introduced in the joint collaborator by Ein-

stein and Cartan, without identification of the physical nature of the term [12], and later,

retaken in the framework of the Poincaré -gauge theory of gravitation, as the spin-angular-

density of elementary particles or macroscopic objects [80]. As we shall seen already, the

pseudovector and completely skew-symmetric terms do not appear in the generalized lapla-

cian, and a fortiori do not appear in the expression of the Brownian motions that generate
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the RCW geometries. Thus, angular momentum is not a geometrical object which gener-

ates the Brownian motions, only the metric through the noise term that generates the metric

through the relation we shall see in the next section, and the drift vector field given by the

metric-conjugate of the trace-torsion. In other terms, the probability law of the Brownian

motions are determined only by the noise and the trace-torsion, so that the angular momen-

tum density plays no fundamental role in this respect. Nevertheless, since the Brownian

motions of tensors and ultimately of differential forms, is determined by the probability law

and the Brownian motions of the scalar particles and this information is determined by the

scalar laplacian, so the diffusion of the angular-momentum is determined by the diffusion of

the scalar fields, and naturally we would like to study the diffusion of angular momentum

along the paths of the scalar fields. Thus, when considering the Navier-Stokes equations

for viscous fluids, where the drift vector field associated to the geometrical-stochastic char-

acterization of these equations is minus the fluid’s velocity one-form obeying the Navier-

Stokes equations, the diffusion of the angular momentum of the fluid, i.e. of the vorticity

two-form could be identically characterized in terms of the diffusion of the Navier-Stokes

laplacian, as an operator acting on scalars associated to a RCW connection. In this case, the

diffusion equation for angular momentum is the Navier-Stokes equations for the vorticity,

derived by simply applying the exterior differential to the Navier-Stokes equations for the

velocity. In fact we can introduce a non-static completely antisymmetric torsion starting

from the RCW connections in a most natural form which implies that it can be taken as de-

rived from it and therefore it will propagate along the paths of the scalar particles generated

by it. Indeed, it simply amounts to introduce the duality operation given by the Hodge star

operator defined by the metric g,

∗ : sec(ΛkT ∗M) → sec(Λn−kT ∗M),Ak 7→ ∗Ak, (13)

and further apply it to the trace-torsion one-form, i.e. we consider the seudo-three-form ∗Q.

Thus, if Q̂ denotes the drift vectorfield given by the g-conjugate of Q, then ∗Q = iQ̂volg;

see page 362 in Frankel [22]. Thus we note that this duality depends on the choice of an

orientation, and thus ∗Q has a built-in chirality associated to it. While this pseudo-three-

form does not appear in the RCW laplacian, it is not an additional element of the structure,

since it is naturally derived from the RCW geometrical structure. As a final comment, the

equations of motion for the skew-symmetric torsion thus introduced, have to be deduced

from the equations for Q itself, but we shall not elaborate on this further in the present

article.

3. Riemann-Cartan-Weyl Diffusions

In this section we shall present recall the correspondence between RCW connections de-

fined by (9) and diffusion processes of scalar fields having H(g,Q) as infinitesimal genera-

tors (i.g. for short, in the following). For this, we shall see this correspondence in the case

of scalars. Thus, naturally we have called these processes as RCW diffusion processes. For

the extensions to describe the diffusion processes of differential forms, see [63].

For the sake of generality, in the following we shall further assume that Q = Q(τ,x)
is a time-dependent 1-form. The stochastic flow associated to the diffusion generated by
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H0(g,Q) has for sample paths the continuous curves τ 7→ x(τ) ∈ M satisfying the Ito invari-

ant non-degenerate s.d.e. (stochastic differential equation)

dx(τ) = X(x(τ))dW(τ)+ Q̂(τ,x(τ))dτ. (14)

In this expression, X : M×Rm → T M is such that X(x) : Rm → T M is linear for any x ∈ M,

the noise tensor, so that we write X(x) = (Xα
i (x)) (1 ≤ α ≤ n, 1 ≤ i ≤ m) which satisfies

Xα
i X

β
i = gαβ, (15)

where g = (gαβ) is the expression for the metric in covariant form, and {W(τ),τ ≥ 0} is

a standard Wiener process on Rm. Now , it is important to remark that here m can be

arbitrary, i.e. we can take noise tensors defined on different spaces, and obtain the space

diffusion process. In regards to the equivalence between the stochastic and the geometric

picture, this enhances the fact that there is a freedom in the stochastic picture, which if

chosen as the originator of the equivalence, points out to a more fundamental basis of the

stochastic description. This is satisfactory, since it is impossible to identify all the sources

for noise, and in particular those coming from the vacuum, which we take as the source for

the randomness.

Here τ denotes the time-evolution parameter of the diffusion (in a relativistic setting

it should not be confused with the time variable; we shall discuss more this issue further

below), and for simplicity we shall assume always that τ ≥ 0. Indeed, taking in account

the rules of stochastic analysis for which dW α(τ)dW β(τ) = δα
βdτ (the Kronecker tensor),

dτdW(τ) = 0 and (dτ)2 = 0, we find that if f : R× M → R is a C2 function on the M-

variables and C1 in the τ-variable, then a Taylor expansion yields

f (τ,x(τ)) = f (0,x(0))+

[
∂ f

∂τ
+H0(g,Q) f

]
(τ,x(τ))dτ+

∂ f

∂xα
(τ,x(τ))Xα

i (x(τ))dW i(τ)

and thus ∂
∂τ + H0(g,Q) is the infinitesimal generator of the diffusion represented by inte-

grating the s.d.e. (14). Furthermore, this identity sets up the so-called martingale problem

approach to the random integration of linear evolution equations for scalar fields, and for

the integration of the Navier-Stokes equation [67].Note, that if we start with eq. (14), we

can reconstruct the associated RCW connection by using eq.(15) and the fact that the trace-

torsion is the g-conjugate of the drift, i.e., in simple words, by lowering indexes of Q̂ to

obtain Q.

3.1. The Time Variables

Since the Michelson-Morley experiment on the existence of an aether were interpreted as

giving negative results with regard to its existence, the introduction of the observer’s time

variable to account for the Lorentz transformations in the same status of the space vari-

ables, was the scheme of development of physics thereafter. Thus the notion of spacetime

was born, the Minkowski metric was introduced as its first example, and the geometrization

of physics ensued in terms of Lorentzian manifolds, in great measure due to the dissatisfac-

tion of Einstein with regards to Special Relativity. In spite that a Lorentz invariant Brownian

motion has been recently constructed by Oron and Horwitz [59] -and further applied to the
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equivalence of the Maxwell and Dirac-Hestenes equation [65]- in terms of a modification

of the Gaussian distribution which turns out to be is invariant by Lorentz transformation,

the whole program of quantum mechanics from the point of view of Feynman path integrals

and its applications to quantum field theory requires an Euclidean signature for spacetime.

Also, the construction of Brownian motions starting from the stochastic differential equa-

tions introduces an Euclidean spacetime structure in contrast with the Lorentzian degenerate

metrics of General Relativity. So, if we wish to relate the spacetime geometry to Brown-

ian motions and quantum mechanics, we need an Euclidean metric. The receipt for this

has been to take the analytical continuation in the observers time variable. Another way of

handling this time variable which has to do with an Euclidean signature, is to work with

the universal time variable initially proposed by Stuckelberg [89] which by the way was the

parameter used in quantum field theory. This choice can be further substantiated from the

divergence-free classical theory of the electron recently proposed by Gill, Zachary and Lin-

desay [25]. In this theory, we equate the Minkowski metric (dt)2 − (dx)2 − (dy)2 − (dz)2,

where t is the time of the observer, with (dτ)2, where τ is the time of the source, or still,

we can write this in the equivalent Euclidean metric (dt)2 = (dτ)2 +(dx)2 +(dy)2 +(dz)2.

If we write the Lorentz-invariant equations of electromagnetism in the new Euclidean vari-

ables (τ,x,y, z), then we get a mathematically equivalent set of equations for electromag-

netism; these equations in particular apply to the non-exact terms of the trace-torsion Q,

as we shall see in this article. But, from the point of view of physics, there is a transfor-

mation between a passive time registered by the observer to a different quality of process,

which we call time, and is proper to the source. To start with, τ is a non-integrable param-

eter, i.e. it is path-dependent, and thus it has to do with non-conservative processes. Thus

the equations of electromagnetism while being mathematically equivalent in the Euclidean

and Minkowski space, in the former case they have an additional term which is dissipative

(and describes the radiation reaction) appearing in the wave equations of the electric and

magnetic terms; this longitudinal term is proportional to the inner product of the velocity

with the acceleration. In this setting, a classical theory for the electron without divergences

is achieved. It was further proved that for a closed system of particles, a global inertial

frame and unique invariant global time parameter for all observers is defined in [27, 89].

Thus τ which is the time-evolution parameter of the diffusion process (and in the general

space and time manifold M case is not to be confused with the time variable t of General

Relativity 4 may be related with the time variable introduced by Stueckelberg (and then

introduced in quantum field theory), further elaborated by Piron and Horwitz and in several

works by Horwitz and coworkers [27], Fanchi [17], Trump and Schieve [91], and in the

context of a Schroedinger spacetime operator, by Kyprianidis [40], Collins and Fanchi [10]

and Rapoport [63,67,71] 5. Thus, the modification from the passive observer’s time to the

Euclidean time of the source allows to define simultaneity, while from the physical point

of view, it has the meaning of a dissipative process being ascribed to the source. So, we

4David Bohm proposed in a paper that appeared in www.duversity, and presently inaccesible, that time was

three-fold: time of the source, time of the observer and time of repetition, which he called hypparxis.
5Furthermore, the relativistic theory with the τ parameter predicts the interference in time of the wave

function (see Horwitz and Rabin [28] which has been recently been verified experimentally [45]. We shall

discuss further below a serious of experiments carried out by Koryzev and followers, where time appear as

having an active role.
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are very far from the trivial passive linear time variable which was incorporated by the

Minkowski metric substituted here by a non-integrable function which allows to establish

the universality of the observer itself. The fact that the evidence of the time variable which

is no longer a mere registration by the observer, is the dissipative process associated to this

transformation from the Minkowski space to the Euclidean one is remarkable. If one would

downplay the sheer subsistence of Special Relativity with regards to the existence of the

aether, if proven to exist, the role of geometries to describe physical processes is enhanced

precisely if the Brownian motions described above are the very essence of this aether.

There has been in the last fifty years a number of experiments, mostly carried out in

the former Soviet Union by Kozyrev, that have shown the existance of another role for time

that the mere relational linear variable that we have inherited from Newtonian mechanics,

and that in Special Relativity has been incorporated to the Minkowski metric. In these

experiments the role of time appears precisely in terms of dissipative processes and it is ev-

idenced through a field which cannot be shielded and propagates with an estimated velocity

of 109c [38]. Kozyrev interpreted his experiments as a proof of the reality of Minkowski

space [39]. From the so called causal mechanics due to Kozyrev [37], Levich [44] and

M.M. Lavrenteiev [43], it follows that asymmetrical (irreversible) time is an active sub-

stance, through which the transaction of distant dissipative processes of any nature can take

place, being this transaction not only universal in nature, but also running both with retar-

dation and advancement. The proposal of this formative character of time was forwarded

not from an abstract quest, but from the need for solving astronomical and astrophysical

problems. Kozyrev rejected the idea that the source for the stars energy were fusion reac-

tions [13] 6, and proposed instead that a substantial active time was related to this [38]. In

fact, recent measurements of the Sun, seem to confirm Koryzev’s rejection to the present

theory [48]. In this regard, the transactional interpretation of quantum mechanics was pro-

posed as a possible explanation, and as a second perspective, the existence of nonlocal

correlations in the strong macroscopic limit. This was applied to the forecast of geomag-

netic and solar processes, with very good approximation with the actual processes that came

to being after 12 3 days of observations [36]. In Kozyrev’s theory, the active time parameter

is realized through angular momentum, and thus it can be naturally be associated with a

completely skewsymmetric torsion tensor. 7 In the presentation of the relation between the

Schroedinger equation, torsion fields and Brownian motions, we shall see that the actual

irreversible time invariant Brownian motion of the process that can be linked with the RCW

connection with trace-torsion given by electromagnetic potential and the exact logarithmic

differential of the distribution density of the Brownian motion, this density is formed by in-

6Kozyrev was a reknown astronomer of his time, he predicted the volcano eruptions that were observed in

the Moon in the late fifties. He was imprisoned in a gulag for ten years under the charges of ”sabotage on

astronomy”; two months after his release in 1947 he completed his doctoral thesis from which stemmed his

work.
7In a logophysical approach associated to Matrix Logic, that is produced by the non-duality of the True and

False operators -in contrast with scalar Boolean values- that produces a torsion arising from their non-trivial

commutator that is associated with the Klein bottle, we encounter a time operator which is more general than

the one envisioned as a mere parameter in physics. This time is the one sustaining the chronomes of which the

Kozyrev phenomenae are an example between the many others that encompass number theory, the continuum

hypothesis in mathematics, the Mendeleiev periodic table of elements, the fixed action patterns that are central

to the human body physiology in neurosciences, etc. We refer the reader to the studies by Rapoport [75,77].
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terpolation between the initial and final distributions of the density, which by the way, form

the Schroedinger wave function. In this perspective, non-relativistic quantum mechanics

which is designed in terms of the time variable which coincides with the time-universal

parameter, has the same features that these remarkable processes observed by Kozyrev and

followers, it incorporates the past and the future into its setting. While being formally time-

symmetric, the Schroedinger equation admits a realization in terms of the future evolving

Brownian process built from a RCW connection in which the Schroedinger field is part

of its drift through the gradient of its logarithm. As we have seen already, we can take

the Hodge dual of the trace-torsion, say, the one that gives the drift of this non-relativistic

Brownian motion, and thus obtain a pseudo-three-form that may be associated with the

angular momentum field characteristic of the experiments carried out by Kozyrev.

4. The Hodge Decomposition of the Trace-Torsion Field

To obtain the most general form of the RCW laplacian in the non-degenerate case, we only

need to know the most general decomposition of 1-forms. To start with, in this section,

we have a smooth orientable n-manifold M provided with a Riemannian metric g. We

consider as above, the Hilbert space given by the completion of the pre-Hilbert space of

square-integrable smooth differential forms of degree k (0 ≤ k ≤ n) on M, with respect to

the Riemannian volume volg, which we denote as L2(sec(Λk(T ∗M)). We shall focus on

the decomposition of 1-forms, so let ω ∈ L2(sec(T∗M)); then we have the Hilbert space

decomposition

ω = d f +Acoex +Aharm, (16)

where f is a smooth real valued function on M, Acoex is a smooth coexact 1-form, i.e. there

exists a smooth 2-form, β such that δβ2 = Acoex, so that Acoex is coclosed, i.e.

δAcoex = δ(δβ2) = 0, (17)

and Aharm is a closed and coclosed smooth 1-form, then

δAharm = 0, dAharm = 0, (18)

or equivalently, Aharm is harmonic, i.e.

41Aharm ≡ trace(∇g)2Aharm−Rα
β(g)(Aharm)αγα = 0, (19)

with Rα
β(g) = R

µβ
µα(g) the Ricci metric curvature tensor. Eq. (16) is the sourceless Maxwell-

de Rham equation. An extremely important fact is that this is a Hilbert space decomposition,

so that it has unique terms, which are furthermore orthogonal in Hilbert space, i.e.

((d f ,Acoex)) = 0, ((d f ,Aharm)) = 0, ((Acoex,Aharm)) = 0, (20)

so that the decomposition of 1-forms (as we said before, this is also valid for k-forms, with

the difference that f is a k−1-form, β2 is really a k + 1-form and Aharm is a k-form) has

unique terms, and a fortiori, this is also valid for the Cartan-Weyl 1-form. We have proved
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that Acoex and Aharm are further linked with Maxwell’s equations, both for Riemannian and

Lorentzian metrics. For the stationary state which we shall describe in the next section,

they lead to the equivalence of the Maxwell equation and the relativistic quantum mechan-

ics equation of Dirac-Hestenes in a Clifford bundle setting [2,49] whenever the coclosed

(Hertz potential) term and the Aharonov-Bohm harmonic term are both dependent on all the

4D variables while they are infinitesimal rotations defined on the spin-plane. Furthermore,

in regards to the above mentioned classical theory of the electron due to Gill, Zachary and

Lindesay [25], the validity of this decomposition in a Riemannian metric, say , Euclidean

space, points to the validity of having this theory of Brownian motion formulated in a non-

degenerate (albeit trivial) space-time: these electromagnetic potential terms can be associ-

ated with a classical electron which does not require a quantum treatment and allows the

introduction of a global time parameter. Furthermore, by studying the topological dimen-

sion of the trace-torsion, i.e. the irreducible number of minimal dimensions in space and

time on which its coefficients are dependent, we can introduce helicity, spinor structures,

minimal surfaces associated to them, superconductivity, turbulence and coherent structures,

in short, a topological theory of processes, following the studies by R. Kiehn [33]. Thus, in

this approach we can introduce spinor structures on looking to the topological features of

the trace-torsion.

4.1. The Decomposition of the Cartan-Weyl Form and The Stationary State

We wish to elaborate further on the decomposition of Q in the particular state in which

the diffusion process generated by H0(g,Q) and its extensions to differential forms, in the

case M has a Riemannian metric g, and has a τ-invariant state corresponding to the asymp-

totic stationary state. Thus, we shall concentrate on the diffusion processes of scalar fields

generated by

H0(g,Q) =
1

2
(4+LQ̂), with Q = d lnψ2 +Acoex +Aharm. (21)

This is the invariant form of the (forward) Fokker-Planck operator of this theory (and fur-

thermore of the Schroedinger operator when introducing the phase function to the exact

term of Q). Through this identification, we note that ψ is the scale field in the Einstein λ

transformations from which in the vacuum, the RCW geometry can be obtained; see [2].

We are interested now in the volg-adjoint operator defined in L2(sec(Λn(T ∗M))), which we

can think as an operator on densities, φ. Thus,

H0(g,Q)†φ =
1

2
(4gφ−divg(φgrad lnφ)−divg(φÂ)). (22)

The operator described by eq. (20) is the backward Fokker-Planck operator. The transition

density p∇(τ,x,y) is determined by the fundamental solution (i.e. p∇(τ,x,−) → δx(−) as

τ → 0+) of the equation on the first variable

∂u

∂τ
= H0(g,Q)(x)u(τ,x,−). (23)
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Then , the diffusion process {x(τ) : τ ≥ 0}, gives rise to the Markovian semigroup {Pτ =
exp(τH0(g,Q)) : τ ≥ 0} defined as

(Pτ f )(x) =

Z

p∇(τ,x,y) f (y)volg(y). (24)

It has a unique τ-independant-invariant state described by a probability density ρ inde-

pendent of τ determined as the fundamental weak solution (in the sense of the theory of

generalized functions) of the τ-independent Fokker-Planck equation:

H0(g,Q)†ρ ≡ 1

2
(−δdρ+δ(ρQ)) = 0. (25)

Let us determine the corresponding form of Q, say Qstat = d lnψ2 + Astat. We choose a

smooth real function U defined on M such that

H0(g,Qstat)
†(e−U) = 0, (26)

so that

−de−U +e−U Q = δ(−δΠ+Aharm), (27)

for a 2-form Π and harmonic 1-form Aharm; thus, if we set the invariant density to be given

by ρ = e−U volg, then

Qstat = d lnψ2 +
A

ψ2
, with A = −δΠ2 +Aharm. (28)

Now we project A
ψ2 into the Hilbert-subspaces of coexact and harmonic 1-forms, to com-

plete thus the decomposition of Qstat obtaining thus Hertz and Aharonov-Bohm potential

1-forms for the stationary state respectively. Yet these potentials have now a built-in de-

pendence on the invariant distribution, and although they give rise to Maxwell’s theory, the

interpretation is now different. 8 Indeed, we have an inhomogeneous random media, and

these potentials depend on the τ-invariant distribution of the media. It was proved in [65]

that these potentials appear in the context of the equivalence of the Maxwell sourceless

equation on Minkowski space written in terms of a Dirac-Hestenes spinor field, and the

non-linear Dirac-Hestenes equation for these fields, albeit in Minkowski space provided

with a RCW connection with trace-torsion given by Qstat. Yet, we can exploit further the

Hodge-decomposition of Qstat to manifest the quantum potential as built-in. Indeed, if we

multiply it by ψ and apply ∂, then we get that d lnψ, and the coexact and harmonic terms

of Qstat decouple in the resultant field equation which turns out to be

4gψ = [g−1(d lnψ,d lnψ)−δd ln ψ]ψ, (29)

with nonlinear potential V := g−1(dlnψ,dlnψ)− δdlnψ, which has the form of (twice) a

relativistic quantum potential extending Bohm’s potential in non-relativistic quantum me-

chanics [7].

8A word of caution. In principle, −δΠ/ρ and Aharm/ρ may not be the coexact and harmonic components of

A/ρ respectively. If this would be the case, then we obtain that d lnψ is g−1-orthogonal to both −δΠ and Aharm;

furthermore dlnψ∧Aharm = 0, so furthermore they are collinear. This can only be for null Aharm or constant ρ,

so that the normalization of the electromagnetic potentials is by a trivial constant. In the first case the invariant

state has the sole function of determining the exact term of Q to be (up to a constant) dlnψ.
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4.2. Time Reversal Invariance of the Brownian Motions, the Torsion Poten-

tial and Detailed Balance

Finally, we want to recall the essence of the problem of time-invariance of the diffusion

processes on the invariant state. In this setting, following the well known Kolmogorov

characterization of irreversibility of Brownian motions [35], τ-reversibility for a diffusion

process generated by H0(g,Q) is verified whenever for any two smooth compact supported

functions f ,h defined on M, we have that

Z

M
u(H0(g,Q)v)ρvolg = −

Z

M
g(∇u,∇v)ρvolg =

Z

M
v(H0(g,Q)u)ρvolg. (30)

This is satisfied if and only if

Q =
1

2
d lnρ = d lnψ, (31)

or still, the electromagnetic terms of the torsion one-form vanish. In a general setting, these

terms have been associated to rotational Coriolis forces by [68], and in the classical treatise

on statistical thermodynamics by Lavenda [42].

5. Energy Forms, the Quantum Potential and RCW Diffusions

In this section we shall show that the RCW geometries yield a natural formulation of quan-

tum mechanics on manifolds, as an operator theory on two Hilbert spaces [13]. So, this

section and the next, we will discuss basic issues which on the usual setting have been

somehow obviated and are far from being obvious. The basic formalism which leads to

this is the well known remarkable correspondence explored in flat Euclidean space be-

tween the Dirichlet forms of potential theory, Markovian semigroups and their diffusion

processes [13] and RCW laplacian operators [65], and originates in the canonical commu-

tation relations. In fact, in quantum field theory on curved space-time, the starting point is

an energy functional for the field associated to a self-adjoint operator on the Hilbert space

determined by the Riemannian volume element [11]. In our theory, this self-adjoint operator

will appear to be the conformal transform of the self-adjoint extension of the RCW lapla-

cian as defined on an adequate subspace of the ground-state Hilbert space with a weighted

inner product defined by the invariant density. Thus, two Hilbert spaces are needed: the

ground-state Hilbert space on which we have a diffusion generated by the RCW laplacian

which acts as the Fokker-Planck operator, and the Hilbert space defined by the Riemannian

volume in which this operator transforms into the Schroedinger operator. We shall present

below the above mentioned correspondences.

We assume that M has a Riemannian metric; we assume further that is four-dimensional

space-time (and thus, we are in the situation discussed in [65] and references therein) and a

diffusion process with stationary state ψ2volg with null electromagnetic terms in eq. (28),

generated by H0(g,d lnψ2) = 1
2
(4g + gradlnψ2), a Hamiltonian operator on the Hilbert

space L2(ψ2volg); thus, the drift vector field is gradlnψ. With abuse of notation, let us

denote still as H0(g,d lnψ2) the Friedrichs self-adjoint extension [13] of the infinitesimal
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generator given in eq. (27) with domain given by D, the space of compact supported

infinitely differentiable functions on M. We can now define the inner product

( f1, f2)
ρ = 1/2

Z

g−1(d f1,d f2)ψ2volg (32)

By integration by parts, we obtain

( f1, f2)
ρ = −( f1,H(g,d lnψ2) f2)

ρ (33)

where (., .)ρ denotes the weighted inner product in L2(ψ2volg). Let us consider now the

closed quadratic form, (the Dirichlet form) q associated to (., .)ρ, i.e. q( f ) = ( f , f )ρ. We

see from eq.(32) that there is a unique Hamiltonian operator which generates q, it is the

self-adjoint operator −H0(g,d lnψ2). Since the quadratic form is positive, q( f ) ≥ 0 , for

any f ∈ L2(ψ2volg), then H0(g,d lnψ2) is a negative self-adjoint operator on L2(ψ2volg) and

the Markovian semigroup exp(τH(g,d lnψ2)) is defined. Let us see how this construction

is related to the usual formulation of Quantum Mechanics in terms of quadratic forms in

L2(volg), which in the non-relativistic flat case has been elaborated by several authors [13].

