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Abstract

For a family F of sets, let

ex(F) := {A : A is an extremal intersecting sub-family of F}.

The Erd®s-Ko-Rado (EKR) Theorem states that {A ∈
(
[n]
r

)
: 1 ∈ A} ∈ ex(

(
[n]
r

)
) if

r ≤ n/2. The Hilton-Milner (HM) Theorem states that if r ≤ n/2 and A is a non-

trivial intersecting sub-family of
(
[n]
r

)
then |A| ≤ |{A ∈

(
[n]
r

)
: 1 ∈ A,A ∩ [2, r + 1] 6=

∅} ∪ {[2, r + 1]}|; hence {{A ∈
(
[n]
r

)
: j ∈ A} : j ∈ [n]} = ex(

(
[n]
r

)
) if r < n/2. Thus

we say that a family F is (strictly) EKR if ex(F) contains (only) trivial intersecting

families.

We obtain a partial solution to the following problem: for r ≤ n/2, which sets

Z ⊆ [n] have the property that |{A ∈ A : A∩Z 6= ∅}| ≤ |{A ∈
(
[n]
r

)
: 1 ∈ A,A∩Z 6= ∅}|

for all compressed intersecting sub-families of
(
[n]
r

)
? Using the idea of this problem, we

generalise the HM Theorem to a setting of compressed hereditary families.

For a set X := {x1, ..., x|X|}, we de�ne the family SX,k of signed sets by

SX,k := {{(x1, a1), ..., (x|X|, a|X|)} : a1, ..., a|X| ∈ [k]}

and the sub-family S∗X,k by

S∗X,k := {{(x1, a1), ..., (x|X|, a|X|)} : {a1, ..., a|X|} ∈
(

[k]

|X|

)
}.

For a family F , let

SF ,k :=
⋃
F∈F

SF,k, S∗F ,k :=
⋃
F∈F

S∗F,k.
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S∗
([n]

r ),n
describes r-partial permutations of [n].

We conjecture that for any F and k ≥ 2, SF ,k is EKR, and strictly so if k > 2.

We prove this conjecture for families F that are compressed with respect to an element

f ∗ ∈
⋃
F∈F F (i.e. f ∈ F ∈ F , f∗ /∈ F ⇒ (F\{f}) ∪ {f ∗} ∈ F). We then prove

an analogue of the HM Theorem for S([n]
r ),k, and we show that the case r = n of the

result implies the truth of the conjecture for k ≥ k0(F). We go on to prove much

more: for any r ≥ t there exists k0(r, t) such that for any k ≥ k0(r, t) and any F with

max{|F | : F ∈ F} ≤ r, the largest t-intersecting sub-families of SF ,k are trivial. We

also provide an analogue of this result for S∗F ,k.

The work on signed sets is followed by other EKR-type results for a setting that

strongly generalises that given by S2[n],k.

For a monotonic non-decreasing sequence {di}i∈N of non-negative integers, let

P({di}i∈N) := {{a1, ..., ar} ⊂ N : r ∈ N, ai+1 > ai + dai
for i = 1, ..., r − 1},

Pn({di}i∈N) := P({di}i∈N) ∩ 2[n].

Let Pn := Pn({di}i∈N) and P(r)
n := {A ∈ Pn : |A| = r}. We determine ex(P(r)

n ) for

d1 > 0 and any r, and for d1 = 0 and r ≤ 1
2
max{|A| : A ∈ Pn}.

We �nally provide a graph-theoretical re-formulation to a number of results in this

thesis and in the EKR literature in general, and, using the work for P({di}i∈N), we

show that an interesting EKR-type conjecture of Holroyd and Talbot indeed holds for

a class of graphs studied by Holroyd, Spencer and Talbot, and much larger classes.
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Chapter 1

Introduction

1.1 The basic terminology and an outline of the thesis

Before giving a gentle description of the work in this thesis, we shall �rst set up some

basic notation and terminology that will be used throughout.

We shall use small letters such as x to denote elements of a set or integers, capital

letters such as X to denote sets, and 'calligraphic' letters such as X to denote families

(i.e. sets whose members are sets themselves). Unless otherwise stated, it is to be

assumed that sets and families represented in this way are �nite.

We refer to a set of size r as an r-set. A family whose members are all r-sets is said

to be r-uniform, or simply uniform if the size r needs not be speci�ed.

N is the set of positive integers {1, 2, ...}. For m,n ∈ N, m ≤ n, we denote the set

{i ∈ N : m ≤ i ≤ n} by [m,n], and if m = 1 then we also write [n]. [0] is taken to be

the empty set ∅.

The family of all subsets of a set X, called the power set of X, is denoted by 2X .

We denote the r-uniform sub-family {Y ⊆ X : |Y | = r} of 2X by
(
X
r

)
. For a family F

and an integer r, we set F (r) := {A ∈ F : |A| = r}.

A family F is said be centred if the sets in F have a common member c, i.e. c ∈ A

for all A ∈ F ; c is called a centre of A, and the family of all sets in F that own c is

called a star of F . If F is not centred then F is said to be non-centred.

A family A is said to be intersecting if any two sets in A have a non-empty inter-

1



section. More generally, A is said to be t-intersecting if the size of the intersection of

any two sets in A is not smaller than t. A t-intersecting family A is said to be trivial

if the sets in A have a common t-subset; otherwise, A is said to be non-trivial. Note

that a non-trivial 1-intersecting family is a non-centred intersecting family.

We are now able to state two fundamental results in extremal set theory, known as

the Erd®s-Ko-Rado (EKR) Theorem [25] and the Hilton-Milner (HM) Theorem [38],

that inspired much of the work in this thesis and also many results in the literature. The

subsequent sections of this introductory chapter provide a review of some important or

well-known results in the literature that were primarily inspired by the EKR Theorem

and that are directly relevant to this thesis.

It is trivial that if n/2 < r ≤ n then
(
[n]
r

)
is a non-centred intersecting family.

The EKR Theorem states that if r ≤ n/2 and A is an intersecting sub-family of
(
[n]
r

)
,

then the size of A is at most
(
n−1
r−1

)
; thus, if r ≤ n/2 then a star of

(
[n]
r

)
is a largest

intersecting sub-family of
(
[n]
r

)
. The HM Theorem goes one step ahead of the EKR

Theorem and states that if r ≤ n/2 and A is a non-centred intersecting sub-family of(
[n]
r

)
, then the size of A is at most

(
n−1
r−1

)
−
(
n−r−1
r−1

)
+1; so the union of the one-member

family {[2, r+ 1]} and the family of sets in the star of
(
[n]
r

)
with centre 1 that intersect

[2, r+1] (i.e. {A ∈
(
[n]
r

)
: 1 ∈ A, A∩ [2, r+1] 6= ∅}∪{[2, r+1]}) is a largest non-centred

intersecting sub-family of
(
[n]
r

)
. Consequently, the stars of

(
[n]
r

)
constitute the set of

largest intersecting sub-families of
(
[n]
r

)
if r < n/2. In view of these facts, we say that

a family F is EKR if the set of largest intersecting sub-families of F contains a star,

and strictly EKR if the set of largest intersecting sub-families of F contains only stars.

Suppose we want to investigate the EKR and strict EKR properties of a certain

family. Normally, as is often the case in this thesis, the important step, or rather

the step involving the important ideas, is that of proving that the family is EKR,

and proving that the family is strictly EKR would require a re�nement of the main

ideas employed for proving that it is EKR. However, this is not always the case in

general. For example, when the families in concern are families of permutations, which

we describe later, extending the EKR part to the strict EKR part normally turns out

to be a signi�cant jump with new ideas and an even harder step than proving the EKR
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part.

One of the most powerful techniques - and probably the most commonly used -

in extremal set theory is that of compression, also known as shifting. This technique

surfaced in the original proof [25] of the EKR Theorem. Chapter 2 mainly gives a

description of this technique and provides generalisations of certain established fun-

damental properties of compressions; these generalisations have crucial applications in

various parts of the thesis. Chapter 2 also sets up some notation, mainly for certain

sets and families that are de�ned on any given family, that is employed in the majority

of main proofs in this thesis.

A family A ⊆ 2[n] is said to be compressed if for any set A in A, replacing any

element in A by a smaller element in [n]\A (the complement of A relative to [n]) gives

another set in A, i.e. A 3 A 3 j > i /∈ A implies A\{j} ∪ {i} ∈ A. A family F is

said to be compressed with respect to an element u∗ (of the union of all sets in F) if

replacing by u∗ an element of a set in F not owning u∗ gives another set in F , i.e.

u ∈ A ∈ F and u∗ /∈ A implies (A\{u}) ∪ {u∗} ∈ F .

Let Sn,r be the star of
(
[n]
r

)
with centre 1; so Sn,r is compressed. In Chapter 3, we

deal with the problem of establishing which subsets Z of [2, n] have the property that

|{A ∈ A : A ∩ Z 6= ∅}| ≤ |{A ∈ Sn,r : A ∩ Z 6= ∅}| for all compressed intersecting sub-

families of
(
[n]
r

)
, where r ≤ n/2. Note that if we instead have 1 ∈ Z then the answer

is simply given by the EKR Theorem. We solve all the cases |Z| ≥ r and obtain a

partial solution to the problem with |Z| < r. This work was motivated mainly by

two observations. The �rst is that the solution for the extreme case where Z is an

initial segment [2, l] (r + 1 ≤ l ≤ n) of [2, n] leads to a proof of the HM Theorem, and

the second is that the solution for the other extreme case where Z is a �nal segment

[m,n] (m ≥ 2) of [2, n] leads to a short proof of an extension of the EKR Theorem

due to Holroyd and Talbot; the former assertion is proved in a more general setting in

Chapter 4, whereas the latter assertion is proved in Chapter 3 itself.

A set M in a family F is said to be maximal in F if M is not a subset of any other

set in F . The size of a smallest maximal set in F will be denoted by µ(F), and the

size of a largest (maximal) set in F will be denoted by α(F).

3



A family is said to be a hereditary family (or an ideal or a downset) if any subset

of any set in the family is also in the family.

The main result of Chapter 4 is a generalisation of the HM Theorem to a setting

of compressed hereditary families. It says that if H is a compressed hereditary family

with µ(H) ≥ 2r and A is a non-centred intersecting sub-family of H(r) (the family

of r-sets in H), then A is at most as large as the `HM-type' family {A ∈ H(r) : 1 ∈

A, A ∩ [2, r + 1] 6= ∅} ∪ {[2, r + 1]}. Note that the HM Theorem is the case H = 2[n].

