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Abstract

A family A of sets is said to be t-intersecting if any two sets in A contain at least

t common elements. A t-intersecting family is said to be trivial if there are at least t
elements common to all its sets.

Let X be an r-set {x1, ..., xr}. For k ≥ 2, we de�ne SX,k and S∗X,k to be the families

of k-signed r-sets given by

SX,k := {{(x1, a1), ..., (xr, ar)} : a1, ..., ar are elements of {1, ..., k}},
S∗X,k := {{(x1, a1), ..., (xr, ar)} : a1, ..., ar are distinct elements of {1, ..., k}}.

S∗X,k can be interpreted as the family of permutations of r-subsets of {1, ..., k}. For a

family F , we de�ne SF ,k :=
⋃

F∈F SF,k and S∗F ,k :=
⋃

F∈F S∗F,k.

This paper features two theorems. The �rst one is as follows: For any two integers

s and t with t ≤ s, there exists an integer k0(s, t) such that, for any k ≥ k0(s, t) and

any family F with t ≤ max{|F | : F ∈ F} ≤ s, the largest t-intersecting sub-families of

SF ,k are trivial. The second theorem is an analogue of the �rst one for S∗F ,k.

1 Introduction

1.1 Notation and de�nitions

We start with some standard notation for sets. N is the set {1, 2, ...} of positive integers.
For m, n ∈ N with m ≤ n, the set {i ∈ N : m ≤ i ≤ n} is denoted by [m, n], and if m = 1
then we also write [n]. For a set X, the power set {A : A ⊆ X} of X is denoted by 2X , and
the uniform sub-family {Y ⊆ X : |Y | = r} of 2X is denoted by

(
X
r

)
.

For a family F of sets, we denote the union of all sets in F by U(F). For a set V , we set

F [V ] := {F ∈ F : V ⊆ F}, F(V ) := {F ∈ F : F ∩ V 6= ∅}.

For u ∈ U(F), we abbreviate F({u}) to F(u). We call F(u) a star of F . More generally, if
T is a t-subset of a set in F , then we call F [T ] a t-star of F .
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A family A is said to be intersecting if A ∩ B 6= ∅ for any A, B ∈ A. More generally, A
is said to be t-intersecting if |A∩B| ≥ t for any A, B ∈ A. A t-intersecting family A is said
to be trivial if |

⋂
A∈A A| ≥ t (i.e. there are at least t elements common to all the sets in A);

otherwise, A is said to be non-trivial. Note that a t-star of a family F is a maximal trivial
t-intersecting sub-family of F .

In the following, unless otherwise stated, sets and families are to be assumed non-empty
and �nite.

1.2 Intersecting sub-families of 2[n] and
([n]

r

)
The study of intersecting families took o� with the publication of [13], which features the
classical result, known as the Erd®s-Ko-Rado (EKR) Theorem, that says that, if r ≤ n/2
and A is an intersecting sub-family of

(
[n]
r

)
, then A has size at most

(
n−1
r−1

)
, which is the size

of a star of
(
[n]
r

)
. There are various proofs of this theorem, two of which are particularly

short and beautiful: Katona's [21] using the cycle method and Daykin's [7] using another
fundamental result known as the Kruskal-Katona Theorem [22, 25]. Hilton and Milner [19]
determined the size of a largest non-trivial intersecting sub-family of

(
[n]
r

)
, and consequently

they established that, if r < n/2, then no non-trivial intersecting sub-family of
(
[n]
r

)
is as

large as the stars of
(
[n]
r

)
.

The facts we have just mentioned inspire us to make the following de�nition. We say
that a family F is EKR if the set of largest intersecting sub-families of F contains a star,
and strictly EKR if the set of largest intersecting sub-families of F contains only stars.

Also in [13], Erd®s, Ko and Rado initiated the study of t-intersecting families for t ≥ 2.
They pointed out the simple fact that 2[n] is EKR, and they posed the following question:
What is the size of an extremal (i.e. largest) t-intersecting sub-family of 2[n] for t ≥ 2? The
answer in a complete form was given by Katona [23]. It is interesting that, for n > t ≥ 2,
no extremal t-intersecting sub-family of 2[n] is a t-star.