Consider the mapping Cψ : L2(ψ2volg) → L2(volg) defined by multiplication by ψ; this is

the groundstate transformation and defines a conformal isometry between the two Hilbert

spaces. This map takes C∞
0 (M) into itself. For any f in C∞

0 (M) we have

q(ψ−1 f ) = (ψ−1 f ,ψ−1 f )ρ

= 1/2

Z

{g−1(d f ,d f )− 2g−1(d f ,d lnψ) f +g−1(d lnψ,d lnψ) f 2}volg

= 1/2

Z

{g−1(d f ,d f )+(divg(b) f 2 +g(b,b) f 2}volg

=

Z

f

{
− 1

2
4g +V

}
f volg = ( f ,H f )L2(volg) (34)

where we denoted b = grad lnψ which is the drift vector field (denoted initially as Q̂, the

g-conjugate of the trace-torsion one-form) of the process generated by H0(g,dlnψ2) since

by eqs. (21,28) this is 1
2
grad lnψ2 and

H = Cψ ◦H(g,d lnψ2)◦C−1
ψ = −1/24g +V, (35)

where in the weak sense,

V =
1

2
(divg b+g(b,b)) =

4gψ

2ψ
, (36)

is the relativistic quantum potential; here, in distinction with Bohm’s quantum potential

in non-relativistic Quantum Mechanics [7] (which is retrieved in the case of n = 3 and

g the Euclidean metric), it depends on both the space and time-t coordinates. Then, we

have proved that −H(g,dlnψ2) is unitarily equivalent to the Hamiltonian operator H :=

−1
24g + V defined on L2(volg) and ψ is a generalized groundstate eigenfunction of H

with 0 eigenvalue. The non-linear dependence of V on the invariant density introduced

by ψ introduces non-local correlations on the quantum system We shall see below that

this dependence of V on ψ is removed due to conformal invariance. This will establish
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that the Schroedinger operator H has for quantum potential one-twelfth of the Riemannian

scalar metric and thus H coincides with the Riemannian conformal invariant wave operator

considered in quantum gravity in curved spaces [11]). We shall now elaborate on these

aspects.

6. The Mean Curvature Extremal Principle

Since at the level of constitutive equations for Q, the electromagnetic potentials decouple

from the ψ-field (see the discussion that lead to eq. (29)) we can study independently

the field equations from which the RCW connection with exact Q can be derived. We

shall assume that n = 4. We start with a general Riemann-Cartan connection (Γab
α ), (where

Greek letters denote space-time indices as until now, and Latin letters denote anholonomic

indices), and we introduce its scalar curvature

R(Γ) = eα
a e

β
bR..ab

αβ , (37)

where the eα
a is a field of invertible tetrads with gαβ = δabea

αeb
β, with δab the Euclidean

metric 9, and R..ab
αβ is the curvature tensor of (Γab

α ) [14, 65]. Now we recall the Einstein’s

λ transformations of above (here ρ will be substituted by a scalar field φ): Let φ be a real

function on M. Then λ(Γa
αb) := Γa

αb, and λ(eα
a ) := φ−1eα

a so that λ(gαβ) = φ2gαβ and then

the scalar curvature transforms as λ(R(Γ)) = φ−2R(Γ), and finally volλ(g) = φ4volg. Since

the scalar fields ψ transform as λ(ψ) = φ−1ψ, we get that the functional

A(Γ,ψ,g) =

Z

R(Γ)ψ2volg, (38)

is invariant by the set of λ transformations, i.e.: A(λ(Γ),λ(ψ),λ(g)) = A(Γ,ψ,g). Notice

that if from the field equations we obtain that ψ2volg can be identified with the unique

invariant density of the diffusion process generated by H0(g,dln ψ2), then (37) is the mean

Riemann-Cartan scalar curvature. Taking variations with respect to g we obtain that

Rαβ(Γ)−1/2gαβR(Γ) = 0, (39)

i.e. the Einstein-Cartan equations for Γ in the vacuum, while by taking variations with

respect to Γ
γ
αβ, we obtain that torsion tensor is a particular case of the one we derive from

the anticommutator of eq. (9), since we have

T
γ

αβ = δ
γ
α ∂β lnψ− δ

γ
β∂γ lnψ, (40)

so that, up to factor of 3 which we shall absorb so we shall take Q = dln ψ and thus the field

equations have yielded a RCW structure with exact Q. Taking variations with respect to ψ

9All the following definitions of the λ transformations and the ensuing field equations are valid as well if

we take here the Minkowski metric; since we do not know whether our construction of a relativistic Brownian

motion carries from the Minkowski space to general Lorentzian metrics , in this section we shall keep the metric

to be positive-definite for which we take the initial metric to be Euclidean. Brownian motions the Schwarzild

metric has been recently constructed on the unit tangent manifold (see J. Franchi and Y. Le Jan,Relativistic

Diffusions, arXiv:math.PR/0403499). The relation of this construction, with the Lorentz-invariant Brownian

motions on Minkowski space presented in [63] and the present article is unknown.
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we get the teleparallelism: R(Γ) = 0; replacing eq. (39) in eq. (38) we get the field for the

Einstein metric tensor Gαβ(g) = Rαβ(g)− 1
2
R(g):

Gαβ(g) = − 6

ψ2
∂αψ ∂βψ−1/2gαβ∂γψ∂γψ− 1

6
(∇α∇βψ2 −gαβ4gψ2), (41)

where in the r.h.s. we identify (up to a factor) minus the improved energy-momentum

density of the scalar field in renormalizable gauge theories. Now, by taking the trace in this

equation we finally get (
4g −

1

6
R(g)

)
ψ = 0, (42)

so that ψ is a generalized groundstate of the conformal invariant wave operator defined

on L2(volg). Note that from eqs. (34,35,41) we conclude that the quantum potential is
1
12

R(g) which does not depend on the scalar field ψ at all. Therefore, the correlations on

the quantum system under Brownian motion with drift given by b = grad lnψ are mediated

by the metric scalar curvature (which, of course, does not depend on ψ any more; this is

the form invariance of the quantum potential [7])! Otherwise stated and in view of the

relation between the noise tensor and the Riemannian metric (see the discussion after eq.

(15)), when we have an anisotropic noise tensor we have constructed a non-trivial metric

and quantum non-local correlations which are due to the metric scalar curvature.

Solving the conformal invariant wave equation with Dirichlet regularity conditions on

the closure of an open neighborhood of M [13], we obtain a conformally conjugate Dirichlet

form whose associated Hamiltonian operator is −H0(g,dln ψ2), with ψ a solution of eq.

(41) and thus the Markovian semigroup determined by it can be reconstructed by reversing

the steps in the previous Section. We shall finally establish the relation between the heat

kernel pconf(τ,x,y) of the Markovian semigroup exp( τ
2
H) and the heat kernel pψ(τ,x,y) of

the RCW semigroup. We have

exp(τH0(g,d lnψ2)) f (x) = ψ−1(x)exp(
τ

2
H)(ψ f )(x)

=
Z

ψ−1(x)pconf(τ,x,y)φ(y) f (y)volg(y) (43)

so that we conclude that

pψ(τ,x,y) = ψ−1(x)ψ(y)pconf(τ,x,y). (44)

Thus, we have linked the kernels of the quantization in the two Hilbert spaces, the

groundstate Hilbert space L2(ψ2volg), and L2(volg). The former corresponds to the RCW

geometry, while the latter is the usual Hilbert space for the quantization of the kinetic energy

of a spinless massive free-falling test-particle, in terms of the Riemannian invariants of the

manifold M described in terms of g! We remark that the introduction of both spaces and

the unitary transformation between them, has allowed us to identify the quantum potential,

while working only in the usual Hilbert space would not have allowed for this identification;

finally, the scalar curvature term so much discussed has been found to be a resultant of the λ
invariance of the theory, and not the resultant of technicalities in computing the propagators;

as discussed already in [65], this theory has no ordering problem [62]. Thus, in the L2(volg)
space we have found the Hamiltonian operator considered by B.de Witt, and reencountered
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by several researchers in quantum field theory in Riemannian geometries through the short-

τ expansion of pconf(τ,x,x) [11] in geometrical and topological invariants , and for the path

integral representations for Fokker-Planck operators [41], which as we already saw, when

g is Riemannian, are precisely of the form H0(g,Q). Yet, our result is in disagreement with

the path integral representation of the classical kinetic energy of a massive particle in a

Riemann-Cartan geometry due to Kleinert, in which he obtains twice the quantum potential

(see, chap. X, [34]).

7. RCW Diffusions and Nonrelativistic Quantum Mechanics

From the previous section we know that for the stationary state defined by ρ the laplacian

defined by a RCW connection is symmetric with respect to the measure defined by ρ if and

only if the trace-torsion is given by Q = 1
2
dlnρ. Futhermore, it is a non- positive-definite

operator since for any functions in the space D of compact supported functions u and v

defined on M we have the Green identity

Z

M
u(H0(g,Q)v)ρvolg = −

Z

M
g(∇u,∇v)ρvolg =

Z

M
v(H0(g,Q)u)ρvolg. (45)

We wish to see if there exists a self-adjoint extension of H0(g,Q)|D in the space L2 =

L2(M,ρ) of square-integrable functions with respect to the density ρvolg. Consider the

space W 1(M,ρ) = { f : M → C, f ∈ L2,∇ f ∈ L2} where we mean by ∇ f the distributional

gradient. We can turn this space into a complex Hilbert space by working with complex-

valued functions provided with the inner product

(u,v)W1 =

Z

M
uv̄ρvolg +

Z

M
g(∇u,∇v̄)ρvolg. (46)

Let W 1
0 be the closure of D in W 1; define W 2

0 = W 2
0 (M,ρ) = { f ∈ W 1

0 /
H0(g,d lnρ) f ∈ L2} where the latter action of the operator is meant in the distributional

sense. Since D ⊂ W 2
0 , then H0(g,d lnρ)|W 1

0
is an extension of H0(g,d lnρ)|D . There-

fore −H0(g,dlnρ) is a positive-definite self-adjoint extension defined in L2. Furthermore,

if M is geodesically complete, then H0(g,d lnρ)|W2
0

is a unique self-adjoint extension of

H(g,d lnρ)|D . 10

Consider next the Dirichlet problem for H0(g,Q|W2
0

on a relatively compact non-empty

set Ω in M, so that {
H0(g,Q)u+λu = 0 in Ω,

u = 0 in ∂Ω,

where λ is constant. This can be considered in the weak sense: We look for a non-zero

function u ∈W 1
0 (Ω,ρ) such that for all v ∈W 1

0 (Ω,ρ),

−
Z

Ω
g(∇u,∇v)ρvolg +λ

Z

Ω
uvρvolg = 0. (47)

10A short approach to the proof. The first part is the fact that the space W 1
0 is a Hilbert space so that the

quadratic form E(u,v)=
R

M g(∇u,∇v)ρvolg with the domainW 1
0 is closed in L2. Therefore, it has the generator,

which is self-adjoint with domain W2
0 and hence, is the Friedrich extension of H(g, 1

2 dlnρ)|D ; see [20].
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It is easy to prove that u is a solution of this problem if and only if u ∈ W 2
0 (Ω,ρ) and

H0(g,Q)u+ λu = 0. Considering then the manifold Ω provided with the density ρ, we

conclude that the eigenvalues of the weak Dirichlet problem in Ω are exactly the eigenvalues

of the self-adjoint operator −H(g,Q)|W2
0 (Ω,ρ) in L2(Ω,ρ).

We have a theorem due to Rosenberg [37]: For any non-empty relatively compact

open set Ω ⊂ M, the spectrum of −H(g,Q)|W2
0 (Ω,ρ) is discrete and consists of a sequence

{λk(Ω)}∞
k=1 of non-negative real numbers such that λk(Ω) → ∞ as k → ∞. If in addition

M− Ω̄ is non-empty, then λ1(Ω) > 0.

Assuming that the eigenvalues are counted with multiplicity, we have the Weyl asymp-

totic formula

λk(Ω)≈ cn(
k

R

Ω ρvolg
)

2
n , as k → ∞, (48)

where n = dim(M) and the constant cn > 0 is the same as in Rn.

If M is compact, then we have λ1(M) = 0, because the function f = constant is an

eigenfunction. Since H0(g,Q) f = 0 implies f = 0 (we are assuming that M is connected),

the multiplicity of the bottom eigenvalue is 1 and then λ2(M) is strictly positive. In any

case, the lowest eigenvalue of −H0(g,Q)|W2
0 (M,ρ) can be determined as follows.

Furthermore, we have a theorem (Rayleigh Principle) for the minimal eigenvalue [20]:

For a manifold M provided with a density ρvolg,

λmin(M) = inf f∈T −0

R

M |∇ f |2ρvolg
R

M f 2ρvolg
, (49)

where T is any class of test functions such that D ⊂ T ⊂W 1
0 .

Proof: It follows from the variational principle for the operator −H0(g,Q)|W2
0

and by

the Green formula, that

λmin(M) = inf f∈W 2
0

−R

M(H0(g,Q) f , f )volg

|| f ||2
L2

(50)

= inf f∈W 2
0 −0

R

M |∇ f |2ρvolg

|| f ||2
L2

, (51)

and by observing that D ⊂ W 2
0 ⊂W 1

0 and D is dense in W 1
0 .

8. Geometric-Stochastic Quantum Mechanics on State-Space

We consider a complex separable Hilbert space H and a self-adjoint operator H defined

on H . The time development of quantum systems is given by the one-parameter group

{e−itH , t ∈ R} of unitary operators. A pure quantum state ψ ∈ H , ||ψ|| = 1, develops ac-

cording to

ψt = e−itH ψ (52)

which can be reformulated in terms of the Schroedinger equation

∂ψt

∂t
= −iHψt . (53)
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Still, pure quantum states are described by equivalence classes [ψ] of unit vectors ψ ∈ H ,

where two vectors are equivalent if they differ by a complex phase factor. Then, the time

development of the state [ψ] is given by

Φt([ψ]) = [e−iHtψ]. (54)

While eqs. (51) and (52) are equivalent, this is no longer the case of eqs. (52) (53),

since ψt can contain a complex time dependant factor. The proper setting for quantum

mechanical evolution in terms of the Schroedinger equation requires to take in account

this indeterminate factor. So the state space is the projective Hilbert space P (H ), and the

time evolution of quantum systems are curves on this space of the form γ(t) = Φt([ψ]) =
[e−iHtψ].

There are two ways in which one can construct from a heat semigroup defined by a

RCW diffusion process its quantum Schroedinger representation. In this case, the hamil-

tonian operator is H(g,Q) associated to a RCW connection with Q = 1
2
dlnρ and the cor-

responding unitary group [e−iτH(g,Q)] defined on the natural complex extension of a real

Hilbert space as we have taken in the previous section, corresponds to the so-called Eu-

clidean analytical Schroedinger representation for the diffusion semigroup defined by this

space-time structure, yet with some differences we would like to remark. Firstly, there is

a freedom upon the choice of the time, it can be τ for a relativistic theory in which g can

depend on t as well as Q and our space-time manifold is a 4-dimensional manifold , M, or,

we can write down a non-relativistic theory, for which τ and t coincide [71] and space-time

is R×M where M is a 3-manifold, but still we have in this foliated manifold a Riemannian

metric which may depend on t as well as the trace-torsion Q; in any case, due to the fact that

in Quantum Mechanics observables are self-adjoint operator (real eigenvalues) we have to

restrict Q to be exact of the form Q = 1
2
dlnρ because the inclusion of the electromagnetic

terms, following the Kolmogorov characterization of τ-symmetric diffusion processes, pro-

duces H(g,Q) for general Q to be a non-symmetric operator in L2(M,ρ), so we cannot

introduce the self-adjoint extension of it. The other possibility is to develop a covariant

formulation of non-relativistic Quantum Mechanics in R× M in which we transform the

diffusion processes into the Schroedinger equation without applying the Euclidean time

scheme, but in this case Q does not necessarily restrict to the exact differential term, includ-

ing thus the electromagnetic terms and the Schroedinger operator is associated to the RCW

laplacian in an indirect way in which will adquire the form 4g +V , where V is a potential

which can eventually depend on the wave function or not,which for appropiate classes of

potentials V can result in a self-adjoint operator; see page 34 in Schechter [87]. Both the-

ories we know already how to formulate as an infinite-dimensional Hamiltonian system (in

the sense of classical mechanics), as long as the spectrum of H(g,Q) is discrete, which in

the case of Q restricted to be exact, is already the case as discussed above. In this article,

we shall present both alternatives. Finally, having set the geometric approach to quantum

mechanics in Hilbert space, we can further study the so-called stochastic extension of the

Schroedinger equation, which amounts to write the s.d.e. which extend the Hamiltonian

flow with a noise term which drives the system to a particular eingenstate, providing thus

for the reduction of the wave function.
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9. The State-Space RCW Quantum Geometries, Brownian Mo-

tions and the Reduction of the Wave Function

The notion of a geometric theory of quantum mechanics has been in most of the works

associated with the idea of placing in a purely geometrical context the operator formalism

of quantum mechanics and describing the processes of observation in terms of geometri-

cal distance in state-space; the other approach that can be named identically as quantum

geometry, is the present approach that is valid for both configuration manifolds and state-

space manifolds . The former geometrical approach has lead to formulate non-relativistic

quantum mechanics as a theory of Kahler manifolds, and to breach the gap with classical

mechanics which as well known, is formulated in terms of symplectic flows, and in partic-

ular, those associated with a Hamiltonian function independent of time. The Hamiltonian

function that generates the Schroedinger flow is non other that the expectation value func-

tion defined on state-space of the quantum Hamiltonian operator. In this so called quantum

geometry (see [29, 86] and references therein), the Schroedinger equation is a symplectic

flow in state-space, given by a complex projective manifold, provided with the Fubini-Study

metric, with its naturally associated symplectic and Kahlerian structures. Furthermore, by

considering random perturbations of this symplectic flow to account for the role of the en-

vironment in the quantum system, the reduction of the wave-function has been described in

terms of stochastic processes on the quantum geometry on state-space [29]. This approach

to the so-called open Schroedinger equation has been elaborated as an emergent theory of

a background statistical theory of unitary matrices. In none of this approaches to the open

Schroedinger equation, no relation was established with the fact that there is a quantum

geometry in space-time and its association with Brownian motions. Thus, this chapter aims

to present a very short account of the fact that we can describe the stochastic processes in

state-space that describe the reduction of the wave-function in terms of the same stochastic-

geometrical structures of Riemann-Cartan, and that the Schroedinger symplectic flow de-

fined by the expectation value of the Hamiltonian operator is (up to a modification which

drives the measurement process to a specific eigenstate) the natural choice for the drift. In

particular,one can start with a stochastic differential equation, consider the connection on

space-time defined by it and its differential generator which is the Laplacian operator of

this geometry, and study the reduction of the wave function of the quantum evolution of

this space-time operator. In this sense, the role of space-time structures in producing the

reduction of the wave function. So in this case, we have a two layer structure of RCW type,

one related to the diffusion process in space-time and the second one, with the diffusion

process in state-space that follows when studying the spectra of the RCW laplacian, or can

be carried out independently for an arbitrary quantum system described by its Hamiltonian

operator. In the following we shall present both quantum geometries in a single setting. In

the following we follow the discussion in [70,71].

Let us assume we have a Hilbert space with finite dimension n + 1 so we are deal-

ing with M being CP(n), the complex projective space of dimension n, the space of rays

of Quantum Mechanics, although the more general infinite-dimensional case is also pos-

sible. In fact, this space not only carries a Riemannian metric, the Fubini-Study (FS)

metric, which we denote as g but also a symplectic two-form Ω and still an almost com-

plex structure provided by an endomorphism Jz : TzM → TzM such that J2 = −I and
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g(u,Jv) = Ω(u,v) for all u,v ∈ CP(n), z ∈ M. Indeed, denote the hermitean product of the

the n + 1-dimensional Hilbert space of the quantum system as < u,v >= g(u,v)+ iΩ(u,v)

where g(u,v)= ℜ < u,v > and Ω(u,v)= ℑ < u,v >, and g(u,v)= g(Ju,Jv). Furthermore J

is compatible with g, i.e. ∇J = 0, where ∇ is the Levi-Civita covariant derivative. Thus, M

provided with (g,Ω,J) becomes a Kahler manifold. For a self-adjoint Hamiltonian operator

H defined on CP(n), we define the quantum-expectation value function (H) : CP(n)→ R by

(H)(u) = <u,Hu>
<u,u> . In this section we shall then restrict ourselves to the Euclidean technique

and take H = H(g,Q) the self-adjoint operator defined in a finite-dimensional complex sub-

space of the Hilbert space H = W 2
0 ; this amounts to fixing a cut-off which one can fix in ac-

cordance with the estimates given above 11. We denote the general state vector by |z > with

z standing for the complex projections z0, . . ., zn of |z > on an arbitrary fixed basis. Thus,

(H)(|z >) = <z|H|z>
<z,z> =

z̄αHαβzβ

z̄δzδ . Since (H) is homogeneous of degree zero on both zα, z̄α we

define the new complex coordinates t j = z j

z0 and t̄ j = z̄ j

z̄0 , j = 1, . . .,n, which are well defined

whenever z0 6= 0. The real manifold structure of CP(n) is defined by taking the coordinate

system (xa),a = 1, . . .,2n with x1 = ℜt1,x2 = ℑt2, . . .,x2n−1 = ℜt2n−1,x2n = ℑt2n. Thus,

the specification of the 2n-vector (xa) determines the unique ray containing the unnormal-

ized state |z >. The FS metric g = (gαβdzα ⊗dz̄β) with gαβ = 4 ∂2

∂zα∂z̄β lnz̄γzγ written on the

real manifold is g = (gabdxa ⊗dxb) with (see [69].)

gab = 4
[(1+xdxd)δab− (xaxb +ωacxcωbdxd)]

(1+xlxl)2
, (55)

with inverse

gab =
1

4
(1+xlxl)(δab +xaxb +ωacxcωbdxd). (56)

where ωab is a skewsymmetric tensor whose only non-vanishing terms are

ωa=2 j−1b=2 j = 1,ωa=2 j,b=2 j−1 = −1. Furthermore, the complex structure J = (Jb
a ) satisfies

Jb
a Jc

b = −δc
a, and the identities Jc

aJd
c gcd = gab and the symplectic form Ω = Ωabdxa ∧ dxb

satisfies Ωab = gbcJ
c
a with inverse Ωab = gacJb

c . Then (SE) takes the form (we take ~ = 1) of

the Hamiltonian flow on M given by dx
dt

= 2Ω(∇(H)), where ∇a f = gab∂b f (a = 1, . . .,2n)

is the FS gradient of f : M → R. To consider the dynamics of the quantum system under the

influence of a measurement, we have to include the random variations due to the measure-

ment. Thus, we extend the hamiltonian flow defined by the function (H), by considering

the Ito s.d.e. (originally in [29])

dxa = (2Ωab∂b(H)+ρa)dt +σgab∂b(H)dW(t) (57)

with ρa = −1
4
σ2gab∂bV , where V = gab∂a(H)∂b(H) = (H2)− (H)2 is the variance of the

Hamiltonian, or still, the squared energy quantum uncertainty. Thus, we have modified the

drift with a term which depends on ∇(H), and still there is a noise tensor which is in this

case a vector of the form σ∇(H), with σ a constant, and we have a one-dimensional Wiener

11Actually, we can take for this operator, the self-adjoint extension of H(g,Q) for Q = dlnρ
1
2 now acting on

CP(∞) [8]; for the purpose of keeping this article to some length, we prefer not to deal with this more general

case which does not imply major differences with the finite-dimensional case.
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process (i = 1) in eq. (15). Thus, if we start from the s.d.e. (56), the metric that arises

from the noise vector turns to be not the original FS metric g, but the contravariant tensor

with components ∇a(H)∇b(H) = gad∂d(H)gbe∂e(H), times the factor σ2, which on setting

it to be equal to zero, we get the original SE written in CP(n). Furthermore, the trace-

torsion one-form Q = Qedxe has for components the functions gae((2Ωab∂b(H) + ρa) =
2Jb

e ∂b(H)− 1
4
σ2∂eV , so that

Q = Jd(H)− σ2

4
d(V), (58)

an exact differential up to an infinitesimal rotation. Next we consider two real-valued

stochastic processes defined on terms of the solution curves x(t) ∈ CP(n) of eq. (56), the

Hamiltonian process defined by (H)(x(t)) and the variance process V (x(t)). Then, from ap-

plying the Ito formula and formulae of Kahlerian geometry, we find that (H)(x(t)) satisfies

a s.d.e. with zero drift, more specifically, it is a square-integrable martingale on R, while

the variance process is a supermartingale, the latter describing the reduction of the wave

function to a particular eigenstate; see [1, 29]. In the present geometro-stochastic setting,

we have associated to the reduction of the wave function in terms of the open Schroedinger

equation, a geometry which is not riemannian, it has torsion given by the difference between

the infinitesimal rotation of the differential of (H) and the differential of σ2

4 V ; the metric is

not the original FS, and as a covariant tensor it has a singularity whenever (H) is constant,

i.e. on a fixed eigenstate, for which the flow of eq.(56), becomes constantly equal to it if

choosen for initial value. For a completely different topological approach to superposition

states and the collapse of the wave function, in terms of Matrix Logic and the Klein bottle,

constructed in terms of the torsion in cognitive space introduced by the non-duality of True

and False operators in this logic, we refer to Rapoport [75,77].

10. RCW Geometries and Brownian Motions

and the Schroedinger Equation

We have seen that one can represent the space and time quantum geometries for the relativis-

tic diffusion associated with the invariant distribution, so that Q = 1
2 dlnρ, and H0(g,Q) has

a self-adjoint extension for which we can construct the quantum geometry on state-space

and still the stochastic extension of the Schroedinger equation defined by this operator on

taking the analytical continuation on the time variable for the evolution parameter. In this

section which follows the solution of the Schroedinger problem of interpolation by Naga-

sawa [51] interpreted in terms of the RCW geometries and the Hodge decomposition of the

trace-torsion, we shall present the equivalence between RCW geometries, their Brownian

motions and the Schroedinger equation. The fact that nonrelativistic quantum mechanics

can be linked to torsion fields, has remained unseen till today, and we have proved this al-

ready for the stochastic Schroedinger equation. Thus, we shall now present the construction

of non-relativistic quantum mechanics for the case that includes the full Hodge decompo-

sition of the trace-torsion, so that Q = Q(t,x) = dln ft(x)+ A(t,x) where f (t,x) = ft(x) is

a function defined on the configuration manifold given by [a,b]×M (where M is provided

with a metric, g), to be determined below, and A(t,x) is the sum of the harmonic and co-

closed terms of the Hodge decomposition of Q, which we shall write as A(t,x) = At(x) as a
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time-dependent form on M. The scheme to determine f will be to manifest the time-reversal

invariance of the Schroedinger representation in terms of a forward in time diffusion process

and its time-reversed representation for the original equations for creation and destruction

diffusion processes produced by the electromagnetic potential term of the trace-torsion of a

RCW connection whose explicit form we shall determine in the sequel. From now onwards,

the exterior differential, and the divergence operator will act on the M manifold variables

only, for which we shall write then as d ft(x) to signal that the exterior differential acts

only on the x variables of M. We should remark that in this context, the time-variable t of

non-relativistic theory and the evolution parameter τ, are identical [65,67]. Let

L =
∂

∂t
+

1

2
A(t,x).∇ =

∂

∂t
+H(g,At) (59)

(here, for unburdening the notation we omit the subscript 0 on H that recalls that operates

on scalar fields) with

δÂt = −divgAt = 0. (60)

In this setting, we start with a background trace-torsion restricted to an electromagnetic

potential. We think of this electromagnetic potential and the associated Brownian motion

having its metric conjugate as its drift, as the background geometry of the vacuum, which

we shall subsequently relate to a creation and destruction of particles and the equation of

creation and destruction is given by the following equation.