A question that arises immediately is whether we can do without the condition that

H is compressed. The answer is `no'. As we show in the same chapter, we cannot even

relax the condition of having H compressed to having H compressed with respect to

an element.

Families A1, ...,Ak of sets are said to be cross-intersecting if the intersection of any

set in any of the k families with that of any other set in any other family is non-empty,

i.e. Ai ∩ Aj 6= ∅ for any Ai ∈ Ai and Aj ∈ Aj, i 6= j.

Sometimes a result for a pair of cross-intersecting families is needed as a stepping

stone to a result for intersecting families. For example, in order to obtain the HM

Theorem, Hilton and Milner [38] proved that if r ≤ n/2 and A,B are non-empty cross-

intersecting sub-families of
(
[n]
r

)
, then |A|+ |B| ≤ 1+

(
n
r

)
−
(
n−r
r

)
= |A0|+ |B0| where A0

is the one-member family {[r]} and B0 is the family of all sets in
(
[n]
r

)
that intersect [r].

Frankl and Tokushige [32] extended this result by showing that if r ≤ s ≤ n− r and B

is taken to be a sub-family of
(
[n]
s

)
, then |A|+ |B| ≤ 1+

(
n
s

)
−
(
n−r
s

)
= |A0|+ |B′0| where

B′0 is the family of all sets in
(
[n]
s

)
that intersect [r]. In Chapter 4, we also generalise

this result by showing that if A and B are taken to be a sub-family of H(r) and a

sub-family of H(s) respectively, where H is a compressed hereditary sub-family of 2[n]

with µ(H) ≥ r + s, then |A| + |B| ≤ |A0| + |B′′0 | where B′′0 is the family of all sets in

H(s) that intersect [r]. The case r = s in this generalisation is used a stepping stone

to the main result of Chapter 4 that we mentioned above.

Chapter 4 is followed by three chapters dedicated to intersecting families of signed

sets. The 'signed sets' terminology was introduced in [6], where a signed set on [n] is

de�ned as a pair (A, f) with A being a subset of [n] and f being a function mapping A

4



to {1,−1}; informally, each element of A is given a sign, + or −. Also in [6], a k-signed

r-set on [n] is then de�ned to be a pair (A, f) where A is an r-subset of [n] and f maps

A to [k], k ≥ 2; thus, instead of having just two signs, we have k points to choose from

for labeling any element in A. Here we represent a k-signed r-set di�erently, and the

formulation that we are about to present is intended for a very general purpose, as can

be seen from the de�nition of a family SF ,k below.

Let X be an r-set {x1, ..., xr}, and let y1, ..., yr ∈ N. We call the set {(x1, y1), ...,

(xr, yr)} a k-signed r-set if |{y1, ..., yr}| ≤ k. For k ≥ 2, we de�ne SX,k to be the family

of k-signed r-sets given by

SX,k : = {{(x1, a1), ..., (xr, ar)} : a1, ..., ar ∈ [k]}

= {A ∈
(
X × [k]

r

)
: |A ∩ ({x} × [k])| = 1 for all x ∈ X}

(recall that the Cartesian product A×B of sets A and B is the set {(a, b) : a ∈ A, b ∈

B}). Thus a set in SX,k is obtained by giving each point in X a label from [k]. We

shall set S∅,k := ∅.

For a family F of sets, we de�ne

SF ,k :=
⋃
F∈F

SF,k.

In Chapter 5, it is conjectured that for any F and k ≥ 2, SF ,k is EKR, and

strictly so unless k = 2 and F has a particular structure. The main result is that if F

is compressed with respect to an element then the conjecture is true. This generalises

a well-known result supporting the conjecture for F =
(
[n]
r

)
that was �rst stated by

Meyer [52] and then proved in di�erent ways by Deza and Frankl [22], Bollobás and

Leader [6], Engel [23] and Erd®s et al. [24]. By strengthening a result of Holroyd and

Talbot, we also verify the conjecture for families F that are uniform and EKR.

The main result of Chapter 6 characterises the extremal non-centred intersecting

sub-families of S([n]
r ),k, hence providing an analogue of the HM Theorem for signed sets.

In order to achieve this, we prove a cross-intersection result for sub-families of S([n]
r ),k.

At the end of this chapter, we �rst prove directly that there exists an integer k0(F)

5



such that the conjecture in the preceding chapter is true if k ≥ k0(F), and then we

show that by applying the main result (of this chapter) with r = n we obtain a much

better value of k0(F).

For an r-set X := {x1, ..., xr}, we de�ne S∗X,k to be the special sub-family of SX,k

given by

S∗X,k : = {{(x1, a1), ..., (xr, ar)} : a1, ..., ar ∈ [k], |{a1, ..., ar}| = r}

= {{(x1, a1), ..., (xr, ar)} : {a1, ..., ar} ∈
(

[k]

r

)
}.

Thus a set in S∗X,k is obtained by giving points inX distinct labels from [k]. So S∗X,k 6= ∅

i� r ≤ k.

An r-partial permutation of a set N is a pair (A, f) where A ∈
(
N
r

)
and f : A→ N

is an injection. An |N |-partial permutation of N is simply called a permutation of N .

Clearly, the family of permutations of [n] can be re-formulated as S∗[n],n, and the family

of r-partial permutations of [n] can be re-formulated as S∗
([n]

r ),n
.

Let X be as above. S∗X,k can be interpreted as the family of permutations of sets

in
(
[k]
r

)
: consider the bijection β : S∗X,k → {(A, f) : A ∈

(
[k]
r

)
, f : A → A is a bijection}

de�ned by β({(x1, a1), ..., (xr, ar)}) := ({a1, ..., ar}, f) where, for b1 < ... < br such

that {b1, ..., br} = {a1, ..., ar}, f(bi) := ai for i = 1, ..., r. S∗X,k can also be interpreted

as the sub-family X := {(A, f) : A ∈
(
[k]
r

)
, f : A → [r] is an injection} of the family of

r-partial permutations of [k]: consider an obvious bijection from S∗X,k to S∗
([k]

r ),r
and

another one from S∗
([k]

r ),r
to X .

For a family F , we de�ne S∗F ,k to be the special sub-family of SF ,k given by

S∗F ,k :=
⋃
F∈F

S∗F,k.

Chapter 7 features two t-intersection theorems of a very general nature; one for

signed sets and another one for partial permutations. The �rst one is that for any

r ≥ t there exists k0(r, t) such that for any k ≥ k0(r, t) and any family F such that

the maximum size of a set in F is not smaller than t and not larger than r, the largest

t-intersecting sub-families of SF ,k are trivial. The second one is an analogous version
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for t-intersecting sub-families of S∗F ,k.

Before describing the content of Chapter 8, we explain the meaning of the term

isomorphic. Let I1, I2 be two families. For j = 1, 2, let Uj be the union of all sets in

Ij. Then I2 is said to be isomorphic to I1 or a copy of I1 if there exists a bijection

β : U2 → U1 such that for any subset I2 of U2, I2 is a member of I2 i� the set {β(i) : i ∈

I2} is a member of I1; we write I2
∼= I1. Note that I2

∼= I1 i� I1
∼= I2. Loosely

speaking, I2
∼= I1 if I2 is simply the result of �xing I1 and "labeling" U1 di�erently.

In Chapter 8, we generalise the notion of a family S2[n],k of signed sets. We de�ne

a double partition P of a set V to be a partition of V into large sets Vi (0 ≤ i ≤ n)

that are in turn partitioned into ki small sets Vi1, ..., Viki
. Given such a partition, the

family V(P) induced by P is the family of subsets of V whose intersection with each

large set is a subset of just one small set or empty. S2[n],k is isomorphic to V(P) with

P given by the double partition of [kn] with large sets [(i − 1)k + 1, ik], i = 1, ..., n,

and small sets {j}, j = 1, ..., kn. Our main result is that if 2r is no larger than

µ(V(P)) =
∑n

i=0 min{|Vi,j| : j ∈ [ki]} and at least one of the large sets is partitioned

into just one small set, then V(P)(r) is EKR, and strictly so if 2r < µ(V(P)). As

explained in Chapter 11, this result can be interpreted as saying that if IG denotes

the family of independent sets of a graph G given by a disjoint union of complete

multipartite graphs and singletons, then I(r)
G (the family of r-sets in IG) is EKR if

2r ≤ µ(IG), and strictly EKR if 2r < µ(IG). This extension of the EKR Theorem will

be used as a foundation for a much more general result in Chapter 11.

Chapter 9 concerns a discovery of a signi�cant and important extension of the

EKR Theorem. For a sub-family A of
(
[n]
r

)
, let A∗ be the family of sets in A that

intersect every set in A, and let A′ be the family of sets in A that are not in A∗ (so a

set in A is in A′ i� it is disjoint from some set in A). We prove that if r ≤ n/2 then

|A∗|+ r

n
|A′| ≤

(
n− 1

r − 1

)
.

We also prove that if r < n/2 then the bound is attained i� either |A∗| =
(
n−1
r−1

)
and

A′ = ∅ or A∗ = ∅ and A′ =
(
[n]
r

)
. Note that the EKR Theorem is the special case

7



A = A∗. Using the above result, we provide a very short proof of a beautiful theorem

of Hilton [37] that gives a sharp upper bound for the sum of the sizes of an arbitrary

number of cross-intersecting sub-families of
(
[n]
r

)
, r ≤ n/2. A slight extension of this

cross-intersection result, which we also prove in Chapter 9, will have an application in

the subsequent chapter.

For amonotonic non-decreasing sequence {di}i∈N (i.e. d1 ≤ d2 ≤ ...) of non-negative

integers, let Pn := Pn({di}i∈N) be the family of all subsets {a1, ..., am}, a1 < ... < am,

of [n] such that for all i ∈ [m−1], the di�erence between ai+1 and ai is greater than di.

For example, suppose n = 8 and d1 = 1, d2 = 1, d3 = 3, d4 = 5. If a set A in P8 has an

element a ∈ [4, 8] then, since di ≥ d4 for all i ≥ 4, a is the unique element of A that is

in [4, 8]; thus, if 2 ∈ B ∈ P8 and 2 < b ∈ B then, since 1 /∈ B (as 1 + d1 > 2 ∈ B) and

b > 2 + d1 = 3 (i.e. b ∈ [4, 8]), we have B = {2, b}. If 3 ∈ C ∈ P8 and 3 < c ∈ C then

c > 3 + d3 = 6 and hence c is 7 or 8. So P(3)
8 consists of the sets {1, 3, 7} and {1, 3, 8}.