For the uniform case, Erd®s, Ko and Rado [13] proved that, for t < r, there exists an
integer n0(r, t) such that, for all n ≥ n0(r, t), the largest t-intersecting sub-families of

(
[n]
r

)
are

the t-stars. For t ≥ 15, Frankl [14] showed that the smallest such n0(r, t) is (r−t+1)(t+1)+1
and that, if n = (r−t+1)(t+1), then t-stars are extremal but not uniquely so. Subsequently,
Wilson [33] proved the sharp upper bound

(
n−t
r−t

)
for the size of a t-intersecting sub-family of(

[n]
r

)
for all t and n ≥ (r−t+1)(t+1). Frankl [14] conjectured that an extremal t-intersecting

sub-family of
(
[n]
r

)
has size max{|{A ∈

(
[n]
r

)
: |A ∩ [t + 2i]| ≥ t + i}| : i ∈ {0} ∪ [r − t]}. A

remarkable proof of this long-standing conjecture together with a complete characterisation
of the extremal structures was �nally obtained by Ahlswede and Khachatrian [1].

Theorem 1.1 (Ahlswede and Khachatrian [1]) Let 1 ≤ t ≤ r ≤ n, and let A be an
extremal t-intersecting sub-family of

(
[n]
r

)
.

(i) If (r−t+1)(2+ t−1
i+1

) < n < (r−t+1)(2+ t−1
i

) for some i ∈ {0}∪N - where, by convention,

(t− 1)/i = ∞ if i = 0 - then A = {A ∈
(
[n]
r

)
: |A ∩X| ≥ t + i} for some X ∈

(
[n]

t+2i

)
.

(ii) If t ≥ 2 and (r−t+1)(2+ t−1
i+1

) = n for some i ∈ {0}∪N, then A = {A ∈
(
[n]
r

)
: |A∩X| ≥

t + j} for some j ∈ {i, i + 1} and X ∈
(

[n]
t+2j

)
.

Many other beautiful results were inspired by the seminal Erd®s-Ko-Rado paper [13].
The survey papers [10] and [15] are recommended.

We now proceed to the �rst of the two main themes of the paper.
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1.3 Intersecting families of signed sets

Let X be an r-set {x1, ..., xr}. Let y1, ..., yr ∈ N. We call the set {(x1, y1), ..., (xr, yr)} a
k-signed r-set if |{y1, ..., yr}| ≤ k. For an integer k ≥ 2, we de�ne SX,k to be the family of
k-signed r-sets given by

SX,k := {{(x1, a1), ..., (xr, ar)} : a1, ..., ar ∈ [k]}.

We shall set S∅,k := ∅.
The Cartesian product X × Y of sets X and Y is the set {(x, y) : x ∈ X, y ∈ Y }. So

SX,k = {A ⊂ X × [k] : |A ∩ ({x} × [k])| = 1 for all x ∈ X}.
For a family F of sets, we de�ne

SF ,k :=
⋃

F∈F

SF,k.

We remark that the `signed sets' terminology was introduced in [4] for a setting that can
be re-formulated as S([n]

r ),k
, and the general formulation SF ,k was introduced by the author

in [5], the theme of which is the following conjecture.

Conjecture 1.2 (Borg [5]) Let F be any family, and let k ≥ 2. Then:
(i) SF ,k is EKR;
(ii) SF ,k is not strictly EKR i� k = 2 and there exist at least three elements u1, u2, u3 of
U(F) such that F(u1) = F(u2) = F(u3) and SF ,2((u1, 1)) is a largest star of SF ,2.

The main result in the same paper is that this conjecture is true if F is compressed with
respect to an element u∗ of U(F) (i.e. u ∈ F ∈ F\F(u∗) implies (F\{u})∪{u∗} ∈ F). This
generalises a well-known result that was �rst stated by Meyer [31] and proved in di�erent
ways by Deza and Frankl [10], Bollobás and Leader [4], Engel [11] and Erd®s et al. [12],
and that can be described as saying that the conjecture is true for F =

(
[n]
r

)
. Berge [3] and

Livingston [30] had proved (i) and (ii) respectively for the special case F = {[n]} (other
proofs are found in [18, 32]). In [5] the conjecture is also veri�ed for F uniform and EKR;
Holroyd and Talbot [20] had essentially proved (i) for such a family F in a graph-theoretical
context.

