On t-intersecting families of signed sets and permutations

Peter Borg

Department of Mathematics, Junior College, University of Malta Pjazza Guzè Debono, Msida MSD 1252, Malta
p.borg.02@cantab.net

29th August 2008

Abstract

A family \mathcal{A} of sets is said to be t-intersecting if any two sets in \mathcal{A} contain at least t common elements. A t-intersecting family is said to be trivial if there are at least t elements common to all its sets.

Let X be an r-set $\left\{x_{1}, \ldots, x_{r}\right\}$. For $k \geq 2$, we define $\mathcal{S}_{X, k}$ and $\mathcal{S}_{X, k}^{*}$ to be the families of k-signed r-sets given by $$
\begin{gathered} \mathcal{S}_{X, k}:=\left\{\left\{\left(x_{1}, a_{1}\right), \ldots,\left(x_{r}, a_{r}\right)\right\}: a_{1}, \ldots, a_{r} \text { are elements of }\{1, \ldots, k\}\right\}, \\ \mathcal{S}_{X, k}^{*}:=\left\{\left\{\left(x_{1}, a_{1}\right), \ldots,\left(x_{r}, a_{r}\right)\right\}: a_{1}, \ldots, a_{r} \text { are distinct elements of }\{1, \ldots, k\}\right\} . \end{gathered}
$$ $\mathcal{S}_{X, k}^{*}$ can be interpreted as the family of permutations of r-subsets of $\{1, \ldots, k\}$. For a family \mathcal{F}, we define $\mathcal{S}_{\mathcal{F}, k}:=\bigcup_{F \in \mathcal{F}} \mathcal{S}_{F, k}$ and $\mathcal{S}_{\mathcal{F}, k}^{*}:=\bigcup_{F \in \mathcal{F}} \mathcal{S}_{F, k}^{*}$.

This paper features two theorems. The first one is as follows: For any two integers s and t with $t \leq s$, there exists an integer $k_{0}(s, t)$ such that, for any $k \geq k_{0}(s, t)$ and any family \mathcal{F} with $t \leq \max \{|F|: F \in \mathcal{F}\} \leq s$, the largest t-intersecting sub-families of $\mathcal{S}_{\mathcal{F}, k}$ are trivial. The second theorem is an analogue of the first one for $\mathcal{S}_{\mathcal{F}, k}^{*}$.

1 Introduction

1.1 Notation and definitions

We start with some standard notation for sets. \mathbb{N} is the set $\{1,2, \ldots\}$ of positive integers. For $m, n \in \mathbb{N}$ with $m \leq n$, the set $\{i \in \mathbb{N}: m \leq i \leq n\}$ is denoted by $[m, n]$, and if $m=1$ then we also write $[n]$. For a set X, the power set $\{A: A \subseteq X\}$ of X is denoted by 2^{X}, and the uniform sub-family $\{Y \subseteq X:|Y|=r\}$ of 2^{X} is denoted by $\binom{X}{r}$.

For a family \mathcal{F} of sets, we denote the union of all sets in \mathcal{F} by $U(\mathcal{F})$. For a set V, we set

$$
\mathcal{F}[V]:=\{F \in \mathcal{F}: V \subseteq F\}, \quad \mathcal{F}(V):=\{F \in \mathcal{F}: F \cap V \neq \emptyset\} .
$$

For $u \in U(\mathcal{F})$, we abbreviate $\mathcal{F}(\{u\})$ to $\mathcal{F}(u)$. We call $\mathcal{F}(u)$ a star of \mathcal{F}. More generally, if T is a t-subset of a set in \mathcal{F}, then we call $\mathcal{F}[T]$ a t-star of \mathcal{F}.

A family \mathcal{A} is said to be intersecting if $A \cap B \neq \emptyset$ for any $A, B \in \mathcal{A}$. More generally, \mathcal{A} is said to be t-intersecting if $|A \cap B| \geq t$ for any $A, B \in \mathcal{A}$. A t-intersecting family \mathcal{A} is said to be trivial if $\left|\bigcap_{A \in \mathcal{A}} A\right| \geq t$ (i.e. there are at least t elements common to all the sets in \mathcal{A}); otherwise, \mathcal{A} is said to be non-trivial. Note that a t-star of a family \mathcal{F} is a maximal trivial t-intersecting sub-family of \mathcal{F}.

In the following, unless otherwise stated, sets and families are to be assumed non-empty and finite.

1.2 Intersecting sub-families of $2^{[n]}$ and $\binom{[n]}{r}$

The study of intersecting families took off with the publication of [13], which features the classical result, known as the Erdős-Ko-Rado (EKR) Theorem, that says that, if $r \leq n / 2$ and \mathcal{A} is an intersecting sub-family of $\binom{[n]}{r}$, then \mathcal{A} has size at most $\binom{n-1}{r-1}$, which is the size of a star of $\binom{[n]}{r}$. There are various proofs of this theorem, two of which are particularly short and beautiful: Katona's [21] using the cycle method and Daykin's [7] using another fundamental result known as the Kruskal-Katona Theorem [22, 25]. Hilton and Milner [19] determined the size of a largest non-trivial intersecting sub-family of $\binom{[n]}{r}$, and consequently they established that, if $r<n / 2$, then no non-trivial intersecting sub-family of $\binom{[n]}{r}$ is as large as the stars of $\binom{[n]}{r}$.

The facts we have just mentioned inspire us to make the following definition. We say that a family \mathcal{F} is $E K R$ if the set of largest intersecting sub-families of \mathcal{F} contains a star, and strictly $E K R$ if the set of largest intersecting sub-families of \mathcal{F} contains only stars.

Also in [13], Erdős, Ko and Rado initiated the study of t-intersecting families for $t \geq 2$. They pointed out the simple fact that $2^{[n]}$ is EKR, and they posed the following question: What is the size of an extremal (i.e. largest) t-intersecting sub-family of $2^{[n]}$ for $t \geq 2$? The answer in a complete form was given by Katona [23]. It is interesting that, for $n>t \geq 2$, no extremal t-intersecting sub-family of $2^{[n]}$ is a t-star.