Let p(s,x; t,y) be the weak fundamental solution of

Lφ+cφ = 0. (61)

The interpretation of this equation as one of creation (whenever c > 0) and destruction

(c < 0) of particles is warranted by the Feynman-Kac representation for the solution of this

equation. Then φ = φ(t,x) satisfies the equation

φ(s,x) =

Z

M
p(s,x; t,y)φ(t,y)dy, (62)

where for the sake of simplicity, we shall write in the sequel dy = volg(y) =
√

det(g)dy1 ∧
. . .∧dy3. Note that we can start for data with a given function φ(a,x), and with the knowl-

edge of p(s,x;a,y) we define φ(t,x) =
R

M p(t,x;a,y)dy. Next we define

q(s,x; t,y) =
1

φ(s,x)
p(s,x; t,y)φ(t,y), (63)

which is a transition probability density, i.e.

Z

M
q(s,x; t,y)dy = 1, (64)

while

Z

M
p(s,x; t,y)dy 6= 1. (65)
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Having chosen the function φ(t,x) in terms of which we have defined the probability den-

sity q(s,x; t,y) we shall further assume that we can choose a second bounded non-negative

measurable function φ̂(a,x) on M such that

Z

M
φ(a,x)φ̂(a,x)dx = 1, (66)

We further extend it to [a,b]×M by defining

φ̂(t,y) =

Z

φ̂(a,x)p(a,x; t,y)dx, ∀(t,y) ∈ [a,b]×M, (67)

where p(s,x; t,y) is the fundamental solution of eq. (60).

Let {Xt ∈ M,Q } be the time-inhomogeneous diffusion process in M with the transition

probability density q(s,x; t,y) and a prescribed initial distribution density

µ(a,x) = φ̂(t = a,x)φ(t = a,x)≡ φ̂a(x)φa(x). (68)

The finite-dimensional distribution of the process {Xt ∈ M, t ∈ [a,b]} with probability mea-

sure on the space of paths which we denote as Q; for a = t0 < t1 < .. .< tn = b, it is given by

EQ[ f (Xa,Xt1 , . . .,Xtn−1,Xb)] =

Z

M
dx0µ(a,x0)q(a,x0; t1,x1)dx1q(t1,x1; t2,x2)dx2 . . .

. . .q(tn−1,xn−1,b,xn)dxn f (x0,x1, . . . ,xn−1,xn)

:= [µaq >> (69)

which is the Kolmogorov forward in time (and thus time-irreversible) representation for the

diffusion process with initial distribution µa(x0) = µ(a,x0), which using eq. (62) can still

be rewritten as

Z

M
dx0µa(x0)

1

φa(x0)
p(a,x0; t1,x1)φt1(x1)dx1

1

φt1(x1)
dx1 p(t1,x1; t2,x2)φt2(x2)dx2 . . .

. . .
1

φ(tn−1,xn−1)
p(tn−1,xn−1;b,xn)φb(xn)dxn f (x0, . . . ,xn) (70)

which in account of µa(x0) = φ̂a(x0)φa(x0) and eq.(62) can be written in the time-reversible

form

Z

M
φa(x0)dx0 p(a,x0; t1,x1)dx1 p(t1,x1; t2,x2)dx2

. . . p(tn−1,xn−1;b,xn)φb(xn)dxn f (x0, . . . ,xn) (71)

which we write as

= [φ̂ap >><< pφb]. (72)

This is the formally time-symmetric Schroedinger representation with the transition (but not

probability) density p. Here, the formal time symmetry is seen in the fact that this equation

can be read in any direction, preserving the physical sense of transition. This representation,

in distinction with the Kolmogorov representation, does not have the Markov property.
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We define the adjoint transition probability density q̂(s,x; t,y) with the φ̂-transformation

q̂(s,x; t,y) = φ̂(s,x)p(s,x; t,y)
1

φ̂(t,y)
(73)

which satisfies the Chapmann-Kolmogorov equation and the time-reversed normalization

Z

M
dxq̂(s,x; t,y) = 1. (74)

We get

EQ̂[ f (Xa,Xt1 , . . .,Xb)] =

Z

M
f (x0, . . .,xn)q̂(a,x0; t1,x1)dx1q̂(t1,x1; t2,x2)dx2 . . .

. . . q̂(tn−1,xn−1;b,xn)φ̂(b,xn)φ(b,xn)dxn, (75)

which has a form non-invariant in time, i.e. llegible from right to left, as

<< q̂φ̂bφb]] =<< q̂µ̂b]], (76)

which is the time-reversed representation for the final distribution µb(x) = φ̂b(x)φb(x). Now,

starting from this last expression and rewriting in a similar form that in the forward process

but now with φ̂ instead of φ, we get

Z

M
dx0φ̂a(x0)p(a,x0; t1,x1)

1

φ̂t1(x1))
dx1φ̂(t1,x1)p(t1,x1; t2,x2)

1

φ̂t2(x2)
dx2

. . .dxn−1φ̂(tn−1,xn−1)p(tn−1,xn−1;b,xn)
1

φ̂(b,xn)
φ̂b(xn)φ(b,xn)dxn f (x0, . . .,xn) (77)

which coincides with the time-reversible Schroedinger representation [φ̂ap >><< pφb].

We therefore have three equivalent representations for the diffusion process, one the for-

ward in time Kolmogorov representation, the backward Kolmogorov representation, both of

them are naturally irreversible in time, and the time-reversible Schroedinger representation,

so that we can write succintly,

[µaq >>= [φ̂ap >><< pφb]] =<< q̂µb]],withµa = φaφ̂a,µb = φbφ̂b. (78)

In addition of this formal identity,we have to establish the relations between the equa-

tions that have lead to them. We first note, that in the Schroedinger representation, which

is formally time-reversible, we have an interpolation of states between the initial data φ̂a(x)
and the final data, φb(x). The information for this interpolation is given by a filtration of

interpolation F r
a ∪F s

b , which is given in terms of the filtration for the forward Kolmogorov

representation F = F t
a , t ∈ [a,b] which is used for prediction starting with the initial den-

sity φaφ̂a = µa and the filtration F b
t for retrodiction for the time-reversed process with initial

distribution µb.

We observe that q and q̂ are in time-dependent duality with respect to the measure

µt(x)dx = φ̂t(x)φt(x)dx, (79)
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since if we define the time-homogeneous semigroups

Qt−s f (s,x) =
Z

q(s,x; t,y) f (t,y)dy, s < t (80)

gQ̂t−s(t,y) =

Z

dxg(s,x)q̂(s,x; t,y), s < t, (81)

then
Z

dxµs(x)g(s,x)Qt−s f (s,x) =
Z

dxg(s,x)φs(x)φ̂s(x)
1

φs(x)
p(s,x; t,y)φt(y) f (t,y)dy

=

Z

dxg(s,x)φ̂s(x)p(s,x; t,y)
1

φ̂t(y)
f (t,x)φ̂t(y)φt(y)dy

=

Z

dxg(s,x)q̂(s,x; t,y) f (t,y)φ̂t(y)φ

=
Z

dxg(s,x)Q̂t−s(t,y) f (t,y)µt(y)dy (82)

i.e.

< g,Qt−s f >µs
=< gQ̂t−s, f >µt

, s < t. (83)

We shall now extend the state-space of the diffusion process to [a,b]×M, to be able to

transform the time-inhomogeneous processes into time-homogeneous, while the stochastic

dynamics is still taken place exclusively in M. This will allow us to define the duality of the

processes to be with respect to µt(x)dtdx and to determine the form of the exact term of the

trace-torsion, and ultimately, to establish the relation between the diffusion processes and

Schroedinger equations, both for potential linear and non-linear in the wave-functions. If

we define time-homogeneous semigroups of the processes on {(t,Xt) ∈ [a,b]×M} by

Pr f (s,x) =

{
Qs,s+r f (s,x), s ≥ 0

0, otherwise
(84)

and

P̂rg(t,y) =

{
gQt−r,t(t,y), r ≥ 0

0, otherwise
(85)

then

< g,Pr f >µt dtdx =

Z b−r

r
ds < g,Qs,s+r f > µs =

Z a+r

b
< g,Qt−r,t f > µt−r(x)dx

=

Z b

a+r
dt < gP̂t−r, f >µt dx=< P̂rg, f >µt dtdx, (86)

which is the duality of {(t,Xt)} with respect to the µtdtdx density. Consequently, if in our

space-time case we define for at(x), ât(x) time-dependent one-forms on M (to be determined

later)

Bα : =
∂α

∂t
+H(g,At +at )αt (87)

B0µ : = −∂µ

∂t
+H(g,At +at)

†µt , (88)



Torsion Fields, Quantum Geometries, Brownian Motions ... 493

and its adjoint operators

B̂β = −∂β

∂t
−H(g,−At + ât )

†βt , (89)

(B̂)0µt =
∂µt

∂t
−H(g,−At + ât)

†µt, (90)

where by H† we mean the volg-adjoint of the operator H defined as in eq.(22). Now

Z b

a
dt

Z

1Dt
[(Bαt)βt ] − αt(B̂βt)]µt(x)dx =

Z b

a
dt

Z

1Dt
αtβt(B0µt)dx

−
Z b

a

Z

1Dt
αtg([at + ât ]−dlnµt ,dβt)µtdx (91)

for arbitrary α,β smooth compact supported functions defined on [a,b]×M which we have

denoted as time-dependent functions αt ,βt , where 1Dt
denotes the characteristic function

of the set Dt(x) := {(t,x) : µt(x) = φt(x)φ̂t(x) > 0}. Therefore, the duality of space-time

processes

< Bα,β >µt (x)dtdx=< α, B̂β >µt (x)dtdx, (92)

is equivalent to

at(x)+ ât(x) = d lnµt(x)≡ d lnφt(x)φ̂t(x), (93)

B0µt(x) = 0, (94)

and the latter equation being the Fokker-Planck equation for the diffusion with trace-torsion

given by a + A, then the Fokker-Planck equation for the adjoint (time-reversed) process is

valid, i.e.

(B̂)0µt(x) = 0. (95)

Substracting eqts. (93,94) we get the final form of the duality condition

∂µ

∂t
+divg[(At +

at − ât

2
)µt)] = 0, for µt(x) = φ̂t(x)φt(x) (96)

Therefore, we can establish that the duality conditions of the diffusion equation in the Kol-

mogorov representation and its time reversed diffusion lead to the following conditions on

the additional elements of the drift vectorfields:

at(x)+ ât(x) = d lnµt(x) ≡ d lnφt(x)φ̂t(x), (97)

∂µ

∂t
+divg[(At +

at − ât

2
)µt ] = 0. (98)

If we assume that at − ât is an exact one-form, i.e., there exists a time-dependent differen-

tiable function S(t,x) = St(x) defined on [a,b]×M such that for t ∈ [a,b],

at − ât = d ln
φt(x)

φ̂t(x)
= 2dSt (99)
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which together with

at + ât = d lnµt , (100)

implies that on D(t,x) we have

at = d lnφt , (101)

ât = d ln φ̂t . (102)

Remark. Note that the time-dependent function S on the 3-space manifold, is defined by

eq. (98) up to addition of an arbitrary function of t, and when further below we shall

take this function as defining the complex phase of the quantum Schroedinger wave, this

will introduce the quantum-phase indetermination of the quantum evolution, just as we

discussed already in the setting of geometry of the quantum state-space. In the other hand,

this introduces as well the subject of the multivaluedness of the wave function, which by the

way, leads to the Bohr-Sommerfeld quantization rules of quantum mechanics established

well before it was developed as an operator theory. It is noteworthy to remark that these

quantization rules, later encountered in superfluidity and superconductivity, or still in the

physics of defects of condensed matter physics, are of topological character. Later we

shall see that the Schroedinger wave equation contains the Navier-Stokes equations for a

viscous fluid in 2D, and the probability density of the Brownian motions or still of the

quantum system, will be transformed into the enstrophy of the viscous fluid obeying the

Navier-Stokes equations. Thus, one might expect that Navier-Stokes equations could also

have multivalued solutions, namely in the 2D case of the already established relation, the

vorticity reduces to a time-dependent function.

Introduce now Rt(x) = R(t,x) = 1
2

lnφt φ̂t and St(x) = S(t,x) = 1
2

ln
φt

φ̂t
, so that

at(x) = d(Rt +St), (103)

â(x) = d(Rt −St), (104)

and the eq. (97) takes the form

∂R

∂t
+

1

2
4gSt +g(dSt ,dRt)+g(At ,dRt) = 0, (105)

where we have taken in account that divgAt = 0.

Therefore, together with the three different time-homogeneous representations

{(t,Xt), t ∈ [a,b],Xt ∈ M} of a time-inhomogeneous diffusion process {Xt ,Q) on M we

have three equivalent dynamical descriptions. One description, with creation and killing

described by the scalar field c(t,x) and the diffusion equation describing it is given by a

creation-destruction potential in the trace-torsion background given by an electromagnetic

potential

∂p

∂t
+H(g,At)(x)p+c(t,x)p = 0; (106)

the second description has an additional trace-torsion a(t,x) , a 1-form on R×M

∂q

∂t
+H(g,A+at)q = 0. (107)
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while the third description is the adjoint time-reversed of the first representation given by φ̂
satisfying the diffusion equation on the background of the reversed electromagnetic poten-

tial −A in the vacuum, i.e.

−∂φ̂

∂t
+H(g,−At)φ̂+cφ̂ = 0. (108)

The second representation for the full trace-torsion diffusion forward in time Kol-

mogorov representation, we need to adopt the description in terms of the fundamental so-

lution q of

∂q

∂t
+H(g,At +at)q = 0, (109)

for which one must start with the initial distribution µa(x) = φ̂a(x)φa(x). This is a time

t-irreversible representation in the “real” world, where q describes the real transition and µa

gives the initial distribution. If in addition one traces the diffusion backwards with reversed

time t, with t ∈ [a,b] running backwards, one needs for this the final distribution µb(x) =
φ̂b(x)φb(x) and the time t reversed probability density q̂(s,x; t,y) which is the fundamental

solution of the equation

−∂q̂

∂t
+H(g,−At + ât)q̂ = 0, (110)

with additional trace-torsion one-form on R×M given by â, where

ât +at = d lnµt(x). (111)

where the diffusion process in the time-irreversible forward Kolmogorov representation is

given by the Ito s.d.e

dX i
t = σi

j(Xt)dW
j

t +(A+a)i(t,Xt)dt, (112)

and the backward representation for the diffusion process is given by

dX i
t = σi

j(Xt)dW
j

t +(−A+ â)i(t,Xt)dt, (113)

where a, â are given by the eqs. (102,103), and (σσ†)αβ = gαβ

We follow Schroedinger in pointing that φ and φ̂ separately satisfy the creation and

killing equations, while in quantum mechanics ψ and ψ̄ are the complex-valued counter-

parts of φ and φ̂, respectively, they are not arbitrary but

φφ̂ = ψψ̄. (114)

Thus, in the following , this Born formula, once the equations for ψ are determined, will

be a consequence of the constructions, and not an hypothesis on the random basis of non-

relativistic mechanics.

Therefore, the equations of motion given by the Ito s.d.e.

dX i
t = (Â+gradφ)i(t,Xt)dt +σi

j(Xt)dW
j

t , (115)
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which are equivalent to

∂u

∂t
+H(g,At +at)u = 0 (116)

with a = dlnφ = d(R + S), determines the motion of the ensemble of non-relativistic par-

ticles. Note that this equivalence requires only the Laplacian for the RCW connection

with the “forward” trace-torsion full one-form Q = A + dlnφ = A + d(R + S). In distinc-

tion with Stochastic Mechanics due to Nelson, and contemporary ellaborations of this ap-

plied to astrophysics as the theory of Scale Relativity due to Nottale [55,56], we only need

the form of the trace-torsion for the forward Kolmogorov representation, and this turns

to be equivalent to the Schroedinger representation which interpolates in time-symmetric

form between this forward process and its time dual with trace-torsion one-form given by

−A+ â = −A+d ln φ̂ = −A+d(R−S).

Finally, let us how this is related to the Schroedinger equation. Consider now the

Schroedinger equations for the complex-valued wave function ψ and its complex conju-

gate ψ̄, i.e. introducing i =
√
−1, we write them in the form

i
∂ψ

∂t
+H(g, iAt)ψ−V ψ = 0 (117)

−i
∂ψ̄

∂t
+H(g,−iAt)ψ̄−V ψ̄ = 0, (118)

which are identical to the usual forms. So, we have the imaginary factor appearing in

the time t but also in the electromagnetic term of the RCW connection with trace-torsion

given now by iA, which we confront with the diffusion equations generated by the RCW

connection with trace-torsion A, i.e. the system

∂φ

∂t
+H(g,At)φ+cφ = 0, (119)

−∂φ̂

∂t
+H(g,−At)φ̂+cφ̂ = 0, (120)

and the diffusion equations determined by both the RCW connections with trace-torsion

A+a and −A+ â, i.e.

∂q

∂t
+H(g,At +at)q = 0, (121)

−∂q̂

∂t
+H(g,−At + ât)q̂ = 0, (122)

which are equivalent to the single equation

∂q

∂t
+H(g,At +d ln φt)q = 0. (123)

If we introduce a complex structure on the two-dimensional real-space with coordinates

(R,S), i.e. we consider

ψ = eR+iS, ψ = eR−iS, (124)
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viz a viz φ = eR+s, φ̂ = eR−S, with ψψ̄ = φφ̂, then for a wave-function differentiable in t

and twice-differentiable in the space variables, then, ψ satisfies the Schroedinger equation

if and only if (R,S) satisfy the difference between the Fokker-Planck equations , i.e.

∂R

∂t
+g(dSt +At ,dRt)+

1

2
4gSt = 0, (125)

and

V = −∂S

∂t
+H(g,dRt)Rt −

1

2
g(dSt −At ,dSt). (126)

which follows from substituting ψ in the Schroedinger equation and further dividing by

ψ and taking the real part and imaginary parts, to obtain the former and latter equations,

respectively.

Conversely, if we take the coordinate space given by (φ, φ̂), both non-negative functions,

and consider the domain D = D(s,x) = {(s,x) : 0 < φ̂(s,x)φ(s,x)}⊂ [a,b]×M and define

R = 1
2

lnφφ̂,S = 1
2
ln

φ

φ̂
, with R,S having the same differentiability properties that previously

ψ, then φ = eR+S satisfies in D the equation

∂φ

∂t
+H(g,At)φ+cφ = 0, (127)

if and only if

−c =
[
− ∂S

∂t
+H(g,dRt)Rt −

1

2
g(dSt,dSt)−g(At,dSt)

]

+
[∂R

∂t
+H(g,dRt)St +g(At,dRt)

]
+

[
2

∂S

∂t
+g(dSt +2At ,dSt)

]
. (128)

while φ̂ = eR−S satisfies in D the equation

−∂φ

∂t
+H(g,−At)φ̂+cφ̂ = 0, (129)

if and only if

−c =
[
− ∂S

∂t
+H(g,dRt)Rt −

1

2
g(dSt,dSt)−g(At,dSt)

]

−
[∂R

∂t
+H(g,dRt)St +g(At,dRt)

]
+

[
2

∂S

∂t
+g(dSt +2At ,dSt)

]
. (130)

Notice that φ, φ̂ can be both negative or positive. So if we define ψ = eR+iS, it then defines

in weak form the Schroedinger equation in D with

V = −c−2
∂S

∂t
−g(dSt,dSt)−2g(At ,dSt). (131)

We note that from eq. (130) follows that we can choose S in a way such that either c is

independent of S and thus V is a potential which is non-linear in the sense that it depends

on the phase of the wave function ψ and thus the Schroedinger equation with this choice



498 Diego L. Rapoport

becomes non-linear dependent of ψ, or conversely, we can make the alternative choice of c

depending non-linearly on S, and thus the creation-destruction of particles in the diffusion

equation is non-linear, and consequently the Schroedinger equation has a potential V which

does not depend on ψ .

With respect to the issue of nonlinearity of the Schroedinger equation, one could ar-

gue that the former case means that the superposition principle of quantum mechanics is

broken, but then one observes that precisely due to the fact that the wave function depends

on the phase, the superposition principle is invalid from the fact that we are dealing with

complex-valued wave functions, and what matters, is the evolution in state-space where the

complex factor has been quotiented. In the former case of a non-linear Schroedinger equa-

tion, we note that the symplectic state-space formulation is still valid [18] and the quantum

geometry description incorporates non-linear quantum mechanics as is the case of the Lie-

isotopic theory of Santilli, when we place in evidence in the equation, the isotopic unit of

the Lie-isotopic Schroedinger-Santilli equation; see Santilli [81, 82]. In the case that V is

such that the spectrum of H(g,A+ a) is discrete, we know already we can represent the

Schroedinger equation in state-space and further study the related stochastic Schroedinger

equation as described above. Finally, we have presented a construction in which by using

two scalar diffusing processes φ, φ̂ we have been able to subsume them into a single forward

in time process with additional trace-torsion given by at = d lnφt φ̂t , where µt = φt φ̂t is the

distribution of the diffusion process, and obtain under eqts. (118) the Schroedinger equa-

tion (110). Alternatively, it is known that we can start with 2D space and the Schroedinger

equation, we obtain a pair of equations, one of them being the Navier-Stokes equations for

a compressible fluid where now φt φ̂t = ψt ψ̄t equals the enstrophy of the fluid. Thus, the

formal-time reversible representation can indeed be linked with the irreversible dynamics

of a viscous fluid, but now the density is given by the square of the vorticity, that in this

case can be associated with a function; the case for this correspondance for spatial 3D re-

quires to be proved. This represents a mapping between two RCW structures (inasmuch the

correspondence between the sourceless Maxwell and Dirac-Hestenes equations is another

example [65]), since as was proved in [63, 67], the Navier-Stokes equations as well as the

equations of passive transport of a magnetic field on a fluid, are basic examples of RCW

geometries whose dynamics can be represented in terms of Brownian motions, both for

boundaryless manifolds and the case of smooth boundary manifolds as well. Finally, we

would like to stress that from those Brownian motions, and in particular for the cases of the

Schroedinger equation and its stochastic extension in state-space, we can build Poincaré-

Cartan random integral invariants [67].

Nonlinear Schroedinger equations have an important role in theoretical physics, as well

as the Lie-isotopic extensions of the linear Schroedinger equation and of Quantum Mechan-

ics, due to Santilli [81,82,84]. In the theory due to Santilli, it is assumed that at very short

distances the quantum forces are no longer due to contact interaction representable by the

quantum semigroup rules that extend the symplectic approach to nondissipative classical

mechanics. These interactions arise from the overlap of the wavefunctions, and thus can-

not be formally represented as in the usual approach. Thus, Santilli sets an epistemologic

frontier in what is known as the interior problem of hyperdense matter and noncontact inter-

actions, and the exterior problem which is the usually treated by to the theoretical physics to

nondissipative systems. To obtain a consistent theory, a modification of the theory of num-
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bers (known as isoarithmetic and isoalgebra) is produced incorporating an arbitrary unit

(which will carry the information on the overlap of the wavefunctions of the constitutive

elements of the quantum system under noncontact interaction,as well as information as the

nonconstant viscosity or diffraction index, temperature, high compression), which is further

carried to produce a modification of differential calculus in term of an isotopic differential,

and thus a modification of the Schroedinger equation follows. In terms of an extension of

the theory of general relativity, the corresponding modification is thought in terms again of

the so-called interior problem corresponding to ultradense matter or spin. In the large scale

exterior problem, Lie-isotopic theory recovers all the usual theories of quantum mechanics

and relativity. The point of view due to Santilli is different than the one presented here,

in which we present a basis for phenomenae in a form that although can be introduced in

terms of scale fields, the theory is essentially topological inasmuch the torsion field is of

topological origin: the nonclosure of infinitesimal parallelograms. Thus, the Schroedinger

equation as presented here as well as the Brownian motions associated to RCW geometries,

does not appear as linked to a particular scale, they are universal structures. Furthermore,

from our analysis above, the fact that the Schroedinger equation be linear or nonlinear is not

the main issue, we can always choose where to set the nonlinearity, either in the creation

or destruction potential, or in the potential function V that has been historically attached

to quantum physics. It is remarkable that Santilli’s theory can be mapped into the present

at least for certain types of units which as generators of the trace-torsion. From Santilli’s

theory, a new formulation of chemical bonds is produced [81,84].

Yet, if we remain in the context of the exterior problem for quantum systems as de-

scribed by quantum mechanics, in Santilli’s work there is no analysis of the deeper struc-

tures and phenomenae that may arise in the exterior problem at large, nor at the relation

between the aether and the exterior problem at large, as conceived in the present work,

while at the level of the interior level, the existence of an elementary particle is hypothized,

the so-called aetherino [85]. While in the so-called interior problem, the torsion produced

by the isotopic unit which is the cornerstone of the Santilli- Lie-isotopic theory can de-

pend on additional parameters that represent the modifications due to the overlap of the

wavepackets of the quantum system and as well as due to the thermodynamics irreversible

processes taking part within the boundaries set for the system to distinguish it from the

canonical formalism for classical and quantum systems, the present theory presents a view

of phenomenae which is free of the establishment of boundaries (which can be somehow

artificial or ad-hoc). In a theory of the aether in which the non-trivial topological forces

represented by geometrical torsion are at the foundations, and the structures that arise from

it are valid in all scales such as vortices, spinor fields, minimal surfaces, as we shall briefly

present in the next section.