The t-intersection problem for sub-families of S[n],k has also been solved. Frankl and
Füredi [16] were the �rst to investigate it, and the following result had been a conjecture
that they made and that they veri�ed for k ≥ t + 1 ≥ 16 in [16].

Theorem 1.3 (Ahlswede, Khachatrian [2]; Frankl, Tokushige [17]) If A is an extremal
t-intersecting sub-family of S[n],k, then |A| = max{|{A ∈ S[n],k : |A ∩ ([t + 2i] × [1])| ≥
t + i}| : i ∈ {0} ∪ N}.

It follows from this result that the set of extremal t-intersecting sub-families of S[n],k contains
t-stars i� k ≥ t + 1. What led to this result was the accomplishment of Theorem 1.1. As
in Theorem 1.1, Ahlswede and Khachatrian [2] also determined the extremal t-intersecting
sub-families of S[n],k, and it turns out that the structure of a t-star of S[n],k is the unique
extremal structure i� k ≥ t + 2. Kleitman [24] had long established Theorem 1.3 for k = 2.

To the best of the author's knowledge, apart from a general result we present later, no
results for t-intersecting sub-families of SF ,k with |F| ≥ 2 have been established. However,
some very important results have been obtained for a modi�cation of the problem, which we
describe next.

3



1.4 Intersecting families of permutations and partial permutations

For an r-set X := {x1, ..., xr}, we de�ne S∗
X,k to be the special sub-family of SX,k given by

S∗
X,k :=

{
{(x1, a1), ..., (xr, ar)} : {a1, ..., ar} ∈

(
[k]

r

)}
.

Note that S∗
X,k 6= ∅ i� r ≤ k.

For a family F , we de�ne S∗
F ,k to be the special sub-family of SF ,k given by

S∗
F ,k :=

⋃
F∈F

S∗
F,k.

An r-partial permutation of a set N is a pair (A, f) where A ∈
(

N
r

)
and f : A → N is

an injection. An |N |-partial permutation of N is simply called a permutation of N . Clearly,
the family of permutations of [n] can be re-formulated as S∗

[n],n, and the family of r-partial

permutations of [n] can be re-formulated as S∗
([n]

r ),n
.

Let X be as above. S∗
X,k can be interpreted as the family of permutations of sets in(

[k]
r

)
: consider the bijection β : S∗

X,k → {(A, f) : A ∈
(
[k]
r

)
, f : A → A is a bijection} de�ned

by β({(x1, a1), ..., (xr, ar)}) := ({a1, ..., ar}, f) where, for b1 < ... < br such that {b1, ..., br} =
{a1, ..., ar}, f(bi) := ai for i = 1, ..., r. S∗

X,k can also be interpreted as the sub-family

X := {(A, f) : A ∈
(
[k]
r

)
, f : A → [r] is a bijection} of the family of r-partial permutations of

[k]: consider an obvious bijection from S∗
X,k to S∗

([k]
r ),r

and another one from S∗
([k]

r ),r
to X .

In [8, 9] the study of intersecting permutations was initiated. Deza and Frankl [9] showed
that S∗

[n],n is EKR. So an intersecting sub-family of S∗
[n],n has size at most (n − 1)!. Only

a few years ago, Cameron and Ku [6] and Larose and Malvenuto [28] independently proved
that furthermore S∗

[n],n is strictly EKR.

Ku and Leader [27] proved that S∗
([n]

r ),n
is EKR for all r ∈ [n], and they also showed that

S∗
([n]

r ),n
is strictly EKR for all r ∈ [8, n − 3]. Naturally, they conjectured that S∗

([n]
r ),n

is also

strictly EKR for the few remaining values of r. This was settled by Li and Wang [29] using
tools forged by Ku and Leader.

When it comes to t-intersecting families of permutations, things are of course much
harder, and the most interesting challenge comes from the following conjecture.