For the uniform case, Erdős, Ko and Rado [13] proved that, for $t<r$, there exists an integer $n_{0}(r, t)$ such that, for all $n \geq n_{0}(r, t)$, the largest t-intersecting sub-families of $\binom{[n]}{r}$ are the t-stars. For $t \geq 15$, Frankl [14] showed that the smallest such $n_{0}(r, t)$ is $(r-t+1)(t+1)+1$ and that, if $n=(r-t+1)(t+1)$, then t-stars are extremal but not uniquely so. Subsequently, Wilson [33] proved the sharp upper bound $\binom{n-t}{r-t}$ for the size of a t-intersecting sub-family of $\binom{[n]}{r}$ for all t and $n \geq(r-t+1)(t+1)$. Frankl [14] conjectured that an extremal t-intersecting sub-family of $\binom{[n]}{r}$ has size $\max \left\{\left|\left\{A \in\binom{[n]}{r}:|A \cap[t+2 i]| \geq t+i\right\}\right|: i \in\{0\} \cup[r-t]\right\}$. A remarkable proof of this long-standing conjecture together with a complete characterisation of the extremal structures was finally obtained by Ahlswede and Khachatrian [1].
Theorem 1.1 (Ahlswede and Khachatrian [1]) Let $1 \leq t \leq r \leq n$, and let \mathcal{A} be an extremal t-intersecting sub-family of $\binom{[n]}{r}$.
(i) If $(r-t+1)\left(2+\frac{t-1}{i+1}\right)<n<(r-t+1)\left(2+\frac{t-1}{i}\right)$ for some $i \in\{0\} \cup \mathbb{N}$ - where, by convention, $(t-1) / i=\infty$ if $i=0$ - then $\mathcal{A}=\left\{A \in\binom{[n]}{r}:|A \cap X| \geq t+i\right\}$ for some $X \in\binom{[n]}{t+2 i}$.
(ii) If $t \geq 2$ and $(r-t+1)\left(2+\frac{t-1}{i+1}\right)=n$ for some $i \in\{0\} \cup \mathbb{N}$, then $\mathcal{A}=\left\{A \in\binom{[n]}{r}:|A \cap X| \geq\right.$ $t+j\}$ for some $j \in\{i, i+1\}$ and $X \in\binom{[n]}{t+2 j}$.

Many other beautiful results were inspired by the seminal Erdős-Ko-Rado paper [13]. The survey papers [10] and [15] are recommended.

We now proceed to the first of the two main themes of the paper.

1.3 Intersecting families of signed sets

Let X be an r-set $\left\{x_{1}, \ldots, x_{r}\right\}$. Let $y_{1}, \ldots, y_{r} \in \mathbb{N}$. We call the set $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right\}$ a k-signed r-set if $\left|\left\{y_{1}, \ldots, y_{r}\right\}\right| \leq k$. For an integer $k \geq 2$, we define $\mathcal{S}_{X, k}$ to be the family of k-signed r-sets given by

$$
\mathcal{S}_{X, k}:=\left\{\left\{\left(x_{1}, a_{1}\right), \ldots,\left(x_{r}, a_{r}\right)\right\}: a_{1}, \ldots, a_{r} \in[k]\right\}
$$

We shall set $\mathcal{S}_{\emptyset, k}:=\emptyset$.
The Cartesian product $X \times Y$ of sets X and Y is the set $\{(x, y): x \in X, y \in Y\}$. So $\mathcal{S}_{X, k}=\{A \subset X \times[k]:|A \cap(\{x\} \times[k])|=1$ for all $x \in X\}$.

For a family \mathcal{F} of sets, we define

$$
\mathcal{S}_{\mathcal{F}, k}:=\bigcup_{F \in \mathcal{F}} \mathcal{S}_{F, k} .
$$

We remark that the 'signed sets' terminology was introduced in [4] for a setting that can be re-formulated as $\mathcal{S}_{\binom{[n])}{r}, k}$, and the general formulation $\mathcal{S}_{\mathcal{F}, k}$ was introduced by the author in [5], the theme of which is the following conjecture.
Conjecture 1.2 (Borg [5]) Let \mathcal{F} be any family, and let $k \geq 2$. Then:
(i) $\mathcal{S}_{\mathcal{F}, k}$ is $E K R$;
(ii) $\mathcal{S}_{\mathcal{F}, k}$ is not strictly EKR iff $k=2$ and there exist at least three elements u_{1}, u_{2}, u_{3} of $U(\mathcal{F})$ such that $\mathcal{F}\left(u_{1}\right)=\mathcal{F}\left(u_{2}\right)=\mathcal{F}\left(u_{3}\right)$ and $\mathcal{S}_{\mathcal{F}, 2}\left(\left(u_{1}, 1\right)\right)$ is a largest star of $\mathcal{S}_{\mathcal{F}, 2}$.
The main result in the same paper is that this conjecture is true if \mathcal{F} is compressed with respect to an element u^{*} of $U(\mathcal{F})$ (i.e. $u \in F \in \mathcal{F} \backslash \mathcal{F}\left(u^{*}\right)$ implies $\left.(F \backslash\{u\}) \cup\left\{u^{*}\right\} \in \mathcal{F}\right)$. This generalises a well-known result that was first stated by Meyer [31] and proved in different ways by Deza and Frankl [10], Bollobás and Leader [4], Engel [11] and Erdôs et al. [12], and that can be described as saying that the conjecture is true for $\mathcal{F}=\binom{[n]}{r}$. Berge [3] and Livingston [30] had proved (i) and (ii) respectively for the special case $\mathcal{F}=\{[n]\}$ (other proofs are found in [18, 32]). In [5] the conjecture is also verified for \mathcal{F} uniform and EKR; Holroyd and Talbot [20] had essentially proved (i) for such a family \mathcal{F} in a graph-theoretical context.

The t-intersection problem for sub-families of $\mathcal{S}_{[n], k}$ has also been solved. Frankl and Füredi [16] were the first to investigate it, and the following result had been a conjecture that they made and that they verified for $k \geq t+1 \geq 16$ in [16].

Theorem 1.3 (Ahlswede, Khachatrian [2]; Frankl, Tokushige [17]) If \mathcal{A} is an extremal t-intersecting sub-family of $\mathcal{S}_{[n], k}$, then $|\mathcal{A}|=\max \left\{\mid\left\{A \in \mathcal{S}_{[n], k}:|A \cap([t+2 i] \times[1])| \geq\right.\right.$ $t+i\} \mid: i \in\{0\} \cup \mathbb{N}\}$.

It follows from this result that the set of extremal t-intersecting sub-families of $\mathcal{S}_{[n], k}$ contains t-stars iff $k \geq t+1$. What led to this result was the accomplishment of Theorem 1.1. As in Theorem 1.1, Ahlswede and Khachatrian [2] also determined the extremal t-intersecting sub-families of $\mathcal{S}_{[n], k}$, and it turns out that the structure of a t-star of $\mathcal{S}_{[n], k}$ is the unique extremal structure iff $k \geq t+2$. Kleitman [24] had long established Theorem 1.3 for $k=2$.

To the best of the author's knowledge, apart from a general result we present later, no results for t-intersecting sub-families of $\mathcal{S}_{\mathcal{F}, k}$ with $|\mathcal{F}| \geq 2$ have been established. However, some very important results have been obtained for a modification of the problem, which we describe next.