Returning to the issue of the nonlinearity of the potential function V in quantum me-

chanics, the usual form is the known logarithmic expression V = −b(ln|ψ|2)ψ introduced

by Bialnicky-Birula and Mycielski [5]. Its importance in such diverse fields as quantum

optics, superconductivity, atomic and molecular physics cannot be disregarded. Soliton so-

lutions of nonlinear Schroedinger equations may have a role central to molecular biology, in

which the DNA structure may be associated with a superconductive state. With regards as

the relation between geometries, Brownian motions and the linear and Schroedinger equa-

tions, there is an alternative line of research which stems from two principles, one of them
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strongly related to the present one. The first is that all physical fields have to be construed

in terms of scale fields starting from the fields appearing in the Einstein lambda transforma-

tions,of which, the Schroedinger wave function is an elementary example as shown above,

and when further associated to the idea of a fractal spacetime, this has lead to Nottale’s

theory of Scale Relativity [55]. Nottales theory starts from this fractal structure to construct

a covariant derivative operator in terms of the forward and backward stochastic derivatives

introduced by Nelson in his theory of stochastic mechanics [52]. In Nelson’s conception,

Brownian motions and quantum systems are aggregates to spacetime, they are not space-

time structures themselves; this is a completely different conception that the one elaborated

in this article. Working with these stochastic derivatives, the basic operator of Nottale’s the-

ory, can be written in terms of our RCW laplacian operators of the form ∂
∂τ + H0(iDg,V )

where D is diffusion constant (equal to ~

2m
in nonrelativistic quantum mechanics), and V

is a complex differentiable velocity field, our complex drift appearing after introducing the

imaginary unit i =
√
−1 ; see Nottale [55]. In the present conception, this fundamental

operator in terms of which Nottale constructs his theory which has lead to numerous pre-

dictions of the positions of exoplanets confirmed by observations [56], does not require

to assume that spacetime has a fractal structure a priori, from which stochastic derivatives

backward and forward to express the time asymmetry construct the dynamics of fields. We

rather assume that at a fundamental scale which is generally associated with the Planck

scale, we can represent spacetime as a continuous in which what really matters are the de-

fects in these continuous, and thus torsion has such a fundamental role. The fractal structure

of spacetime arises from the association between the RCW laplacian operators which as we

said coincide with Nottale’s covariant derivative operator, and the Brownian motions which

alternatively, can be seen as constructing the spacetime geometry. So there is no place as to

the discussion of what goes first, at least in the conception in the present work. The flow of

these Brownian motions under general analytical conditions, define for every trial Wiener

path, an active diffeomorphism of spacetime. But this primeval role of the Brownian mo-

tions and fractal structures, stems from our making the choice -arbitrary, inasmuch as the

other choice is arbitrary- as the fundamental structure instead of choosing the assumption

of having a RCW covariant derivative with a trace-torsion field defined on a continuous

model of spacetime. In some sense the primeval character of Brownian motions as a start-

ing point is very interesting in regards that they can be constructed as continuous limits of

discrete jumps, as every basic book in probability presents [18], and thus instead of positing

a continuous spacetime, we can think from the very beginning in a discrete spacetime, and

construct a theory of physics in these terms as suggested in [63] 12 In this case, instead of

working with the field of the real number or its complex or biquaternion extensions, one can

take a p-adic field, such as the one defined by the Mersenne prime number 2127−1 which

is approximately equal to the square of the ratio between the Planck mass and the proton

mass. This program and its relations with the fundamental constants of physics, was elab-

orated independently by a number of authors and an excellent presentation can be found in

Castro [9] and references therein.In fact, a theory of physics in terms of discrete structures

associated to the Mersenne prime numbers hierarchy, has been constructed in a program

12Prof. Shan Gao,has initiated a program of construction of quantum mechanics as random discontinuous

motions in discrete spacetime, in his recent work Quantum Motion, Unveiling the Mysterious Quantum World,

Arima Publ., Suffolk (U.K.), 2006.
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developed by P. Noyes, T. Bastin, P. Kilmister and others; see [57].

10.1. The Extension to The Many-body Case

Up to know we have presented the case of the Schroedinger equation for an ensemble of

one-particle systems on space-time. Of course, our previous constructions are also valid

for the case of an ensemble of interacting multiparticle systems, so that the dimension of

the configuration space is 3d +1, for indistinguishable d particles; the general case follows

with minor alterations. If we start by constructing the theory as we did for an ensemble of

one-particle systems (Schroedinger’s cloud of electrons), we can still extend trivially to the

general case, by considering a diffusion in the product configuration manifold with coor-

dinates Xt = (X1
t , . . .,Xd) ∈ Md, where Md is the d Cartesian product of three dimensional

space with coordinates X i
t = (x

1,i
t ,x

2,i
t ,x

3,i
t ) ∈ M, for all i = 1, . . .,d. The distribution of this

is µt = EQ ◦X−1
t , which is a probability density in Md . To obtain the distribution of the

system on the three-dimensional space M, we need the distribution of the system Xt:

Ux
t :=

1

d

d

∑
i=1

δxi
. (132)

which is the same as

Ux
t (B) =

1

d

d

∑
i=1

1B(X i
t ), (133)

where 1B(X i
t ) is the characteristic system for a measurable set B , equal to 1 if X i

t ∈ B, for

any i = 1 . . . ,d and 0 otherwise. Then, the probability density for the interacting ensembles

is given by

µx
t (B) = EQ[Ux

t (B)], (134)

where EQ is the mean taken with respect to the forward Kolmogorov representation pre-

sented above, is the probability distribution in the three-dimensional space. Therefore, the

geometrical-stochastic representation in actual space is constructable for a system of in-

teracting ensembles of particles. Thus the criticism to the Schroedinger equation by the

Copenhagen school, as to the unphysical character of the wave function since it was orig-

inally defined on a multiple-dimensional configuration space of interacting system of en-

sembles, is invalid.

11. The Navier-Stokes Equations and Riemann-Cartan-Weyl

Diffusions

We have seen that quantum mechanics is an example of spacetime structures of RCW.

We have shortly discussed the fact that the Navier-Stokes equations for viscous fluids are

another example of this. In this section we shall present the proofs of this statements.

In the sequel, M is a compact orientable ( without boundary) n-manifold with a Rie-

mannian metric g. We provide M with a 1-form u(τ,x) = uτ(x) satisfying the invariant

Navier-Stokes equations (NS in the following) ,

∂u

∂τ
+P[∇

g
ûτ

uτ]−ν41uτ = 0, (135)
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where P is the projection operator to the co-closed term in the de Rham-Kodaira-Hodge

decomposition of 1-forms. We have proved in [67], that we can rewrite NS in the form of a

non-linear diffusion equation13

∂u

∂τ
= PH1

(
2νg,

−1

2ν
uτ

)
uτ, (136)

which means that NS for the velocity of an incompressible fluid is a a non-linear diffusion

process determined by a RCW connection. This connection has 2νg for the metric, and the

time-dependant trace-torsion of this connection is −u/2ν. Then, the drift of this process

does not depend explicitly on ν, as it coincides with the vectorfield associated via g to −uτ,

i.e.−ûτ. Let us introduce the vorticity two-form

Ωτ = duτ, τ ≥ 0. (137)

Now, apply d to eq. (132); since d41uτ = 42duτ = 42Ωτ and dLûτ = Lûτduτ = LûτΩτ

we obtain the evolution equation for the vorticity (the so called Navier-Stokes equation for

the vorticity):

∂Ωτ

∂τ
= H2

(
2νg,

−1

2ν
uτ

)
Ωτ. (138)

Now, if we know Ωτ for any τ ≥ 0, we can obtain uτ by inverting the definition (133).

Namely, applying δ to (133) we obtain the Poisson-de Rham equation

H1(g,0)uτ = −dδuτ −δΩτ, τ ≥ 0. (139)

Thus, the vorticity Ωτ is a source for the velocity one-form uτ, for all τ together with the

predetermined expression for δuτ; in the case that M is a compact euclidean domain, equa-

tion (60) is integrated to give the Biot-Savart law of Fluid Mechanics. If furthermore the

fluid is incompressible, i.e. δuτ = 0, then we get the Poisson-de Rham equation for the

velocity having the vorticity as a source,

H1(g,0)uτ = −δΩτ, τ ≥ 0. (140)

In 3D this is none other that the Biot-Savart law but applied to fluid dynamics, instead of

electromagnetism.

Theorem. Given a compact orientable Riemannian manifold with metric g, the Navier-

Stokes equation (132) for fluid with velocity one-form u = u(τ,x), assuming sufficiently

regular conditions, are equivalent to a diffusion equation for the vorticity given by (132)

with uτ satisfying the Poisson-de Rham eq. (135) for the compressible case and eq. (136)
for the incompressible one. The RCW connection on M generating this process is deter-

mined by the metric 2νg and a trace-torsion 1-form given by −u/2ν.

13While in the boundaryless case P commutes with 41, in the case of M with smooth boundary this is no

longer true so that we have to take P41uτ instead of the viscosity term in eq. (131), and we are left with the

non-linear diffusion equation (132) in any case.
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Observations. This characterization of NS in terms of a gauge structure, will determine

all the random representations for NS which we shall present in this article. We would like

to recall that in the gauge theory of gravitation (see Blagojevic [14] the torsion is related

to the translational degrees of freedom present in the Poincaré group, i.e. to the gauging of

momentum. Here we find a similar, yet dynamical situation, in which the trace-torsion is

related to the velocity and the angular momentum is derived from it simply by considering

the vorticity of the fluid. We conclude this chapter noting that with this constructions we

can finally give the most general analytical representations for the Navier-Stokes equations

using the Brownian motions corresponding to the Navier-Stokes operator for manifolds

with and without boundary and in Euclidean domains and semidomains [63,67].

12. Turbulence and the Riemann-Cartan-Weyl Torsion

Turbulence is a universal phenomenae inasmuch viscous fluids are universal. In particu-

lar, the role of turbulence in astrophysics has been discussed by several authors [4, 95] .

Evidence of turbulence for the origin of galaxy formation has been detected by observa-

tions [95]. Gibson has extensively discussed the formation of the gravitational field, galax-

ies and the Universe from a turbulent fluid [23] and contrasted with advantage the usual

approach through the Jeans law. In the present approach in which viscous fluids, gravita-

tional fields, quantum mechanics are all instances of a single geometrical structure and its

random counterpart, this seems extremely natural.

In this section we want to introduce a treatment of turbulence which is independent of

the particular equations of dynamics and is directly associated with the RCW geometries

through the structure of the trace-torsion one-form, Q, whose conjugate vectorfield, when-

ever the metric is Minkowski or in an arbitrary Riemannian (i.e. positive-definite) metric is

established from the beginning,or still, in the latter case, whenever we have a noise tensor

which generates the Riemannian metric through the eq. (15). The clue to this is through

the ideas elaborated by R. Kiehn, the topological (also called, the Pfaffian dimension) di-

mension of Q. So we consider the set of differential forms on 4-dimensional spacetime

given by

{Q,dQ,Q∧dQ,dQ∧dQ}, (141)

which cannot have higher degree differential forms since d(dQ) = 0 whenever the coeffi-

cient functions of Q are twice differentiable. Then, we follow Kiehn by recalling that the

topological dimension of Q is the minimal number of coordinates in M on which Q de-

pend. Thus, if dQ = 0, then in a connected neighborhood of M, we can find a differentiable

function, say f , such that Q = d f , i.e. Q is an exact form in that neighbourhood. Trivially

dQ = 0 as well as the higher degree forms of the above set. In this case, it is clear that

Q can be parametrized by a one-dimensional set given by the inverse image by f of all its

values in the real line, and thus for an exact one-form the topological dimension is equal to

1. Let us consider the case that Q is not exact and furthermore Q∧dQ = 0. By the well

known Frobenius integrability theorem, then Q has topological dimension equal to 2, i.e.

M can be at least locally foliated by two-dimensional submanifolds on which Q is defined;

this corresponds to a reversible dynamics given by the integral flow of Q that lies in this
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two-dimensional submanifold. Now assume in the contrary that Q∧dQ 6= 0 and further-

more dQ∧dQ 6= 0, so that being this a top degree differential form on M, in this case Q

has topological dimension equal to 4, and thus equal to the dimension of spacetime. In this

case, the integral flow of the drift vectorfield Q̂, for a positive-definite metric, lies in a four

dimensional submanifold. Otherwise, if dQ∧dQ, then Q has topological dimension equal

to 3; in this case, the drift vectorfield has a flow lying in a three-dimensional submanifold.

In the case of topological dimension equal to 4, we extend Kiehn [33] defining a vec-

torfield called the topological torsion by the rule

Q∧dQ = iT volg. (142)

If we introduce the Hodge star operator ∗ defined by g, we have that if T g denotes the one-

form given by the g conjugate of the vectorfield T (i.e. T g = aαdxα with aα = gαβT β, where

T = T β ∂
∂xβ is the coordinate expression for T , then [22]

∗Tg = iT volg = Q∧dQ, (143)

which is Kiehn’s topological torsion three-form obtained by duality from T g. When g is the

Euclidean metric we retrieve the original definitions [33]. Although the present formulation

retrieves the trivial metric case, it is more general since it includes the noise tensor of the

Brownian motions having the drift vectorfield produced by the g-conjugate of Q, producing

the metric by eq. (15), so in spite the exterior differential operator d in terms of which

define the topological dimension is independent of the background noise, the topological

torsion one-form and the topological torsion vectorfield here introduced, do depend on the

metric (and the background noise) through the relation (138) and (139). So the physi-

cal meaning of this terms incorporates the background noise tensor, contrarily to Kiehn’s

approach in which the topological approach is unlinked to noise. In this respect, the presen-

tation here introduced has incorporated the dynamics of the vacuum while in the approach

due to Kiehn, the vacuum is absent altogether in the definitions. As it stands, the present

constructions are associated to the mean motion of the Brownian motions through their

drift.

We must remark that altough the present constructions apply to an arbitrary spacetime

trace-torsion one-form, and thus includes the case of a three-dimensional fluid velocity

uτ(x) which is also is time-dependent and obeys Navier-Stokes equations, the present exte-

rior differential has an additional time derivative component which is missing in the exterior

differential that we encountered when introducing the Navier-Stokes equations. Indeed,

when there we wrote duτ this time derivative is absent. The presentation we are giving

of the topological dimension, incorporates time as an active parameter for its definition.

This is very important, since as we shall see, the topological dimension is related to coher-

ent structures, turbulence, chaos, etc., in a formalization in which statistical considerations

are absent completely. In our approach that differs from the one due to Kiehn, does not

mean that this structures are not related to an intrinsic randomness, such as the case of the

Brownian motions generated by the RCW geometries which have trace-torsion given by

the one-form Q generating through the g-conjugate -where g arises from noise- the drift.

In this respect, the topological dimension incorporating this active time parameter, coin-

cides with Pensinger and Paine’s idea of an active time operator in their study of turbulence
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in atmospheric fluids which is none-other than the exterior differential in 4D written in a

quaternionic base; see [60]. We recall that Kozyrev’s conception of time is exactly that of an

active operator, as we have already discussed above, so what we are actually doing here is

presenting a topological theory of structures and further below, of processes, in which time

is an active operator for their formation and preservation. Furthermore, these constructions

can be related to a multivalued logic with a time operator that arise from associating the

primitive distinction in the calculus of distinctions due to Spencer-Brown [75] which is

based in a nilpotence condition similar that the condition d2 = 0 of the differential operator;

we shall return to this issue elsewhere.

We now compute the four-form dQ∧dQ to obtain

dQ∧dQ = diT volg = LT volg− iT dvolg = LT volg, (144)

which is still equal to Γvolg with Γ = divgT (by definition of the divergence, see eq. (4.28)

in [22] and therefore

dQ∧dQ = Γvolg ≡ divg(T )volg. (145)

Thus, Γ is the topological dissipation function. It expresses how the 4-volume defined

by the 4-form dQ∧ dQ shrinks or expands in terms of the Riemannian volume volg. In

fact, this 4-form is the Liouville form produced by the symplectic 2-form dQ, so that here

spacetime adquires a symplectic structure, i.e. a nondegenerate closed 2-form on four di-

mensional spacetime. In a same domain of M we can actually have different topologies in

the sense of Pfaff. We note whenever the topological dimension coincides with the space-

time dimension 4, topological torsion is related to a system whose evolution occupies the

4-dimensional domain, with the possibility that whenever in this domain T is divergence-

less, then the topological dimension of the trace-torsion Q 14 collapses to 3, thus we have

a contact Hamiltonian reversibles structure defined by Q∧ dQ, corresponding to space-

time defects which are nonequilibrium long lived closed systems, generically spacetime

dislocations, or still coherent or stationary structures such as vortices, solitons, disloca-

tions, minimal surfaces, etc. The domains on which the topological dimension of Q is 4

correspond to thermodinamically open irreversible systems, and in the direction of T , evo-

lution is irreversible; according to Kiehn, these dynamics correspond to turbulent systems,

in our case, associated to the trace-torsion Q whose conjugate vectorfield is the drift of the

Brownian motions. In the case we have topological dimension equal to 2 or 1, this corre-

sponds to isolated systems in equilibrium. We we would like to remark that we can still

follow Kiehn presenting a theory of systems based upon the action of vectorfields on the

trace-torsion Q, which would then correspond to the evolution of arbitrary processes on the

background of the RCW Brownian motions. This description should be elaborated to es-

tablish a topological-geometrical approach to the processes in interaction with a universal

field, on which we have the action of an active time operator, described by Kozyrev [37–39],

or still the geophysical, ionspheric and solar processes described by Korotaev, Serdyuk and

Gorohov [36].

14It should not be confused with Kiehn’s notation for the heat one-form which in this formalism coincides

with LV Q for V a spacetime vectorfield which is thought as a process acting on the system defined by Q (noted

A in [33].
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13. Introduction to the Lie-Santilli Mathematical Isotopies

In this section we shall present briefly the mathematical core of Hadronic Mechanics [81,84]

as a preliminary to the introduction of this theory as that of the strong interactions proposed

by Santilli. This theory requires the introduction of the so-called isotopies of the number

fields, functions, Lie groups, manifolds, laplacians, Hilbert spaces, to produce the modifi-

cation of the Schroedinger equation called the iso-Scroedinger equation introduced by the

former isotopies which require fundamentally the introduction of a generalized unit (instead

of the usual numerical unit, 1) that accounts for the strong interactions. The introduction

of the isotopies are demanded by consistency with the action of non-unitary transforma-

tions. 15The ensuing theory, Hadronic Mechanics (HM), together with the modifications

of special relativity and general relativity produced by the introduction of the generalized

so-called isotopic lift, is claimed by Santilli to be a unified theory for physics that stems

from acknowledging the special conditions and phenomenology of the strong interactions

as well as those of inhomogeneous media instead of the particular case of the Lorentz in-

variant vacuum. While QM stemmed from a theory for quantum physics on phenomenae

occuring on such a vacuum deemed to be unrelated to spacetime geometries, the case of the

strong interactions fells short of occuring on such conditions, yet those on a very inhomo-

geneous spacetime with overlapping wave functions, so a nonlinear theory is necessary, yet

this requires a theory in which the spacetime geometry for such interactions and more gen-

erally as a foundational problem for all physics. Furthermore, in placing the foundations of

all the modifications on the new isotopic unit, while refraining from searching for a deeper

understanding of QM in particular of its relations with spacetime introduced by torsion,

it contains in essence a shallow paradigm which stops short of acknowledging the torsion

structure of spacetime as a basis for its constitution, as well as that of subjectivity (in partic-

ular logic) and the fusion of it with the physical realm as elaborated by Rapoport [75, 77].

In this section we shall introduce HM in terms of the isotopic modifications introduced by

Santilli, yet also in terms of torsion as presented above.

Thus we shall introduce very briefly the theory by introducing the Lie-Santilli-isotopic

unit; more comprehensive treatment is available in [84] to which we refer for further details.

The prescription is to introduce an arbitrary non-unitary operator U and to substitute the unit

I by the isotopic unit

Î = U × I ×U† 6= I. (146)

where we have denoted the multiplication by × instead of the usual juxtaposition notation

15Santilli claims that new mathematics are demanded for the study of not only the strong interactions, mean-

ing by this that new formalisms, as provided by the previous isotopies or still more general hyperstructures [84],

are required for physics, chemistry and biology. Unfortunately this discussion, due to length restrictions, cannot

be detailed thoroughly as a subject of such importance merits, yet it is the understanding of this author that this

claim might be misconceived if related to (exclusively, for Santilli) formalisms: while the strong interactions

may require the isotopies, it is not a general rule that new formalism is required in the sense stated by Santilli,

very much it is the case that instead of formalisms, interpretations of known mathematical structures are re-

quired to shed a completely new paradigm of physics and science as a whole [75,77]. This new interpretation

stems from torsion fields, time gestalts and a time operator, multivalued logics and most essentially, the Klein

bottle surface. It is the latter that plays the role of (isotopic, or whatever) unit, and the hyper Klein bottle that

gives a family of units placed in heterarchical relation.
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for the product, so that

T̂ = (U × I ×U†)−1 = T̂ †. (147)

The usual Hilbert space of quantum mechanics, is denoted by H = {|Φ >, |Ψ >:<
Φ|Ψ >∈ C(c,+,×),< Ψ,Ψ >= 1}, where C(c,+,×) denotes the field of complex num-

bers with the usual addition and multiplication. The evolution equation in the Santilli-Lie-

isotopic theory of an observable is given by the equation

i
dA

dt
= [A,̂H] := A×T ×H −H ×T ×A, (148)

so that

A(t) = ei×H×T×t ×A(0)×e−i×t×T×H . (149)

The problem with this quantum evolution is that it is non-unitary over the Hilbert space H

over the field C(c,+,×). We have the following fundamental result, known as the López

Lemma [83].

Theorem 1. All possible non-unitary deformations of QM computed on a conventional

Hilbert space H over the field C(c,+,×) have the following aspects:

(i) Lack of invariance of the unit, and consequently the lack of applicability to measure-

ments.

(ii) Lack of preservation of the Hermiticity in time, and consequently the lack of unam-

biguous observables.

(iii) Lack of invariant eigenfunctions and their transforms, and consequently the lack of

invariant numerical predictions.

The general situation of non-unitary deformations computed on general Hilbert spaces

will be addressed below. As a corollary of the Theorem 1, on (H ,C(c,+,×)) non-unitary

quantum deformations do not give invariant probabilities, nor posses unique invariant phys-

ical laws. While in QM unitary time evolution implies causality, in its non-unitary defor-

mations there is a violation of causality.

So let us proceed to present the solution to this problem provided by Santilli, the con-

struction of a non-unitary image of QM. Firstly, the product in the generalized envelop-

ing algebra ξ̂ is given by elements of the form U ×A×B×U† = Â× T̂ × B̂ := Â×̂B̂ for

Â = U ×A×U† and B = U ×B×B†. For a Hilbert space (H ,<>,C(c,+,×)) we intro-

duce the Lie-Santilli isotopic Hilbert space Ĥ of elements of the form |ψ̂ >= U ×|ψ > and

< φ̂| =< φ| ×U†, with inner product given by transforming the original H inner product

by the non-unitary transformation

< Φ,Ψ >→< Φ|×U† ×U†−1 ×U−1 ×U |Ψ >=< Φ̂|× T̂ ×|Ψ >≡< Φ̂|×̂|Ψ̂ > . (150)

The generalized enveloping algebra ξ̂ is still associative

(Â×̂B̂)×̂Ĉ = Â×̂(B̂×̂Ĉ), (151)

with identity given by Î, since Î×̂Â = Â×̂Î = Â. The modified Lie algebra is given by

[Â,̂B̂] = Â× T × B̂− B̂× T × Â, which is isomorphic to the original one if Î is positive-

definite.
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Now let us see how the problem of hermiticity in the non-unitary frame is obtained. We

have,

< Ψ|× T̂ × (H × T̂ )×|Ψ >=< (Ψ̂|× T̂ ×H†)×|Ψ̂ >, (152)

which yields

H×̂† = T̂−1 × T̂ ×H† × T̂ ×T−1. (153)

Thus, starting with an hermitean operator H at t = 0, then Ĥ = U ×H ×U† remains her-

mitean under non-unitary transformations. But we note that the hermiticity is not com-

puted in (H ;< | >,C(c,+,×)) but in (Ĥ ,< |×̂| >,Ĉ(ĉ, +̂, ×̂)), where Ĉ(, ĉ,+, ×̂) is the

Santilli-Lie isotopic lift of C(c,+,×) with elements of the form ĉ = c× Î, where Î not

necessarily belongs to Ĉ; this isofield is defined by the isosum ĉ1 + ĉ2 = (c1 + c2)× Î and

the isoproduct ĉ1×̂ĉ2 = ĉ1 × T̂ × ĉ2 = (c1 × c2)× Î. Then Î = T̂−1 is the left and right

multiplicative unit in Ĉ(ĉ,+, ×̂). We further have that 0̂ = 0 satisfies ĉ + 0̂ = ĉ. Further-

more, ĉ2 = ĉ×̂ĉ = ĉ× T̂ × ĉ, ĉ
1̂
2 = c

1
2 × Î

1
2 . The quotient is defined by â/×̂b̂ = ( a

b
× Î), and

|ĉ|= |c|× Î and finally for an arbitrary Q, ĉ×̂Q = c× Î×T ×Q = c× I×Q = c×Q. These

isofields can be very elegantly introduced by the expedience of applying the non-unitary

transforms to the classical fields, which are the basis of this theory; see [31,84].