Conjecture 1.4 (Deza and Frankl [9]) For any t ∈ N, there exists n0(t) ∈ N such that,
for any n ≥ n0(t), the size of a t-intersecting sub-family of S∗

[n],n is at most that of a t-star

of S∗
[n],n, i.e. (n− t)!.

This conjecture suggests an obvious extension for the extremal case. It is worth pointing
out that the condition n ≥ n0(t) is necessary; [26, Example 3.1.1] illustrates this fact. An
analogue of the statement of the conjecture for partial permutations has been proved by Ku.

Theorem 1.5 (Ku [26, Theorem 6.6.6]) For any r, t ∈ N with r ≥ t, there exists n0(r, t) ∈
N such that, for any n ≥ n0(r, t), the size of a t-intersecting sub-family of S∗

([n]
r ),n

is at most

that of a t-star of S∗
([n]

r ),n
, i.e.

(
n−t
r−t

)
(n−t)!
(n−r)!

.

This result emerges as an immediate consequence of one of the two main theorems in this
paper; see next section.
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2 Results and conjectures

For a family F , let α(F) denote the size of a largest set in F . Any t-intersecting sub-family
of SF ,k or S∗

F ,k trivially consists of at most one set if α(F) ≤ t. We now consider α(F) > t.
In view of Conjecture 1.2, we suggest the following general conjecture for t-intersecting

families of signed sets.

Conjecture 2.1 For any t ∈ N, there exists k0(t) ∈ N such that, for any k ≥ k0(t) and any
family F with α(F) > t, the largest t-intersecting sub-families of SF ,k are trivial.

As we mentioned in Section 1.3, the t-stars of S[n],k are extremal t-intersecting sub-families
of S[n],k i� k ≥ t + 1, and they are uniquely extremal i� k ≥ t + 2. This suggests that, if
Conjecture 2.1 is true, then, as is claimed by Conjecture 1.2 for t = 1, the smallest value of
k0(t) is t+2 (and the largest t-stars of SF ,t+1 are among the largest t-intersecting sub-families
of SF ,t+1). We are able to prove a relaxation of the statement of Conjecture 2.1.

Theorem 2.2 For any r, t ∈ N with t < r, let k0(r, t) :=
(

r
t

)(
r

t+1

)
. For any k ≥ k0(r, t) and

any family F with t < α(F) ≤ r, the largest t-intersecting sub-families of SF ,k are trivial.

Corollary 2.3 Conjecture 1.2 is true if k ≥ α(F)
(

α(F)
2

)
.

We next pose a similar problem for t-intersecting sub-families of S∗
F ,k.

Conjecture 2.4 For any t ∈ N, there exists k∗0(t) ∈ N such that, for any k ≥ k∗0(t) and any
family F with α(F) > t, the largest t-intersecting sub-families of S∗

F ,k are trivial.

By taking k ≥ k∗0(t) and F = {[k]}, we get Conjecture 1.4. We are able to prove the following
analogue of Theorem 2.2.

Theorem 2.5 For any r, t ∈ N with t < r, let k∗0(r, t) :=
(

r
t

)(
3r−2t−1
b 3r−2t−1

2
c

)
r!

(r−t−1)!
+ r + 1. For

any k ≥ k∗0(r, t) and any family F with t < α(F) ≤ r, the largest t-intersecting sub-families
of S∗

F ,k are trivial.

By taking k ≥ k∗0(r, t) and F =
(
[k]
r

)
, we get Theorem 1.5.

We now proceed to the proofs of the two theorems above.

3 Proof of Theorem 2.2

We shall base the proof of Theorem 2.2 on the compression technique used in [10] and in
[16]. We point out that this can be avoided by applying an argument similar to the one for
Theorem 2.5; however, the compression technique enables us to obtain a neater proof and a
value of k0(r, t) that is better than what we would obtain without using it.