1.4 Intersecting families of permutations and partial permutations

For an r-set $X:=\left\{x_{1}, \ldots, x_{r}\right\}$, we define $\mathcal{S}_{X, k}^{*}$ to be the special sub-family of $\mathcal{S}_{X, k}$ given by

$$
\mathcal{S}_{X, k}^{*}:=\left\{\left\{\left(x_{1}, a_{1}\right), \ldots,\left(x_{r}, a_{r}\right)\right\}:\left\{a_{1}, \ldots, a_{r}\right\} \in\binom{[k]}{r}\right\} .
$$

Note that $\mathcal{S}_{X, k}^{*} \neq \emptyset$ iff $r \leq k$.
For a family \mathcal{F}, we define $\mathcal{S}_{\mathcal{F}, k}^{*}$ to be the special sub-family of $\mathcal{S}_{\mathcal{F}, k}$ given by

$$
\mathcal{S}_{\mathcal{F}, k}^{*}:=\bigcup_{F \in \mathcal{F}} \mathcal{S}_{F, k}^{*} .
$$

An r-partial permutation of a set N is a pair (A, f) where $A \in\binom{N}{r}$ and $f: A \rightarrow N$ is an injection. An $|N|$-partial permutation of N is simply called a permutation of N. Clearly, the family of permutations of $[n]$ can be re-formulated as $\mathcal{S}_{[n], n}^{*}$, and the family of r-partial permutations of $[n]$ can be re-formulated as $\mathcal{S}_{\binom{[n])}{r}, n}^{*}$.

Let X be as above. $\mathcal{S}_{X, k}^{*}$ can be interpreted as the family of permutations of sets in $\binom{[k]}{r}$: consider the bijection $\beta: \mathcal{S}_{X, k}^{*} \rightarrow\left\{(A, f): A \in\binom{[k]}{r}, f: A \rightarrow A\right.$ is a bijection $\}$ defined by $\beta\left(\left\{\left(x_{1}, a_{1}\right), \ldots,\left(x_{r}, a_{r}\right)\right\}\right):=\left(\left\{a_{1}, \ldots, a_{r}\right\}, f\right)$ where, for $b_{1}<\ldots<b_{r}$ such that $\left\{b_{1}, \ldots, b_{r}\right\}=$ $\left\{a_{1}, \ldots, a_{r}\right\}, f\left(b_{i}\right):=a_{i}$ for $i=1, \ldots, r . \mathcal{S}_{X, k}^{*}$ can also be interpreted as the sub-family $\mathcal{X}:=\left\{(A, f): A \in\binom{[k]}{r}, f: A \rightarrow[r]\right.$ is a bijection $\}$ of the family of r-partial permutations of $[k]$: consider an obvious bijection from $\mathcal{S}_{X, k}^{*}$ to $\mathcal{S}_{\substack{([k]), r \\ r}}^{*}$ and another one from $\mathcal{S}_{\binom{|k|]), r}{r}}^{*}$ to \mathcal{X}.

In $[8,9]$ the study of intersecting permutations was initiated. Deza and Frankl [9] showed that $\mathcal{S}_{[n], n}^{*}$ is EKR. So an intersecting sub-family of $\mathcal{S}_{[n], n}^{*}$ has size at most $(n-1)$!. Only a few years ago, Cameron and $\mathrm{Ku}[6]$ and Larose and Malvenuto [28] independently proved that furthermore $\mathcal{S}_{[n], n}^{*}$ is strictly EKR.

Ku and Leader [27] proved that $\mathcal{S}_{\binom{[n]}{r}, n}^{*}$ is EKR for all $r \in[n]$, and they also showed that $\mathcal{S}_{\binom{(n n), n}{r}}^{*}$ is strictly EKR for all $r \in[8, n-3]$. Naturally, they conjectured that $\mathcal{S}_{\left(\begin{array}{c}(n]), n \\ r\end{array}\right.}^{*}$ is also strictly EKR for the few remaining values of r. This was settled by Li and Wang [29] using tools forged by Ku and Leader.

When it comes to t-intersecting families of permutations, things are of course much harder, and the most interesting challenge comes from the following conjecture.

Conjecture 1.4 (Deza and Frankl [9]) For any $t \in \mathbb{N}$, there exists $n_{0}(t) \in \mathbb{N}$ such that, for any $n \geq n_{0}(t)$, the size of a t-intersecting sub-family of $\mathcal{S}_{[n], n}^{*}$ is at most that of a t-star of $\mathcal{S}_{[n], n}^{*}$, i.e. $(n-t)$!.
This conjecture suggests an obvious extension for the extremal case. It is worth pointing out that the condition $n \geq n_{0}(t)$ is necessary; [26, Example 3.1.1] illustrates this fact. An analogue of the statement of the conjecture for partial permutations has been proved by Ku.

Theorem 1.5 (Ku [26, Theorem 6.6.6]) For any $r, t \in \mathbb{N}$ with $r \geq t$, there exists $n_{0}(r, t) \in$ \mathbb{N} such that, for any $n \geq n_{0}(r, t)$, the size of a t-intersecting sub-family of $\mathcal{S}_{\binom{[n]), n}{r}}^{*}$ is at most that of a t-star of $\mathcal{S}_{\binom{[n]}{r}, n}^{*}$, i.e. $\binom{n-t}{r-t} \frac{(n-t)!}{(n-r)!}$.
This result emerges as an immediate consequence of one of the two main theorems in this paper; see next section.

2 Results and conjectures

For a family \mathcal{F}, let $\alpha(\mathcal{F})$ denote the size of a largest set in \mathcal{F}. Any t-intersecting sub-family of $\mathcal{S}_{\mathcal{F}, k}$ or $\mathcal{S}_{\mathcal{F}, k}^{*}$ trivially consists of at most one set if $\alpha(\mathcal{F}) \leq t$. We now consider $\alpha(\mathcal{F})>t$.

In view of Conjecture 1.2, we suggest the following general conjecture for t-intersecting families of signed sets.