In Chapter 10, we obtain another generalisation of the EKR Theorem by char-

acterising the extremal intersecting sub-families of P(r)
n for d1 > 0 and any r, and for

d1 = 0 and r no larger than half the size of a largest set in Pn (i.e. r ≤ α(Pn)/2). The

de�nition of the family Pn and the study of its uniform intersecting sub-families are

crucial for the proof of the main result in the subsequent chapter.

Finally, in Chapter 11, we start by providing a graph-theoretical re-formulation

to a number of results in preceding chapters (namely Chapters 5, 8 and 10) and also in

the literature in general, and then we prove that an interesting EKR-type conjecture

of Holroyd and Talbot indeed holds for a class of graphs studied by Holroyd, Spencer

and Talbot, and much larger classes. Most of the arguments in this chapter are of a

graph-theoretical nature.

The work in Chapter 5 has been published in [9]. Chapters 3, 4, 7, 8, 9 and 10

have been submitted for publication, and they correspond to [12], [13], [14], [15], [8]

and [9] respectively.
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1.2 Intersecting families: the Erd®s-Ko-Rado Theo-

rem and beyond

Perhaps the simplest result in extremal set combinatorics is that 2[n] is EKR, i.e. if A

is an extremal (i.e. largest) intersecting sub-family of 2[n] then the size of A is 2n−1,

the size of a star of 2[n]. The lower bound on |A| follows from the fact that A must

be at least as large as a star of 2[n], and the upper bound follows from the fact that,

since A is intersecting, the complement (relative to [n]) of any set in A is not in A.

For n ≥ 3, the set of extremal intersecting sub-families of 2[n] does not consist solely of

stars of 2[n]; for example, the non-centred intersecting family {A ∈ 2[n] : |A ∩ [3]| ≥ 2}

has size 2n−1 and is therefore extremal.

Let us next consider the uniform sub-families
(
[n]
r

)
of 2[n]. As we mentioned in

Section 1.1, it is trivial that if n/2 < r ≤ n and A is an extremal intersecting sub-

family of
(
[n]
r

)
, then A is

(
[n]
r

)
itself. It is also straightforward that if r = n/2 then A

is an extremal intersecting sub-family of
(
[n]
r

)
) i� for any set A in

(
[n]
r

)
, exactly one of

A and its complement is in A. However, for r < n/2, the problem of determining the

set of extremal intersecting sub-families of
(
[n]
r

)
, or even just the size of a family in this

set, proved to be far from trivial, and this brings us to the classical EKR Theorem that

we mentioned in Section 1.1 and that we now state formally.

Theorem 1.2.1 (Erd®s-Ko-Rado Theorem [25]) Let r ≤ n/2. Let A be an inter-

secting sub-family of
(
[n]
r

)
, and let C be a maximal centred sub-family of

(
[n]
r

)
(i.e. a

star of
(
[n]
r

)
). Then

|A| ≤ |C| =
(
n− 1

r − 1

)
.

There are various proofs of this theorem, two of which are particularly short and beauti-

ful: Katona's [42] using the cycle method and Daykin's [19] using another fundamental

result known as the Kruskal-Katona Theorem [43, 46].

Getting back to our original discussion, we see that Theorem 1.2.1 does not give

a complete characterisation of the set of extremal intersecting sub-families of
(
[n]
r

)
for

r < n/2. Erd®s, Ko and Rado [25] conjectured that if r ≤ n/2 and A is a non-centred
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intersecting sub-family of
(
[n]
r

)
then |A| ≤ |{A ∈

(
[n]
r

)
: |A ∩ [3]| ≥ 2}|, which would

imply that
(
[n]
r

)
is strictly EKR for r < n/2. Hilton and Milner disproved the conjecture

and solved the whole problem with the following fundamental theorem.

Theorem 1.2.2 (Hilton-Milner Theorem [38]) Let r ≤ n/2. Let A be a non-

centred intersecting sub-family of
(
[n]
r

)
, and let N be the non-centred sub-family {A ∈(

[n]
r

)
: 1 ∈ A, A ∩ [2, r + 1] 6= ∅} ∪ {[2, r + 1]} of

(
[n]
r

)
. Then

|A| ≤ |N | =
(
n− 1

r − 1

)
−
(
n− r − 1

r − 1

)
+ 1.

Actually, this theorem is part of a much more general result in [38], the proof of which

is long and complicated. Consequently, shorter and simpler proofs were obtained by

other authors; see, for example, [30, 32].

By Theorem 1.2.2, if r < n/2 and A is a non-centred sub-family of
(
[n]
r

)
or a proper

sub-family of a star of
(
[n]
r

)
, then A is smaller than the stars of

(
[n]
r

)
. This con�rms

that
(
[n]
r

)
is strictly EKR for r < n/2.

Also in [25], Erd®s, Ko and Rado initiated the study of extremal t-intersecting

families for t ≥ 2. They posed the following question: What is the size of an extremal

t-intersecting sub-family of 2[n]? The answer in a complete form was given by Katona.

Theorem 1.2.3 (Katona [44]) Let t ≥ 2, and let A be an extremal t-intersecting

sub-family of 2[n].

(i) If n+ t = 2l then A = {A ⊆ [n] : |A| ≥ l}.

(ii) If n+ t = 2l + 1 then A is isomorphic to {A ⊆ [n] : |A ∩ ([n− 1])| ≥ l}.

For the uniform case, Erd®s, Ko and Rado [25] proved the following.

Theorem 1.2.4 (Erd®s, Ko and Rado [25]) For t ≤ r there exists n0(r, t) ∈ N

such that for all n ≥ n0(r, t), the extremal t-intersecting sub-families of
(
[n]
r

)
are trivial.

For t ≥ 15, Frankl [28] showed that the smallest n0(r, t) for which their result holds

is (r − t + 1)(t + 1) + 1, and that if n = (r − t + 1)(t + 1) then the maximal trivial

t-intersecting sub-families of
(
[n]
r

)
are also extremal but not uniquely so. Subsequently,
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Wilson [59] proved the sharp upper bound
(
n−t
r−t

)
for the size of any t-intersecting sub-

family of
(
[n]
r

)
for n ≥ (r−t+1)(t+1) and any t. Frankl [28] conjectured that if A is an

extremal t-intersecting sub-family of
(
[n]
r

)
then |A| = max{|{A ∈

(
[n]
r

)
: |A ∩ [t+ 2i]| ≥

t + i}| : i ∈ {0} ∪ [r − t]}. A proof of this long-standing conjecture together with a

complete characterisation of the extremal structures was �nally obtained by Ahlswede

and Khachatrian, and this may be regarded as one of the major and most remarkable

breakthroughs in combinatorics.

Theorem 1.2.5 (Ahlswede and Khachatrian [1]) Let 1 ≤ t ≤ r ≤ n, and let A

be an extremal t-intersecting sub-family of
(
[n]
r

)
.

(i) If (r − t + 1)(2 + t−1
m+1

) < n < (r − t + 1)(2 + t−1
m

) for some m ∈ {0} ∪ N -

where, by convention, (t − 1)/m = ∞ if m = 0 - then A is isomorphic to {A ∈(
[n]
r

)
: |A ∩ [t+ 2m]| ≥ t+m}.

(ii) If t ≥ 2 and (r− t+ 1)(2 + t−1
m+1

) = n for some m ∈ {0} ∪N then A is isomorphic

to {A ∈
(
[n]
r

)
: |A ∩ [t+ 2m]| ≥ t+m} or {A ∈

(
[n]
r

)
: |A ∩ [t+ 2m+ 2]| ≥ t+m+ 1}.

We conclude this section by mentioning that a vast amount of research stemmed

out of the seminal Erd®s-Ko-Rado paper [25], and this �eld is now rich in beautiful

results and still very active; we have only outlined the central results. The survey

papers [22] and [29] are recommended.

In the rest of this chapter, we discuss some of the EKR-type problems that have

attracted most attention and that will be treated in this thesis.

1.3 Intersecting sub-families of hereditary families

One of the central problems in extremal combinatorics is the following well-known old

conjecture.

Conjecture 1.3.1 (Chvátal [17]) If H is a hereditary family then H is EKR.

Note that this is true if H = 2[n] (see the beginning of Section 1.2). Chvátal [18] made

the �rst signi�cant step towards his conjecture.

Theorem 1.3.2 (Chvátal [18]) Conjecture 1.3.1 is true if H is compressed.
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Snevily [56] took the above result a big step forward.

Theorem 1.3.3 (Snevily [56]) Conjecture 1.3.1 is true if H is compressed with re-

spect to an element.

Many other results have been inspired by Conjecture 1.3.1; for example, the Ph.D.

dissertation [53] is dedicated to it. The above two results are perhaps the most well-

known in this area, and the only two that we need to refer to later on.

Before turning our attention to uniform sub-families of hereditary families, we recall

the following. A graph G is a pair (V,E) with E ⊆
(
V
2

)
, and a set I ⊆ V is said to be

an independent set of G if {i, j} /∈ E for any i, j ∈ I.

Let IG denote the family of all independent sets of a graph G. Holroyd and Talbot

[41] made the following interesting but also very di�cult conjecture.

Conjecture 1.3.4 (Holroyd and Talbot [41]) If G is a graph with µ(IG) ≥ 2r,

then I(r)
G is EKR, and strictly so if µ(IG) > 2r.

Clearly, the family IG is a hereditary family. The author suggested the following

generalisation of Conjecture 1.3.4.

Conjecture 1.3.5 (Borg [9]) If H is a hereditary family with µ(H) ≥ 2r, then H(r)

is EKR, and strictly so if µ(H) > 2r.

Note that Theorems 1.2.1 and 1.2.2 solve the special case H = 2[n].

Theorem 1.2.3 tells us that if t ≥ 2 then for all n > t, the extremal t-intersecting

sub-families of the hereditary family 2[n] are non-trivial. Thus Conjecture 1.3.1 does

not have an obvious extension for t-intersecting sub-families of hereditary families. It

is therefore natural to question whether a t-intersection version of Conjecture 1.3.5

may hold, or more precisely, whether there exists an integer n0(r, t) such that for any

hereditary family H with µ(H) ≥ n0(r, t), the extremal t-intersecting sub-families of

H(r) are trivial. Only very recently, the author [10] proved that such an integer n0(r, t)

exists indeed; the proof is based on the fundamental fact established in this thesis as

Lemma 4.3.1. So Conjecture 1.3.5 is true if µ(H) ≥ n0(r, 1).
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1.4 Intersecting families of signed sets

For a signed set A and integers q and k, let θqk(A) be the translation operation de�ned

by

θqk(A) := {(a, b+ q modulo k) : (a, b) ∈ A}.