For (a, b) ∈ [n]× [2, k], let ∆a,b : 2
S

2[n],k → 2
S

2[n],k be de�ned by

∆a,b(A) := {δa,b(A) : A ∈ A} ∪ {A ∈ A : δa,b(A) ∈ A},

where δa,b : S2[n],k → S2[n],k is de�ned by

δa,b(A) :=

{
A\{(a, b)} ∪ {(a, 1)} if (a, b) ∈ A;
A otherwise

Note that |∆a,b(A)| = |A|. It is known and easy to check that, if A is t-intersecting, then
∆a,b(A) is t-intersecting. We prove a bit more than this.
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Lemma 3.1 Let A ⊂ S2[n],k and V ⊆ [n]×[2, k] such that |(A∩B)\V | ≥ t for any A, B ∈ A.
Then |(C ∩D)\(V ∪ {(a, b)})| ≥ t for any C, D ∈ ∆a,b(A).

Proof. Let C, D ∈ ∆a,b(A). Let C ′ := (C\{(a, 1)})∪ {(a, b)}, D′ := (D\{(a, 1)})∪ {(a, b)}.
Suppose |(C∩D)\V | < t. So C and D cannot both be in A. Suppose C, D /∈ A; then (a, 1) is
in both C and D, C ′ and D′ are in A, and |(C ′∩D′)\V | ≤ |(C ∩D)\V | < t, a contradiction.
Thus, without loss of generality, C /∈ A and D ∈ A. So (a, 1) ∈ C and C ′ ∈ A. If (a, b) /∈ D
then |(C ′ ∩ D)\V | ≤ |(C ∩ D)\V | < t, contradicting C ′, D ∈ A. So (a, b) ∈ D and hence
δa,b(D) ∈ A (because otherwise D /∈ ∆a,b(A)). But then |(C ′∩δa,b(D))\V | = |(C∩D)\V | < t,
contradicting C ′, δa,b(D) ∈ A. We therefore conclude that |(C ∩D)\V | ≥ t.

Now suppose |(C ∩ D)\(V ∪ {(a, b)})| < t. Since |(C ∩ D)\V | ≥ t, (a, b) ∈ C ∩ D.
So C, δa,b(C), D, δa,b(D) ∈ A and |(C ∩ δa,b(D))\V | = |(C ∩ D)\(V ∪ {(a, b)})| < t, a
contradiction. 2

Corollary 3.2 Let A∗ be a t-intersecting sub-family of S2[n],k. Let

A := ∆n,k ◦ ... ◦∆n,2 ◦ ... ◦∆1,k ◦ ... ◦∆1,2(A∗).

Then |A ∩B ∩ ([n]× [1])| ≥ t for any A, B ∈ A.

Proof. By repeated application of Lemma 3.1, |(A∩B)\([n]× [2, k])| ≥ t for any A, B ∈ A.
The result follows since (A ∩B)\([n]× [2, k]) = A ∩B ∩ ([n]× [1]). 2

Lemma 3.3 Let F ⊆ 2[n], k ≥ 3 and (a, b) ∈ [n] × [2, k]. Suppose A is a non-trivial t-
intersecting sub-family of SF ,k and ∆a,b(A) is a sub-family of a t-star SF ,k[Z] (Z ∈ S([n]

t ),k
)

of SF ,k. Then |A| < |SF ,k[Z]|.

Proof. Let Y := {z : (z, l) ∈ Z for some l ∈ [k]}. Given that ∆a,b(A) ⊆ SF ,k[Z], we have
A ⊂ SF [Y ],k and, since A is non-trivial, there exists A ∈ A such that |A ∩ Z| = t − 1 and
Z ⊆ δa,b(A). So (a, 1) ∈ Z and Z ′ := Z\{(a, 1)} ⊂ A for all A ∈ A. Let Y ′ := Y \{a}.
Setting F ′ := {F\Y ′ : F ∈ F [Y ′]} and A′ := {A\Z ′ : A ∈ A[Z ′]}, we then have A′ ⊂ SF ′(a),k

(as A ⊂ SF [Y ],k and Y = Y ′ ∪ {a}) and |A′| = |A|. Since A is a non-trivial t-intersecting
family and |Z ′| = t− 1, A′ is a non-trivial intersecting family.