Conjecture 2.1 For any $t \in \mathbb{N}$, there exists $k_{0}(t) \in \mathbb{N}$ such that, for any $k \geq k_{0}(t)$ and any family \mathcal{F} with $\alpha(\mathcal{F})>t$, the largest t-intersecting sub-families of $\mathcal{S}_{\mathcal{F}, k}$ are trivial.
As we mentioned in Section 1.3, the t-stars of $\mathcal{S}_{[n], k}$ are extremal t-intersecting sub-families of $\mathcal{S}_{[n], k}$ iff $k \geq t+1$, and they are uniquely extremal iff $k \geq t+2$. This suggests that, if Conjecture 2.1 is true, then, as is claimed by Conjecture 1.2 for $t=1$, the smallest value of $k_{0}(t)$ is $t+2$ (and the largest t-stars of $\mathcal{S}_{\mathcal{F}, t+1}$ are among the largest t-intersecting sub-families of $\mathcal{S}_{\mathcal{F}, t+1}$). We are able to prove a relaxation of the statement of Conjecture 2.1.
Theorem 2.2 For any $r, t \in \mathbb{N}$ with $t<r$, let $k_{0}(r, t):=\binom{r}{t}\binom{r}{t+1}$. For any $k \geq k_{0}(r, t)$ and any family \mathcal{F} with $t<\alpha(\mathcal{F}) \leq r$, the largest t-intersecting sub-families of $\mathcal{S}_{\mathcal{F}, k}$ are trivial.
Corollary 2.3 Conjecture 1.2 is true if $k \geq \alpha(\mathcal{F})\binom{\alpha(\mathcal{F})}{2}$.
We next pose a similar problem for t-intersecting sub-families of $\mathcal{S}_{\mathcal{F}, k}^{*}$.
Conjecture 2.4 For any $t \in \mathbb{N}$, there exists $k_{0}^{*}(t) \in \mathbb{N}$ such that, for any $k \geq k_{0}^{*}(t)$ and any family \mathcal{F} with $\alpha(\mathcal{F})>t$, the largest t-intersecting sub-families of $\mathcal{S}_{\mathcal{F}, k}^{*}$ are trivial.
By taking $k \geq k_{0}^{*}(t)$ and $\mathcal{F}=\{[k]\}$, we get Conjecture 1.4. We are able to prove the following analogue of Theorem 2.2.
Theorem 2.5 For any $r, t \in \mathbb{N}$ with $t<r$, let $k_{0}^{*}(r, t):=\binom{r}{t}\binom{3 r-2 t-1}{\left.\frac{3 r-2 t-1}{2}\right\rfloor} \frac{r!}{(r-t-1)!}+r+1$. For any $k \geq k_{0}^{*}(r, t)$ and any family \mathcal{F} with $t<\alpha(\mathcal{F}) \leq r$, the largest t-intersecting sub-families of $\mathcal{S}_{\mathcal{F}, k}^{*}$ are trivial.
By taking $k \geq k_{0}^{*}(r, t)$ and $\mathcal{F}=\binom{[k]}{r}$, we get Theorem 1.5.
We now proceed to the proofs of the two theorems above.

3 Proof of Theorem 2.2

We shall base the proof of Theorem 2.2 on the compression technique used in [10] and in [16]. We point out that this can be avoided by applying an argument similar to the one for Theorem 2.5; however, the compression technique enables us to obtain a neater proof and a value of $k_{0}(r, t)$ that is better than what we would obtain without using it.

For $(a, b) \in[n] \times[2, k]$, let $\Delta_{a, b}: 2^{\mathcal{S}_{2}[n], k} \rightarrow 2^{\mathcal{S}_{2}[n], k}$ be defined by

$$
\Delta_{a, b}(\mathcal{A}):=\left\{\delta_{a, b}(A): A \in \mathcal{A}\right\} \cup\left\{A \in \mathcal{A}: \delta_{a, b}(A) \in \mathcal{A}\right\}
$$

where $\delta_{a, b}: \mathcal{S}_{2^{[n], k}} \rightarrow \mathcal{S}_{2^{[n]}, k}$ is defined by

$$
\delta_{a, b}(A):= \begin{cases}A \backslash\{(a, b)\} \cup\{(a, 1)\} & \text { if }(a, b) \in A ; \\ A & \text { otherwise }\end{cases}
$$

Note that $\left|\Delta_{a, b}(\mathcal{A})\right|=|\mathcal{A}|$. It is known and easy to check that, if \mathcal{A} is t-intersecting, then $\Delta_{a, b}(\mathcal{A})$ is t-intersecting. We prove a bit more than this.

Lemma 3.1 Let $\mathcal{A} \subset \mathcal{S}_{2^{[n]}, k}$ and $V \subseteq[n] \times[2, k]$ such that $|(A \cap B) \backslash V| \geq t$ for any $A, B \in \mathcal{A}$. Then $|(C \cap D) \backslash(V \cup\{(a, b)\})| \geq t$ for any $C, D \in \Delta_{a, b}(\mathcal{A})$.

Proof. Let $C, D \in \Delta_{a, b}(\mathcal{A})$. Let $C^{\prime}:=(C \backslash\{(a, 1)\}) \cup\{(a, b)\}, D^{\prime}:=(D \backslash\{(a, 1)\}) \cup\{(a, b)\}$. Suppose $|(C \cap D) \backslash V|<t$. So C and D cannot both be in \mathcal{A}. Suppose $C, D \notin \mathcal{A}$; then $(a, 1)$ is in both C and D, C^{\prime} and D^{\prime} are in \mathcal{A}, and $\left|\left(C^{\prime} \cap D^{\prime}\right) \backslash V\right| \leq|(C \cap D) \backslash V|<t$, a contradiction. Thus, without loss of generality, $C \notin \mathcal{A}$ and $D \in \mathcal{A}$. So $(a, 1) \in C$ and $C^{\prime} \in \mathcal{A}$. If $(a, b) \notin D$ then $\left|\left(C^{\prime} \cap D\right) \backslash V\right| \leq|(C \cap D) \backslash V|<t$, contradicting $C^{\prime}, D \in \mathcal{A}$. So $(a, b) \in D$ and hence $\delta_{a, b}(D) \in \mathcal{A}$ (because otherwise $D \notin \Delta_{a, b}(\mathcal{A})$). But then $\left|\left(C^{\prime} \cap \delta_{a, b}(D)\right) \backslash V\right|=|(C \cap D) \backslash V|<t$, contradicting $C^{\prime}, \delta_{a, b}(D) \in \mathcal{A}$. We therefore conclude that $|(C \cap D) \backslash V| \geq t$.

Now suppose $|(C \cap D) \backslash(V \cup\{(a, b)\})|<t$. Since $|(C \cap D) \backslash V| \geq t,(a, b) \in C \cap D$. So $C, \delta_{a, b}(C), D, \delta_{a, b}(D) \in \mathcal{A}$ and $\left|\left(C \cap \delta_{a, b}(D)\right) \backslash V\right|=|(C \cap D) \backslash(V \cup\{(a, b)\})|<t$, a contradiction.

Corollary 3.2 Let \mathcal{A}^{*} be a t-intersecting sub-family of $\mathcal{S}_{2^{[n], k}}$. Let

$$
\mathcal{A}:=\Delta_{n, k} \circ \ldots \circ \Delta_{n, 2} \circ \ldots \circ \Delta_{1, k} \circ \ldots \circ \Delta_{1,2}\left(\mathcal{A}^{*}\right) .
$$

Then $|A \cap B \cap([n] \times[1])| \geq t$ for any $A, B \in \mathcal{A}$.
Proof. By repeated application of Lemma 3.1, $|(A \cap B) \backslash([n] \times[2, k])| \geq t$ for any $A, B \in \mathcal{A}$. The result follows since $(A \cap B) \backslash([n] \times[2, k])=A \cap B \cap([n] \times[1])$.

Lemma 3.3 Let $\mathcal{F} \subseteq 2^{[n]}, k \geq 3$ and $(a, b) \in[n] \times[2, k]$. Suppose \mathcal{A} is a non-trivial t intersecting sub-family of $\mathcal{S}_{\mathcal{F}, k}$ and $\Delta_{a, b}(\mathcal{A})$ is a sub-family of a t-star $\mathcal{S}_{\mathcal{F}, k}[Z]\left(Z \in \mathcal{S}_{\binom{[n]}{t}, k}\right)$ of $\mathcal{S}_{\mathcal{F}, k}$. Then $|\mathcal{A}|<\left|\mathcal{S}_{\mathcal{F}, k}[Z]\right|$.

