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Abstract

A family A of sets is said to be t-intersecting if any two sets in A contain at least
t common elements. A t-intersecting family is said to be #rivial if there are at least ¢
elements common to all its sets.

Let X be an r-set {z1,...,2,}. For k > 2, we define Sx ; and S% , to be the families
of k-signed r-sets given by ’

Sxr ={{(z1,a1),..., (zr,a,)}: a1,...,a, are elements of {1,...,k}},
Sxr = H(z1,a1), ., (¥, 0r)} 1 ay, ..., a, are distinct elements of {1,...,k}}.

S% ;. can be interpreted as the family of permutations of r-subsets of {1,...,k}. For a
family F, we define Sz := Uper Srp and Sk, = Uper Shye

This paper features two theorems. The first one is as follows: For any two integers
s and t with ¢ < s, there exists an integer ko(s,t) such that, for any k > ko(s,t) and
any family F with ¢ < max{|F|: F' € F} < s, the largest t-intersecting sub-families of
Sz are trivial. The second theorem is an analogue of the first one for S% .

Introduction

1.1 Notation and definitions

We start with some standard notation for sets. N is the set {1,2,...} of positive integers.
For m,n € N with m < n, the set {i € N: m < i < n} is denoted by [m,n], and if m =1
then we also write [n]. For a set X, the power set {A: A C X} of X is denoted by 2%, and

the uniform sub-family {Y C X: |Y| = r} of 2¥ is denoted by ().

For u € U(F), we abbreviate F({u}) to F(u). We call F(u) a star of F. More generally, if

For a family F of sets, we denote the union of all sets in F by U(F). For a set V, we set

FV]:=={FeF:VCF}, FV)={FeF:FnV#0}.

T is a t-subset of a set in F, then we call F[T] a t-star of F.
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A family A is said to be intersecting if AN B # () for any A, B € A. More generally, A
is said to be t-intersecting if |[AN B| >t for any A, B € A. A t-intersecting family A is said
to be trivial if [ (4. 4 A| > ¢ (ie. there are at least ¢ elements common to all the sets in A);
otherwise, A is said to be non-trivial. Note that a t-star of a family F is a maximal trivial
t-intersecting sub-family of F.

In the following, unless otherwise stated, sets and families are to be assumed non-empty
and finite.

1.2 Intersecting sub-families of 2"l and ([Z])

The study of intersecting families took off with the publication of [13], which features the
classical result, known as the Erdés-Ko-Rado (EKR) Theorem, that says that, if r < n/2
and A is an intersecting sub-family of ([ }) then A has size at most ( ) which is the size

of a star of ([Z]). There are various proofs of this theorem, two of which are particularly
short and beautiful: Katona’s [21] using the cycle method and Daykin’s |7] using another
fundamental result known as the Kruskal-Katona Theorem [22, 25]. Hilton and Milner [19]
determined the size of a largest non-trivial intersecting sub-family of ([’Z]), and consequently

they established that, if r < n/2, then no non-trivial intersecting sub-family of ([Z]) is as

large as the stars of ([’TL]).

The facts we have just mentioned inspire us to make the following definition. We say
that a family F is EKR if the set of largest intersecting sub-families of F contains a star,
and strictly EKR if the set of largest intersecting sub-families of F contains only stars.

Also in [13], Erd6s, Ko and Rado initiated the study of t-intersecting families for ¢ > 2.
They pointed out the simple fact that 2" is EKR, and they posed the following question:
What is the size of an extremal (i.e. largest) t-intersecting sub-family of 2" for ¢ > 2? The
answer in a complete form was given by Katona [23]. It is interesting that, for n > ¢t > 2,
no extremal t-intersecting sub-family of 2/ is a t-star.

For the uniform case, Erdgs, Ko and Rado [13] proved that, for ¢ < r, there exists an
integer ng(r, t) such that, for all n > ng(r, t), the largest t-intersecting sub-families of ([”]) are
the t-stars. Fort > 15, Frankl [14| showed that the smallest such ng(r,t) is (r—t+1)(t+1)+1
and that, if n = (r—t+41)(t+1), then t-stars are extremal but not uniquely so. Subsequently,
Wilson [33] proved the sharp upper bound (:f:f) for the size of a t-intersecting sub-family of

([”]) forallt and n > (r—t+1)(t+1). Frankl [14] conjectured that an extremal ¢-intersecting
sub-family of (7«) has size max{|{A € ([’Z]): ANt +2i] >t+i}t:ie{0}Ur—t]}. A
remarkable proof of this long-standing conjecture together with a complete characterisation
of the extremal structures was finally obtained by Ahlswede and Khachatrian [1].