The modular action Ĥ×̂|Ψ̂ >= Ĥ × T̂ ×|ψ̂ > with < ψ̂|×̂|ψ >=< ψ̂| ×T ×|ψ̂ > has

for generalized unit Î = T̂−1, because it is the only object such that Î×̂|ψ̂ >= |ψ̂ >. Con-

sequently, referral to C(c,+,×) with unit I is inconsistent, and then Ĥ must be referred to

Ĉ with basic unit Î. Then, to achieve consistency, the Santilli-iso-Hilbert invariant iso-inner

product is defined by

< Φ̂|Ψ̂ >Î :=< Φ̂|×̂|Ψ̂ > ×Î =< Φ̂|× T̂ ×|Ψ̂ > ×T̂−1 ∈ Ĉ, (154)

with normalization < Φ̂|×̂|Φ̂ >= I. Note that from eqs. (153,154) follows that isoher-

miticity coincides with conventional Hermiticity. As a result, all conventional quantum me-

chanical observables are preserved for the above iso-Hilbert spaces over isofields; for the

details see [84]. It is important to remark that the transformation that carries H × p|ψ > to

Ĥ×̂|ψ̂ > satisfies linearity on isospace over isofields. The recovery of linearity in isospace

is achieved by the embedding of the nonlinear terms in the isounit. Furthermore, any non-

linear theory with a Hamiltonian operator H(p,x,ψ, . . .) can always be rewritten by factor-

izing the nonlinear terms, which can then be assumed as the isotopic element of the theory.

Indeed, if we have

H(p,x,ψ, . . .)×|ψ̂ >= H0(x, p)× T̂ (x, p,ψ, . . .)×|ψ̂ >:= Ĥ0(, p)×̂|ψ̂ >,

with T̂ := H−1
0 ×H, with H0 being the maximal hermitean operator, representing the total

energy. Thus, the theory presented above of the relations between diffusions, spacetime

geometries and nonrelativistic QM, in the case of non-linear Schroedinger equations can be

framed equivalently in terms of an isoHilbert theory.

It is about time to present a general class of generalized units that appear in HM for the

characterization of the strong interactions. Namely,

Î = diag(n2
1,n2

2,n2
3,n2

4)×exp(tN
(ψ↑

ψ̂↓
+

∂ψ↓
∂ψ̂↓

+ . . .
)
×

Z

d3xψ†
↑(x)ψ↓(x), (155)
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where the quantities n2
1,n2

2,n2
3 represent the extended, non-spherical deformable shapes of

the hadron, n2
4 its density, the quantities

ψ↑
ψ̂↓

+
∂ψ↓
∂ψ̂↓

+ . . . represent a typical non-linearity, and

the integral in the exponent, represents a typical non-linearity due to the interpenetration

and overlapping of the charge distributions. Notably a coupling of spin-up and spin-down

particles is present in the generalized unit. Whenever the hadrons are perfectly spherical

and rigid, then we can take the density n2
4 = 1 and the parameters of deformations can also

be set equal to 1; if furthermore, their distances is such as to be nor interpenetration, then

the integrand is zero and the exponential term is equal to 1; thus, Î = I, and we are in

the situation of QM, where the unit is given in terms of the torsion structure constants of

the Lie algebra, and dynamically, from the gradient logarithm of the wave function. The

present choice of the isotopic unit has lead to the first ever model of a Cooper model with

explicit attractive force between the pair of identical electrons with excellent agreement

with experimental data [3]. As closing remark we note that there is no general rule for the

actual construction of the isotopic unit. which is ad-hoc to the particular phenomenology,

as the above example shows. The drawback for this is that the pledged universality is such

that there is no general rule for the choice of the isotopic unit; it is essentially ad-hoc.

13.1. Santilli-Lie Isotopies of the Differential Calculus and Metric Structures,

and the Iso-Schroedinger Equation

To present the iso-Schroedinger equation, we need the isotopic differential calculus and the

isotopic lift of manifolds, the so-called isomanifolds, due to Tsagas and Sourlas [31, 92];

we shall follow here the above notations. We start by considering the manifold M to be a

vector space with local coordinates, which for simplicity we shall from now fix them to be

a contravariant system, x = (xi), i = 1, . . .,n, unit given by I = diag(1, . . .,1) and metric g

which we assumed diagonalized. We shall lift this structure to a vector space M̂ provided

with isocoordinates x̂, isometric Ĝ and defined on the isonumber field F̂ , where F can be the

real or complex numbers; we denote this isospace by M̂(x̂, Ĝ, F̂). The isocoordinates are in-

troduced by the transformation x 7→U ×x×U† = x× Î := x̂. To introduce the contravariant

isometric Ĝ we start by considering the transformation 16

g 7→U ×g×U† = Î×g := ĝ. (156)

Yet from the Definition 3.2.3 of vol. III in [84] follows that the isometric is more properly

defined by Ĝ = ĝ× Î . Thus we have a transformed M(x,g,F) into the isospace M̂(x̂, Ĝ, F̂).

Thus the projection on M(x,g,F) of the isometric in M̂(x̂, Ĝ, F̂) is defined by a contravariant

tensor, ĝ = (ĝi j) with components

ĝi j = (Î ×g)i j. (157)

If we take Î = ψ2(x)× I we then retrieve the Weyl scale transformations, with ψ a scale field

depending only on the coordinates of M which we encountered already. If we start with g

being the Euclidean or Minkowski metrics, we obtain the iso-Euclidean and iso-Minkowski

metrics; in the case we start with a general metric as in GR, we obtain Isorelativity. We

16We shall assume, as usual, a diagonal metric.
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shall now proceed to identify the isotopic lift of the noise tensor σ which verifies eq. (9),

i.e. σ×σ† = g. The non-unitary transform of (a diagonalized) σ is given by

σ 7→ U ×σ×U† = σ× Î := σ̂. (158)

Then,

σ̂×̂σ̂ = σ× Î × T̂ × (σ× Î)† = (σ×σ†)× Î = g× Î = ĝ. (159)

Thus the isotopic lift of the noise tensor defined on M̂(x̂, Ĝ, R̂) is given by σ̂ = σ× Î which

on projection to M(x̂, Ĝ,R) we retrieve σ. We know follow the notations and definitions of

Section 3.2.5 for the isotopic differential, and for isofunctions. We introduce the isotopic

gradient operator of the isometric Ĝ (the Ĝ-gradient, for short), ĝradĜ applied to the isotopic

lift f̂ (x̂) of a function f (x) is defined by

ĝradĜ f̂ (x̂)(v̂) = Ĝ(d̂ f̂ (x̂),̂v̂), (160)

for any vector field v̂ ∈ Tx̂(M̂), x̂ ∈ M̂; we have denoted the inner product as ,̂ to stress that

the inner product is taken with respect to the product in F̂. Hence, the operator ĝradĜ f̂ (x̂)
can be thought as the isovector field on the tangent manifold to M̂(x̂, Ĝ, F̂) defined by

Ĝαβ×̂ ∂̂ f̂ (x̂)

∂̂x̂α
×̂ ∂̂

∂̂x̂β
= ĝαβ×̂ ∂̂ f̂ (x̂)

∂̂x̂α
×̂ ∂̂

∂̂x̂i
× Î. (161)

Therefore, the projection on M̂(x̂, ĝ,F) of the Ĝ-gradient vector field of f̂ (x̂) is the vector

field with components

ĝαβ×̂ ∂̂ f̂ (x̂)

∂̂x̂α
= ĝαβ×̂ ∂̂ f̂ (x̂)

∂̂x̂α
. (162)

This will be of importance for the determination of the drift vector field of the diffusion

linked with the Santilli-iso-Schroedinger equation. We finally define the isolaplacian as

4̂ĝ = ĝαβ×̂D̂ ∂̂

∂̂x̂α

×̂D̂ ∂̂

∂̂x̂β

(163)

Here D̂ ∂̂

∂̂x̂α

is defined accordingly with Definition 3.2.13 in [84],

D̂ ∂̂

∂̂x̂α

X̂β =
∂̂X̂β

∂̂x̂β
+

{̂
β

γα

}
×̂X̂ γ, (164)

and hence it is the isocovariant differential with respect to the Levi-Civita isoconnection

with isoChristoffel coefficients
{̂

α

βγ

}
=

1̂

2̂

( ∂̂

∂̂x̂β
ĝνγ +

∂̂

∂̂x̂γ
ĝβν−

∂̂

∂̂x̂ν
ĝβγ

)
×̂ĝαν. (165)

We remark that from Observations 1 follows that alternatively we can define the more sim-

pler laplacian by taking instead

4̂ĝ = ĝαβ×̂ ∂̂

∂̂x̂α
×̂ ∂̂

∂̂x̂β
. (166)

In both cases we take σ̂ for the corresponding isonoise term in the isodiffusion represen-

tation. The latter definition of the isolaplacian differs from the original one introduced by

.
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13.2. Diffusions and the Heisenberg Representation

Up to now we have set our theory in terms of the Schroedinger representation, since the

original setting for this theory has to do with scale transformations as introduced by Einstein

in his last work [14] while it was recognized previously by London that the wave function

was related to the Weyl scale transformations, and these scale fields turned to be in the

non-relativistic case, nothing else than the wave function of Schroedinger equation, both in

the linear and the non-linear cases. Historically the operator theory of QM was introduced

before the Schroedinger equation, who later proved the equivalence of the two. The ensuing

dispute and rejection by Heisenberg of Schroedinger’s equation is a dramatic chapter of

the history of QM. It turns out to be the case that we can connect the Brownian motion

approach to QM and the operator formalism due to Heisenberg and Jordan, and its isotopic

lift presented in [72,73]. We shall present this issue in the following.

Let us define the position operator as usual and the momentum operator by

qk = xk, pDk = σ× ∂

∂xk
, (167)

which we call the diffusion quantization rule (the subscript D denotes diffusion) since we

have a representation different to the usual quantization rule

pk = −i× ∂

∂xk
, (168)

with σ = (σα
a ) the diffusion tensor verifying (σ×σ†)αβ = gαβ and substitute into the Hamil-

tonian function

H(p,q) =
1

2

d

∑
k=1

(pk)
2 +v(q), (169)

this yields the formal generator of a diffusion semigroup in C2(Rd) or L2(Rd) which in our

previous notation is written as H(g,0)+ v. Thus, an operator algebra on C2(Rn) or L2(Rn)

together with the postulate of the commutation relation (instead of the usual commutator

relation of quantum mechanics [p,q] = −i× I)

[pD ,q] = pD ×q−q× pD = σ× I (170)

this yields the diffusion equation

∂φ

∂t
×φ+

1

2

d

∑
k=1

(
σ

∂

∂xα

)2

×φ+v×φ = 0, (171)

which coincides with the diffusion eq. (54) provided that c = v. Thus, in this approach,

the operator formalism and the “quantization postulates”, allow to deduce the diffusion

equation. If we start from either the diffusion process or the RCW geometry, without any

quantization conditions we already have the equations of motion of the quantum system

which are non other than the original diffusion equations, or equivalently, the Schroedinger

equations. We stress the fact that these arguments are valid for both cases relative to the

choice of the potential function V , i.e. if it depends nonlinearly on the wave function ψ,
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or acts linearly by multiplication on it. Further below, we shall use this modification of

the Heisenberg representation of QM by the previous Heisenberg type representation for

diffusion processes, to give an account of the diffusion processes that are associated with

HM. This treatment differs from the original (inconsistent with respect to HM, as it turned

to be proved in the later findings by Santilli) approach to isoquantization.

Let us frame now isoquantization in terms of diffusion processes. Define isomomentum,

p̂D , by

p̂Dk = σ̂×̂ ∂̂

∂̂x̂k
, with σ̂ = σ× Î , (172)

so that the kinetic term of the iso-Hamiltonian is

p̂D×̂ p̂
†
D = σ̂×̂σ̂†×̂ ∂̂

∂̂x̂
×̂ ∂̂

∂̂x̂

= ĝ×̂ ∂̂

∂̂x̂
×̂ ∂̂

∂̂x̂
= 4̂ĝ (173)

We finally check the consistency of the construction by proving that it can be achieved via

the non-unitary transformation

pD j
7→U × pD j

×U† = U ×σ× ∂

∂x j
×U†

= σ× Î × T̂ × Î × ∂

∂x j
= σ̂×̂ ∂̂

∂̂x̂ j
= p̂D j. (174)

Note that we have achieved this isoquantization in terms of the following transformations:

Firstly, we carried out the transformation

p = −i× ∂

∂x
→ pD := σ× ∂

∂x
, (175)

to further produce its isotopic lift

p̂D = σ̂×̂ ∂̂

∂̂x̂
. (176)

Whenever the original diffusion tensor σ is the identity I, from eq. (9) follows that the

original metric g is Euclidean, we reach compatibility of the diffusion quantization with

the Santilli-iso-Heisenberg representation given by taking the non-unitary transformation

on the canonical commutation relations, which are given by

[q̂i,̂p̂ j] = î×̂δ̂i
j = i×δi

j × Î, (177)

together with

[r̂i,̂r̂ j] = [p̂i,̂p̂ j] = 0, (178)

with the Santilli-iso-quantization rule [84]

p̂ j = −î×̂ ∂̂

∂̂x̂ j
. (179)
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Thus, from the quantization by the diffusion representation we retrieve the Santilli-iso-

Heisenberg representation, with the difference that the diffusion noise tensor in the above

construction need not be restricted to the identity.

Finally, we consider the iso-Hamiltonian operator

Ĥ =
1̂

2̂×̂m̂
×̂ p̂2̂ +V̂0(t̂, x̂)+V̂k(t̂, v̂)×̂v̂k, (180)

where p̂ may be taken to be given either by the Santilli iso-quantization rule

p̂ j×̂|ψ̂ >= −î×̂ ∂̂

∂̂x̂ j
×̂|ψ̂ >, (181)

or by the diffusion representation p̂D . V̂0(t̂, x̂) and V̂k(t̂, v̂) are potential isofunctions, the

latter dependent on the isovelocities. Then the iso-Schroedinger equation (or Schroedinger-

Santilli isoequation) [84] is

î×̂ ∂̂

∂̂t̂
|ψ̂ >= Ĥ×̂|ψ >

= Ĥ(t̂, x̂, p̂)× T̂ (t̂, x̂, ψ̂, ∂̂ψ̂, . . .)×|ψ̂ >, (182)

where the wave isofunction ψ̂ is an element in (Ĥ ,< |×̂| >,Ĉ(ĉ, +̂, ×̂)) satisfies

Î×̂|ψ̂ >= |ψ̂ > . (183)

13.3. Hadronic Mechanics and Diffusion Processes

Finally, the components of drift isovector field, projected on M̂(x̂, ĝ, R̂) in the isotopic lift

of eq. (115) is given by eq. (155) with f̂ = l̂nφ̂, where φ̂(x̂) = êR̂ (x̂)+̂Ŝ(x̂) is the diffusion

wave associated to the solution ψ̂(x̂) = êR̂ (x̂)+̂îŜ(x̂) of the iso-Schroedinger equation, and its

adjoint wave is φ̂(x) = êR̂ (x)−̂Ŝ(x). Hence, the drift isovector field has components

ĝαβ(x̂)×̂ ∂̂l̂nφ̂(x̂)

∂̂x̂α
= ĝαβ(x̂)×̂ ∂̂

∂̂x̂α
(R̂t̂+̂St̂)(x̂), (184)

Finally, we shall write the isotopic lift of the stochastic differential equation for the iso-

Schroedinger eq. (107). Applying the non-unitary transformation to eq. (63), we obtain

the iso-equation on M̂(x̂, Ĝ, R̂) for X̂t̂ given by

dX̂ i
t̂ = ((ĝαβ×̂ ∂̂

∂̂x̂α
(R̂t̂+̂St̂))(X̂t̂)×̂d̂t̂+̂σ̂i

j(X̂t̂)×̂dŴ
j

t̂
, (185)

with dŴt̂ = Ŵ(t̂+̂d̂t̂)−̂Ŵ(t̂) the increment of a iso- Wiener process Ŵt̂ = (Ŵ 1
t̂
, . . .,Ŵ m

t̂
) with

isoaverage equal to 0̂ and isocovariance given by δ̂i
j×̂t̂; i.e.,

1̂/̂(4̂×̂π̂×̂t̂)m̂/̂2̂
ˆ

Z

ŵi×̂ê−ŵ2̂/̂4̂×t̂2̂×̂d̂ŵ = 0̂, ∀i = 1, . . . ,m (186)
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and

1̂/̂(4̂×̂π̂×̂t̂)m̂/̂2̂
ˆ

Z

ŵi×̂ŵ j×̂ê−ŵ2̂/̂4̂×̂t̂2̂×̂d̂ŵ = δ̂i
j×̂t̂, ∀i, j = 1, . . . ,m (187)

and ˆ
R

denotes the isotopic integral defined by ˆ
R

d̂x̂ = (
R

T̂ × Î ×dx)× Î = (
R

dx)× Î = x̂.

Thus, formally at least, we have

X̂t̂ = X̂0̂+̂
ˆ

Z t̂

0̂

(
ĝαβ×̂ ∂̂

∂̂x̂α
(R̂ŝ+̂Sŝ)

)
(X̂ŝ)×̂d̂ŝ+̂

ˆ
Z t̂

0̂
σ̂i

j(X̂ŝ)×̂dŴ
j

ŝ . (188)

The integral in the first term of eq. (189) is an isotopic lift of the usual Riemann-Lebesgue

integral [31], while the second one is the isotopic lift of a stochastic Itô integral; we shall

not present here in detail the definition of this last term, which follows from the notions of

convergence in the isofunctional analysis (see [84]), and the usual definition of Itô stochastic

integrals [30,46], nor the presentation of analytical conditions for their convergence which

follows in principle from the isotopic lift of the usual conditions.

14. Statistical Thermodynamics: Preliminaries

Up to now we have established a theory in which Brownian motions and RCW geometries

appeared to be two faces of the same phenomenae: fluctuations and RCW geometries are

fused. We shall go one step further to see how they are further related in the study of non-

equilibrium systems in terms of statistical thermodynamics, as envisaged by Stratonovich

[90]. The studies of fluctuation-dissipation relations are at the core of this approach which

was somewhat initiated himself by Einstein with his studies in Brownian motion. We are

particularly interested in the non-linear Boltzmann H-theorem, and its relation with torsion-

drift which we shall elaborate following Stratonovich [90] and the presentation by Rapoport

[66].

Suppose we have random variables ξ1, . . .,ξn, (n is an arbitrary positive integer) with

joint probability density p(ξ1, . . . ,ξn). The mean value

< ξ1, . . . ,ξn >=

Z

ξ1 . . .ξn p(ξ1, . . . ,ξn)dξ1 . . .dξn, (189)

is called the moment. The characteristic function, Ξ(iu1, . . ., iun), is defined by

Ξ(iu1, . . . , iun) = < exp
( n

∑
α=1

iuαξα

)
>

=

Z

exp
( n

∑
α=1

iuαξα

)
p(ξ1, . . .,ξn)dξ1 . . .dξn. (190)

Then, it follows that the moments can be expressed in terms of the characteristic function:

< ξα1
, . . . ,ξαm

>= i−m
[∂Ξ(iu1, . . . , ium)

∂uα1
. . .∂uαm

]∣∣∣
u=0

, 1 ≤ m, (191)

where u = 0 means u1 = . . . = um = 0.
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If the characteristic function is analytic at the points where u = 0, the Taylor formula is

valid

Ξ(iu1, . . . , iun) = 1+
∞

∑
m=1

1

m!
∑

α1...αm

[∂Ξ(iu1, . . ., ium)

∂uα1
. . .∂uαm

]∣∣∣
u=0

uα1
. . .uαm

= 1+
∞

∑
m=1

im

m!
∑

α1...αm

< ξα1
. . .ξαm

> uα1
. . .uαm

, (192)

since from eq. (190) follows that Ξ(0) = 1. Formula (192) can only be used when all the

moments are finite and the expansion in (192) converges. Thus , the characteristic function

can be represented in terms of the moments. We further introduce the correlator defined by

< ξα1
, . . .,ξαm

>= i−m
[∂m lnΞ(iu1, . . . , ium)

∂uα1
. . .∂uαm

]∣∣∣
u=0

. (193)

We note that the correlator of the random variables ξα1
, . . . ,ξαm

is 0 if these variables can

be divided at least into two groups such that one group is statistically independent from the

other group. If, in fact, say ξα1
, . . .,ξαk

are statistically independent of ξαk+1
, . . .,ξαm

, then

the probability density is factorizable as

p(ξα1
, . . .,ξαm

) = p1(ξα1
, . . . ,ξαk

)p2(ξαk+1
, . . . ,ξαm

), (194)

and the characteristic function factorizes as

Ξ(iuα1
, . . . , iuαm

) = Ξ1(iuα1
, . . ., iuαk

)Ξ2(iuαk+1
, . . ., iuαm

). (195)

Then, writing vα = iuα for any α, we have

lnΞ(vα1
, . . . ,vαm

) = lnΞ1(vα1
, . . .,vαk

)+ lnΞ2(vαk+1
, . . . ,vαm

), (196)

and then from eqs. (193,196) follows that

< ξα1
, . . .,ξαm

>=
∂m lnΞ1(vα1

, . . .,vαk
)

∂vα1
. . .∂vαk

∂vαk+1
. . .∂vαm

+
∂m lnΞ2(vαk+1

, . . . ,vαm
)

∂vα1
. . .∂vαk

∂vαk+1
. . .∂vαm

(197)

is equal to 0. We have from eq. (193), if the expression (192) converges,

Ξ(v1, . . . ,vn) = exp
(

1+
∞

∑
m=1

1

m!

m

∑
α1,...,αm=1

< ξα1
, . . .,ξαm

> vα1
. . .vαm

)
. (198)

Therefore, from eq. (192) follows that

Ξ(iu1, . . . , ium) = 1+
∞

∑
m=1

im

m!
∑

α1...αm

< ξα1
. . .ξαm

> uα1
. . .uαm

, (199)

which is still equal to

exp
( ∞

∑
k=1

1

k!

n

∑
β1,...,βk=1

< ξβ1
, . . . ,ξβk

> vβ1
. . .vβk

)
. (200)
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This is called the generating equation, since multiple partial differentiation with respect

to the components of v = (v1, . . .,vn) and further setting v = 0, enables us to express the

moments in terms of the correlators. Thus, for example, double differentiation yields

< ξα1
ξα2

>=< ξα1
,ξα2

> + < ξα1
>< ξα2

> . (201)

If we calculate the third derivative and we further set v equal to 0, we obtain

< ξα1
ξα2

ξα3
> = < ξα1

,ξα2
ξα3

> + < ξα1
,ξα3

>< ξα2
> + < ξα2

,ξα3
>< ξα1

>

+ < ξα1
,ξα2

>< ξα3
> + < ξα1

>< ξα2
>< ξα3

> (202)

which we can write in the shorter form

< ξα1
ξα2

ξα3
> = < ξα1

,ξα2
ξα3

> +(3) < ξα1
,ξα3

>< ξα2
>

+ < ξα1
>< ξα2

>< ξα3
> (203)

where the term with the coefficient (3) indicates the number of terms of the same type, dif-

fering only in the order of the subscripts. These formulas have the following characteristic

feature: in the right hand size appear all possible terms (with Pascal triangle coefficients)

that are different despite the symmetry of correlators and products that correspond to vari-

ous groupings of the elements ξα1
, . . .,ξαn

.

15. Markov Processes

Let x(τ) = (x1(τ), . . .,xr(τ))) be an r-component random process. It is described by the set

of many-time-τ probability densities

p(x(τ)), p(x(τ1),x(τ2)), . . ., p(x(τ1),x(τ2), . . . ,x(τn)), . . .. (204)

Next we introduce the conditional probability density

p(η|ξ) =
p(η,ξ)

p(ξ)
. (205)

Thus, putting η = x(τ2),ξ = x(τ1), we have

p(x(τ1),x(τ2)) = p(x(τ2)|x(τ1))p(x(τ1)). (206)

If instead we put ξ = x(τ3),η = (x(τ2),x(τ1)), we have from eq. (205)

p(x(τ1),x(τ2),x(τ3)) = p(x(τ3)|x(τ1),x(τ2)).p(x(τ2)|x(τ1)).p(x(τ1)), (207)

or

p(x(τ1),x(τ2),x(τ3)) = p(x(τ1),x(τ2))p(x(τ3)|x(τ1)).p(x(τ2)). (208)

Generally, we have

p(x(τ1), . . .,x(τn)) = p(x(τ1))p(x(τ2)|x(τ1))p(x(τ3)|x(τ1),x(τ2))

. . . p(x(τn)|x(τ1), . . .,x(τn−1)). (209)
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Assume that τ1 < τ2 < .. .< τn. A r-component stochastic process x(τ) is called Markovian,

if for any k ∈ N,

p(x(τk)|x(τ1), . . .,x(τk−1)) = p(x(τk|x(τk−1)), (210)

is valid. This condition is usually framed as saying that Markovian process are memoryless,

since the conditional probabilities depend on the previous predecessor but not on the other

predecessors. In this case, for τ1 < τ2 < .. . < τn−1 < τn,

p(x(τ1), . . .,x(τn)) = p(x(τn)|x(τn−1)) . . . p(x(τ3)|x(τ2))p(x(τ2)|x(τ1)))p(x(τ1)). (211)

Thus, we conclude that for a Markovian process, the many-time probability densities are

determined by the one-time probability density p(x(τ)) and the two-time conditional prob-

ability density p(x(τ)|x(τ′)),τ′ ≤ τ, i.e. the transition probability (density).