For q = 1, we also write θk(A).

Trivially, if k = 2 then θ2(A) is the unique set in SX,2 that does not intersect A.

Thus, for A ⊂ SX,2,

A is an extremal intersecting sub-family of SX,2 i�

for all A ∈ SX,2, exactly one of A and θ2(A) is in A. (1.1)

Note that stars of SX,2 are extremal intersecting sub-families of SX,2, and not uniquely

so unless |X| ≤ 2. In other words, SX,2 is EKR, and strictly so i� |X| ≤ 2.

Berge [3] showed that S[n],k is EKR; the proof of this result is simply that if A ⊂

S[n],k is intersecting and A ∈ A then θqk(A) /∈ A for q = 1, ..., k − 1, and hence

|A| ≤ |S[n],k|/k = |{A ∈ S[n],k : (1, 1) ∈ A}|. Livingston [51] made a signi�cant step

forward by establishing the strict EKR property of S[n],k for k > 2.

Theorem 1.4.1 (Berge [3], Livingston [51]) (i) S[n],k is EKR, and

(ii) strictly so unless n ≥ 3 and k = 2.

Other proofs of this result were given by Gronau [34] and Moon [54].

Holroyd and Talbot [41] recently showed that if F is an EKR family of independent

r-sets of a graph then SF ,k is EKR; however, their proof carries forward to the following

generalisation of Theorem 1.4.1(i).

Theorem 1.4.2 (Holroyd and Talbot [41]) If F is r-uniform and EKR then SF ,k

is EKR.

This result follows by a slight extension of the proof given above for Berge's result; see

Proof of Theorem 1.4.2 in Section 5.5.
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The next generalisation of Theorem 1.4.1 is a well-known result that was �rst stated

by Meyer [52] and proved in di�erent ways by Deza and Frankl [22] and Bollobás and

Leader [6].

Theorem 1.4.3 (Meyer [52], Deza, Frankl [22], Bollobás, Leader [6]) For r ≤

n and k ≥ 2,

(i) S([n]
r ),k is EKR, and

(ii) strictly so unless r = n ≥ 3 and k = 2.

The proof of Deza and Frankl is based on the well-known compression technique (see

Section 2.2), whereas the proof of Bollobás and Leader is based on the idea of the cycle

method used by Katona [42] in his alternative proof of the EKR Theorem. Engel [23]

and Erd®s et al. [24] gave other proofs that are also based on variants of the cycle

method.

Note that Theorem 1.4.3(i) with r ≤ n/2 follows from Theorem 1.4.2 and the EKR

Theorem. Also note that the case r > n/2 in Theorem 1.4.3 provides an example of a

family F such that SF ,k is EKR but F is not.

Frankl and Füredi [31] conjectured that if A is an extremal t-intersecting sub-family

of S[n],k then |A| = max{|{A ∈ S[n],k : |A ∩ ([t+ 2m]× [1])| ≥ t+m}| : m ∈ {0} ∪ N}.

If k ≥ t + 1 then the conjecture claims that |A| = kn−t, the size of a maximal trivial

t-intersecting sub-family of S[n],k. They showed that this is true if t ≥ 15. A result of

Kleitman [45], which was shown to be equivalent to Theorem 1.2.3 via the compression

technique (described in Section 2.2), had long established the truth of the conjecture for

the special case k = 2. After Theorem 1.2.5 was established, Ahlswede and Khachatrian

[2] and Frankl and Tokushige [33] were able to solve this conjecture independently and

by di�erent methods; Ahlswede and Khachatrian also determined the set of extremal

structures.

Theorem 1.4.4 (Ahlswede, Khachatrian [2]; Frankl, Tokushige [33]) Let t ≤

n and k ≥ 2. Let m be the largest integer such that t + 2m < min{n + 1, t + 2 t−1
k−2

}

where, by convention, t−1
k−2

= ∞ if k = 2. Let A be an extremal t-intersecting sub-family

of S[n],k.
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(i) If (k, t) 6= (2, 1) and t−1
k−2

is not integral then A is isomorphic to {A ∈ S[n],k : |A ∩

([t+ 2m]× [1])| ≥ t+m}.

(ii) If (k, t) 6= (2, 1) and t−1
k−2

is integral then A is isomorphic to {A ∈ S[n],k : |A ∩ ([t+

2m]× [1])| ≥ t+m} or {A ∈ S[n],k : |A ∩ ([t+ 2m+ 2]× [1])| ≥ t+m+ 1}.

(iii) If (k, t) = (2, 1) then the result is given by (1.1).

To the best of the author's knowledge, no analogous results for t-intersecting sub-

families of SF ,k with |F| ≥ 2 have been established (excluding the one we present in

Chapter 7). However, some very important results have been obtained for a modi�ca-

tion of the problem, which we describe next.

1.5 Intersecting families of permutations and partial

permutations

In [20, 21], the study of intersecting permutations was initiated. Deza and Frankl

[21] showed that S∗[n],n is EKR (so (n − 1)! is a sharp upper bound for the size of an

intersecting sub-family of S∗[n],n); the proof follows by the same translation argument

given in the preceding section for Berge's result. However, Deza and Frankl did not

proceed further to determine the extremal structures; this was accomplished only a few

years ago by Cameron and Ku [16].

Theorem 1.5.1 (Cameron and Ku [16]) S∗[n],n is strictly EKR.

This result was also deduced from a more general result on certain vertex transitive

graphs in [49].

Ku and Leader [48] established the EKR property of S∗
([n]

r ),n
for all r ∈ [n], and they

proved that S∗
([n]

r ),n
is strictly EKR for all r ∈ [8, n − 3]. Naturally, they conjectured

that S∗
([n]

r ),n
is also strictly EKR for the few remaining values of r. This was settled by

Li and Wang using tools forged by Ku and Leader.

Theorem 1.5.2 (Ku, Leader [48]; Li, Wang [50]) S∗
([n]

r ),n
is strictly EKR for all

r ∈ [n].
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When it comes to t-intersecting families of permutations, things are of course much

harder, and the most interesting challenge comes from the following conjecture.

Conjecture 1.5.3 (Deza and Frankl [21]) For any t there exists n0(t) such that

for any n ≥ n0(t), the size of a t-intersecting sub-family of S∗[n],n is at most that of a

maximal trivial t-intersecting sub-family of S∗[n],n, i.e. (n− t)!.

This conjecture suggests an obvious extension for the extremal case. It is worth pointing

out that the condition n ≥ n0(t) is necessary; [47, Example 3.1.1] is a simple illustration

of this fact. An analogue of the statement of the conjecture for partial permutations

has been proved by Ku.

Theorem 1.5.4 (Ku [47, Theorem 6.6.6]) For any r, t ∈ N there exists n0(r, t)

such that for any n ≥ n0(r, t), the size of a t-intersecting sub-family of S∗
([n]

r ),n
is at

most that of a maximal trivial t-intersecting sub-family of S∗
([n]

r ),n
, i.e.

(
n−t
r−t

) (n−t)!
(n−r)! .

For further reading on problems and results of this kind, Ku's Ph.D. thesis [47]

(dedicated precisely to intersecting families of permutations and partial permutations)

is recommended.

1.6 Cross-intersecting families

As we mentioned in Section 1.1, in order to obtain Theorem 1.2.2, Hilton and Milner

proved the following result.

Theorem 1.6.1 (Hilton and Milner [38]) Let r ≤ n/2. If A and B are non-empty

cross-intersecting sub-families of
(
[n]
r

)
then

|A|+ |B| ≤ 1 +

(
n

r

)
−
(
n− r

r

)
= |A0|+ |B0|,

where A0 := {[r]} and B0 := {B ∈
(
[n]
r

)
: B ∩ [r] 6= ∅}.

Similarly to the case of Theorem 1.2.2, the proof was long and complicated due to

the result being part of a more general one. A streamlined proof was later obtained
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by Simpson [55] by means of the compression technique (see Section 2.2). Frankl and

Tokushige instead used the Kruskal-Katona Theorem [46, 43] to establish the following

extension.

Theorem 1.6.2 (Frankl and Tokushige [32]) Let r ≤ s ≤ n− r. If A ⊆
(
[n]
r

)
and

B ⊆
(
[n]
s

)
are non-empty and cross-intersecting then

|A|+ |B| ≤ 1 +

(
n

s

)
−
(
n− r

s

)
= |A0|+ |B0|,

where A0 := {[r]} and B0 := {B ∈
(
[n]
s

)
: B ∩ [r] 6= ∅}.

The obvious EKR-type problem for multiple cross-intersecting families was ad-

dressed by Hilton [37]. Suppose we want to construct k cross-intersecting sub-families

A1, ...,Ak of
(
[n]
r

)
, r ≤ n/2, such that the sum of sizes of these families is a maximum.

The simplest con�guration one can think of is where one family is the whole of
(
[n]
r

)
and hence, by the cross-intersection condition and the r ≤ n/2 condition, all the other

families are empty. The second simplest con�guration is where the k families are the

same and hence intersecting; an obvious example is where each of the k families is

the star of
(
[n]
r

)
with centre 1. Using the Kruskal-Katona Theorem [46, 43], Hilton

[37] showed that at least one of the two con�gurations we mentioned is optimal. More

precisely, he proved the following beautiful generalisation of the EKR Theorem.

Theorem 1.6.3 (Hilton [37]) If r ≤ n/2, k ≥ 2, and A1, ..., Ak are cross-intersecting

sub-families of
(
[n]
r

)
then

k∑
i=1

|Ai| ≤


(
n
r

)
if k ≤ n

r
;

k
(
n−1
r−1

)
if k ≥ n

r
.

Suppose equality holds and A1 6= ∅:

(i) if k < n/r then A1 =
(
[n]
r

)
and Ai = ∅ for i = 2, ..., k;

(ii) if k > n/r then |Ai| =
(
n−1
r−1

)
for i = 1, ..., k;

(iii) if k = n/r > 2 then A1, ..., Ak are as in (i) or (ii).
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Note that if the Ai's are intersecting and equal to each other then A1, ..., Ak are cross-

intersecting. Thus setting k > n/r and A1 = ... = Ak clari�es why the EKR Theorem

follows from the above theorem.