Proof. Let $Y:=\{z:(z, l) \in Z$ for some $l \in[k]\}$. Given that $\Delta_{a, b}(\mathcal{A}) \subseteq \mathcal{S}_{\mathcal{F}, k}[Z]$, we have $\mathcal{A} \subset \mathcal{S}_{\mathcal{F}[Y], k}$ and, since \mathcal{A} is non-trivial, there exists $A \in \mathcal{A}$ such that $|A \cap Z|=t-1$ and $Z \subseteq \delta_{a, b}(A)$. So $(a, 1) \in Z$ and $Z^{\prime}:=Z \backslash\{(a, 1)\} \subset A$ for all $A \in \mathcal{A}$. Let $Y^{\prime}:=Y \backslash\{a\}$. Setting $\mathcal{F}^{\prime}:=\left\{F \backslash Y^{\prime}: F \in \mathcal{F}\left[Y^{\prime}\right]\right\}$ and $\mathcal{A}^{\prime}:=\left\{A \backslash Z^{\prime}: A \in \mathcal{A}\left[Z^{\prime}\right]\right\}$, we then have $\mathcal{A}^{\prime} \subset \mathcal{S}_{\mathcal{F}^{\prime}(a), k}$ (as $\mathcal{A} \subset \mathcal{S}_{\mathcal{F}[Y], k}$ and $Y=Y^{\prime} \cup\{a\}$) and $\left|\mathcal{A}^{\prime}\right|=|\mathcal{A}|$. Since \mathcal{A} is a non-trivial t-intersecting family and $\left|Z^{\prime}\right|=t-1, \mathcal{A}^{\prime}$ is a non-trivial intersecting family.

For $F^{\prime} \in \mathcal{F}^{\prime}(a)$, let $\mathcal{A}_{F^{\prime}}^{\prime}:=\mathcal{A}^{\prime} \cap \mathcal{S}_{F^{\prime}, k}$. Since \mathcal{A}^{\prime} is intersecting, $\mathcal{A}_{F^{\prime}}^{\prime}$ is intersecting. Suppose $\mathcal{A}_{F^{\prime}}^{\prime} \neq \emptyset$. If $\mathcal{A}_{F^{\prime}}^{\prime}$ is non-trivial, then, by Livingston's theorem [30] (see Section 1.3), $\left|\mathcal{A}_{F^{\prime}}^{\prime}\right|<k^{\left|F^{\prime}\right|-1}$. Suppose $\mathcal{A}_{F^{\prime}}^{\prime}$ is trivial; so $\mathcal{A}_{F^{\prime}}^{\prime} \subseteq \mathcal{S}_{F^{\prime}, k}((c, d))$ for some $(c, d) \in F^{\prime} \times[k]$. Since \mathcal{A}^{\prime} is non-trivial, there exists $A^{\prime} \in \mathcal{A}^{\prime}$ such that $(c, d) \notin A^{\prime}$. Thus, since \mathcal{A}^{\prime} is intersecting, we actually have $\mathcal{A}_{F^{\prime}}^{\prime} \subseteq\left\{A \in \mathcal{S}_{F^{\prime}, k}((c, d)): A \cap A^{\prime} \neq \emptyset\right\}$, and hence we again get $\left|\mathcal{A}_{F^{\prime}}^{\prime}\right|<k^{\left|F^{\prime}\right|-1}$.

We therefore have

$$
|\mathcal{A}|=\left|\mathcal{A}^{\prime}\right|=\sum_{F^{\prime} \in \mathcal{F}^{\prime}(a)}\left|\mathcal{A}_{F^{\prime}}^{\prime}\right|<\sum_{F^{\prime} \in \mathcal{F}^{\prime}(a)} k^{\left|F^{\prime}\right|-1}=\sum_{F \in \mathcal{F}[Y]} k^{|F|-t},
$$

and the result follows since $\sum_{F \in \mathcal{F}[Y]} k^{|F|-t}=\left|\mathcal{S}_{\mathcal{F}, k}[Z]\right|$.
Proof of Theorem 2.2. Let \mathcal{F} be a family with $t<\alpha(\mathcal{F}) \leq r$. We may assume that $\mathcal{F} \subseteq 2^{[n]}$ for some $n \in \mathbb{N}$. Let $k \geq k_{0}(r, t)$. We prove the result by showing that, for any non-trivial t-intersecting sub-family \mathcal{B} of $\mathcal{S}_{\mathcal{F}, k}$, there exists a trivial t-intersecting sub-family of $\mathcal{S}_{\mathcal{F}, k}$ that is larger than \mathcal{B}.

Let \mathcal{A}^{*} be a non-trivial t-intersecting sub-family of $\mathcal{S}_{\mathcal{F}, k}$. Let $\mathcal{A}:=\Delta_{n, k} \circ \ldots \circ \Delta_{n, 2} \circ \ldots \circ$ $\Delta_{1, k} \circ \ldots \circ \Delta_{1,2}\left(\mathcal{A}^{*}\right)$. So $\mathcal{A} \subset \mathcal{S}_{\mathcal{F}, k}$ and $|\mathcal{A}|=\left|\mathcal{A}^{*}\right|$. Let $X:=[n] \times[1]$. By Corollary 3.2,

$$
\begin{equation*}
|A \cap B \cap X| \geq t \text { for any } A, B \in \mathcal{A} \tag{1}
\end{equation*}
$$

Suppose \mathcal{A} is a trivial t-intersecting family, i.e. $\mathcal{A} \subseteq \mathcal{S}_{\mathcal{F}, k}[Z]$ for some $Z \in\binom{S}{t}, S \in \mathcal{S}_{\mathcal{F}, k}$. By Lemma 3.3, we then have $\left|\mathcal{A}^{*}\right|<\left|\mathcal{S}_{\mathcal{F}, k}[Z]\right|$, and hence we are done.