Theorem 1.1 (Ahlswede and Khachatrian [1]) Let 1 < ¢t < r < n, and let A be an
extremal t-intersecting sub-family of ([”])

(i) If (r—t+1)(2+57) <n < (r—t+1)(24+52) for some i € {0}UN - where, by convention,

(t—1)/i=00ifi=0-then A={A¢€ ([:f) |ANX| > t+1i} for some X € (tﬂl)
(i) Ift > 2 and (r—t+1)(2+57) = n for some i € {0}UN, then A= {A € ([:f]): |ANX]| >

t+j} for some j e {i,i+1} and X € (tEL"Q]])

Many other beautiful results were inspired by the seminal Erdgs-Ko-Rado paper [13].
The survey papers [10] and [15] are recommended.
We now proceed to the first of the two main themes of the paper.
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1.3 Intersecting families of signed sets

Let X be an r-set {zy,...,x.}. Let y1,...,y, € N. We call the set {(x1,11), ..., (z,,9-)} &
k-signed r-set if |{y1,...,y-}| < k. For an integer k > 2, we define Sy to be the family of
k-signed r-sets given by

Sxr = {{(z1,01), ..., (xr,ar) }: a1, ...,a, € [K]}.

We shall set Sy, := 0.

The Cartesian product X x Y of sets X and Y is the set {(z,y): z € X,y € Y}. So
Sxr={AC X x[k]: |[An({z} x [k])| =1 for all z € X}.

For a family F of sets, we define

S]-',k = U SFJf.

We remark that the ‘signed sets’ terminology was introduced in [4] for a setting that can

be re-formulated as S([n]) .» and the general formulation Sz was introduced by the author

in [5], the theme of which is the following conjecture.

Conjecture 1.2 (Borg [5]) Let F be any family, and let k > 2. Then:

(7,) S]:Jf 18 EKR,

(i) Sy is not strictly EKR iff k = 2 and there exist at least three elements uy, us,us of
U(F) such that F(uy) = F(uz) = F(us) and Sr2((u1,1)) is a largest star of Sgo.

The main result in the same paper is that this conjecture is true if F is compressed with
respect to an element u* of U(F) (i.e. u € F € F\F(u*) implies (F\{u})U{u*} € F). This
generalises a well-known result that was first stated by Meyer [31] and proved in different
ways by Deza and Frankl [10], Bollob4s and Leader [4], Engel [11] and Erdds et al. [12],
and that can be described as saying that the conjecture is true for F = ([?}). Berge 3| and
Livingston [30] had proved (i) and (ii) respectively for the special case F = {[n]} (other
proofs are found in [18, 32]). In [5] the conjecture is also verified for F uniform and EKR;
Holroyd and Talbot [20] had essentially proved (i) for such a family F in a graph-theoretical
context.

The t-intersection problem for sub-families of Sp,; has also been solved. Frankl and
Fiiredi [16] were the first to investigate it, and the following result had been a conjecture
that they made and that they verified for k£ > ¢+ 1 > 16 in [16].

Theorem 1.3 (Ahlswede, Khachatrian [2]; Frankl, Tokushige [17]) If A is an extremal
t-intersecting sub-family of Sy, then |A| = max{[{A € Spje: [AN ([t + 2] x [1])] >
t+i}: i€ {0} UN}.

It follows from this result that the set of extremal ¢-intersecting sub-families of S, contains
t-stars iff £ > t + 1. What led to this result was the accomplishment of Theorem 1.1. As
in Theorem 1.1, Ahlswede and Khachatrian [2] also determined the extremal t-intersecting
sub-families of Sj,) %, and it turns out that the structure of a t-star of Sj,); is the unique
extremal structure iff £ > ¢ 4+ 2. Kleitman [24] had long established Theorem 1.3 for k = 2.

To the best of the author’s knowledge, apart from a general result we present later, no
results for ¢-intersecting sub-families of Sz, with |F| > 2 have been established. However,
some very important results have been obtained for a modification of the problem, which we
describe next.