There are many other cross-intersection results in the literature, some of which are

mentioned in Frankl's survey paper [29]; however, those mentioned above are the ones

that are relevant to this thesis.

18



Chapter 2

Notation and compression tools for

proofs

2.1 Some notation for sets and families

The scope of this section is to develop some notation for certain sets and families

de�ned on an arbitrary family F . This notation will be used mainly in the proofs.

Let U(F) :=
⋃
A∈F A. For a set V , let

F [V ] := {A ∈ F : V ⊆ A},

F ]V [ := {A ∈ F : A ∩ V = ∅}.

F〈V 〉 := {A\V : A ∈ F [V ]} = {B : B ∩ V = ∅, B ∪ V ∈ F},

F(V ) := {A ∈ F : A ∩ V 6= ∅}.

For u ∈ U(F), we abbreviate F [{u}], F ]{u}[, F〈{u}〉 and F({u}) to F [u], F ]u[, F〈u〉

and F(u) respectively. Note that F [u] = F(u).

To illustrate an example of a family that can be de�ned on F with the above
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notation, we have

F(z)〈X〉]Y [ = {A ∈ F(z)〈X〉 : A ∩ Y = ∅}

= {A : A ∩X = ∅, A ∪X ∈ F(z), A ∩ Y = ∅}

= {A : z ∈ A ∪X ∈ F , A ∩X = ∅, A ∩ Y = ∅}.

We point out that the family F(z)〈X〉]Y [ has only been considered for the purpose of

making the reader familiar with the use of this notation and that no such somewhat

complicated family will arise in any other part of the thesis.

Note that a star of a family F is F(u) for some u ∈ U(F), and u is a centre of F

i� F(u) = F (which implies u ∈
⋂
A∈F A).

We set

ex(F) := {A : A is an extremal intersecting sub-family of F},

and we de�ne the subset L(F) of U(F) by

L(F) := {u ∈ U(F) : F(u) is a largest star of F}.

So F is EKR i� {F(u) : u ∈ L(F)} ⊆ ex(F), and F is strictly EKR i� {F(u) : u ∈

L(F)} = ex(F).

2.2 The compression operation and compressed fam-

ilies

As we mentioned in Section 1.1, the compression (or shifting) technique is one of the

most powerful tools in extremal set theory. The survey paper [29] gives an excellent

account of many applications of this technique. The idea surfaced in the original proof

[25] of the EKR Theorem, and Theorems 1.2.3, 1.2.5, 1.4.3, 1.4.4 are also among the

many results that were proved by means of this technique. It must be mentioned,

though, that it fails to work for certain interesting EKR-type problems, particularly
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the one for intersecting sub-families of S∗[n],k.

A compression operation, or simply a compression, is a function that maps a family

to another family while retaining some important properties of the original family, such

as its size or t-intersection of its set members. The idea is that a family resulting from

a compression or a sequence of compressions has key structural properties that the

original family might not have.

Various forms of compression have been invented for speci�c problems. For example,

the recent publications [40] and [41], which motivated a number of results in this thesis,

feature compressions de�ned in a graph-theoretical setting that are, however, widely

applicable. We now present a form of compression that is general enough for the

purposes of this thesis and that particularly generalises the compression de�ned in

[40].

For a family F and u, v ∈ U(F), u 6= v, let ∆u,v : 2F → 2F be de�ned by

∆u,v(A) := {δu,v(A) : A ∈ A} ∪ {A ∈ A : δu,v(A) ∈ A},

where δu,v : F → F is de�ned by

δu,v(F ) :=

 (F\{v}) ∪ {u} if u /∈ F , v ∈ F , (F\{v}) ∪ {u} ∈ F ;

F otherwise.

The function ∆u,v is a compression operation; it is also commonly referred to as a shift

operation. The very �rst thing to be noted is that

|∆u,v(A)| = |A|.

We now prove a number of properties, given by Proposition 2.2.1, of the compression

operation de�ned above. These properties have a fundamental role in the work of

this thesis. Parts (i) and (ii) are well known. Parts (iii) and (iv), which will have

applications in Chapters 10 and 11, may be regarded as new although they arise as a

generalisation of properties - mostly discovered in [40] - of compressions on intersecting
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families of independent sets of graphs (see Chapter 11).

In the following, we make use of the notation introduced in the preceding section.

We say that F is (u, v)-compressed if for any F ∈ F ]u[(v), (F\{v}) ∪ {u} ∈ F .

Proposition 2.2.1 Let F be a family, and let u, v ∈ U(F), u 6= v. Let A∗ be a t-

intersecting sub-family of F , and let A := ∆u,v(A∗).

(i) A]v[ is t-intersecting.

(ii) If F is (u, v)-compressed then A is t-intersecting.

(iii) If t = 1, F [{u, v}] = ∅ and F is (u, v)-compressed then A〈v〉∪A]v[ is intersecting.

(iv) If t = 1, F [{u, v}] = ∅ and there exists w ∈ U(F)\{u, v} such that F ]w[ is (u, v)-

compressed then A〈v〉 is intersecting.

Proof. Let B1, B2 ∈ A. Then, for each p ∈ [2], Bp = Ap or Bp = δu,v(Ap) for some

Ap ∈ A∗.

Suppose B1, B2 ∈ A]v[(u). It is straightforward that |B1 ∩ B2| ≥ t if Bp = Ap,

p = 1, 2, or Bp = δu,v(Ap) 6= Ap, p = 1, 2. So suppose without loss of generality that

B1 = A1 and B2 = δu,v(A2) 6= A2 (hence u /∈ A2). Then |B1 ∩ B2| = |(A1 ∩ A2) ∪

{u}| = |A1 ∩ A2| + 1 ≥ t + 1. So A]v[(u) is t-intersecting. Now, it clearly holds that

A]v[]u[ = A∗]v[]u[, and hence |A ∩ A′| ≥ t for any A ∈ A]v[]u[ and A′ ∈ A. Hence (i).

Suppose F is (u, v)-compressed. As mentioned above, |B1 ∩ B2| ≥ t if Bp = Ap,

p = 1, 2, or Bp = δu,v(Ap), p = 1, 2. So suppose B1 = A1, B2 = δu,v(A2) 6= A2 (hence

u /∈ A2) and |B1 ∩ B2| < t. Then |(A1 ∩ A2)\{v}| = t− 1 (since A∗ is t-intersecting),

u /∈ A1 (otherwise |B1 ∩ B2| = |A1 ∩ A2| ≥ t) and A1 6= δu,v(A1) ∈ A (since F is

(u, v)-compressed). But then |δu,v(A1) ∩ A2| = t − 1, contradicting A∗ t-intersecting.

Hence (ii).

Suppose t = 1, F [{u, v}] = ∅ and F is (u, v)-compressed. By (i) and (ii), A]v[ is

intersecting and A ∩ B 6= ∅ for any A ∈ A]v[ and B ∈ A〈v〉. So (iii) follows if we

show that A〈v〉 is intersecting. So suppose B1, B2 ∈ A(v). Then, for each p ∈ [2],

Bp ∈ A∗(v) ⊆ F(v), and u /∈ Bp since F [{u, v}] = ∅. Since F is (u, v)-compressed,

we must have Bp 6= δu,v(Bp) ∈ A, which implies δu,v(Bp) ∈ A∗ (since Bp ∈ A).

So (B1 ∩ B2)\{v} = B1 ∩ δu,v(B2) 6= ∅ since u /∈ B1, B1, δu,v(B2) ∈ A∗ and A∗ is

intersecting. Hence (iii).
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Suppose t = 1, F [{u, v}] = ∅ and there exists w ∈ U(F)\{u, v} such that F ]w[ is

(u, v)-compressed. Suppose B1, B2 ∈ A(v). Then, for each p ∈ [2], Bp ∈ A∗(v) ⊆ F(v),

and u /∈ Bp since F [{u, v}] = ∅. Thus, if w /∈ Bp for some p ∈ [2] then, since F ]w[

is (u, v)-compressed, we must have Bp 6= δu,v(Bp) ∈ A, which implies δu,v(Bp) ∈ A∗

(since Bp ∈ A) and hence (B1 ∩ B2)\{v} = B3−p ∩ δu,v(Bp) 6= ∅ (since u /∈ B3−p,

B3−p, δu,v(Ap) ∈ A∗ and A∗ is intersecting). If on the contrary w /∈ Bp for each p ∈ [2]

then trivially w ∈ (B1 ∩B2)\{v}. Hence (iv). 2

Note that F is compressed with respect to u (see de�nition in Section 1.1) if F is

(u, v)-compressed for all v ∈ U(F)\{u}, and that F ⊆ 2[n] is compressed if ∆i,j(F) = F

for any i, j ∈ [n] such that i < j.

If a1 < ... < ar, b1 < ... < br, a1 ≤ b1, ..., ar ≤ br, A := {a1, ..., ar} and B :=

{b1, ..., br} then we write A ≤ B, and if also aj < bj for some j ∈ [r] then we write

A < B. It is easy to see that

A is compressed ⇔ for any A ∈ A and A′ < A, A′ ∈ A.

If i, j ∈ [n] and i < j then ∆i,j is said to be a left-compression. It only takes a

�nite number of left-compressions to obtain a compressed family from a sub-family of

2[n]. This is because the positive quantity
∑

A∈A |A| decreases with a left-compression

that changes A. In fact, there are compositions of all the
(
n
2

)
left-compressions, and

in which each left-compression appears exactly once, that always yield a compressed

family when applied to a sub-family of 2[n]. A set of such compositions is determined

in [29], and the following demonstrates another composition.

Proposition 2.2.2 For A ⊆ 2[n], let

A′ := ∆n−1,n ◦∆n−2,n ◦ ... ◦∆1,n ◦ ... ◦∆2,3 ◦∆1,3 ◦∆1,2(A).

Then A′ is compressed.

Proof. Let N := {(a, b) ∈ [n] × [n] : a < b}. We de�ne the partial order relation ≺
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on members of N by (a1, b1) ≺ (a2, b2) i� b1 < b2 or a1 < a2 < b1 = b2. Suppose that

for some (s, t) ∈ N , ∆p,q(A) = A for all (p, q) ≺ (s, t). Let B := ∆s,t(A). Clearly,

∆s,t(B) = B. We claim that, moreover, ∆p,q(B) = B for all (p, q) ≺ (s, t). The claim

clearly implies that ∆i,j(A′) = A′ for all (i, j) ≺ (n − 1, n), which in turn implies the

required result.