We now assume \mathcal{A} is a non-trivial t-intersecting family. Suppose $\left|A^{\prime} \cap X\right|=t$ for some $A^{\prime} \in \mathcal{A}$. Then, by (1), $A^{\prime} \cap X \subseteq A$ for all $A \in \mathcal{A}$; but this contradicts the assumption that \mathcal{A} is non-trivial. So $|A \cap X| \geq t+1$ for all $A \in \mathcal{A}$, and hence we obtain a crude bound for the size of $\mathcal{A}_{F}:=\mathcal{A} \cap \mathcal{S}_{F, k}(F \in \mathcal{F})$ as follows:

$$
\begin{equation*}
\left|\mathcal{A}_{F}\right| \leq\left|\left\{A \in \mathcal{S}_{F, k}:|A \cap(F \times[1])| \geq t+1\right\}\right|<\binom{|F|}{t+1} k^{|F|-t-1} \leq\binom{ r}{t+1} k^{|F|-t-1} \tag{2}
\end{equation*}
$$

Let $B \in \mathcal{A}$. Since \mathcal{A} is t-intersecting (by (1)), each $A \in \mathcal{A}$ must contain at least one of the sets in $\binom{B}{t}$, and hence $\mathcal{A}=\bigcup_{C \in\binom{B}{t}} \mathcal{A}[C]$. Choose $C^{*} \in\binom{B}{t}$ such that $|\mathcal{A}[C]| \leq\left|\mathcal{A}\left[C^{*}\right]\right|$ for all $C \in\binom{B}{t}$. We then have

$$
\begin{equation*}
|\mathcal{A}|=\left|\bigcup_{C \in\binom{B}{t}} \mathcal{A}[C]\right| \leq \sum_{C \in\binom{B}{t}}|\mathcal{A}[C]| \leq\binom{|B|}{t}\left|\mathcal{A}\left[C^{*}\right]\right| \leq\binom{ r}{t}\left|\mathcal{A}\left[C^{*}\right]\right| . \tag{3}
\end{equation*}
$$

Set $\mathcal{G}:=\left\{F \in \mathcal{F}: \mathcal{A}\left[C^{*}\right] \cap \mathcal{S}_{F, k} \neq \emptyset\right\}$. Let \mathcal{C} be the trivial t-intersecting sub-family $\bigcup_{G \in \mathcal{G}} \mathcal{S}_{G, k}\left[C^{*}\right]$ of $\mathcal{S}_{\mathcal{F}, k}$. Bringing all the pieces together, we get

$$
\begin{align*}
|\mathcal{A}| & \leq\binom{ r}{t}\left|\mathcal{A}\left[C^{*}\right]\right| \tag{3}\\
& \leq\binom{ r}{t} \sum_{G \in \mathcal{G}}\left|\mathcal{A}_{G}\right|=\sum_{G \in \mathcal{G}}\binom{r}{t}\left|\mathcal{A}_{G}\right| \\
& <\sum_{G \in \mathcal{G}}\binom{r}{t}\binom{r}{t+1} k^{|G|-t-1} \tag{2}\\
& =\sum_{G \in \mathcal{G}} k_{0}(r, t) k^{|G|-t-1} \leq \sum_{G \in \mathcal{G}} k^{|G|-t}=|\mathcal{C}| .
\end{align*}
$$

So $\left|\mathcal{A}^{*}\right|<|\mathcal{C}|$ as $\left|\mathcal{A}^{*}\right|=|\mathcal{A}|$. Hence the result.

4 Proof of Theorem 2.5

The proof of Theorem 2.5 is based on ideas from the preceding section and ideas used by Erdôs, Ko and Rado [13] for their result concerning t-intersecting sub-families of $\binom{[n]}{r}$. Unfortunately, the compression technique fails to work for intersecting sub-families of $\mathcal{S}_{[n], k}^{*}$.

Let $l(n, k, t)$ be the size of a largest non-trivial t-intersecting sub-family of $\mathcal{S}_{[n], k}^{*}$, and let $P_{j}:=\{(i, i): i \in[j]\}$.
Lemma 4.1 For any $c, n, t \in \mathbb{N}$ with $t<n$, let $k_{0}(c, n, t):=c\binom{3 n-2 t-1}{\left.\frac{3 n-2 t-1}{2}\right\rfloor} \frac{n!}{(n-t-1)!}+n+1$. For any $k \geq k_{0}(c, n, t)$,

$$
\left|\mathcal{S}_{[n], k}^{*}\left[P_{t}\right]\right|>c\left(\max \left\{l(n, k, t),\left|\mathcal{S}_{[n], k}^{*}\left[P_{t+1}\right]\right|\right\}\right) .
$$

Proof. Let $k \geq k_{0}(c, n, t)$, and let $\mathcal{A} \subset \mathcal{S}_{[n], k}^{*}$ be a non-trivial t-intersecting family of size $l(n, k, t)$. Choose $A_{1}, A_{2} \in \mathcal{A}$ such that $\left|A_{1} \cap A_{2}\right| \leq|A \cap B|$ for all $A, B \in \mathcal{A}$.

Suppose $\left|A_{1} \cap A_{2}\right| \geq t+1$. Let $\left(i^{*}, j^{*}\right) \in[n] \times[k]$ such that $\left(i^{*}, j^{*}\right) \in A_{1} \cap A_{2}$. Let $j^{\prime} \in[k]$ such that $\left(i, j^{\prime}\right) \notin A_{1} \cup A_{2}$ for all $i \in[n]$ (note that such a j^{\prime} exists since $k \geq$ $\left.k_{0}(c, n, t)>\left|A_{1} \cup A_{2}\right|\right)$. Let $A_{1}^{\prime}:=\left(A_{1} \backslash\left\{\left(i^{*}, j^{*}\right)\right\}\right) \cup\left(i^{*}, j^{\prime}\right)$. By choice of $j^{\prime}, A_{1}^{\prime} \in \mathcal{S}_{[n], k}^{*}$. Let $\mathcal{A}^{\prime}:=\mathcal{A} \cup\left\{A_{1}^{\prime}\right\}$. Since $\left|A_{1}^{\prime} \cap A_{2}\right|<\left|A_{1} \cap A_{2}\right|$, it follows by choice of A_{1} and A_{2} that $A_{1}^{\prime} \notin \mathcal{A}$ and hence $\left|\mathcal{A}^{\prime}\right|=|\mathcal{A}|+1$. Also by choice of A_{1} and A_{2}, we have $|A \cap B| \geq t+1$ for all $A, B \in \mathcal{A}$, which implies that \mathcal{A}^{\prime} is t-intersecting. Since $\mathcal{A} \subset \mathcal{A}^{\prime}$ and \mathcal{A} is non-trivially t-intersecting, $\left|\bigcap_{A^{\prime} \in \mathcal{A}^{\prime}} A^{\prime}\right| \leq\left|\bigcap_{A \in \mathcal{A}} A\right|<t$. So \mathcal{A}^{\prime} is a non-trivial t-intersecting sub-family of $\mathcal{S}_{[n], k}^{*}$ of size greater than $|\mathcal{A}|$; but this contradicts $|\mathcal{A}|=l(n, k, t)$. We therefore conclude that $\left|A_{1} \cap A_{2}\right|=t$. Thus, since \mathcal{A} is non-trivially t-intersecting, there exists $A_{3} \in \mathcal{A}$ such that $A_{1} \cap A_{2} \nsubseteq A_{3}$ and hence $\left|A_{1} \cap A_{2} \cap A_{3}\right|<t$.