1.4 Intersecting families of permutations and partial permutations

For an r-set X := {ry,..., 7, }, we define S% ; to be the special sub-family of Sx ;. given by

Sy = {{(xl,al),..., (zr,a)}: {ar, .0} € (V;j]) } |

Note that S5, # 0 iff r < k.
For a family F, we define 8% to be the special sub-family of Sz given by

Sy = U Spe-

FeF

An r-partial permutation of a set N is a pair (A, f) where A € (J:f) and f: A — N is
an injection. An |N|-partial permutation of N is simply called a permutation of N. Clearly,
the family of permutations of [n] can be re-formulated as S[’;ﬂ’n, and the family of r-partial
permutations of [n] can be re-formulated as SZM)

r )

Let X be as above. S%, can be interpreted as the family of permutations of sets in
(U:}): consider the bijection 3: Sy, — {(A4,f): A € ([k]), f: A — Ais a bijection} defined

by B({(x1,a1), ..., (xr,ar)}) == ({a1,...,a.}, f) where, for by < ... < b, such that {by,...,b,} =
{ar, ;ar}, f(bi) = a; for i = 1,...,r. 8%, can also be interpreted as the sub-family
X ={(Af): A€ ([k]),f: A — [r] is a bijection} of the family of r-partial permutations of

T
[k]: consider an obvious bijection from S%, to SEM) and another one from &7, to X.

)

In [8, 9] the study of intersecting permutations was initiated. Deza and Frankl [9] showed
that Sp, , is EKR. So an intersecting sub-family of S, has size at most (n — 1)L, Only
a few years ago, Cameron and Ku [6] and Larose and Malvenuto [28] independently proved
that furthermore S[’;]’n is strictly EKR.

Ku and Leader [27]| proved that SE["]),n is EKR for all r € [n], and they also showed that
SZ[:])’" is strictly EKR for all r € [8,nT— 3]. Naturally, they conjectured that SZ["]),n is also
strictly EKR for the few remaining values of r. This was settled by Li and Wang |29] using
tools forged by Ku and Leader.

When it comes to t-intersecting families of permutations, things are of course much

harder, and the most interesting challenge comes from the following conjecture.

r

Conjecture 1.4 (Deza and Frankl [9]) For any t € N, there exists no(t) € N such that,
for any n > ny(t), the size of a t-intersecting sub-family of Sf;] ., s at most that of a t-star

of St ie. (n—1)l.

[n],n’?

This conjecture suggests an obvious extension for the extremal case. It is worth pointing
out that the condition n > ng(t) is necessary; [26, Example 3.1.1| illustrates this fact. An
analogue of the statement of the conjecture for partial permutations has been proved by Ku.

Theorem 1.5 (Ku [26, Theorem 6.6.6]) For anyr,t € N withr > t, there exists no(r,t) €

*

N such that, for any n > ng(r,t), the size of a t-intersecting sub-family of S([n]) . s at most

% . n— n—t)!
that of a t-star of S([?])ﬂ”/ i.€. (T_:) —((n_:))!.

This result emerges as an immediate consequence of one of the two main theorems in this
paper; see next section.



2 Results and conjectures

For a family F, let a(F) denote the size of a largest set in F. Any t-intersecting sub-family
of Sz or S, trivially consists of at most one set if a(F) < t. We now consider a(F) > t.

In view of Conjecture 1.2, we suggest the following general conjecture for t-intersecting
families of signed sets.

Conjecture 2.1 For anyt € N, there exists ko(t) € N such that, for any k > ko(t) and any
family F with o(F) > t, the largest t-intersecting sub-families of Sy are trivial.

As we mentioned in Section 1.3, the t-stars of Sy, are extremal ¢-intersecting sub-families
of Sy iff & >t + 1, and they are uniquely extremal iff & > ¢ + 2. This suggests that, if
Conjecture 2.1 is true, then, as is claimed by Conjecture 1.2 for ¢t = 1, the smallest value of
ko(t) is t+2 (and the largest t-stars of Sx ;.1 are among the largest t-intersecting sub-families
of Sr+11). We are able to prove a relaxation of the statement of Conjecture 2.1.

Theorem 2.2 For any r,t € N with t < r, let ko(r,t) := (’;) (t};l). For any k > ko(r,t) and

any family F with t < a(F) < r, the largest t-intersecting sub-families of Sry are trivial.

Corollary 2.3 Conjecture 1.2 is true if k > a(F) (a(;)).

We next pose a similar problem for ¢-intersecting sub-families of S ..
Conjecture 2.4 For anyt € N, there exists ki (t) € N such that, for any k > kj(t) and any
family F with o(F) > t, the largest t-intersecting sub-families of Sk, are trivial.
By taking k£ > kj(t) and F = {[k]}, we get Conjecture 1.4. We are able to prove the following

analogue of Theorem 2.2.