We now prove the claim. Let B ∈ B, and �x p and q such that (p, q) ≺ (s, t).

We �rst consider the case B ∈ A, i.e. B ∈ A ∩ B = {A ∈ A : δs,t(A) ∈ A}. So

E := δs,t(B) ∈ A ∩ B and C,F ∈ A, where C := δp,q(B) and F := δp,q(E). Suppose

B 6= C ∈ A\B = {A ∈ A : δs,t(A) /∈ A}. Therefore C 6= D := δs,t(C) ∈ B\A =

{δs,t(A) : A ∈ A\B}. If {p, q} ∩ {s, t} = ∅ then F = δp,q ◦ δs,t(B) = δs,t ◦ δp,q(B) =

D ∈ B\A, a contradiction. Now suppose |{p, q} ∩ {s, t}| = 1. There are three possible

cases:

(i) p = s < q < t: D = δs,t ◦ δs,q(B) = δs,q(B) = C, a contradiction.

(ii) p < q = s < t: D = δs,t ◦ δp,q(B) = δs,t ◦ δp,s(B) = δp,t(B) ∈ A, a contradiction.

(iii) p < s < q = t: D = δs,t ◦ δp,t(B) = δp,t(B) = C, a contradiction.

Therefore, if B ∈ A ∩ B then δp,q(B) ∈ B.

We must now consider the case B /∈ A, in which there exists A ∈ A such that

B = δs,t(A) 6= A. Again, suppose C := δp,q(B) 6= B. Since s ∈ B and t /∈ B, we have

p 6= s and q < t. So we are left with the following two cases:

(i) {p, q} ∩ {s, t} = ∅: C = δp,q ◦ δs,t(A) = δs,t ◦ δp,q(A) ∈ ∆s,t(A) = B as δp,q(A) ∈ A.

(ii) p < q = s < t: C = δp,s ◦ δs,t(A) = δp,t(A) = δs,t(δp,t(A)) ∈ ∆s,t(A) = B as

δp,t(A) ∈ A. 2

We now illustrate the fact that if all left-compressions are applied on a family of

sets exactly once (as above) but in an arbitrary order then the resulting family is not

necessarily compressed. Consider A := {{2, 3}, {2, 4}, {3, 4}} ⊂ 2[4] (note that A is in-

tersecting). If the left-compressions ∆2,4, ∆2,3, ∆3,4, ∆1,2, ∆1,3, ∆1,4 are applied in the

given order then the resulting family is {{1, 3}, {1, 4}, {3, 4}}, which is not compressed.
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Chapter 3

Maximum hitting of a segment by sets

in compressed intersecting families

3.1 Problem speci�cation and results

For the purpose of this chapter, let us denote the compressed star {A ∈
(
[n]
r

)
: 1 ∈ A}

and the compressed non-centred intersecting family {A ∈
(
[n]
r

)
: 1 ∈ A,A ∩ [2, r + 1] 6=

∅}∪{[2, r+1]} by Sn,r and Nn,r respectively. We use the abbreviations S and N when

n and r are clear from the context.

We shall make frequent use of the notation in Section 2.1. We stick to the de�nition

of the relations ≤ and < for sets in 2N given in Section 2.2. Recall (from Section 2.2)

that A is compressed i� for any A ∈ A and A′ < A, A′ ∈ A.

In this chapter, we are concerned with the following problem: Given r ≤ n/2,

which segments (i.e. non-empty sets) Z ⊆ [2, n] obey the condition - call it (*) - that

|A(Z)| ≤ |S(Z)| for any compressed intersecting family A ⊂
(
[n]
r

)
? Note that if we

allow 1 ∈ Z then S(Z) = S, and hence (*) follows immediately from Theorem 1.2.1.

As the following examples show, not all segments Z obey (*):

1. Z ⊆ [2, r + 1], n ≥ 2r:

If A = N then |A(Z)| = |S(Z)|+ 1.

2. Z ⊆ [2, 2r − 1], |Z| ≤ r, n = 2r:

Let A :=
(
[2r−1]
r

)
= S]n[∪B. So B =

(
[2,2r−1]

r

)
, and therefore |A(Z)| − |S(Z)| =
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|B(Z)|− |S(n)(Z)| =
((

2r−2
r

)
−
(
2r−2−|Z|

r

))
−
((

2r−2
r−2

)
−
(
2r−2−|Z|
r−2

))
=
(
2r−2−|Z|
r−2

)
−(

2r−2−|Z|
r

)
> 0.

3. 2r ∈ Z, ∅ 6= Z\{2r} ⊆ [2, r], n = 2r:

For each i ∈ [r], let Ai := [2, r] ∪ {r + i} and A′
i := [2r]\Ai. Let A :=

(S\{A′
1, ..., A

′
r}) ∪ {A1, ..., Ar}. Note that A′

r is the unique set in {A1, ..., Ar} ∪

{A′
1, ..., A

′
r} that does not intersect Z. So |A(Z)| = |S(Z)|+ 1.

Note that in each of the three examples above, A is non-centred, compressed and

intersecting.

By Theorem 1.2.2, if Z ⊆
(
[2,n]
>r

)
then |A(Z)| ≤ |A| ≤ |N | < |S(Z)| for any non-

centred intersecting family A ⊂
(
[n]
r

)
. So this settles the case |Z| > r; however, we will

also prove this directly. We will also settle the special case |Z| = r. The case |Z| < r is

far more challenging, and we will not determine fully which of these segments obey or

disobey (*); however, many such segments obeying (*) are captured by the following

result.

Theorem 3.1.1 Let A ⊂
(
[n]
r

)
be a compressed intersecting family, 2 ≤ r ≤ n/2. Let

∅ 6= Z ⊆ [2, n] and Y := Z ∩ [2r]. Suppose

(a) Y = ∅, or

(b) |Z| ≤ r and Y > W := [2r]\([2r − 2|Y |] ∪ Y ), or

(c) |Z| > r.

Then |A(Z)| ≤ |S(Z)|.

Moreover, if A is non-centred then |A(Z)| = |S(Z)| if and only if

(i) r = 2, and Z = Y 6= {4} or {2, 3} ⊂ Z ∈
(
[2,n]

3

)
, or

(ii) r > 2, n = 2r, Z ∩ [2, r + 1] 6= ∅, |A| = |S| and A]Z[ = S]Z[ (such a family A

exists).

We shall make two remarks that should make the statement of Theorem 3.1.1 easier

to grasp:

- Consider (b). Let U := [2r]\[2r − 2|Y |]. Clearly, W ⊂ U . By de�nition of < on

members of
(
[n]
r

)
, we must have Y ⊂ U , otherwise |W | = 2r− (2r − 2|Y |)− |Y ∩ U | =

2|Y |−|Y ∩U | > |Y |, i.e. Y and W are incomparable. So |W | = |Y | = |U |/2,W∩Y = ∅,
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and hence

Y ∪W = U. (3.1)

- Clearly, if a compressed family is centred then it must be a sub-family of S. Therefore,

A is non-centred i� A * S. We now show that in some cases, |A(Z)| = |S(Z)| holds for

proper sub-families A of S, and we determine these cases exactly. Let m := max{z ∈

Z} and S∗ := S\{A ∈ S : A\{1} ⊂ [n]\[m]}. S∗ 6= S i� m ≤ n − r + 1; also, S∗ is

compressed and S∗(Z) = S(Z). It is easy to check that for any A ∈ S∗\S(Z) there

exists B ∈ S(Z) such that A < B. This implies that if A ⊂ S and A(Z) = S(Z) then

S∗ ⊆ A.

For x1 < ... < xn, X := {xi : i ∈ [n]}, m ≤ n, we call the set {xi : i ∈ [m,n]} a �nal

(n−m+1)-segment of X. The following is an immediate consequence of Theorem 3.1.1.

Corollary 3.1.2 Let A ⊂
(
[n]
r

)
be as in Theorem 3.1.1, and let Z be a �nal segment

of [n]. Then |A(Z)| ≤ |S(Z)|, and if A 6= S then |A(Z)| = |S(Z)| only if n = 2r and

|Z| ≥ r.

The next theorem settles our problem for the special case |Z| = r.

Theorem 3.1.3 Let Z ∈
(
[2,n]
r

)
, 2 ≤ r ≤ n/2. Let A be a compressed intersecting

sub-family of
(
[n]
r

)
such that A(Z) is of largest size. If

(a) {2, 3} ⊆ Z and r ≤ 3, or

(b) n = 2r and [n]\Z ≮ Z, or

(c) Z = [2, r + 1]

then |A(Z)| = |S(Z)|+ 1, otherwise |A(Z)| = |S(Z)|.

We now present an application. In Section 3, we show that the following extension

of the EKR Theorem follows from Corollary 3.1.2 1.

Theorem 3.1.4 (Holroyd, Talbot [41]) Let X1, ..., Xp be distinct sets such that⋂p
i=1Xi 6= ∅ and Xj ∩ Xk =

⋂p
i=1Xi for any j, k ∈ [p]. Let H :=

⋃p
k=1 2Xk . Suppose

1Theorems 3.1.4 and 3.1.5 are proved in [7] by a method that 'extends' the original proof of the
EKR Theorem and that is yet di�erent from both the method used in this chapter and the one used
in [41]; however, the material in [7] is not included in this thesis.
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4 ≤ 2r ≤ µ(H). Then:

(i) H(r) is EKR, and

(ii) strictly so if 2r < µ.

We remark that, in the literature, a family consisting of sets Xi as in Theorem 3.1.4

is called a sun�ower or delta-system. The Erd®s-Rado Theorem [26] is an example of

a well-known result about sun�owers. Sun�owers are used in the kernel method intro-

duced by Hajnal and Rothschild [35]; a brief review together with another application

of this method is given in [27]. The maximal independent sets of a union of a complete

multipartite graph and an empty graph form a sun�ower; Holroyd and Talbot expressed

Theorem 3.1.4 in these graph-theoretical terms (see Chapter 11).

In Section 3.3, we also apply Corollary 3.1.2 to sharpen Theorem 3.1.4 with 2r = µ.

Theorem 3.1.5 (Extension of Theorem 3.1.4) Suppose that in Theorem 3.1.4 we

have 2r = µ(H) and p > 1. Then H(r) is not strictly EKR if and only if µ(H) = α(H)

and 3 ≤ |
⋂p
i=1Xi| ≤ r.