Let $I:=A_{1} \cup A_{2} \cup A_{3}$. Suppose there exists $A^{*} \in \mathcal{A}$ such that $\left|A^{*} \cap I\right|<t+1$. Since $\left|A_{1} \cap A_{2}\right|=t$ and $\left|A^{*} \cap A_{i}\right| \geq t$ for each $i \in[2]$, we must then have $A^{*} \cap\left(A_{1} \cup A_{2}\right)=A_{1} \cap A_{2}$. Thus, by our supposition, $A^{*} \cap I=A_{1} \cap A_{2}$. But then $A^{*} \cap A_{3}=A_{1} \cap A_{2} \cap A_{3}$, which gives the contradiction that $\left|A^{*} \cap A_{3}\right|<t$. Therefore

$$
\begin{equation*}
|A \cap I| \geq t+1 \text { for all } A \in \mathcal{A} . \tag{4}
\end{equation*}
$$

Now $|I|=\left|A_{1} \cup A_{2}\right|+\left|A_{3}\right|-\left|A_{3} \cap\left(A_{1} \cup A_{2}\right)\right|$. Since $\left|A_{1} \cup A_{2}\right|=2 n-\left|A_{1} \cap A_{2}\right|=2 n-t$ and $\left|A_{3} \cap\left(A_{1} \cup A_{2}\right)\right|=\left|A_{3} \cap A_{1}\right|+\left|\left(A_{3} \cap A_{2}\right) \backslash A_{1}\right| \geq t+\left(t-\left|A_{3} \cap A_{2} \cap A_{1}\right|\right) \geq 2 t-(t-1)=t+1$, it follows that

$$
|I| \leq(2 n-t)+n-(t+1)=3 n-2 t-1
$$

Taking J to be the smallest set such that $I \subset[n] \times J$, we then have

$$
n \leq|J| \leq 3 n-2 t-1
$$

For each $i \in[t+1, n]$, let $\mathcal{A}_{i}:=\{A \in \mathcal{A}:|A \cap([n] \times J)|=i\}$. By (4), $\bigcup_{i=t+1}^{n} \mathcal{A}_{i}$ is a partition for \mathcal{A}. Let $x:=\sum_{i=t+1}^{n}\left|\left\{A \in \mathcal{S}_{[n], k}^{*}:|A \cap([n] \times J)|=i\right\}\right|$. We therefore have

$$
\begin{aligned}
l(n, k, t) & =|\mathcal{A}|=\sum_{i=t+1}^{n}\left|\mathcal{A}_{i}\right|<x=\sum_{i=t+1}^{n}\binom{|J|}{i}\binom{n}{i} i!\binom{k-|J|}{n-i}(n-i)! \\
& <\sum_{i=t+1}^{n}\binom{3 n-2 t-1}{i}\binom{n}{i} i!\binom{k-n}{n-i}(n-i)! \\
& \leq \sum_{i=t+1}^{n}\binom{3 n-2 t-1}{i} \frac{n!}{(n-i)!}(k-n)^{(n-i)} \\
& \leq\binom{ 3 n-2 t-1}{\left\lfloor\frac{3 n-2 t-1}{2}\right\rfloor} \frac{n!}{(n-t-1)!} \sum_{i=t+1}^{n}(k-n)^{(n-i)} \\
& =\left(\frac{k_{0}(c, n, t)-n-1}{c}\right)\left(\frac{1-(k-n)^{n-t}}{1-(k-n)}\right) \leq \frac{(k-n)^{n-t}-1}{c} \\
& <\frac{1}{c}\left(\frac{(k-t)!}{(k-n)!}\right)=\frac{\mid \mathcal{S}_{[n], k}^{*}\left[P_{t}\right]}{c} .
\end{aligned}
$$

The result now follows since we also have $\left|\mathcal{S}_{[n], k}^{*}\left[P_{t+1}\right]\right|<x$.
Proof of Theorem 2.5. Let \mathcal{F} be a family with $t<\alpha(\mathcal{F}) \leq r$. Let $\left.k_{0}\binom{r}{t}, n, t\right)$ be as in the statement of Lemma 4.1 with $c=\binom{r}{t}$. Let $k \geq k_{0}^{*}(r, t)$. So we have

$$
\begin{equation*}
k \geq k_{0}\left(\binom{r}{t}, r, t\right)=\max \left\{k_{0}\left(\binom{r}{t}, n, t\right): n \in[r]\right\} \tag{5}
\end{equation*}
$$

Let \mathcal{A} be a non-trivial t-intersecting sub-family of $\mathcal{S}_{\mathcal{F}, k}^{*}$.
For any $F \in \mathcal{F}$ and any family $\mathcal{B} \subseteq \mathcal{S}_{\mathcal{F}, k}^{*}$, set $\mathcal{B}_{F}:=\mathcal{B} \cap \mathcal{S}_{F, k}^{*}$. For all $F \in \mathcal{F}$, choose $F^{\prime} \in \mathcal{S}_{\binom{F}{t}, k}^{*}$. We show that, for all $F \in \mathcal{F}$,

$$
\begin{equation*}
\binom{r}{t}\left|\mathcal{A}_{F}\right|<\left|\mathcal{S}_{F, k}^{*}\left[F^{\prime}\right]\right| . \tag{6}
\end{equation*}
$$

If \mathcal{A}_{F} is a non-trivial t-intersecting family, then (6) follows immediately from (5) and Lemma 4.1. Now suppose \mathcal{A}_{F} is a trivial t-intersecting family. Setting $T:=\bigcap_{A \in \mathcal{A}_{F}} A$, we then have $|T| \geq t$. If $|T| \geq t+1$, then (6) again follows immediately from (5) and Lemma 4.1. It remains to consider $|T|=t$. Since \mathcal{A} is a non-trivial t-intersecting family, there exists $A_{1} \in$ \mathcal{A} such that $T \nsubseteq A_{1}$ and hence $\left|T \cap A_{1}\right|<t$. Let $D_{1}:=A_{1} \cap(F \times[k])$. Let F_{1} be the subset of F such that $D_{1} \in \mathcal{S}_{F_{1}, k}^{*}$. Let $F_{2}:=F \backslash F_{1}$. Let $Y:=\left\{y \in[k]:(x, y) \notin D_{1} \cup T\right.$ for all $\left.x \in F\right\}$, and let $y_{1}, \ldots, y_{|Y|}$ be the distinct elements of Y. We have $|Y| \geq k-\left|D_{1}\right|-|T|=k-\left|F_{1}\right|-t=$ $k-\left(|F|-\left|F_{2}\right|\right)-t \geq k_{0}^{*}(r, t)-r-t+\left|F_{2}\right|>\left|F_{2}\right|$. If $F_{2} \neq \emptyset$ and $x_{1}, \ldots, x_{\left|F_{2}\right|}$ are the distinct elements of F_{2}, then we take D_{2} to be the set $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{\left|F_{2}\right|}, y_{\left|F_{2}\right|}\right)\right\}$ in $\mathcal{S}_{F_{2}, k}^{*}$; otherwise we take $D_{2}:=\emptyset$. Let $A_{2}:=D_{1} \cup D_{2}$. Clearly $A_{2} \in \mathcal{S}_{F, k}^{*}$. Therefore $\mathcal{A}_{F} \cup\left\{A_{2}\right\}$ is a non-trivial t intersecting sub-family of $\mathcal{S}_{F, k}^{*}$ because $\left|\bigcap_{A^{\prime} \in \mathcal{A}_{F} \cup\left\{A_{2}\right\}} A^{\prime}\right|=\left|T \cap A_{2}\right|=\left|T \cap D_{1}\right|=\left|T \cap A_{1}\right|<t$ and, for all $A \in \mathcal{A}_{F},\left|A_{2} \cap A\right| \geq\left|D_{1} \cap A\right|=\left|A_{1} \cap A\right| \geq t$. By (5) and Lemma 4.1, it follows that $\binom{r}{t}\left|\mathcal{A}_{F} \cup\left\{A_{2}\right\}\right|<\left|\mathcal{S}_{F, k}^{*}\left[F^{\prime}\right]\right|$, and hence (6).