Theorem 2.5 For any r,t € N with t < r, let ki(r,t) := (;) (ngtgfflﬂ)#il), +r+1. For
2 [
any k > ki(r,t) and any family F with t < a(F) < r, the largest t-intersecting sub-families

of 8 are trivial.

By taking k > ki(r,t) and F = ([k]), we get Theorem 1.5.

T
We now proceed to the proofs of the two theorems above.

3 Proof of Theorem 2.2

We shall base the proof of Theorem 2.2 on the compression technique used in [10] and in
[16]. We point out that this can be avoided by applying an argument similar to the one for
Theorem 2.5; however, the compression technique enables us to obtain a neater proof and a
value of ko(r,t) that is better than what we would obtain without using it.

For (a,b) € [n] x [2, k], let Agpy: 2% — 2%k be defined by
Amb(A) = {(Smb(A)I A € A} U {A c .A,I (SaJ,(A) € A},
where g4 Sy — Sam 18 defined by

sua(a) = { M OHEDE W €4

A otherwise

Note that |A,,(A)| = |A|. Tt is known and easy to check that, if A is t-intersecting, then
Ay p(A) is t-intersecting. We prove a bit more than this.
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Lemma 3.1 Let A C Sy, and V' C [n] x [2, K] such that [(ANB)\V| >t for any A, B € A.
Then |(CND)\(VU{(a,b)})| >t for any C,D € A, ,(A).

Proof. Let C, D € A,p(A). Let " := (C\{(a,1)}) U{(a,b)}, D" := (D\{(a,1)}) U{(a,b)}.
Suppose |(CND)\V| < t. So C and D cannot both be in A. Suppose C, D ¢ A; then (a,1) is
in both C'and D, C" and D" are in A, and [(C"ND")\V| < [(CND)\V| < t, a contradiction.
Thus, without loss of generality, C' ¢ A and D € A. So (a,1) € C and C" € A. If (a,b) ¢ D
then |(C" N D)\V| < [(C N D)\V| < t, contradicting C', D € A. So (a,b) € D and hence
dap(D) € A (because otherwise D ¢ A, ,(.A)). But then |[(C'Nd.u(D))\V] = [(CND)\V| < ¢,
contradicting C’, d, (D) € A. We therefore conclude that |(C' N D)\V| > t.

Now suppose |(C' N D)\(V U {(a,b)})| < t. Since |(C N D\V| > ¢, (a,b) € C N D.
S0 C,0,4(C), D,0y(D) € A and |(C 1 6 (D)\V] = [(C0 DNV U {(@b)})] < t, a
contradiction. O

Corollary 3.2 Let A* be a t-intersecting sub-family of Sy .. Let
A=A 0.0, 00...0A 1 0...0A5(A").
Then |AN BN ([n] x [1])| >t for any A, B € A.

Proof. By repeated application of Lemma 3.1, |(AN B)\([n]

X [2,k])| >t for any A, B € A.
The result follows since (AN B)\([n] x [2,k]) = AN BN ([n] x [1])

[1]). O

Lemma 3.3 Let F C 2" k > 3 and (a,b) € [n] x [2,k]. Suppose A is a non-trivial t-
intersecting sub-family of Sgy and Agp(A) is a sub-family of a t-star Sr[Z] (Z € S([n]) .

of Sri. Then |A| < |SrilZ]|-

Proof. Let Y := {z: (z,1) € Z for some [ € [k]}. Given that A,;(A) C Szx[Z], we have
A C Szpy, and, since A is non-trivial, there exists A € A such that |[ANZ| =t —1 and
Z C 8ap(A). So (a,1) € Z and Z' := Z\{(a,1)} C Aforall A € A Let Y’ :=Y\{a}.
Setting 7/ := {F\Y': FF € F[Y']} and A" := {A\Z": A € A[Z']}, we then have A" C Sgr(o) 1
(as A C Sgpyyr and YV = Y' U {a}) and |A'| = | A|. Since A is a non-trivial t-intersecting
family and |Z'| =t — 1, A" is a non-trivial intersecting family.