For F ′ ∈ F ′(a), let A′
F ′ := A′ ∩ SF ′,k. Since A′ is intersecting, A′

F ′ is intersecting.
Suppose A′

F ′ 6= ∅. If A′
F ′ is non-trivial, then, by Livingston's theorem [30] (see Section 1.3),

|A′
F ′| < k|F

′|−1. Suppose A′
F ′ is trivial; so A′

F ′ ⊆ SF ′,k((c, d)) for some (c, d) ∈ F ′× [k]. Since
A′ is non-trivial, there exists A′ ∈ A′ such that (c, d) /∈ A′. Thus, since A′ is intersecting, we
actually have A′

F ′ ⊆ {A ∈ SF ′,k((c, d)) : A∩A′ 6= ∅}, and hence we again get |A′
F ′| < k|F

′|−1.
We therefore have

|A| = |A′| =
∑

F ′∈F ′(a)

|A′
F ′| <

∑
F ′∈F ′(a)

k|F
′|−1 =

∑
F∈F [Y ]

k|F |−t,

and the result follows since
∑

F∈F [Y ] k
|F |−t = |SF ,k[Z]|. 2

Proof of Theorem 2.2. Let F be a family with t < α(F) ≤ r. We may assume that
F ⊆ 2[n] for some n ∈ N. Let k ≥ k0(r, t). We prove the result by showing that, for any
non-trivial t-intersecting sub-family B of SF ,k, there exists a trivial t-intersecting sub-family
of SF ,k that is larger than B.
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Let A∗ be a non-trivial t-intersecting sub-family of SF ,k. Let A := ∆n,k ◦ ... ◦∆n,2 ◦ ... ◦
∆1,k ◦ ... ◦∆1,2(A∗). So A ⊂ SF ,k and |A| = |A∗|. Let X := [n]× [1]. By Corollary 3.2,

|A ∩B ∩X| ≥ t for any A, B ∈ A. (1)

Suppose A is a trivial t-intersecting family, i.e. A ⊆ SF ,k[Z] for some Z ∈
(

S
t

)
, S ∈ SF ,k.

By Lemma 3.3, we then have |A∗| < |SF ,k[Z]|, and hence we are done.
We now assume A is a non-trivial t-intersecting family. Suppose |A′ ∩ X| = t for some

A′ ∈ A. Then, by (1), A′ ∩X ⊆ A for all A ∈ A; but this contradicts the assumption that
A is non-trivial. So |A ∩X| ≥ t + 1 for all A ∈ A, and hence we obtain a crude bound for
the size of AF := A ∩ SF,k (F ∈ F) as follows:

|AF | ≤ |{A ∈ SF,k : |A ∩ (F × [1])| ≥ t + 1}| <
(
|F |

t + 1

)
k|F |−t−1 ≤

(
r

t + 1

)
k|F |−t−1. (2)

Let B ∈ A. Since A is t-intersecting (by (1)), each A ∈ A must contain at least one of
the sets in

(
B
t

)
, and hence A =

⋃
C∈(B

t )
A[C]. Choose C∗ ∈

(
B
t

)
such that |A[C]| ≤ |A[C∗]|

for all C ∈
(

B
t

)
. We then have

|A| = |
⋃

C∈(B
t )

A[C]| ≤
∑

C∈(B
t )

|A[C]| ≤
(
|B|
t

)
|A[C∗]| ≤

(
r

t

)
|A[C∗]|. (3)

Set G := {F ∈ F : A[C∗] ∩ SF,k 6= ∅}. Let C be the trivial t-intersecting sub-family⋃
G∈G SG,k[C

∗] of SF ,k. Bringing all the pieces together, we get

|A| ≤
(

r

t

)
|A[C∗]| (by (3))

≤
(

r

t

) ∑
G∈G

|AG| =
∑
G∈G

(
r

t

)
|AG|

<
∑
G∈G

(
r

t

)(
r

t + 1

)
k|G|−t−1 (by (2))

=
∑
G∈G

k0(r, t)k
|G|−t−1 ≤

∑
G∈G

k|G|−t = |C|.

So |A∗| < |C| as |A∗| = |A|. Hence the result. 2

4 Proof of Theorem 2.5

The proof of Theorem 2.5 is based on ideas from the preceding section and ideas used
by Erd®s, Ko and Rado [13] for their result concerning t-intersecting sub-families of

(
[n]
r

)
.