Now, as in the proof of Theorem 2.2, by choosing $B \in \mathcal{A}$ and $C^{*} \in\binom{B}{t}$ such that $|\mathcal{A}[C]| \leq\left|\mathcal{A}\left[C^{*}\right]\right|$ for all $C \in\binom{B}{t}$, we get

$$
|\mathcal{A}| \leq\binom{ r}{t}\left|\mathcal{A}\left[C^{*}\right]\right|
$$

Set $\mathcal{G}:=\left\{F \in \mathcal{F}: \mathcal{A}\left[C^{*}\right] \cap \mathcal{S}_{F, k}^{*} \neq \emptyset\right\}$. Let \mathcal{C} be the trivial t-intersecting sub-family $\bigcup_{G \in \mathcal{G}} \mathcal{S}_{G, k}^{*}\left[C^{*}\right]$ of $\mathcal{S}_{\mathcal{F}, k}^{*}$. Bringing all the pieces together, we get

$$
|\mathcal{A}| \leq\binom{ r}{t}\left|\mathcal{A}\left[C^{*}\right]\right| \leq \sum_{G \in \mathcal{G}}\binom{r}{t}\left|\mathcal{A}_{G}\right|<\sum_{G \in \mathcal{G}}\left|\mathcal{C}_{G}\right|=|\mathcal{C}|,
$$

where the strict inequality follows by (6). Hence the result.

References

[1] R. Ahlswede, L.H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. of Combinatorics 18 (1997) 125-136.
[2] R. Ahlswede, L.H. Khachatrian, The diametric theorem in Hamming spaces - Optimal anticodes, Adv. in Appl. Math. 20 (1998) 429-449.
[3] C. Berge, Nombres de coloration de l'hypergraphe h-parti complet, in: Hypergraph Seminar (Columbus, Ohio 1972), Lecture Notes in Math., Vol. 411, Springer, Berlin, 1974, 13-20.
[4] B. Bollobás, I. Leader, An Erdős-Ko-Rado theorem for signed sets, Comput. Math. Appl. 34 (1997) 9-13.
[5] P. Borg, Intersecting systems of signed sets, Electron. J. Combin. 14 (2007) \#R41.
[6] P.J. Cameron, C.Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003) 881-890.
[7] D.E. Daykin, Erdős-Ko-Rado from Kruskal-Katona, J. Combin. Theory Ser. A 17 (1974) 254-255.
[8] M. Deza, Matrices dont deux lignes quelconques coincident dans un nombre donne' de positions communes, J. Combin. Theory Ser. A 20 (1976) 306-318.
[9] M. Deza, P. Frankl, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A 22 (1977) 352-360.
[10] M. Deza, P. Frankl, The Erdős-Ko-Rado theorem - 22 years later, SIAM J. Algebraic Discrete Methods 4 (1983) 419-431.
[11] K. Engel, An Erdős-Ko-Rado theorem for the subcubes of a cube, Combinatorica 4 (1984) 133-140.
[12] P.L. Erdős, U. Faigle, W. Kern, A group-theoretic setting for some intersecting Sperner families, Combin. Probab. Comput. 1 (1992) 323-334.
[13] P. Erdôs, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961) 313-320.
[14] P. Frankl, The Erdős-Ko-Rado Theorem is true for $n=c k t$, Proc. Fifth Hung. Comb. Coll., North-Holland, Amsterdam, 1978, pp. 365-375.
[15] P. Frankl, The shifting technique in extremal set theory, in: C. Whitehead (Ed.), Combinatorial Surveys, Cambridge Univ. Press, London/New York, 1987, pp. 81-110.
[16] P. Frankl and Z. Füredi, The Erdős-Ko-Rado Theorem for integer sequences, SIAM J. Algebraic Discrete Methods 1(4) (1980) 376-381.
[17] P. Frankl, N. Tokushige, The Erdős-Ko-Rado theorem for integer sequences, Combinatorica 19 (1999) 55-63.
[18] H.-D.O.F. Gronau, More on the Erdős-Ko-Rado theorem for integer sequences, J. Combin. Theory Ser. A 35 (1983) 279-288.
[19] A.J.W. Hilton, E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967) 369-384.
[20] F.C. Holroyd and J. Talbot, Graphs with the Erdôs-Ko-Rado property, Discrete Math. 293 (2005) 165-176.
[21] G.O.H. Katona, A simple proof of the Erdős-Chao Ko-Rado theorem, J. Combin. Theory Ser. B 13 (1972) 183-184.
[22] G.O.H. Katona, A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, Akadémiai Kiadó (1968) 187-207.
[23] G.O.H. Katona, Intersection theorems for finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964) 329-337.
[24] D.J. Kleitman, On a combinatorial conjecture of Erdős, J. Combin. Theory Ser. A 1 (1966) 209-214.
[25] J.B. Kruskal, The number of simplices in a complex, in: Mathematical Optimization Techniques, University of California Press, Berkeley, California, 1963, pp. 251-278.
[26] C.Y. Ku, Intersecting families of permutations and partial permutations, Ph.D. Dissertation, Queen Mary College, University of London, December, 2004.
[27] C.Y. Ku, I. Leader, An Erdős-Ko-Rado theorem for partial permutations, Discrete Math. 306 (2006) 74-86.
[28] B. Larose, C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, European J. Combin. 25 (2004) 657-673.
[29] Yu-Shuang Li, Jun Wang, Erdős-Ko-Rado-type theorems for colored sets, Electron. J. Combin. 14 (2007) \#R1.
[30] M.L. Livingston, An ordered version of the Erdős-Ko-Rado Theorem, J. Combin. Theory Ser. A 26 (1979), 162-165.
[31] J.-C. Meyer, Quelques problèmes concernant les cliques des hypergraphes k-complets et q-parti h-complets, in: Hypergraph Seminar (Columbus, Ohio 1972), Lecture Notes in Math., Vol. 411, Springer, Berlin, 1974, 127-139.
[32] A. Moon, An analogue of the Erdős-Ko-Rado theorem for the Hamming schemes $H(n, q)$, J. Combin. Theory Ser. A 32 (1982) 386-390.
[33] R.M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984) 247-257.