For F' € F'(a), let Ay = A" N Spry. Since A’ is intersecting, A}, is intersecting.
Suppose A%, # (. If A%, is non-trivial, then, by Livingston’s theorem [30] (see Section 1.3),
| A, | < K171 Suppose A, s trivial; so Ar € Spr((c, d)) for some (¢, d) € F' x [k]. Since
A’ is non-trivial, there exists A’ € A’ such that (c,d) ¢ A’. Thus, since A’ is intersecting, we
actually have A%, C {A € Spi((c,d)): AN A’ # 0}, and hence we again get | A}, | < k171,

We therefore have

Al=1A= Y Mpl< Y K=y
)

F'eF'(a) F'eF'(a FeF[Y]

and the result follows since - pc 7y kIt = Sk [ 2]). O

Proof of Theorem 2.2. Let F be a family with ¢ < o(F) < r. We may assume that
F C 2" for some n € N. Let k > ko(r,t). We prove the result by showing that, for any
non-trivial ¢-intersecting sub-family B of Sz, there exists a trivial ¢-intersecting sub-family
of Sz, that is larger than B.



Let A* be a non-trivial t-intersecting sub-family of Sz . Let A:= A, 0...0A,50...0
Ajpo...oAo(A*). So AC Sry and |A| = |A*|. Let X := [n] x [1]. By Corollary 3.2,

|[ANBNX|>tforany A, B € A. (1)

Suppose A is a trivial t-intersecting family, i.e. A C Szx[Z] for some Z € (f), S e Sry.
By Lemma 3.3, we then have |A*| < |Szx[Z]|, and hence we are done.

We now assume A4 is a non-trivial t-intersecting family. Suppose |A’ N X| = t for some
A" € A. Then, by (1), AN X C A for all A € A; but this contradicts the assumption that
A is non-trivial. So |[AN X| >t + 1 for all A € A, and hence we obtain a crude bound for
the size of Ap := AN Spy, (F € F) as follows:

i 1P| |F|—t—1 r |F|—t—1
\AF\§|{AGSFJ€.|Aﬂ(F><[1])\2t+1}]<(t+1 k < f11 k . (2)

Let B € A. Since A is t-intersecting (by (1)), each A € A must contain at least one of
the sets in (%), and hence A = UCG(B> A[C]. Choose C* € (V) such that [A[C]] < [A[C*]|

t t

for all C € (?) We then have
=1 U A= ¥ el < (e < () )
elr) o)

Set G == {F € F: A[C*] N Spi # 0}. Let C be the trivial ¢-intersecting sub-family
Ugeg Scx[C7] of Sz . Bringing all the pieces together, we get

r *
A< ()i (by (3)
< () el = X () o
Geg Geg
<> () ( . )k'G"H (by (2))
t)\t+1
Geg
= ko(r, KT <Y R = .
Geg Geg
So |A*| < |C| as |A*| = | A|. Hence the result. O

4 Proof of Theorem 2.5

The proof of Theorem 2.5 is based on ideas from the preceding section and ideas used
by Erdés, Ko and Rado [13] for their result concerning t-intersecting sub-families of ([’;]).
Unfortunately, the compression technique fails to work for intersecting sub-families of S[Z],k'

Let I(n, k, t) be the size of a largest non-trivial ¢-intersecting sub-family of 8[2},@ and let

Py={(i,i): i € [j]}.
Lemma 4.1 For any ¢,n,t € N with t < n, let ko(c,n,t) == c(L%’},:if:}J)#!_m +n+1. For

2 t
any k > ko(ce,n,t),
Sy k[ E2]| > c(max{i(n, k, ), [Sp k[Pl })-



Proof. Let k > ko(c,n,t), and let A C S[’;L]’k be a non-trivial t-intersecting family of size
[(n,k,t). Choose A, Ay € A such that |A; N Ay| < |ANB| forall A, B € A.

Suppose |A; N Ag| > t+ 1. Let (i*,j*) € [n] x [k] such that (i*,j*) € A; N Ay. Let
j" € [k] such that (i,j') ¢ A; U A, for all i € [n] (note that such a j' exists since k >
ko(c,n,t) > [A1 U Asf). Let Ay == (A\{(¢",77)}) U (&, j'). By choice of j', A} € S ,.
Let A" := AU {A}}. Since |4} N Ay| < |A; N Ay, it follows by choice of A; and A, that
A} ¢ A and hence |A'| = |A| + 1. Also by choice of A; and Ay, we have |[AN B| > ¢+ 1 for
all A, B € A, which implies that A’ is t-intersecting. Since A C A’ and A is non-trivially
t-intersecting, | ea Al < |aen Al < t. So A’ is a non-trivial t-intersecting sub-family
of Sp . of size greater than |A[; but this contradicts |A| = I(n, k,t). We therefore conclude
that |A; N Ay| = ¢t. Thus, since A is non-trivially t-intersecting, there exists Az € A such
that A1 N A2 g Ag and hence |A1 N A2 N A3| < t.