Unfortunately, the compression technique fails to work for intersecting sub-families of S∗
[n],k.

Let l(n, k, t) be the size of a largest non-trivial t-intersecting sub-family of S∗
[n],k, and let

Pj := {(i, i) : i ∈ [j]}.

Lemma 4.1 For any c, n, t ∈ N with t < n, let k0(c, n, t) := c
(

3n−2t−1
b 3n−2t−1

2
c

)
n!

(n−t−1)!
+ n + 1. For

any k ≥ k0(c, n, t),
|S∗

[n],k[Pt]| > c(max{l(n, k, t), |S∗
[n],k[Pt+1]|}).
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Proof. Let k ≥ k0(c, n, t), and let A ⊂ S∗
[n],k be a non-trivial t-intersecting family of size

l(n, k, t). Choose A1, A2 ∈ A such that |A1 ∩ A2| ≤ |A ∩B| for all A, B ∈ A.
Suppose |A1 ∩ A2| ≥ t + 1. Let (i∗, j∗) ∈ [n] × [k] such that (i∗, j∗) ∈ A1 ∩ A2. Let

j′ ∈ [k] such that (i, j′) /∈ A1 ∪ A2 for all i ∈ [n] (note that such a j′ exists since k ≥
k0(c, n, t) > |A1 ∪ A2|). Let A′

1 := (A1\{(i∗, j∗)}) ∪ (i∗, j′). By choice of j′, A′
1 ∈ S∗

[n],k.

Let A′ := A ∪ {A′
1}. Since |A′

1 ∩ A2| < |A1 ∩ A2|, it follows by choice of A1 and A2 that
A′

1 /∈ A and hence |A′| = |A|+ 1. Also by choice of A1 and A2, we have |A ∩B| ≥ t + 1 for
all A, B ∈ A, which implies that A′ is t-intersecting. Since A ⊂ A′ and A is non-trivially
t-intersecting, |

⋂
A′∈A′ A′| ≤ |

⋂
A∈A A| < t. So A′ is a non-trivial t-intersecting sub-family

of S∗
[n],k of size greater than |A|; but this contradicts |A| = l(n, k, t). We therefore conclude

that |A1 ∩ A2| = t. Thus, since A is non-trivially t-intersecting, there exists A3 ∈ A such
that A1 ∩ A2 * A3 and hence |A1 ∩ A2 ∩ A3| < t.

Let I := A1 ∪ A2 ∪ A3. Suppose there exists A∗ ∈ A such that |A∗ ∩ I| < t + 1. Since
|A1∩A2| = t and |A∗∩Ai| ≥ t for each i ∈ [2], we must then have A∗∩ (A1∪A2) = A1∩A2.
Thus, by our supposition, A∗ ∩ I = A1 ∩A2. But then A∗ ∩A3 = A1 ∩A2 ∩A3, which gives
the contradiction that |A∗ ∩ A3| < t. Therefore

|A ∩ I| ≥ t + 1 for all A ∈ A. (4)

Now |I| = |A1∪A2|+ |A3|−|A3∩(A1∪A2)|. Since |A1∪A2| = 2n−|A1∩A2| = 2n−t and
|A3∩ (A1∪A2)| = |A3∩A1|+ |(A3∩A2)\A1| ≥ t+(t−|A3∩A2∩A1|) ≥ 2t− (t−1) = t+1,
it follows that

|I| ≤ (2n− t) + n− (t + 1) = 3n− 2t− 1.

Taking J to be the smallest set such that I ⊂ [n]× J , we then have

n ≤ |J | ≤ 3n− 2t− 1.

For each i ∈ [t + 1, n], let Ai := {A ∈ A : |A ∩ ([n] × J)| = i}. By (4),
⋃n

i=t+1Ai is a
partition for A. Let x :=

∑n
i=t+1 |{A ∈ S∗

[n],k : |A ∩ ([n]× J)| = i}|. We therefore have

l(n, k, t) = |A| =
n∑

i=t+1

|Ai| < x =
n∑

i=t+1

(
|J |
i

)(
n

i

)
i!

(
k − |J |
n− i

)
(n− i)!