Now if we integrate the three-time probability density p(x(τ1),x(τ2),x(τ3)) with respect

to x(τ2) along the reals, we obtain the two-time probability density (here, τ1 < τ2 < τ3),

Z

p(x(τ1), |x(τ2))p(x(τ2)|x(τ1))dx(τ2) = p(x(τ3)|x(τ1)). (212)

Now, representing both probability densities in the form of eq. (211) and dropping p(x(τ1)
we obtain the equation

Z Z

p(x(τ3)|x(τ2))p(x(τ2)|x(τ1))dx(τ2) = p(x(τ3|x(τ1)), (τ1 < τ2 < τ3). (213)

This is the Chapman-Kolgomorov-Smoluchowski (CKS) equation which is satisfied by the

transition probability densities. Denoting x(τ1) = x′′,x(τ2) = x′, we can write the transition

probability density p(x(τ2)|x(τ1)) as pτ2τ1
(x′,x′′). Then, the CKS equation yields for x =

x(τ3),x′ = x(τ2),x′′ = x(τ1), the equation

Z

pτ3τ2
(x|x′)pτ2τ1

(x′|x′′)dx′ = pτ3τ1
(x|x′′). (214)

Let us introduce the conditional probability characteristic function of increments 4x =

x−x′ = x(τ3)−x(τ2), as the Fourier transform of pτ3τ2
(x|x′):

Ξτ3τ2
(iu|x′) =

Z

exp(−iu(x−x′))pτ3τ2
(x|x′)dx, (215)

where u4x = ∑r
α=1 uα4xα. Using the inverse Fourier transform we can express the transi-

tion probability density pτ3τ2
(x|x′) in terms of the characteristic function

pτ3τ2
(x|x′) = (2π)−r

Z

exp[−iu(x−x′)]Ξτ3τ2
(iu|x′′)du. (216)

Inserting this into the CKS equation we get

(2π)−r

Z

exp[−iu(x−x′)]Ξτ3τ2
(iu|x′)pτ2τ1

(x′|x′′)dudx′ = pτ3τ1
(x|x′′). (217)

This last equation is easily seen to be equal to

(2π)−r

Z

exp[−iu(x−x′)]Ξτ3τ2

(
− ∂

∂x′
|x′

)
pτ2τ1

(x′|x′′)dudx′ = pτ3τ1
(x|x′′). (218)
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We integrate this last equation with respect to u by applying the integral representation of

the delta function

(2π)−r

Z +∞

−∞
exp(iuz)du = δ(z) ≡ δ(z1) . . .δ(zr). (219)

Then, we have

Z

Ξτ3τ2
(− ∂

∂x′
|x′)δ(x−x′)pτ2τ1

(x′|x′′)dudx′ = pτ3τ1
(x|x′′). (220)

This integration trivially yields the CKS characteristic function equation

N∂,xΞτ3τ2

(
− ∂

∂x′
|x

)
pτ3τ1

(x|x′′) = pτ3τ1
(x|x′′). (221)

The last inserted symbol, N∂,x, indicates that the differentiation is done after multiplication

by functions of x of the transition density has been carried out on the right. CKS and eq.

(221) are equivalent. Using now the Taylor expansion of the characteristic function given

by eqs. (199,200), we obtain the following form of the CKS equation

pτ3τ1
(x|x′′) =

∞

∑
m=1

(−1)m

m!

r

∑
α1,...,αm=1

∂m

∂xα1 . . .∂xαm
[< 4xα1

. . .4xαm
>x pτ2τ1

(x|x′′)]

+ pτ2τ1
(x|x′′). (222)

Here the subscript x shows that the moments are in fact conditional, i.e. they are taken at

fixed valued of x = x(τ2).

Let τ = τ3 −τ2 > 0. We write the CKS characteristic function equation in the form

τ−1[pτ3τ1
(x,x′′)− pτ2τ1

(x|x′′)] = τ−1[N∂,xΞτ3τ2
(− ∂

∂x
|x)−1]pτ2τ1

(x|x′′). (223)

If we let τ tend to 0 in this equation, provided the limit

Φτ2
(v,x) = limτ→0

Ξτ2+τ(v|x)−1

τ
, (224)

exists, we obtain the equation

∂pτ2τ1

∂τ2

(x|x′′) = N∂,xΦτ2
(− ∂

∂x
,x)pτ2τ1

(x|x′′). (225)

This is the master equation. The initial condition for the master equation is

pτ2τ1
(x|x′′) = δ(x−x′′), for τ2 = τ1. (226)

Therefore, if the function Φτ(v,x) is known, one can find the transition densities as the

fundamental solution of the master equation. This function is called the Markov generator

function.

Thus we see that the operator Lτ = N∂,xΦτ(− ∂
∂x

,x) defines the statistics of the Markov

process. This operator is called the Markov operator, or still, the differential operator or
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the infitesimal generator of the Markov process. This is the fundamental structure for the

construction of the Markov process. Yet, we must stress as presented here, has the most

serious problem of being non-covariant, thus the physical interpretations of the terms of

this operator is unclear unless we promote this operator to a covariant form defined by

geometrical constructions. This will turn to be the case in the restricted form of the master

equation defined up to second-order derivatives, and then the differential operator turns to

be the Laplacian operator of a geometry with trace-torsion, and viceversa, this geometry is

determined by the one-time transition densities. Let us analyze this further.

Multiplying the master equation by pτ1
(x) = p(x(τ1)), and further integrating with re-

spect to x′′ = x(τ1), we find that the one-time probability density

∂pτ(x)

∂τ
= N∂,xΦτ(−

∂

∂x
,x)pτ(x). (227)

The previous process of taking the limit with τ → 0 can also be carried out for pτ(x). Then,

the master equation takes the form

∂pτ(x)

∂τ
=

∞

∑
r=1

(−1)r

r!

r

∑
α1...αm=1

∂m

∂xα1
. . .∂xαm

[Λα1...αm(x)pτ(x)], (228)

where

Λα1...αm(x) = limτ→0 < 4xα1
. . .4xαm

>x . (229)

The Markov generator function Φ(v,x) and the coefficients Λ... defined in (229), are re-

lated by

Φ(v,x) =
∞

∑
m=1

∑
α1...αm

Λα1...αm(x)vα1
. . .vαm

, (230)

if this series converges. In this case the identity is called the Kramers-Moyal equation. The

functions Λ... determine the statistics of the process, and are called the coefficients of the

master equation, or still, the coefficient functions.

In this article we shall focuse our attention in the case that only the coefficients

Λα(x),Λαβ(x) are the only ones not vanishing identically. This is the case of the Fokker-

Planck operator and ultimately, the case of a geometry defined by a Riemann-Cartan-Weyl

geometry, with a metric and a trace-torsion as defined above as the trace of the torsion

tensor. Thus, the Fokker-Planck equation is

∂pτ(x)

∂τ
= − ∂

∂xα
[Λα(x)pτ(x)+

1

2

∂2

∂xα∂xβ
[Λαβ(x)pτ(x)]. (231)

We confront this non-covariant form of the Fokker-Planck equation with the form

∂pτ(x)

∂τ
= −divg[b(x)pτ(x)]+

1

2
divg[gradg pτ(x)] (232)

where b(x) = bα(x) ∂
∂xα is the drift vectorfield which is related to the trace-torsion one-form

Q = Qαdxα by

bα = gαβQβ(x). (233)
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Furthermore, divg is the metric divergence operator defined by

divg(X) =
1

det(g)
1
2

∂det(g)
1
2 Xβ

∂xβ
, (234)

for any vectorfield X = Xβ ∂
∂xβ , and for a function f (say of class C2) gradg f = gαβ ∂ f

∂xβ
∂

∂xα ,

so that the second-order term

1

2
divg[gradg pτ(x)] =

1

2
4g pτ(x), (235)

is the action of the invariant second-order geometrical Laplace-Beltrami operator defined

by the metric g, while the first-order term is also geometrical and invariant defined by the

first divergence term in which the drift-torsion b(x) is present. For simplicity, instead of

rewriting the previous deductions using the invariant volume element det(g)
1
2 dx1 ∧ . . .∧

dxn defined by the metric, we shall rescale the metric gαβ , if necessary (this rescaling is

tantamount to rescale the diffusion constant, thus of no fundamental significance), with a

factor det(g)
1
2 , so that we can set this latter term equal to 1 and thus

Λαβ = gαβ,∀α,β, (236)

and we also have

Λα = bα ≡ gαβQβ,∀α. (237)

Therefore, we can conclude relating the master equation to a RCW laplacian operator.

Indeed, with g,Q related by eqs. (233), takes the form

∂pτ(x)

∂τ
= −divg[b(x)pτ(x)]+

1

2
4g pτ(x). (238)

In this case the Fokker-Planck operator is defined by a geometric structure; in fact, it is the

adjoint

H0(g,Q)†pτ(x) =
1

2
4g pτ(x)−divg

[
bα(x)

∂pτ(x)

∂xα

]
, (239)

of the Laplacian operator H0(g,Q) defined by a Riemann-Cartan-Weyl connection defined

by a metric g and a trace-torsion one-form Q. In this case the statistics of the system is

completely determined by the geometry, and viceversa, the statistics of the system define

this geometry completely. Thus we have turned eq. (231) into a geometric-derived equation

with right hand side given in eq. (239).

16. The Canonical Representation of the Markov Function

We would like to discuss further the diffusion processes and their geometry in the more

general framework of Markov processes. We start by introducing the notion of infinite

divisible probability densities.
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16.1. Infinite Divisible Probability Densities

We start with the case of random variables, i.e. for unidimensional processes to give the

decomposition for vector-valued processes. Let ξ be a random variable and p(ξ) its prob-

ability density. Then, ξ is called infinite-divisible, if there exists a sequence of random

variables η j, j ∈ {1, . . .,n}, with n arbitrary large, all having the same probability density

pn(η), such that

ξ = η1 + . . .+ηn. (240)

Let

Ξ(iu) =

Z

exp(iuξ)p(ξ)dξ, (241)

and

Ξn(iu) =

Z

exp(iuξ)pn(ξ)dξ, (242)

the characteristic functions. Recalling the basic property that the characteristic function of

statistically independent random variables equals the product of the characteristic functions

of each variable, and further, since the variables have the same probability density and thus

the same characteristic function Ξn, we conclude that the characteristic value of the sum ξ

is equal to the power n of the characteristic function Ξn(iu), i.e.

Ξ(iu) = [Ξn(iu)]n. (243)

This means that the condition of infinite divisibility of pξ reduces to the fact that [Ξ(iu)]
1
n is

the characteristic function of a random variable, or equivalently, the inverse of the Fourier

transform of [Ξ(iu)]
1
n is a probability density, i.e.

pn(η) = (2π)−1

Z

exp(−iuη)[Ξ(iu)]
1
n du. (244)

Thus, pη is non-negative and normalized. Indeed, we have

Z

pn(η)dη =

Z

(2π)−1

Z

dηexp(−iuη)[Ξ(iu)]
1
n

=

Z

δ(u)[Ξ(iu)]
1
n du = [Ξ(0)]

1
n = 1. (245)

Therefore, we have proved tht pη is normalized. Yet, it is known [24], that a a probability

density, p(ξ) satisfying the condition,

Z

ξ2 p(ξ)dξ, (246)

is infinitely divisible if and only if the integral representation of its characteristic function

(the so called canonical fundamental representaton)

lnΞ(iu) = −iγu+

Z

[exp(iuz)−1− iuz]z−2H(z)dz, (247)

is valid. Here H(z) is a non-negative integrable function, which can have singularities of

the Dirac-delta type, and γ is a real constant.
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The previous result for a unidimensional random variable can be generalized to a vector-

valued random variable, ξ = (ξ1, . . .,ξn). In this case η,u and z are vectors (η1, . . .,ηn),u =

(u1, . . . ,un) and z = (z1, . . . , zn). So, uz = uαzα1 = u1z1 + . . .+unzn and z2 = (z1)
2 + . . .(zn)

2.

(Here we have adopted again the Einstein convention of repeated indices meaning sum on

all its possible values.)

Let us consider a stochastic process y(τ) = (y1(τ), . . .,yn(τ)) which we assume to be a

stationary process. We shall say that this process has independent increments if for any

instants such that τ1 < .. . < τn, the increments y(τ2)− y(τ1),y(τ3)− y(τ2), . . .,y(τn)−
y(τn−1), are statistically independent. It follows that for a stationary process with indepen-

dent increments, the probability density p(y(tau′)− y(τ)) is infinitely divisible, for τ′ > τ.

Indeed, if we set s = (τ′−τ)
n

, the increment can be represented as the sum of independent

increments

y(τ′)−y(τ) = [y(τ+ s)−y(τ)]+[y(τ+2s)−y(τ+ s)]+ . . .+[y(τ′)−y(τ′− s)], (248)

for arbitrary positive n. Note that these increments have the same probability density due to

the stationarity of the process. Therefore, if each summand has a finite second moment, the

condition for the representation of above is valid, i.e. the characteristic function given by

Ξτ(iu) =< exp(iu[y(τ+ t)−y(τ)] >= (249)

can be represented as

lnΞτ(iu) = iγτu+

Z

[exp(iuz)−1− iuz]z−2Hτ(z)dz, (250)

where Hτ(z) is a non-negative integrable function. This is the canonical representation

mentioned before [24].

Now, the condition of independence of increments, implies that the characteristic func-

tion satisfies

Ξτ1+τ2
(iu) = Ξτ1

(iu)+Ξτ2
(iu), (251)

which implies that lnΞτ(iu) is proportional to τ, which we write as

lnΞτ(iu) = τφ(iu). (252)

Comparison of eqs. (252) and (250) yields

γτ = γ1τ,Hτ(z) = H1(z)τ, (253)

where H1(z) is necessarily a non-negative integrable function.

The crucial fact is that a process with independent increments is a Markov process, yet

its characteristic function loses its dependence on y′ [24]. From eqs. (224) , after passing

to the limit we get

Φ(v) = φ(v), (254)

so that the master eq. (225) is

∂pτ(y|y′′)
∂τ

= φ(
∂

∂y
)pτ(y|y′′). (255)
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Then, in consideration of eq. (253) we can write

Φ(v) = φ(v) = (γ1)αvα +

Z +∞

−∞
[exp(vz)−1−vz]z−2H1(z)dz,Re(v) = 0. (256)

Further comparison with the Kramers-Moyal expansion (eq. (230)), yields

(γ1)α = Λα,∀α, (257)

and therefore,

Φ(v) = φ(v) = Λαvα +

Z +∞

−∞
[exp(vz)−1−vz]z−2H1(z)dz,Re(v) = 0. (258)

We can see clearly the drift term (see eq. (237)) in the first term of this canonical represen-

tation. This will be crucial to the sequel.

Of course, what matters here is the applicability of this representation to a gen-

eral stationary Markov process. In this case, the probability densities of the increments

y(τ′)− y(τ),τ′ > τ, are not strictly speaking infinitely divisible, unless we consider small

increments s = τ′− τ, in which case the infinite divisibility of the increments is valid [90].

This is also a crucial fact.

16.2. The Kinetic Potential and Its Image

In this section, we shall consider a stationary Markov process, B(τ) = (B1(τ), . . .,Bn(τ)),

which we may think as thermodynamic equilibrium fluctuations. This process is character-

ized by the coefficient functions

Λα1...αn = limτ→0
1

τ
< 4Bα1 . . .4Bαn >B, (259)

where

4B = B(τ1 +τ)−B(τ1),B = B(τ1). (260)

Henceforth we shall assume the previous limits to exist. Now we can deduce the following

estimation formulas for small τ > 0:

< 4Bα1 . . .4Bαn >B= Λα1...αn(B)τ+o(τ). (261)

We shall use next the formulas

< 4Bα1 ,4Bα2 >B=< 4Bα14Bα2 >B − < 4Bα1 >B< 4Bα2 >B, (262)

and

< 4Bα1,4Bα2 ,4Bα3 >B = −(3) < 4Bα1 ,4Bα2 >B< 4Bα3 >B

+ 2 < 4Bα1 >B< 4Bα2 >B< 4Bα3 >B

+ < 4Bα14Bα24Bα3 >B, (263)
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and higher-terms correlators, which are the inverse of the formulas in eqs. (201− 203).

Inserting eq. (260) into them we get

< 4Bα1 , . . .,4Bαn >B= Λα1...αn(B)τ+o(τ). (264)

Hence, the coefficients of the master equation can be also determined in terms of the corre-

lators

Λα1...αn(B) = limτ→0
1

τ
< 4Bα1 , . . . ,4Bαn >B . (265)

Now, if we assume that the equilibrium correlators have the polynomial form

< 4Bα1 , . . . ,4Bαn >B≈ kn−1,n ≥ 1 (266)

where k is the Boltzmann constant, then we conclude that

Λα1...αn(B) ≈ kn−1,n ≥ 1. (267)

Thus, the coefficients of the master equation and one-time equilibrium correlators have

identical orders of magnitude. We introduce the non-equilibrium kinetic potential V (y,B)
by the formula

Λα1...αn(B) = (kT )n−1
[ ∂nV(y,B)

∂yα1 . . .∂yαn

]
y=0

, n ≥ 1. (268)

with T the temperature. Thus defined, the kinetic potential is a macroscopic quantity just

like the free energy, i.e. itself and its derivatives with respect to both y and B are zero-th

order in k, i.e. they do not include k other than in product with some large parameter. Then,

using eq. (268) we can write the kinetic potential as the Taylor series expansion

V(y,B) =
∞

∑
n=1

1

m!
βm−1 ∑

α1...αn

Λα1...αn(B)yα1
. . .yαn

, where β =
1

kT
. (269)

Therefore, the Markov generating function and the kinetic potential are related by compar-

ing eqs. (258,269)

Φ(v,B) = βV (kTV,B), (270)

so that the following master equation

∂p(B)

∂τ
= N∂,BβV

(
−kT

∂

∂B
,B

)
p(B), (271)

is valid.

Let us introduce the free energy function F(B) by

peq(B) = exp(−βF(B)), (272)

i.e.

ψ2(B) = exp(−βF(B)). (273)
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We introduce the probability density

pz(b) = Cexp(−β[F(B)− z.B]). (274)

Here we have introduced hypothetical thermodynamic forces z = (zα) which couple to the

fluctuational processes B, through the internal product z.B = zαBα. Substituting (259) into

eq. (269), we obtain

V(y,B) = limτ→0

∞

∑
m=1

βm−1

m!
< (yα4Bα)m > =

1

β
limτ→0 < exp(βyα4Bα)−1 >B .

Let us compute the matrix of second derivatives of V :

Vαβ :=
∂2V(y,B)

∂yα∂yβ
= βlimτ→0

1

τ
< 4Bα4Bβ exp(βy4B) >B . (275)

let us prove that this matrix is positive definite: Vαβaαaβ ≥ 0, for any vector a = (aα).

Indeed, by eq. (276)

Vαβaαaβ = βlimτ→0

1

τ
< (4Bα)2 exp(βy4B) >B≥ 0. (276)

Consequently, V(y,B) is a convex function of y. From the convexity of V with respect

to y, we conclude that the kinetic potential of the fluctuations is non-negative:

Vfluc(y,B) := V(y,B)−Λα(B)yα =
∞

∑
m=2

βm−1

m!
Λα1...αn yα1

. . .yαn
≥ 0. (277)

We shall now proceed to introduce the image of the kinetic potential, R(y, z), which is

defined by

R(y, z) :=

Z

V (y,B)pz(B). (278)

Consider next the equilibrium density ρequil = ψ2, i.e. the time-independent solution of

the Fokker-Planck equation for a RCW geometry with trace-torsion given by 1
2
d lnρequil .

We naturally enquire what happens when we rescaled ρequil to pz. The obvious fact is

that the operator of multiplication by exp(βx.B) = exp(βxαBα) does not commute with ∂
∂B

.

Instead we have

exp(βz.B) f
( ∂

∂B

)
exp(βz.B). (279)

Then, we have

exp(βz.B)N∂BV

(
−kT

∂

∂B

)
= N∂BV

(
−kT

∂

∂B
+ z.B

)
exp(βz.B). (280)

Inserting this in the Fokker-Planck equation multiplied by exp(βx.B) and further integrating

with respect to B on all space, we find that all terms that have ∂
∂B

in the argument of V vanish.

Thus the integral that remains is

Z

V (z,B)exp(βz.B)ρequil(B)dB = 0, (281)
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i.e.

< V (x,B) >z= 0, with < f >z=

Z

f (B)ρequildB, (282)

or still,

R(z, z) = 0,∀z. (283)

Due to the smallness of the fluctuations of B, the probability density is concentrated

near its maximum point A(z). Therefore, from the definition of the image of the kinetic

potential, we obtain the approximate expression

R(y, z) = V(y,A(z))+O(k). (284)

This will have profound implications in the formulation of the non-linear Boltzmann H-

theorem. Substituting the eq. (259) in eq. (269) we get the expansion

R(y, z) =
∞

∑
m=1

βm−1

m!
κα1...αm(z)yα1

. . .yαm, (285)

where

κα1...αm(z) =

Z

Λα1...αm(B)ρz(B)dB. (286)

We note that from eqs.(269,278) we obtain the expression

κα1...αm(z) = limτ→0

1

τ
< 4Bα1 . . .4Bαm >z . (287)

Substituting eq. (264) into eq. (287) we obtain the formula analogous to eq. (275):

R(y, z) = kT limτ→0 < exp(βy.B)−1 >z . (288)

Analogously as the proof for the convexity of V , one can prove that R(y, z) is convex as

a function of the variable y, and Rfluc(y, z), the fluctuational part of R(y, z) defined by

Rfluc(y, z) = R(y, z)−καyα, (289)

verifies

Rfluc(y, z)≥ 0. (290)

It is immediate that the image of the kinetic potential admits the integral representation

derived from the canonical representation, given by

R(y, z) = κα(z)yα +

Z +∞

−∞
f (s)s−2G(s, z)ds, (291)

where

G(s, z) =

Z

H(kT s,B)ρz(B)dB. (292)
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17. The Geometry of the Non-linear H-Theorem

In this following we shall assume a fluctuational homogeneous Markov process described

by the stochastic Itô differential equation

dBτ = b(Bτ)dτ+σ(Bτ)dWτ, (293)

where the drift vector field b = bα ∂
∂xα has for components

b = gradlnψ+
1

ψ2
gαβ(δβ2 +ω1)β, (294)

which is the g-conjugate (i.e. bα = gαβQβ) to the differential one-form

Q = d lnψ+
1

ψ2
(δβ2 +ω1), (295)

and the noise tensor σ verifies that σσ† = g, where g is a positive-definite metric or

Minkowski. We recall that

Λα = bα, Λαβ = gαβ, ρequil = e−kF, (296)

where F is the free-energy function. We further have

κα(z) =< bα >z=

Z

bα(B)ψ2(B)exp(βz.B)dB. (297)

Assume that the means

Aα(τ) =< Bα
τ >, (298)

satisfy the non-linear fluctuation-dissipation equations

dAα

dτ
=< dBτ >= φα(A(τ)). (299)

Yet, since
d < Bτ >

dτ
=< dBτ >= b(Bτ), (300)

where the first identity follows from the Itô equation and the second identity follows from

eq. (293), the fluctuation-dissipation equations are

b(Bτ) = φ(A(τ)), where A(τ) =< Bτ > . (301)

It is remarkable that in this last form, the fluctuation-dissipation equations have no relations

with proper-time evolution of the fluctuation’s means.

Now from eq. (287) for any m ≥ 1 we get

< dBτ >z= κα(A). (302)

Yet, since pz(B) has a maximum at A(z), we have that

< dBα
τ >z=< φα(A) >z= φα(A(z)), (303)
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and therefore, the fluctuation-dissipation equations assume the form

dAα

dτ
= φα(A(z)) = κα(z(A)). (304)

Finally, rewriting the non-evolutionary form eq. (302) of the fluctuation-dissipation equa-

tions we finally obtain

bα(Bτ) = κα(z). (305)

The relation between z and A is that the variables z are assumed to be thermodynamic

forces conjugate to A, i.e.

z = ∇AF =
∂F(A)

∂A
, (306)

where since F is a scalar field, then the gradient ∇ defining the thermodynamic forces can be

either the usual partial derivative or the covariant derivative either with respect to the metric

(the Levi-Civita covariant derivative) or with respect to the full connection with torsion

given by the g-conjugate of b, so in the definition of z we can neglect the self-interaction

with the geometry of the Markov process. Therefore, from eq. (302) we conclude that

R(z, z) = zακα(z)+Rfluc(z, z) = 0, (307)

then, from eq. (290) we conclude that

zακα(z) = −Rfluc(z, z)≤ −R(y, z)≤ 0, (308)

so that

zακα(z) ≤ 0. (309)

From eqs. (299,309) and the chain rule for derivative, follows that

dF(A)

dτ
=

∂F(A)

∂A

dA

dτ
= zα

dAα

dτ
= zακα(z)≤ 0. (310)

Therefore,
dF(A)

dτ
≤ 0, (311)

which from eqs. (273,298) can be further written in terms of the torsion-drift as

−β
d lnψ2(< Bτ >)

dτ
≤ 0. (312)

From eqs. (311,287,289) it follows that the derivative with respect to proper-time of the

free energy
dF(A)

dτ
= −kT limτ→0

1

τ
< f (βx.B) >z, (313)

with f (h) = exp(h)−h−1 > 0 for h 6= 0, is strictly negative:

dF(A)

dτ
< 0, (314)
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and, by the first identity in eq. (310) and further using eqs. (299,300), it vanishes in the

case that
dA

dτ
=< dBτ >= b(Bτ) = 0, (315)

that is, it vanishes whenever the torsion-drift vectorfield along the random trajectories van-

ishes, or more generally, whenever b or still, if the metric g has no zeros, when the torsion

one-form Q does vanish, due to eq. (238).

Therefore, the production of free energy, as a function of the averages A, strictly de-

creases whenever b or still Q does not vanish. In the particular case of four-dimensional

spacetime, the previous condition establishes the existance of the Pfaffian sequence given

by the differential forms {Q,dQ,Q∧dQ,dQ∧dQ} and topological torsion can be associ-

ated and the topological dimension of four-dimensional spacetime domains where entropy

decreases can be introduced. Thus, we conclude that the increase of the entropy for an

isothermal process, −1
T

F, is produced by the non-vanishing torsion, and the stationary en-

tropy state is linked with a systemic syntropic action introduced by geometrical structures

and processes associated to this null torsion. Of special interest is the case of identifica-

tion of the origin and the point at infinity in the complex plane (and thus introducing the

one-point compactification of this plane), when considering quantum jumps [76] produced

by the zeros of ψ which produces a trace-torsion one-form d lnψ, with ψ either a complex

or quaternionic-valued function on a Lorentzian manifold (i.e. provided with a degenerate

metric g, say Minkowski metric) satisfying a wave propagation equation with respect to the

Laplace-Beltrami operator 4g, i.e.