We conclude this section by mentioning that in the next chapter we obtain a gener-

alisation of the Hilton-Milner Theorem by employing the idea of the problem we have

presented here; see, for example, Proposition 4.7.2.

3.2 Proof of main results

We begin with the key lemma concerning ordered pairs of subsets of
(
[n]
r

)
.

Lemma 3.2.1 Let A,B ∈
(
[n]
r

)
, A 6= B, and let C ⊆ A ∩B. Then

A\C < B\C ⇔ A < B.

Proof. Let D := A\C,E := B\C. We have D < E and must prove D ∪ C < E ∪ C.

Suppose C = {c}. Let D := {d1, ..., ds}, E := {e1, ..., es}, each set listed in in-

creasing order. If c < d1 or c > es then the result is immediate; so we may as-

sume c ∈ [d1 + 1, es − 1]. Let j := max{i : di < c}, k := min{i : c < ei}. Then
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D ∪ {c} = {d∗1, ..., d∗s+1} and E ∪ {c} = {e∗1, ..., e∗s+1}, where d∗i := di for i = 1, ..., j,

d∗j+1 := c, d∗i := di−1 for i = j+2, ..., s+1, e∗i := ei for i = 1, ..., k−1, e∗k := c, e∗i := ei−1

for i = k + 1, ..., s + 1. Note that k ≤ j + 1 since D < E. It is straightforward that if

k = j + 1 then d∗i ≤ e∗i , i = 1, ..., s+ 1, with at least one strict inequality. If k < j + 1

then d∗i = di ≤ ei = e∗i for i = 1, ..., k − 1, d∗i = di < c = e∗k ≤ e∗i for i = k, ..., j,

d∗j+1 = c < e∗j+1, and d
∗
i = di−1 ≤ ei−1 = e∗i for i = j + 2, ..., s + 1. So D ∪ C < E ∪ C

as required.

The result for general C follows by a simple inductive argument.

Conversely, we have A < B and must prove A\C < B\C.

Suppose C = {c}. Let A := {a1, ..., ar}, B := {b1, ..., br}, each set listed in increas-

ing order. Since A < B, we have c = ap = bq for some p ≥ q. If p = q then the result

is immediate. Suppose p > q. Then A\{c} = {a∗1, ..., a∗r−1} and B\{c} = {b∗1, ..., b∗r−1},

where a∗i := ai ≤ bi =: b∗i for i = 1, ..., q−1, a∗i := ai ≤ bi < bi+1 =: b∗i for i = q, ..., p−1,

and a∗i := ai+1 ≤ bi+1 =: b∗i for i = p, ..., r − 1. So A\C < B\C as required.

The result for general C again follows by a simple inductive argument. 2

Lemma 3.2.2 If A ⊆ 2[n] is compressed and Z, {a, b} ⊂ [n], a < b, then |A(Z)| ≤

|A(δa,b(Z))|.

Proof. Suppose Z ′ := δa,b(Z) 6= Z. Letting Z ′′ := Z∩Z ′, we then have Z = Z ′′∪{b} 6=

Z ′′ and Z ′ = Z ′′ ∪ {a} 6= Z ′′. Since A is compressed, ∆a,b(A]Z ′′[(b)]a[) ⊆ A]Z ′′[(a)]b[.

So |A]Z ′′[(a)]b[| ≥ |A]Z ′′[(b)]a[|. We therefore have

|A(Z ′)| − |A(Z)| = (|A(Z ′′)|+ |A]Z ′′[(a)|)− (|A(Z ′′)|+ |A]Z ′′[(b)|)

= (|A]Z ′′[(a)(b)|+ |A]Z ′′[(a)]b[|)− (|A]Z ′′[(b)(a)|+ |A]Z ′′[(b)]a[|) ≥ 0,

and hence result. 2

Proof of Theorem 3.1.1. By induction on n. It is easy to check the result for

r = 2 because
(
[3]
2

)
is the only non-centred compressed intersecting sub-family of

(
[n]
2

)
.

We shall now assume that r > 2. Thus, for the remainder of the proof, we are

concerned with condition (ii) in the statement of the theorem. If this condition holds
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then |A(Z)| = |S(Z)| trivially, so we now prove the converse. We may assume A to be

such that |A(Z)| is maximised; that is

|A′(Z)| ≤ |A(Z)| for any compressed intersecting A′ ⊂
(
[n]
r

)
. (3.2)

Case 1: n = 2r. So Y = Z 6= ∅.

Let A1 := [2, r + 1] and A2 := {1} ∪ [r + 2, ..., 2r]. Then N := (S\{A2}) ∪ {A1}

is non-centred, compressed, intersecting, and has size equal to |S|. If |Z| > r then

|N (Z)| = |N | = |S| = |S(Z)| trivially. Suppose |Z| ≤ r and Z ∩ [2, r + 1] 6= ∅. So

Z ∩A1 6= ∅. By (b), we have 2r ∈ Z, and hence A2∩Z 6= ∅. So |N (Z)| = |S(Z)|. This

proves the existence of a family for which (ii) holds.

Sub-case 1.1: |Z| > r. Since A is intersecting, if A ∈ A then [2r]\A /∈ A; hence

|A| ≤ 1
2

(
2r
r

)
=
(
2r−1
r−1

)
= |S|. So the result is straightforward since here A(Z) = A.

Sub-case 1.2: |Z| = r. Clearly, Z ∩ [2, r + 1] 6= ∅. If Z ∈ A then, since [2r]\Z =

W < Z (by (b)) and A is compressed, we have [2r]\Z ∈ A, which contradicts A

intersecting. So Z /∈ A. Since Z, [2r]\Z /∈ A(Z), it clearly follows that |A(Z)| ≤
1
2

(
2r
r

)
− 1 = |S(Z)| (note that Z > [2r]\Z ⇒ 1 ∈ [2r]\Z ⇒ {[2r]\Z} = S]Z[). Thus,

by (3.2), |A(Z)| = |S(Z)|.

Since W = [2r]\Z, A]Z[⊆ {W}. Suppose W /∈ A. Let w1 < ... < wr and

z1 < ... < zr such that W = {w1, ..., wr} and Z = {z1, ..., zr}. Since [2r]\Z = W < Z,

we have w1 = 1, zr = 2r and wi < zi, i = 1, ..., r. Let W ′ := (W\{wr}) ∪ {zr}.

Since W ′ > W /∈ A and A is compressed, W ′ /∈ A. Similarly, [2r]\W ′ /∈ A since

[2r]\W ′ = (Z\{zr}) ∪ {wr} > W . Thus, since W, [2r]\W,W ′, [2r]\W ′ /∈ A (recall that

[2r]\W = Z /∈ A), it clearly follows that |A(Z)| ≤ 1
2

(
2r
r

)
− 2 < |S(Z)|, a contradiction.

So {W} = A]Z[ = S]Z[. Thus, since |A(Z)| = |S(Z)|, |A| = |S|.

Sub-case 1.3: |Z| < r. Let A1 ∪ A2 be the partition of A(Z) de�ned by A1 :=

{A ∈ A(Z) : Z\A 6= ∅} and A2 := {A ∈ A(Z) : Z ⊂ A}. Let S1 and S2 be de�ned

similarly. Let f : A1 → S1 be de�ned by f(A) = A if 1 ∈ A and f(A) = [2r]\A if 1 /∈ A

(A ∈ A1). So f is injective because if 1 ∈ C ∈ A1, 1 /∈ D ∈ A1, and f(D) = f(C) then

[n]\D = C ∈ A, contradicting A intersecting. Hence |A1| ≤ |S1|.
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Now consider A2, and suppose there exist C,D ∈ A2 such that (C ∩ D)\Z = ∅.

Thus, taking E := [2r]\D and F := E\C, we have C\E = Z and F ⊂ [2r]\Z. Note

that |F | = |([2r]\D)\C| = |[2r]\(C ∪ D)| = 2r − (|C| + |D| − |C ∩ D|) = |Z|. Since

Y = Z, we have W\F ⊂ W ⊂ [2r − 2|Z|+ 1, 2r] by (b), and F\W ⊂ [2r]\(Z ∪W ) =

[2r − 2|Z|] by (3.1). So F\W ≤ W\F . If F\W = W\F then F = W , and if

F\W < W\F then F < W by Lemma 3.2.1; hence F ≤ W . So E\C ≤ W < Z = C\E,

and hence Lemma 3.2.1 gives us E < C. Thus, since A 3 C is compressed, we get

E ∈ A, which contradicts A intersecting as D ∈ A and E ∩D = ∅. So

(C ∩D)\Z 6= ∅ for all C,D ∈ A2. (3.3)

Next, de�ne X := {A\Z : A ∈ A2} ⊂
(
[n′]
r′

)
, where n′ = 2r − |Z| and r′ = r − |Z|.

Since |Z| < r < n/2, 1 ≤ r′ < n′/2. By (3.3), X is intersecting. X is also compressed

because A < B ∈ X ⇒ (A ∪ Z)\Z < (B ∪ Z)\Z ∈ X ⇒ A ∪ Z < B ∪ Z ∈ A2 (by

Lemma 3.2.1) ⇒ A∪Z ∈ A2 (since A is compressed) ⇒ A ∈ X . Let Y := {A\Z : A ∈

S2}. If r′ = 1 then X ⊆ Y trivially. If r′ > 1 then we take Z ′ := [2, 2r]\Z and, since

X = X (Z ′) and Y = Y(Z ′), we apply the inductive hypothesis to get |X | ≤ |Y| with

equality only if X = Y . So |A2| ≤ |S2| with equality only if A2 = S2. Thus, since

|A1| ≤ |S1|, |A(Z)| ≤ |S(Z)|. By (3.2), |A(Z)| = |S(Z)|. So |A1| = |S1|, |A2| = |S2|,

and hence A2 = S2.

Suppose Z ∩ [2, r + 1] 6= ∅. Take any K ∈ S]Z[. Let k1 < ... < kr such that

K = {k1, ..., kr}, and let L := {kr−|Z|+1, ..., kr}, K ′ := (K\L) ∪ Z. Similarly to F

above, L ≤ W . Given that W < Z, it follows that L < Z, and hence K < K ′. So

K ∈ A]Z[ because K ′ ∈ S2 = A2, A is compressed, and K ∩Z = ∅. We have therefore

shown that S]Z[⊆ A]Z[. So |A| ≥ |S| as |A(Z)| = |S(Z)|. But |A| ≤ 1
2

(
2r
r

)
= |S| (see

Sub-case 1.1). So |A| = |S| and A]Z[ = S]Z[.