<

n∑
i=t+1

(
3n− 2t− 1

i

)(
n

i

)
i!

(
k − n

n− i

)
(n− i)!

≤
n∑

i=t+1

(
3n− 2t− 1

i

)
n!

(n− i)!
(k − n)(n−i)

≤
(

3n− 2t− 1

b3n−2t−1
2

c

)
n!

(n− t− 1)!

n∑
i=t+1

(k − n)(n−i)

=

(
k0(c, n, t)− n− 1

c

) (
1− (k − n)n−t

1− (k − n)

)
≤ (k − n)n−t − 1

c

<
1

c

(
(k − t)!

(k − n)!

)
=
|S∗

[n],k[Pt]|
c

.
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The result now follows since we also have |S∗
[n],k[Pt+1]| < x. 2

Proof of Theorem 2.5. Let F be a family with t < α(F) ≤ r. Let k0(
(

r
t

)
, n, t) be as

in the statement of Lemma 4.1 with c =
(

r
t

)
. Let k ≥ k∗0(r, t). So we have

k ≥ k0(

(
r

t

)
, r, t) = max{k0(

(
r

t

)
, n, t) : n ∈ [r]}. (5)

Let A be a non-trivial t-intersecting sub-family of S∗
F ,k.

For any F ∈ F and any family B ⊆ S∗
F ,k, set BF := B ∩ S∗

F,k. For all F ∈ F , choose
F ′ ∈ S∗

(F
t ),k

. We show that, for all F ∈ F ,

(
r

t

)
|AF | < |S∗

F,k[F
′]|. (6)

If AF is a non-trivial t-intersecting family, then (6) follows immediately from (5) and
Lemma 4.1. Now suppose AF is a trivial t-intersecting family. Setting T :=

⋂
A∈AF

A, we
then have |T | ≥ t. If |T | ≥ t+1, then (6) again follows immediately from (5) and Lemma 4.1.
It remains to consider |T | = t. Since A is a non-trivial t-intersecting family, there exists A1 ∈
A such that T * A1 and hence |T ∩A1| < t. Let D1 := A1∩(F× [k]). Let F1 be the subset of
F such that D1 ∈ S∗

F1,k. Let F2 := F\F1. Let Y := {y ∈ [k] : (x, y) /∈ D1 ∪ T for all x ∈ F},
and let y1, ..., y|Y | be the distinct elements of Y . We have |Y | ≥ k−|D1|−|T | = k−|F1|−t =
k − (|F | − |F2|)− t ≥ k∗0(r, t)− r− t + |F2| > |F2|. If F2 6= ∅ and x1, ..., x|F2| are the distinct
elements of F2, then we take D2 to be the set {(x1, y1), ..., (x|F2|, y|F2|)} in S∗

F2,k; otherwise we
take D2 := ∅. Let A2 := D1 ∪D2. Clearly A2 ∈ S∗

F,k. Therefore AF ∪{A2} is a non-trivial t-
intersecting sub-family of S∗

F,k because |
⋂

A′∈AF∪{A2} A′| = |T ∩A2| = |T ∩D1| = |T ∩A1| < t

and, for all A ∈ AF , |A2 ∩ A| ≥ |D1 ∩ A| = |A1 ∩ A| ≥ t. By (5) and Lemma 4.1, it follows
that

(
r
t

)
|AF ∪ {A2}| < |S∗

F,k[F
′]|, and hence (6).

Now, as in the proof of Theorem 2.2, by choosing B ∈ A and C∗ ∈
(

B
t

)
such that

|A[C]| ≤ |A[C∗]| for all C ∈
(

B
t

)
, we get

|A| ≤
(

r

t

)
|A[C∗]|.

Set G := {F ∈ F : A[C∗] ∩ S∗
F,k 6= ∅}. Let C be the trivial t-intersecting sub-family⋃

G∈G S∗
G,k[C

∗] of S∗
F ,k. Bringing all the pieces together, we get

|A| ≤
(

r

t

)
|A[C∗]| ≤

∑
G∈G

(
r

t

)
|AG| <

∑
G∈G

|CG| = |C|,

where the strict inequality follows by (6). Hence the result. 2
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