4gψ = 0, where 4g = divggradg (316)

and the non-linear eikonal equation for light-rays

g(dψ,dψ) ≡ (∇ψ)2 = 0. (317)

Furthermore, we have seen that the fluctuation-dissipation equation, which we finally write

in the form

b(Bτ) = κ
(∂F

∂A

)
, with A =< Bτ >, (318)

relates the torsion-drift evaluated along the stochastic flow equals its average with respect to

the weighted density pz, with z = ∂F
∂A

, i.e., one has to rescale the equilibrium density by the

thermodynamic force produced by variation of the free energy defined by the equilibrium

measure along the averaged stochastic flow further coupled to the stochastic flow. Thus,

the fluctuation-dissipation equations appear as non-evolutionary, the time-τ-derivative does

not appear at all in them, and furthermore, the future equilibrium states determine them in

the sense already seen. The final equilibrium state of the fluctuations defined by the torsion

geometry, is necessary for their formulation, in addition of the integral of the stochastic

flow. Thus the history of the system given by the integration of the fluctuational process

(i.e. Bτ) and the final conditions are fundamental to the growth of the entropy. Therefore, the

time arrow associated to this entropy growth is produced by the final -stationary- conditions

and its associated non-null torsion. We have modified for this the equilibrium density, i.e.

modified the final state of the system by a density which incorporates the coupling of the
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stochastic flow to the thermodynamic forces given by the variation of the free energy defined

by the equilibrium state with respect to the average of this same flow. In the case of a linear

reversible drift vector field (i.e. one in which the electromagnetic terms are completely null,

and one is only left with the gradient of the equilibrium density), this rescaling is almost

completely tautological. This will be the subject of the next section.

18. Detailed Balance and the Onsager Reciprocity Relations of

Linear Non-equilibrium Statistical Mechanics

We have seen that by rescaling the torsion geometrical structure in the non-linear case by

introducing thermodynamical forces leads to the increase of entropy as long as the torsion

one-form (which may include electromagnetic like components) does not vanish.

In this section, we shall show that as a consequence of assuming that the torsion is linear

(be that for a torsion geometry defined on spacetime or thermodyamical state-space), the

rescaling can be obviated since the local thermodynamical forces are represented, in this

linear case, by the linear torsion itself. In other words, if the torsion is linear, this already

establishes a time arrow without rescaling by thermodynamic forces, which are now linear

as well by the said identification with the torsion, in this linear case.

This is precisely the case of the Ornstein-Uhlenbeck process [21, 90], also called the

harmonic oscillator process. This process has a an equilibrium measure ρ = ψ2 with ψ

given by a (zero-mean) Gaussian function, and a constant metric and diffusion tensor as

well.

Assume the components Qα(x) of the trace-torsion are linear functions of x, i.e.

Qα(x) = Cαβxβ, with Cαβ = constant, ∀α,β, (319)

and metric

gαβ(x) = Bαβ = constant, ∀α,β. (320)

The Markov process is described then by the linear Itô stochastic differential equation

dBτ = CBτ +DdWτ, (321)

where C = (Cαβ) and D is a matrix with constant entries such that

DD† = B. (322)

The detailed balance equations are

(εαεβCαβ +Cαβ)xβ =
∂ lnρequil(x)

∂xα
, (323)

and

εαεβBαβ = Bαβ. (324)

The first condition implies that ρequil(x) is a Gaussian function, since d lnψ is assumed to

be linear on x, and still, since eq. (323) does not contain an extra constant coefficient, then

the Gaussian is of zero mean, i.e.

ρequil = ψ2(x) = exp
(−1

2
x†σ̃−1x

)
. (325)
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After rearranging and using the symmetry of σ̃, the stationary Fokker-Planck equation

yields

−Cαα −
1

2
Bαβσ̃−1

αβ +
(

σ̃−1
καCαβ +

1

2
σ̃−1

κα Bαγσ̃
−1
γβ

)
xκxβ = 0. (326)

Yet, the quadratic term given by the sum of the second and third terms in eq. (326) vanishes

if the symmetric part of its coefficient is zero. We may write this condition in matrix form

as

σ̃−1C +C†σ̃−1 = −σ̃−1Bσ̃−1, (327)

or still,

Cσ̃+ σ̃C† = −B. (328)

Thus, if this is the case, from eq. (326) we have that

Cαα = 0,∀α. (329)

Let us introduce now the square matrix ε = diag(ε1,ε2, . . .), with εi = ±1, i = 1, . . .,n.

Thus

ε2 = I, (330)

the identity matrix. Then, the detailed balance conditions can be rewritten as

εCε+C = −Bσ̃−1, (331)

and

εBε = B. (332)

Yet, detailed balance further requires that

εσ̃ = σ̃ε. (333)

Multiplying eq. (328) by σ̃ takes the form

Cσ̃+ σ̃C = −B (334)

and then

εCεσ̃ = σ̃C†, (335)

which with eq. (328) finally yields

ε(Cσ̃) = (Cσ̃)†ε. (336)

These are the reknown Onsager fluctuation-dissipation equations of linear non-equilibrium

statistical mechanics [21,58,64]. Since C is the linear coefficient matrix of the trace-torsion,

and σ̃ is the symmetric matrix defining the torsion-drift of the equilibrium density, we note

that they deal with torsion. In fact, the interpretation with respect to a fluctuation-dissipation

can be better understood by introducing a force given by minus the torsion-drift vectorfield

corresponding to the Gaussian function ρequil(x) = ψ2 = exp(−1
2

x†σ̃x), i.e., we take

F(x) = −grad lnρ = σ̃−1x. (337)
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Here, F(x) is the free energy of the system.

The fluctuation-dissipation relations are the phenomenological equations

d < x >

dτ
= φ(< x >). (338)

Whenever φ is an arbitrary function, then we are in the case of a non-linear fluctuation-

dissipation relation, while the particular case of a linear function, φ, yields the linear

fluctuation-dissipation eq. (336).

In the case of the Ornstein-Uhlenbeck process,

φ(< x >) ≡ b(< x >) = C < x >, (339)

which is equal to

Cσ̃F(< x >) = LF(< x >), where L = Cσ̃. (340)

Note thus that this is defined entirely in terms of the coefficients entering the definition of

the torsion. To resume, if the fluctuation-dissipation is such that the fluxes d<x>
dτ are related

linearly to the torsion-forces F(< x >) = −1
2 gradlnρequil by a matrix L defined by

F = Lσ̃, (341)

i.e.
d < x >

dτ
= F(< x >) = L < x >, (342)

then, the fluctuation-dissipation relation given by eq. (336) yields

εLε = L†, (343)

or,

Lαβ = Lαβ, (344)

in case that εα,εβ have the same sign, and instead

Lαβ = −Lβα, (345)

in case that εα,εβ are of the different sign. These are the Onsager reciprocity relations

written in their usual form. Notice also that

εBε = B, (346)

and

εσ̃ε = σ̃, (347)

which imply that Bαβ and σ̃αβ vanish if εα and εβ have opposite signs. Note that the former

means the vanishing of the metric, while the latter the vanishing of the drift, and thus in the

case that there is a time-reversal (the opposite signs of ε), the torsion does indeed vanish and

thus the entropy does not grow. In the present case of the Uhlenbeck-Orstein process, the

irreversible components of the trace torsion are by assumption inexistent, so that detailed

balance is present. Notwithstanding this, the reversible components of the trace-torsion give

the linear fluctuation-dissipation relations of linear non-equilibrium statistical mechanics,

and still, when we have a change of sign due to detailed balance, the entropic reversibility

is guaranteed at the origin x = 0 or in the zeros of σ̃, the phase factor of ψ2.
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Observations. The conclusions that we have reached above, namely that the growth of the

entropy is related to non-zero drift (which we recall arises as the g-conjugate of the trace-

torsion, bα = gαβQβ), and that this is the origin of the time-arrow, were derived first in [66].

These conclusions stand in deep contrast with the tenants that stemmed from Prigogine’s

pioneering work in linear non-equilibrium thermodynamics, in which the the growth of the

entropy is related to “internal” fluctuations of the system which are unrelated in that work

to geometrical structures [64], and unconnected to scales in Nature. Indeed, what makes the

fluctuations “internal” microscopic and the macroscopic character of the system are the pre-

cision of scales in which “microscopic” and “macroscopic” become defined. The non-linear

theory due to Stratonovich stems from similar notions and arise from hamiltonians that are

the natural structure of conservative systems [90], yet we have kept his constructions -yet

not only circumscribed to state space but yet extended to spacetime itself. Further, our con-

structions do not start as in the usual approaches from hamiltonians but from geometrical

constructs. Furthermore, it has been proved that the action of dissipative systems drive to

non-equilibrium originally equilibrium systems representable by a hamiltonian in such a

way that the Gibbs entropy diverges to minus infinity, rather than growing nor becoming

stationary,the latter case we proved to be produced by the vanishing of the drift vector field

b derived from the torsion Q acted by the metric g(which, we recall, represents the covari-

ance of the fluctuations, since bα = gαβQβ = ΛαβQβ, from eqs. (237,238)). Thus we are

lead to query how is it that in the present approach we can have an actual reduction of en-

tropy. The answer to this was provided by Stratonovich, by noting that in the case in which

there is no heat exchange between the system and its environment so that the entropy of the

averages, S(A(τ)) where A(τ) =< B(τ >) , must not decrease as we saw already, whilst the

random entropy, S(Bτ) can fluctuate and decrease by a quantity of the order k; see page 44

in Stratonovich [90]. In the case studied by Evans and Lamberti [16, 93], the equilibrium

system does dissipate heat through the boundaries by the action of forces that drives it to a

non-equilibrium state, yet while the Gibbs entropy of the non-equilibrium system decreases

to minus infinity, the Gibbs entropy of the whole system, the non-equilibrium driven system

and the environment, remains constant. So in this case we see a similar situation than the

one envisaged by Stratonovich: while the microscopic system reduces the entropy, the total

entropy of the macroscopic system complies with the second law. This requires, at least,

two scales, defining micro and macro. In our approach we have also turned to the aver-

ages A(τ) =< B(τ) > and the fluctuation-dissipation relations are non-evolutionary and the

second-law of thermodynamics applies to the averages while the entropy of the fluctuations

can decrease initiating thus a syntropic process which already when the entropy of the aver-

ages becomes stationary and in the case of dimension equal to 4 we are lead to hamiltonian

systems [33] whenever the drift b vanishes. Yet, the derivation of the non-linear H-theorem

has relied in the fact that the evolution of the means,
d<B(τ)>

dτ ≡ dA(τ)
dτ is equal to b(B(τ)) (

where the first identity follows from the Ito formula [21,30,46] and the second identity fol-

lows from eq. (300)). To recapitulate, we have abandoned the continuous non-differentiable

fluctuations to consider their averages to study their evolution and the non-decrease of the

entropy, to find that there is no real time-evolution since the time-derivative of the averages

of the fluctuations is coded into the drift along the fluctuations yet without taking their av-

erages So there is no time-evolution at all with respect to the averages of the fluctuations,

and no time-arrow associated to the growth of the entropy arises unless one abandons the
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fluctuations and goes to their averages, and yet the information that defines the time arrow

is coded by the drift along the fluctuations, the term b(B(τ)). In the other hand the random

entropy S(B(τ)) defined by the fluctuations (i.e. without considering their averages) can be

negative and still the second law of thermodynamics is valid.
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Abstract

A family A of sets is said to be t-intersecting if any two sets in A have at least

t common elements. A central problem in extremal set theory is to determine the

size or structure of a largest t-intersecting sub-family of a given family F . We give a

survey of known results, conjectures and open problems for various important families

F , namely, power sets, levels of power sets, hereditary families, families of signed

sets, families of labeled sets, and families of permutations. We also provide some

extensions and consequences of known results.

1. Introduction

Unless otherwise stated, we shall use small letters such as x to denote elements of a set or

non-negative integers or functions, capital letters such as X to denote sets, and calligraphic

letters such as F to denote families (i.e. sets whose elements are sets themselves). It is to

be assumed that arbitrary sets and families are finite. We call a set A an r-element set, or

simply an r-set, if its size |A| is r (i.e. if it contains exactly r elements). A family is said to

be uniform if all its sets are of the same size.

The set {1,2, . . .} of positive integers is denoted by N. For m,n ∈N with m ≤ n, the set

{i ∈N : m ≤ i ≤ n} is denoted by [m,n], and if m = 1 then we also write [n]. For a set X , the

power set {A : A ⊆ X} of X is denoted by 2X , and the uniform sub-family {Y ⊆ X : |Y |= r}
of 2X is denoted by

(

X
r

)

.

For a family F of sets, we denote the union of all sets in F by U(F ) and we denote the

size of a largest set in F by α(F ). For an integer r ≥ 0, we denote the uniform sub-family

{F ∈ F : |F| = r} of F by F (r) (note that F (r) =
(

X
r

)

if F = 2X ), and we call F (r) the r’th

level of F . For a set S, we denote {F ∈ F : S ⊆ F} by F (S). We may abbreviate F ({x})
to F (x). If x ∈ U(F ) then we call F (x) a star of F . More generally, if T is a t-element

subset of a set in F , then we call F (T ) a t-star of F .

A family A is said to be intersecting if A∩B 6= /0 for any A,B ∈ A . More generally, A
is said to be t-intersecting if |A∩B| ≥ t for any A,B ∈ A . So an intersecting family is a 1-

intersecting family. A t-intersecting family A is said to be trivial if |
T

A∈A A| ≥ t (i.e. there

∗E-mail address: p.borg.02@cantab.net
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are at least t elements common to all the sets in A); otherwise, A is said to be non-trivial.

So a t-star of a family F is a trivial t-intersecting sub-family of F that is not contained in

any other. If there exists a t-set T such that F (T ) is a largest t-intersecting sub-family of

F (i.e. no t-intersecting sub-family of F has more sets than F (T)), then we say that F has

the t-star property at T , or we simply say that F has the t-star property. If either F has

no t-intersecting sub-families (which is the case if and only if α(F ) < t) or all the largest

t-intersecting sub-families of F are t-stars, then we say that F has the strict t-star property.

We may abbreviate ‘1-star property’ to ‘star property’.

Extremal set theory is the study of how small or how large a system of sets can be under

certain conditions. In this paper we are concerned with the following natural and central

problem in this field.

Problem: Given a family F and an integer t ≥ 1, determine the size or structure of a largest

t-intersecting sub-family of F .

We provide a survey of results that answer this question for families that are of particular

importance, and we also point out open problems and conjectures. The survey papers [25]

and [32] cover a few of the results we mention here and also go into many variations of the

above problem; however, much progress has been made since their publication. Here we

cover many of the important results that have been established to date, restricting ourselves

to the problem stated above.

The most obvious families to consider are the power set 2[n] and the uniform sub-family
(

[n]
r

)

, and in fact the problem for these families has been solved completely. However, there

are other important families on which much progress has been made, and there are others

that are still subject to much investigation. The families defined below are perhaps the ones

that have received most attention and that we will be concerned with.

Hereditary families: A family H is said to be a hereditary family (also called an ideal or

a downset) if all the subsets of any set in H are in H . Clearly a family is hereditary if and

only if it is a union of power sets. A base of H is a set in H that is not a subset of any other

set in H . So a hereditary family is the union of power sets of its bases. An example of a

hereditary family is the family of independent sets of a graph or matroid.

Families of signed sets: Let X be an r-set {x1, . . . ,xr}. Let y1, . . . ,yr ∈ N. We call the

set {(x1,y1), . . . , (xr,yr)} a k-signed r-set if max{yi : i ∈ [r]} ≤ k. For an integer k ≥ 2 we

define SX,k to be the family of k-signed r-sets given by

SX,k := {{(x1,y1), . . . , (xr,yr)} : y1, . . .,yr ∈ [k]}.

So a set A is a member of SX,k if and only if it is a subset of the Cartesian product X × [k] :=
{(x,y) : x ∈ X ,y ∈ [k]} satisfying |A∩ ({x}× [k])|= 1 for all x ∈ X . We shall set S /0,k := /0.

With a slight abuse of notation, for a family F we define

SF ,k :=
[

F∈F

SF,k.

Families of labeled sets: For k := (k1, . . . ,kn) with k1, . . . ,kn ∈ N and k1 ≤ ·· · ≤ kn, we

define the family Lk of labeled n-sets by

Lk := {{(1,y1), . . ., (n,yn)} : yi ∈ [ki] for each i ∈ [n]}.
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Note that S[n],k = L(k1,...,kn) with k1 = · · ·= kn = k.

An equivalent formulation for Lk is the Cartesian product [k1] × ·· · × [kn] :=
{(y1, . . . ,yn) : yi ∈ [ki] for each i ∈ [n]}, but it is more convenient to work with n-sets than

work with n-tuples (the alternative formulation demands that we change the setting of fam-

ilies of sets to one of sets of n-tuples).

For any r ∈ [n], we define

Lk,r :=

{

{(x1,yx1
), . . . , (xr,yxr

)} : {x1, . . .,xr} ∈

(

[n]

r

)

, yxi
∈ [kxi

] for each i ∈ [r]

}

,

and we set Lk,0 = /0. Thus, for any 0 ≤ r ≤ n, Lk,r is the family of r-element subsets of the

sets in Lk, and Lk,n = Lk. We also define Lk,≤r :=
Sr

i=0 Lk,i.

Families of permutations: For an r-set X := {x1, . . . ,xr}, we define S ∗
X,k to be the special

sub-family of SX,k given by

S ∗
X,k := {{(x1,y1), . . ., (xr,yr)} : y1, . . . ,yr are distinct elements of [k]} .

Note that S ∗
X,k 6= /0 if and only if r ≤ k. With a slight abuse of notation, for a family F we

define S ∗
F ,k to be the special sub-family of SF ,k given by

S ∗
F ,k :=

[

F∈F

S ∗
F,k.

An r-partial permutation of a set N is a pair (A, f ) where A ∈
(

N
r

)

and f : A → N is an

injection. An |N|-partial permutation of N is simply called a permutation of N. Clearly,

the family of permutations of [n] can be re-formulated as S ∗
[n],n, and the family of r-partial

permutations of [n] can be re-formulated as S ∗

([n]
r ),n

.

Let X be as above. S ∗
X,k can be interpreted as the family of permutations of sets

in
([k]

r

)

: consider the bijection β : S ∗
X,k → {(A, f ) : A ∈

([k]
r

)

, f : A → A is a bijection} de-

fined by β({(x1,a1), . . ., (xr,ar)}) := ({a1, . . . ,ar}, f ) where, for b1 < · · · < br such that

{b1, . . . ,br} = {a1, . . .,ar}, f (bi) := ai for i = 1, . . . , r. S ∗
X,k can also be interpreted as the

sub-family X := {(A, f ) : A ∈
(

[k]
r

)

, f : A → [r] is a bijection} of the family of r-partial per-

mutations of [k]: consider an obvious bijection from S ∗
X,k to S ∗

([k]
r ),r

and another one from

S ∗

([k]
r ),r

to X .

2. Intersecting Sub-Families of
([n]

r

)

and 2[n]

In this section we take t, r and n to be positive integers such that t ≤ r ≤ n.

The study of intersecting families took off with the publication of [28], which features

the following classical result, known as the Erdős-Ko-Rado (EKR) Theorem.

Theorem 2.1 (EKR Theorem [28]). If r ≤ n/2 and A is an intersecting sub-family of
(

[n]
r

)

,

then |A | ≤
(

n−1
r−1

)

.
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This means that for r ≤ n/2,
(

[n]
r

)

has the star property, because the bound
(

n−1
r−1

)

is the

size of any star of
([n]

r

)

. Note that if r > n/2, then any two r-element subsets of [n] must

intersect, and hence
(

[n]
r

)

is an intersecting family (also note it is a non-trivial one, so
(

[n]
r

)

does not have the star property in this case).

In order to prove Theorem 2.1, Erdős, Ko and Rado [28] introduced a method known

as compression or shifting; see [32] for a survey on the uses of this powerful technique in

extremal set theory. There are various proofs of Theorem 2.1, two of which are particularly

short and beautiful: Katona’s proof [40], which featured an elegant argument known as

the cycle method, and Daykin’s proof [22] using another fundamental result known as the

Kruskal-Katona Theorem [41, 44]. Hilton and Milner [37] proved that for r ≤ n/2, the

family Nn,r :=
{

A ∈
(

[n]
r

)

: 1 ∈ A, A∩ [2, r +1] 6= /0
}

∪ {[2, r + 1]} is a largest non-trivial

intersecting sub-family of
([n]

r

)

, and since the size of Nn,r is
(

n−1
r−1

)

−
(

n−r−1
r−1

)

+1, it follows

that if r < n/2, then the stars of
(

[n]
r

)

are the largest intersecting sub-families of
(

[n]
r

)

, i.e.
(

[n]
r

)

has the strict star property. Note that if r = n/2, then any sub-family A of
([n]

r

)

satisfying

|A ∩{A, [2r]\A}|= 1 for all A ∈
([n]

r

)

is an intersecting sub-family of
([n]

r

)

of size 1
2

(

n
r

)

=
1
2

(

2r
r

)

=
(

2r−1
r−1

)

, and hence one of maximum size (an example of such a family A is N2r,r,

so
(

[n]
r

)

does not have the strict star property if r = n/2).

Also in [28], Erdős, Ko and Rado initiated the study of t-intersecting families. They

proved that for t < r, there exists an integer n0(r, t) such that for all n ≥ n0(r, t), the

largest t-intersecting sub-families of
(

[n]
r

)

are the t-stars (which are of size
(

n−t
r−t

)

). For

t ≥ 15, Frankl [31] showed that the smallest such n0(r, t) is (r − t + 1)(t + 1) + 1 and

that if n = (r − t + 1)(t + 1), then
(

[n]
r

)

still has the t-star property but not the strict t-

star property. Subsequently, using algebraic means, Wilson [58] proved that
(

[n]
r

)

has the

t-star property for any t and n ≥ (r − t + 1)(t + 1). Frankl [31] conjectured that among

the largest t-intersecting sub-families of
(

[n]
r

)

there is always at least one of the fami-

lies
{

A ∈
([n]

r

)

: |A∩ [t +2i]| ≥ t + i
}

, i = 0,1, . . ., r− t. A remarkable proof of this long-

standing conjecture together with a complete characterisation of the extremal structures was

finally obtained by Ahlswede and Khachatrian [1] by means of the compression technique

introduced in [28].

Theorem 2.2 ( [1]). Let A be a largest t-intersecting sub-family of
([n]

r

)

.

(i) If (r − t + 1)(2 + t−1
i+1

) < n < (r − t + 1)(2 + t−1
i

) for some i ∈ {0} ∪N - where, by

convention, (t−1)/i = ∞ if i = 0 - then A = {A∈
([n]

r

)

: |A∩X | ≥ t + i} for some X ∈
( [n]

t+2i

)

.

(ii) If t ≥ 2 and (r−t+1)(2+ t−1
i+1

) = n for some i∈{0}∪N, then A = {A∈
(

[n]
r

)

: |A∩X | ≥

t + j} for some j ∈ {i, i+1} and X ∈
(

[n]
t+2 j

)

.

It is worth mentioning that in [2] Ahlswede and Khachatrian went on to determine the

largest non-trivial t-intersecting sub-families of
(

[n]
r

)

.

Erdős, Ko and Rado [28] pointed out the simple fact that 2[n] has the star property

(indeed, for any set A in an intersecting sub-family A of 2[n], the complement [n]\A cannot

be in A , and hence the size of A is at most 1
2
|2[n]| = 2n−1, i.e. the size of a star of 2[n]);

note that there are many non-trivial intersecting sub-families of 2[n] of maximum size 2n−1

(such as {A ⊆ [n] : |A∩ [3]| ≥ 2}), so 2[n] does not have the strict star property. They also
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asked what the size of a largest t-intersecting sub-family of 2[n] is for t ≥ 2. The answer in

a complete form was given by Katona [42].

Theorem 2.3 ( [42]). Let t ≥ 2, and let A be a largest t-intersecting sub-family of 2[n].

(i) If n+ t = 2l then A = {A ⊆ [n] : |A| ≥ l}.

(ii) If n+ t = 2l +1 then A = {A ⊆ [n] : |A∩X | ≥ l} for some X ∈
(

[n]
n−1

)

.

It is interesting that for n > t ≥ 2, 2[n] does not have the t-star property.

Many other beautiful results were inspired by the seminal paper [28], as are the results

we present in the subsequent sections.

3. Intersecting Sub-Families of Hereditary Families

Recall that 2[n] has the star property. Also recall that the power set of a set X is the simplest

example of a hereditary family since 2X is a hereditary family with only one base (X). An

outstanding open problem in extremal set theory is the following conjecture (see [14] for a

more general conjecture).

Conjecture 3.1 ( [19]). If H is a hereditary family, then H has the star property.

Chvátal [20] verified this conjecture for the case when H is left-compressed (i.e. H ⊆
2[n] and (H\{ j})∪{i} ∈ H whenever 1 ≤ i < j ∈ H ∈ H and i /∈ H). Snevily [54] took

this result (together with results in [53, 55]) a significant step forward by verifying Con-

jecture 3.1 for the case when H is compressed with respect to an element x of U(H )

(i.e. (H\{h})∪{x} ∈ H whenever h ∈ H ∈ H and x /∈ H).

Theorem 3.2 ( [54]). If a hereditary family H is compressed with respect to an element x

of U(H ), then H has the star property at {x}.

A generalisation is proved in [14] by means of an alternative self-contained argument.

Snevily’s proof of Theorem 3.2 makes use of the following interesting result of Berge [5]

(a proof of which is also provided in [4, Chapter 6]).

Theorem 3.3 ( [5]). If H is a hereditary family, then H is a disjoint union of pairs of

disjoint sets, together with /0 if |H | is odd.

This result was also motivated by Conjecture 3.1 as it has the following immediate

consequence.

Corollary 3.4. If A is an intersecting sub-family of a hereditary family H , then

|A | ≤
1

2
|H |.