Let I := A; U Ay U As. Suppose there exists A* € A such that |[A*NI| < t+ 1. Since
|A1 N Ay =t and |[A*NA;| > t for each i € [2], we must then have A*N(A; UAz) = A1 N As.
Thus, by our supposition, A* NI = A; N Ay. But then A*N A3 = A; N Ay N As, which gives
the contradiction that |A* N As| < t. Therefore

|JANI|>t+1foral Ae A (4)

Now ’]| = ‘A1UA2‘+’A3’—’Agﬂ(AlLJAg)’. Since |A1UA2| = 2n—|A1ﬂA2| =2n—t and
[AsN (A1 UAs)| = |AsN Ay +|(AsNA)\A | > t+ (t—|AsNAsNA]) > 2t—(t—1) =t+1,
it follows that

| <(2n—t)+n—(t+1)=3n—2t—1.
Taking J to be the smallest set such that I C [n] x J, we then have
n<|J| <3n—2t—1.

For each i € [t + 1,n], let A; := {A € A: [AN([n] x J)| =i}. By (4), U;_,, Aiis a

partition for A. Let z:=3"" | [{A € Sy [AN([n] x J)| = d}|. We therefore have

I(n,k,t) = |A| = i A < 7= zn: ("Z') (?)i!(kn_Ji‘)(n—i)!

i=t+1 i=t+4+1

Z GG e

A

<3 (T et

< (3TSZ_T§f_IJ1> R _Z!_ a ii+1<k — )

_ ko(e,n,t) —n—1\ (1 —(k—n)""" S(k—n)”*t—l
< t)@ > < 1—(k—n) ) c

1 (((:: )!') _ |S[>:L],k[Pt]|'



The result now follows since we also have [Sp , [Pri]] < . O

Proof of Theorem 2.5. Let F be a family with ¢ < a(F) < r. Let ko((}),n,t) be as
in the statement of Lemma 4.1 with ¢ = (}). Let k > kj(r,t). So we have

r
t

k> ko(( >,7‘, t) = max{k:o((:>,n, t): n € [r]}. (5)
Let A be a non-trivial ¢-intersecting sub-family of S .
For any F' € F and any family B C S, set Bp := BN Sp,. For all F' € F, choose

F' e S&kF) .- We show that, for all ' € F,

D) AF| < [SpalF. (6)
(1

If Ar is a non-trivial t-intersecting family, then (6) follows immediately from (5) and
Lemma 4.1. Now suppose Ap is a trivial t-intersecting family. Setting T' := (.4, 4, we
then have |T| > ¢. If |T| > t+1, then (6) again follows immediately from (5) and Lemma 4.1.
It remains to consider |T'| = ¢. Since A is a non-trivial t-intersecting family, there exists A; €
Asuch that T ¢ Ay and hence |TNA;| < t. Let Dy := A;N(F x [k]). Let F; be the subset of
F such that Dy € Sy, . Let Fy := F\Fy. Let Y :={y € [k]: (v,y) € D1 UT for all x € F'},
and let y1, ..., yy| be the distinct elements of Y. We have |Y| > k—|Dy|—|T| = k—|F| -t =
k—(|F| = |Fs|) =t > ki(r,t) —r —t+ |F3| > |F5|. If Fy # 0 and z, ..., x)p,| are the distinct
elements of Fy, then we take D; to be the set {(z1,41), ..., (|my); ¥r|) } In Sk, 15 otherwise we
take Dy := (). Let Ay := D; U D,. Clearly A, € Sy, Therefore Ap U{As} is a non-trivial ¢-
intersecting sub-family of S}, because [ [ yc 4,004, A1 = [TNA| = [TNDy| = [TNA| <t
and, for all A € Ap, [A;NA| > |D;NA|=|A1NA| >t By (5) and Lemma 4.1, it follows
that (})|Ar U{A2}| < |Sk.[F’]|, and hence (6).

Now, as in the proof of Theorem 2.2, by choosing B € A and C* € (]f) such that
|A[C]| < JA[CH]| for all C € (7)), we get

A= ().

Set G := {F € F: A[C"] N Sf;, # 0}. Let C be the trivial t-intersecting sub-family
Ugeg S6.x[C*] of S% ;.. Bringing all the pieces together, we get

A= () uaiel < 32 () el < 3 il = kel

Geg Geg

where the strict inequality follows by (6). Hence the result. O
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