Proof. For any pair of disjoint sets, at most only one set can be in an intersecting family A .

By Theorem 3.3, the result follows.

A special case of Theorem 3.2 is a result of Schönheim [53] which says that Conjec-

ture 3.1 is true if the bases of H have a common element, and this follows immediately

from Corollary 3.4 and the following fact.
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Proposition 3.5 ( [53]). If the bases of a hereditary family H have a common element x,

then

|H (x)|=
1

2
|H |.

Proof. Partition H into A := H (x) and B := {B ∈ H : x /∈ B}. If A ∈ A then A\{x} ∈ B ;

so |A | ≤ |B |. If B ∈ B then B ⊆ C for some base C of H , and hence B∪{x} ∈ A since

x ∈ C; so |B | ≤ |A |. Thus |A |= |B |= 1
2
|H |.

Many other results and problems have been inspired by Conjecture 3.1 or are related to

it; see [21,51,57].

Conjecture 3.1 cannot be generalised to the t-intersection case. Indeed, if n > t ≥ 2 and

H = 2[n], then by Theorem 2.3, H does not have the t-star property.

We now turn our attention to uniform intersecting sub-families of hereditary families,

or rather intersecting sub-families of levels of hereditary families. For any hereditary family

H , let µ(H ) denote the size of a smallest base of H .

A graph G is a pair (V,E) with E ⊆
(

V
2

)

, and a set I ⊆ V is said to be an independent

set of G if {i, j} /∈ E for any i, j ∈ I. Let JG denote the family of all independent sets of a

graph G. Clearly JG is a hereditary family. Holroyd and Talbot [39] made a nice conjecture

which claims that if G is a graph and µ(JG) ≥ 2r, then JG
(r) has the star property, and JG

(r)

has the strict star property if µ(JG) > 2r. In [11] the author conjectured that this is true for

any hereditary family and that in general the following holds.

Conjecture 3.6 ( [11]). If 1 ≤ t ≤ r, /0 6= S ⊆ [t, r] and H is a hereditary family with

µ(H ) ≥ (t +1)(r− t +1), then:

(i)
S

s∈S H (s) has the t-star property;

(ii)
S

s∈S H (s) has the strict t-star property if either µ(H ) > (t +1)(r− t +1) or S 6= {r}.

Note that Theorem 2.2 solves the special case when H = 2[n] and tells us that we cannot

improve the condition µ(H )≥ (t+1)(r−t+1). The author [11] proved that this conjecture

is true if µ(H ) is sufficiently large.

Theorem 3.7 ( [11]). Conjecture 3.6 is true if µ(H ) ≥ (r− t)
(

3r−2t−1
t+1

)

+ r.

The motivation behind establishing this result for any union of levels of a hereditary

family H within a certain range is that this general form cannot be immediately deduced

from the result for just one level of H (i.e. the case S = {r} in Conjecture 3.6). As demon-

strated in Example 1 in [11], the reason is simply that if T is a t-set such that H (s)(T)
(s ∈ [t, r]) is a largest t-star of the level H (s), then for p 6= s (p ∈ [t, r]), H (p)(T) not only

may not be a largest t-star of the level H (p) but may be smaller than some non-trivial t-

intersecting sub-family of H (p). This is in fact one of the central difficulties arising from

any EKR-type problem for hereditary families. In the proof of Theorem 3.7, this obstacle

was overcome by showing that for any non-trivial t-intersecting sub-family A of the union,

we can construct a t-star that is larger than A (and that is not necessarily a largest t-star).

Many other proofs of EKR-type results are based on determining at least one largest t-star;

as in the case of each theorem mentioned in Section 2., the setting is often symmetrical to

the extent that all t-stars are of the same size and of a known size.
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An interesting immediate consequence of Theorem 3.7 is that the union of the first r ≥ t

levels of a hereditary family H has the strict t-star property if µ(H ) is sufficiently larger

than r.

Corollary 3.8 ( [11]). If 1 ≤ t ≤ r and H is a hereditary family with µ(H ) ≥ (r −
t)

(

3r−2t−1
t+1

)

+ r, then
Sr

s=0 H (s) has the strict t-star property.

Proof. Let A be a t-intersecting sub-family of
Sr

s=0 H (s). Then no set in A is of size less

than t, so A ⊆
S

s∈S H (s) with S = [t, r]. The result follows by Theorem 3.7.

This means that for the special case t = 1, we have the following.

Corollary 3.9 ( [11]). Conjecture 3.1 is true if H =
Sr

s=0 J (s) for some r ∈ N and some

hereditary family J with µ(J )≥ 3
2
(r−1)2(3r−4)+ r.

The following extension of Theorem 2.2 for n ≥ (t + 1)(r− t + 1) was also proved

in [11].

Theorem 3.10 ( [11]). Conjecture 3.6 is true if H is left-compressed.

4. Intersecting Families of Signed Sets

The ‘signed sets’ terminology was introduced in [10] for a setting that can be re-formulated

as S([n]
r ),k

, and the general formulation SF ,k was introduced in [13], the theme of which is

the following conjecture.

Conjecture 4.1 ( [13]). For any family F and any k ≥ 2,

(i) SF ,k has the star property;

(ii) SF ,k does not have the strict star property only if k = 2 and there exist at least three

elements u1,u2,u3 of U(F ) such that F (u1)= F (u2) = F (u3) and SF ,2((u1,1)) is a largest

star of SF ,2.

The converse of (ii) is true, and the proof is simply that {A ∈ SF ,2 : |A ∩
{(u1,1), (u2,1), (u3,1)}|≥ 2} is a non-trivial intersecting sub-family of SF ,2 that is as large

as SF ,2((u1,1)).

In [14] a similarity between the intersection problem for hereditary families and the one

presented above is demonstrated, and in fact a conjecture generalising both Conjecture 3.1

and the above conjecture is suggested.

Recall that a family F is said to be compressed with respect to an element x of U(F )
if (F\{u})∪{x} ∈ F whenever u ∈ F ∈ F and x /∈ F. The following is the main result in

the paper featuring the above conjecture.

Theorem 4.2 ( [13]). Conjecture 4.1 is true if F is compressed with respect to an element

x of U(F ), and SF ,k has the star property at {(x,1)}.

Since
(

[n]
r

)

is compressed with respect to any element of [n], the above result has the

following immediate consequence, which is a well-known result that was first stated by

Meyer [50] and proved in different ways by Deza and Frankl [25], Bollobás and Leader [10],

Engel [27] and Erdős et al. [29].
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Theorem 4.3 ( [10,25,27,29]). Let r ∈ [n] and let k ≥ 2. Then:

(i) S([n]
r ),k

has the star property;

(ii) if (r,k) 6= (n,2) then S([n]
r ),k

has the strict star property.

Thus the size of an intersecting sub-family of S([n]
r ),k

is at most
(

n−1
r−1

)

kr−1, i.e. the size

of any star of S([n]
r ),k

. Berge [6] and Livingston [49] had proved (i) and (ii), respectively, for

the special case F = {[n]} (other proofs are found in [36,52]).

In [13] Conjecture 4.1 is also verified for the case when F is uniform and has the star

property; Holroyd and Talbot [39] had essentially proved part (i) of the conjecture for such

a family F in a graph-theoretical context.

The t-intersection problem for sub-families of S[n],k has also been solved. Frankl and

Füredi were the first to investigate it. In [33] they conjectured that among the largest t-

intersecting sub-families of S[n],k there is always one of the families Ai := {A ∈ S[n],k : |A∩
([t + 2i]× [1])| ≥ t + i}, i = 0,1,2, . . ., and they proved that if k ≥ t + 1 ≥ 16, then A0 is

extremal and hence S[n],k has the star property. The conjecture was proved independently

by Ahlswede and Khachatrian [3] and Frankl and Tokushige [34] (Kleitman [43] had long

established this result for k = 2). As in Theorem 2.2, Ahlswede and Khachatrian [3] also

determined the extremal structures.

Theorem 4.4 ( [3]). Let 1 ≤ t ≤ n and k ≥ 2. Let m be the largest integer such that t +2m <

min{n+1, t +2 t−1
k−2} (by convention, t−1

k−2 = ∞ if k = 2).

(i) If (k, t) 6= (2,1) and t−1
k−2 is not integral, then A is a largest t-intersecting sub-family of

S[n],k if and only if

A = {A ∈ S[n],k : |A∩X | ≥ t +m}

for some X ∈ SY,k with Y ∈
(

[n]
t+2m

)

.

(ii) If (k, t) 6= (2,1) and t−1
k−2

is integral, then A is a largest t-intersecting sub-family of S[n],k

if and only if

A = {A ∈ S[n],k : |A∩X | ≥ t + j}

for some j ∈ {m,m+1} and some X ∈ SY,k with Y ∈
( [n]

t+2 j

)

.

(iii) If (k, t) = (2,1), then A is a largest t-intersecting sub-family of S[n],k if and only if for

any y1, . . . ,yn ∈ [2], exactly one of {(1,y1), . . ., (n,yn)} and {(1,3− y1), . . ., (n,3− yn)} is

in A .

Note that (iii) follows trivially from the fact that for any set A := {(1,y1), . . ., (n,yn)} in

S[n],2, {(1,3−y1), . . . , (n,3−yn)} is the only set in S[n],2 that does not intersect A. The rest

of the theorem is highly non-trivial!

What led to Theorem 4.4 was the accomplishment of Theorem 2.2. The following is an

immediate consequence of Theorem 4.4.

Corollary 4.5. Let 1 ≤ t ≤ n and k ≥ 2. Then:

(i) S[n],k has the t-star property if and only if k ≥ t +1;

(ii) S[n],k has the strict t-star property if and only if k ≥ t +2.
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We point out that Bey and Engel [9] extended Theorem 4.4 by determining the size of

a largest non-trivial t-intersecting sub-family of S[n],k (see Examples 10, 11 and Lemma 18

in [9]).

Note that S[n],k = S([n]
r ),k

with r = n. For the case t ≤ r < n, Bey [8] proved the following.

Theorem 4.6 ( [8]). Let 1 ≤ t ≤ r < n. S([n]
r ),k

has the t-star property if and only if n ≥

(r−t+k)(t+1)
k

.

Thus, if t ≤ r < n and n ≥
(r−t+k)(t+1)

k
, then the size of a t-intersecting sub-family of

S([n]
r ),k

is at most
(

n−t
r−t

)

kr−t , i.e. the size of any t-star of S([n]
r ),k

. From Corollary 4.5 and

Theorem 4.6 we immediately obtain the following.

Corollary 4.7. For any 1 ≤ t ≤ r ≤ n and k ≥ t +1, S([n]
r ),k

has the t-star property.

To the best of the author’s knowledge, no complete t-intersection theorem for S([n]
r ),k

has been obtained.

For the case when F is any family, the author [15] suggested the following general

conjecture.

Conjecture 4.8 ( [15]). For any integer t ≥ 1, there exists an integer k0(t) such that for any

k ≥ k0(t) and any family F , SF ,k has the t-star property.

In view of Corollary 4.7, we conjecture that the smallest k0(t) is t +1. In [15] it is actu-

ally conjectured that for some integer k′0(t), SF ,k has the strict t-star property for any F , and

hence, in view of Corollary 4.5(ii), we conjecture that the smallest k′0(t) is t + 2. Note that

Conjecture 4.1 claims that the smallest values of k0(1) and k′0(1) are 2 and 3, respectively.

The author [15] proved the following relaxation of the statement of Conjecture 4.8.

Theorem 4.9 ( [15]). For any integers r and t with 1 ≤ t < r, let k0(r, t) :=
(

r
t

)(

r
t+1

)

. For

any k ≥ k0(r, t) and any family F with α(F )≤ r, SF ,k has the strict t-star property.

The general idea behind the proof of this result is similar to that behind the proof of

Theorem 3.7, described in Section 3..

Corollary 4.10. Conjecture 4.1 is true if k ≥ α(F )
(

α(F )
2

)

.

5. Intersecting Families of Labeled Sets

Consider the family Lk, k = (k1, . . . ,kn), of labeled n-sets. If k1 = 1 then all the sets in Lk

contain the point (1,1) and hence Lk has the strict star property. Berge [6] proved that for

any k, Lk has the star property, and hence the size of an intersecting sub-family of Lk is at

most the size 1
k1
|Lk|= k2k3 . . .kn of the star Lk((1,1)), as this is clearly a largest star (since

k1 ≤ ·· · ≤ kn). We shall reproduce the remarkably short proof of this result.

Let mod∗ be the usual modulo operation with the exception that for any integer a,

a mod∗ a is a instead of 0. For any integer q, let θ
q
k : Lk → Lk be the translation oper-

ation defined by

θ
q
k(A) := {(a, (b+q) mod∗ ka) : (a,b)∈ A},
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and define Θ
q
k : 2Lk → 2Lk by

Θ
q
k(F ) := {θ

q
k(A) : A ∈ F }.

Let A be an intersecting sub-family of Lk. For any A ∈ A and q ∈ [k1−1], we have θ
q
k(A)∩

A = /0 and hence θq
k(A) /∈ A . Therefore A ,Θ1

k(A), . . .,Θk1−1
k (A) are k1 disjoint sub-families

of Lk. So k1|A | ≤ |Lk| and hence |A | ≤ 1
k1
|Lk|.

Livingston [49] proved that for 3 ≤ k1 = · · ·= kn, Lk has the strict star property. Using

the shifting technique (see [32]) in an inductive argument, the author [12] extended Liv-

ingston’s result for the case when 3 ≤ k1 ≤ ·· · ≤ kn. The above results sum up as follows.

Theorem 5.1 ( [6,12,49]). Let 1 ≤ k1 ≤ ·· · ≤ kn and let k := (k1, . . .,kn). Then:

(i) Lk has the star property at {(1,1)};

(ii) if k1 6= 2 then Lk has the strict star property.

If k1 = 2 then Lk may not have the strict star property; indeed, if k1 = k2 = k3 then

{A∈Lk : |A∩{(1,1), (2,1), (3,1)|≥ 2} is a non-trivial intersecting sub-family of Lk whose

size is 1
k1
|Lk| (i.e. the maximum).

Recall that S[n],k = L(k1,...,kn) with k1 = · · · = kn = k. The same argument used in [12]

to extend Livingston’s result [49] gives the following extension of part (the sufficiency

conditions) of Corollary 4.5 and generalisation of Theorem 5.1 with k1 ≥ 2.

Theorem 5.2. Let 2 ≤ t +1 ≤ k1 ≤ ·· · ≤ kn and let k := (k1, . . . ,kn). Then:

(i) Lk has the t-star property at {(1,1), . . ., (t,1)};

(ii) if k1 ≥ t +2 then Lk has the strict t-star property.

As we can see from Theorem 4.4 and Corollary 4.5, Lk may not have the t-star property

when 2 ≤ k1 ≤ t. Recall that for the case k1 = · · · = kn, the extremal structures are given in

Theorem 4.4, and they are all non-trivial when 2 ≤ k1 ≤ t.

The intersection problem for the families Lk,r, r = 1, . . .,n, has also been treated to a

significant extent. Note that S([n]
r ),k

= L(k1,...,kn),r with k1 = · · · = kn = k. Using the shifting

technique (see [32]) in an inductive argument, Holroyd, Spencer and Talbot [38] extended

Theorem 4.3(i) as follows.

Theorem 5.3 ( [38]). Let 2 ≤ k1 ≤ ·· · ≤ kn and let k := (k1, . . . ,kn). Then for any r ∈ [n],
Lk,r has the star property at {(1,1)}.

The proof of their result can be easily extended to obtain that Lk,r has the strict star

property if (r,k1) 6= (n,2) (see, for example, the proof of [12, Theorem 1.4]). The case

k1 = 1 proved to be harder, and Bey [7] solved it by applying the idea of generating sets

introduced in [1].

Theorem 5.4 ( [7]). Let 1 = k1 = · · · = km < km+1 ≤ ·· · ≤ kn and let k := (k1, . . .,kn).

Let p := b(m + 1)/2c, and for each i ∈ [p], let Ai := {A ∈ Lk,r : (1,1) ∈ A, i ≤ |A ∩

{(1,1), . . ., (m,1)}|≤ m− i}∪{A ∈ Lk,r : |A∩{(1,1), . . ., (m,1)}| ≥ m− i+1}. Then one

of the families A1, . . . ,Ap is a largest intersecting sub-family of Lk,r.
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Bey [7] also showed that when r ≤ n/2 in the above theorem, Lk,r has the star property

at (1,1) (this is also proved in [38], and in [16] it is shown that Lk,r has the strict star

property if r < n/2).

For the case when k1 can be any positive integer but n is sufficiently large, Theorem 3.7

gives us the following t-intersection result.

Theorem 5.5. Let 1 ≤ t ≤ r and let n ≥ (r− t)
(

3r−2t−1
t+1

)

+ r. Let 1 ≤ k1 ≤ ·· · ≤ kn and let

k := (k1, . . .,kn). Then:

(i) Lk,r has the t-star property at {(1,1), . . ., (t,1)}.

(ii) Lk,r has the strict t-star property.

Proof. Let H := Lk,≤n. Then clearly H is a hereditary family with µ(H ) = n. Thus,

by Theorem 3.7 (with S = {r}), H (r) has the strict t-star property. Part (ii) follows since

H (r) = Lk,r. This in turn proves (i) since the family Lk,r(T ) with T := {(1,1), . . ., (t,1)} is

clearly a largest t-star of Lk,r.

We mention that Erdős, Seress, and Székely [30] determined non-trivial t-intersecting

sub-families of Lk,r of maximum size for the case when n is sufficiently large.

Finally, for the family Lk,≤n of all labeled sets defined on the n-tuple k, we have the

following immediate consequence of Theorems 3.2 and 5.3.

Theorem 5.6. For any 1 ≤ k1 ≤ ·· · ≤ kn, L(k1,...,kn),≤n has the star property at {(1,1)}.

Proof. Let k := (k1, . . . ,kn). If k1 = 1 then Lk,≤n is compressed with respect to (1,1)

and hence, since Lk,≤n is hereditary, the result follows by Theorem 3.2. Now suppose

k1 ≥ 2. Let A be an intersecting sub-family of Lk,≤n. So /0 /∈ A . By Theorem 5.3,

|A (r)| ≤ |Lk,r((1,1))| for all r ∈ [n]. Thus, we have |A |= ∑n
r=1 |A

(r)| ≤∑n
r=1 |Lk,r((1,1))|=

|Lk,≤n((1,1))|.

The above fact was also observed in [7], and it implies that the size of an intersecting

sub-family of Lk,≤n is at most 1
k+1

|Lk,≤n|, i.e. the size of the star Lk,≤n((1,1)) (indeed, the

k1 + 1 families Lk,≤n((1,1)), . . .,Lk,≤n((1,k1)) and L(k2,...,kn),≤n−1 partition Lk,≤n and are

of the same size). In view of the above-mentioned fact that Lk,r has the strict star property

when k1 ≥ 2 and (r,k1) 6= (n,2) (in particular, when 1 ≤ r ≤ n−1), one can go on to show

that Lk,≤n has the strict star property if k1 ≥ 2. If k1 = 1 then Lk,≤n may not have the strict

star property; indeed, if k1 = k2 = k3 = 1 then {A ∈ Lk,≤n : |A∩{(1,1), (2,1), (3,1)}|≥ 2}

is a non-trivial intersecting sub-family that is as large as the largest star Lk,≤n((1,1)).

To the best of the author’s knowledge, no general t-intersection theorem for Lk,≤n is

known.

6. Intersecting Families of Permutations and Partial Permuta-

tions

In [23, 24] the study of intersecting permutations was initiated. Deza and Frankl [24]

showed that S ∗
[n],n has the star property. So the size of an intersecting sub-family of S ∗

[n],n is

at most (n−1)!. The argument of the proof of this result is the same translation argument,
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given in the previous section, that yields Berge’s intersection result for labeled sets [6], and

it also gives us that for n ≤ k, S ∗
[n],k has the star property (recall that S ∗

[n],k = /0 if n > k).

Indeed, it gives us that for any intersecting sub-family A of S ∗
[n],k, k|A | ≤ |S ∗

[n],k| =
k!

(k−n)!

and hence |A | ≤ (k−1)!
(k−n)!.

The question of whether S ∗
[n],n has the strict star property proved to be much more dif-

ficult to answer. Cameron and Ku [18] and Larose and Malvenuto [47] independently gave

an affirmative answer (other proofs are given in [35, 56]). Larose and Malvenuto [47] also

proved the following generalisation (another proof is found in [17]).

Theorem 6.1 ( [47]). For 1 ≤ n ≤ k, S ∗
[n],k has the strict star property.

Ku and Leader [46] investigated partial permutations. Using Katona’s cycle method

[40], they proved that S ∗

([n]
r ),n

has the star property for all r ∈ [n−1] (note that S ∗

([n]
r ),n

= S ∗
[n],n

if r = n), and they also showed that S ∗

([n]
r ),n

has the strict star property for all r ∈ [8,n−3].

Naturally, they conjectured that S ∗

([n]
r ),n

has the strict star property for the few remaining

values of r too. This was settled by Li and Wang [48] using tools forged by Ku and Leader.

So the intersection results for S ∗
[n],n and S ∗

([n]
r ),n

(r ∈ [n−1]) sum up as follows.

Theorem 6.2 ( [18,46–48]). For any r ∈ [n], S ∗

([n]
r ),n

has the strict star property.

When it comes to t-intersecting families of permutations, things are of course much

harder. Solving a long-standing conjecture of Deza and Frankl [24], Ellis, Friedgut and

Pilpel [26] recently managed to prove the following.

Theorem 6.3 ( [26]). For any integer t ≥ 1, there exists an integer n0(t) such that for any

n ≥ n0(t), S ∗
[n],n has the strict t-star property.

Their remarkable proof is based on eigenvalue techniques and representation theory of

the symmetric group. The condition n ≥ n0(t) is necessary. Indeed, let Pj := {(i, i) : i ∈ [ j]}

for any integer j ≥ 1, and let

Gn,k,t :=

{

{A ∈ S[n],k : |A∩Pn| ≥ (n+ t)/2} if n− t is even;

{A ∈ S[n],k : |A∩Pn−1| ≥ (n+ t −1)/2} if n− t is odd.

Deza and Frankl [24] showed that when t = n− s for some s ≥ 3 and n is sufficiently large

(depending on s), Gn,n,t is a largest t-intersecting sub-family of S ∗
[n],n and is larger than the

t-stars. Brunk and Huczynska [17] extended this result as follows.

Theorem 6.4 ( [17,24]). For any integers p ≥ 0 and q ≥ 2 with (p,q) 6= (0,2), there exists

an integer n∗0(p,q) such that for any n≥ n∗0(p,q), any largest (n−q)-intersecting sub-family

of S ∗
[n],n+p

is a copy of Gn,n+p,n−q.

They also conjectured that for any n ≤ k and k ≥ 8, the extremal structures are similar

to those in Theorem 2.2.

Conjecture 6.5 ( [17]). Let 1 ≤ t ≤ n ≤ k and k ≥ 8. Let p := b(n− t)/2c, and for any

integer i with 0 ≤ i ≤ p, let Ai :=
{

A ∈ S ∗
[n],k : |A∩Pt+2i| ≥ t + i

}

. Then:

(i) one of the families A0, . . .,Ap is a largest t-intersecting sub-family of S ∗
[n],k;

(ii) any largest t-intersecting sub-family of S ∗
[n],k is a copy of one of the families A0, . . . ,Ap.
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For the general case when F is any family, a conjecture for t-intersecting sub-families

of S ∗
F ,k similar to Conjecture 4.8 was suggested in [15].

Conjecture 6.6 ( [15]). For any integer t ≥ 1, there exists an integer k∗0(t) such that for any

k ≥ k∗0(t) and any family F , S ∗
F ,k has the strict t-star property.

Theorem 6.3 solves the special case F = {[n]} and k = n ≥ k∗0(t). The author [15]

proved the following relaxation of the statement of the conjecture.

Theorem 6.7 ( [15]). For any integers r and t with 1 ≤ t < r, let k∗0(r, t) :=
(

r
t

)(3r−2t−1

b 3r−2t−1
2

c

)

r!
(r−t−1)! +r+1. For any k ≥ k∗0(r, t) and any family F with α(F )≤ r, S ∗

F ,k has

the strict t-star property.

This is an analogue of Theorem 4.9, and the general idea behind its proof is similar to

that behind the proofs of Theorems 3.7 (see Section 3.) and 4.9.

By taking F = [n] and k ≥ k∗0(n, t) in Theorem 6.7, we obtain the following.

Corollary 6.8. Let k ≥ k∗0(n, t), where k∗0(n, t) is as in Theorem 6.7. Then S ∗
[n],k has the strict

t-star property.

Thus, when k is sufficiently large, the size of a t-intersecting sub-family of S ∗
[n],k is at

most
(k−t)!
(k−n)!.

The following t-intersection result for partial permutations is another immediate conse-

quence of Theorem 6.7, obtained by taking n ≥ k∗0(r, t) and F =
(

[n]
r

)

.

Corollary 6.9. Let n ≥ k∗0(r, t), where k∗0(r, t) is as in Theorem 6.7. Then S ∗

([n]
r ),n

has the

strict t-star property.

Thus, when n is sufficiently large, the size of a t-intersecting sub-family of S ∗

([n]
r ),n

is at

most
(

n−t
r−t

) (n−t)!
(n−r)! . This was also proved in [45].
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[8] C. Bey, The Erdős-Ko-Rado bound for the function lattice, Discrete Appl. Math. 95

(1999) 115-125.

[9] C. Bey, K. Engel, Old and new results for the weighted t-intersection problem via

AK-methods, In: Numbers, Information and Complexity, Althőfer, Ingo, Eds. et al.,

Dordrecht: Kluwer Academic Publishers, 2000, pp. 45-74.
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[48] Y.-S. Li, Jun Wang, Erdős-Ko-Rado-type theorems for colored sets, Electron. J. Com-

bin. 14 (2007) article R1.

[49] M.L. Livingston, An ordered version of the Erdős-Ko-Rado Theorem, J. Combin.
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