Now suppose Z∩ [2, r+1] = ∅. So Z ⊆ [r+2, 2r], and hence A∗ := {1}∪ [r+2, 2r] ∈

A2 as A∗ ∈ S2 = A2. Thus, since A is compressed and A < A∗ for all A ∈ S\{A∗}, we

have S ⊆ A. Together with |A| ≤ |S| (see Sub-case 1.1), this gives us A = S.

Case 2: n > 2r. Let n′ := n − 1. We have A]n[,S]n[⊂
(
[n′]
r

)
and A〈n〉,S〈n〉 ⊂

(
[n′]
r′

)
,
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r′ = r− 1. Note that r ≤ n′/2 and r′ < n′/2 (as we now have r < n/2). Also note that

A〈n〉 and A]n[ are compressed. We now show that A〈n〉 ∪ A]n[ is intersecting.

Suppose A∩B∩ [n′] = ∅ for some A,B ∈ A. So A∩B = {n} (as A is intersecting).

Since |A ∪ B| ≤ 2r − 1 < n′, [n]\(A ∪ B) 6= ∅. Let a ∈ [n]\(A ∪ B). Since A′ :=

(A\{n})∪{a} < A and A is compressed, A′ ∈ A. But A′ ∩B = ∅, a contradiction. So

A ∩B ∩ [n′] 6= ∅ for any A,B ∈ A, and hence A〈n〉 ∪ A]n[ is intersecting as required.

Sub-case 2.1: n /∈ Z. It is immediate from the inductive hypothesis that |A]n[(Z)| ≤

|S]n[(Z)| and |A〈n〉(Z)| ≤ |S〈n〉(Z)|. Since |A(Z)| = |A]n[(Z)| + |A〈n〉(Z)|, it fol-

lows that |A(Z)| ≤ |S(Z)|. By (3.2), we actually have |A(Z)| = |S(Z)|, |A]n[(Z)| =

|S]n[(Z)| and |A〈n〉(Z)| = |S〈n〉(Z)|. It remains to show that A is centred.

Consider the equality |A〈n〉(Z)| = |S〈n〉(Z)|. Since r′ < n′/2, it follows by the in-

ductive hypothesis thatA〈n〉 is centred, and henceA〈n〉 ⊆ S〈n〉 asA〈n〉 is compressed.

This gives us the stronger equality A(n)(Z) = S(n)(Z).

Let m := max{z ∈ Z}. If r > 3 then we take F1 to be a �nal (r − 3)-segment for

[n]\{1,m, n}; otherwise, we take F1 to be ∅. Let S1 := {1,m, n} ∪ F1 (recall that we

are dealing with r ≥ 3). Since Z ⊆ [2, n], if |Z| ≥ r + 1 then m ≥ r + 2. Suppose

|Z| ≤ r. If Y = ∅ then m > 2r, and if Y 6= ∅ then, by (b) and (3.1), we have 2r ∈ Y ,

and hence m ≥ 2r. So we have m ≥ r + 2. Suppose that A is non-centred. Given

that A is compressed, we then have [2, r + 1] ∈ A, which is a contradiction because

[2, r + 1] ∩ S1 = ∅, S1 ∈ S(n)(Z) = A(n)(Z) and A is intersecting. So A is centred.

Sub-case 2.2: n ∈ Z. Suppose Z 6= [2, n]. Let m′ := max{a ∈ [n]\Z} and

Z ′ := δm′,n(Z). So n /∈ Z ′. It is easy to check that Z ′ also satis�es one of (a),

(b), (c). Therefore, as in Sub-case 2.1, |A(Z ′)| ≤ |S(Z ′)| with equality only if A is

centred. Now |S(Z)| = |S(Z ′)| and, by Lemma 3.2.2, |A(Z)| ≤ |A(Z ′)|. Thus, by

(3.2), |A(Z)| = |A(Z ′)| = |S(Z ′)|, and hence A is centred.

Now suppose Z = [2, n]. Then, taking Z ′′ := Z\{n} and applying the induc-

tive hypothesis, we have |A]n[| = |A]n[(Z ′′)| ≤ |S]n[(Z ′′)| = |S]n[| and |A〈n〉| =

|A〈n〉(Z ′′)| ≤ |S〈n〉(Z ′′)| = |S〈n〉|, and (since r′ < n′/2) the latter inequality is an

equality only if A〈n〉(Z ′′) is centred and hence A〈n〉 = S〈n〉 (as A is compressed and

A〈n〉 = A〈n〉(Z ′′)). It follows by (3.2) that |A]n[| = |S]n[| and |A〈n〉| = |S〈n〉|, and
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hence A〈n〉 = S〈n〉. Now, since r′ < n′/2, for any A ∈
(
[2,n′]
r

)
there exists B ∈ S〈n〉

such that A ∩ B = ∅. Since A〈n〉 ∪ A]n[ is intersecting and A〈n〉 = S〈n〉, it follows

that A]n[⊂ S and hence A ⊆ S. 2

We now come to the proof of Theorem 3.1.3, for which we need the following second

lemma concerning ordered pairs of subsets of
(
[n]
r

)
.

Lemma 3.2.3 Let A,B ∈
(
[n]
r

)
, 1 ≤ r ≤ n− 1. Then

A < B ⇔ [n]\B < [n]\A.

Proof. By induction on n. The case n = 2 is trivial. Consider n > 2.

Suppose C := A ∩ B 6= ∅. Let X := [n]\C. Let D := A\C,E := B\C ∈
(

X
r−|C|

)
.

By Lemma 3.2.1, D < E. By the inductive hypothesis, F := X\E < G := X\D. The

result follows since F = [n]\A and G = [n]\B.

Now suppose A ∩ B = ∅. If n = 2r then [n]\B = A < B = [n]\A. Suppose

n > 2r. Let c ∈ [n]\(A ∪ B) and Y := [n]\{c}. By the inductive hypothesis,

H := Y \B < I := Y \A. By Lemma 3.2.1, [n]\B = H ∪ {c} < I ∪ {c} = [n]\A. 2

Proof of Theorem 3.1.3. For the same reason speci�ed in the proof of Theorem 3.1.1,

the case r = 2 is straightforward. So we consider r ≥ 3.

We start by demonstrating the lower bound |S(Z)| + 1 ≤ |A(Z)| for each of the

cases (a), (b), (c). For case (a) (with r = 3), take A(a) := {A ∈
(
n
r

)
: |A∩ [3]| ≥ 2}. For

case (b), take A(b) to be the union of A′
(b) := {A ∈

(
[2r]
r

)
: A ≤ Z} and A′′

(b) := S\{A ∈

S : [2r]\A ∈ A′
(b)}. For case (c), take A(c) := N . It is easy to check that A(a), A(b)

and A(c) attain the required lower bound and that A(a) and A(c) are compressed and

intersecting. We now show the less straightforward fact that A(b) is compressed and

intersecting.

By de�nition of A′
(b), if A < B ∈ A′

(b) then A < B ≤ Z, and hence A ∈ A′
(b);

so A′
(b) is compressed. Now suppose A < B ∈ A′′

(b). Then, by Lemma 3.2.3 and the

de�nition of A′′
(b), we have [2r]\A > [2r]\B /∈ A′

(b), and hence, since A′
(b) is compressed,
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[2r]\A /∈ A′
(b). Also, A ∈ S since A < B ∈ A′′

(b) ⊂ S. So A ∈ A′′
(b), which proves that

A′′
(b) is compressed. Thus, as required, A(b) is compressed because clearly, in general,

the union of two compressed families is compressed.

Suppose A,B ∈ A(b). It is straightforward that if A /∈ A′
(b) or B /∈ A′

(b) then

A ∩ B 6= ∅. Now suppose A,B ∈ A′
(b) and A ∩ B = ∅. Since therefore A ≤ Z and

B = [2r]\A, we have [2r]\Z ≤ B by Lemma 3.2.3. Since B ≤ Z (by de�nition of A′
(b)),

we then have [2r]\Z ≤ Z, a contradiction. So A′
(b) is intersecting, and hence A(b) is

intersecting.

The result now follows if we prove the upper bound |A(Z)| ≤ |S(Z)|+ 1 and that

equality holds only if one of (a), (b), (c) holds.

Case 1: n = 2r. It is immediate that therefore |A(Z)| ≤ |S| = |S(Z)| + 1 be-

cause |A| ≤ 1
2

(
2r
r

)
= |S| (see proof of Theorem 3.1.1). Suppose (b) does not hold, i.e.

[n]\Z < Z. Then, by Theorem 3.1.1, |A(Z)| ≤ |S(Z)|. So |A(Z)| = |S(Z)|+ 1 only if

(b) holds.

Case 2: n > 2r. As in the proof of Theorem 3.1.1, A]n[⊂
(
[n′]
r

)
(n′ = n − 1) and

A〈n〉 ⊂
(
[n′]
r′

)
(r′ = r − 1) are compressed and intersecting; moreover, A〈n〉 ∪ A]n[ is

intersecting. Also recall that r ≤ n′/2 and r′ < n′/2.

Sub-case 2.1: n /∈ Z. By the inductive hypothesis, we have |A]n[(Z)| ≤ |S]n[(Z)|+

1. By Theorem 3.1.1, |A〈n〉(Z)| ≤ |S〈n〉(Z)| with equality only if A〈n〉 is centred or

r′ = 2 and {2, 3} ⊂ Z. So |A(Z)| ≤ |S(Z)| + 1 with equality only if A〈n〉 ⊆ S〈n〉

(as A〈n〉 is compressed) or (a) holds. Suppose |A(Z)| = |S(Z)|+ 1 and (a) is not the

case. So |A]n[(Z)| = |S]n[(Z)| + 1, |A〈n〉(Z)| = |S〈n〉(Z)| and A〈n〉 ⊆ S〈n〉. The

last two relations yield A〈n〉(Z) = S〈n〉(Z), and the �rst relation yields A]n[* S]n[,

implying that A∗ := [2, r + 1] ∈ A]n[ as A]n[ is compressed. Suppose Z 6= A∗. Then,

since A〈n〉(Z) = S〈n〉(Z), we clearly have A′ := A〈n〉(Z)]A∗[ 6= ∅. Let A′ ∈ A′. So

A′∩A∗ = ∅, but this is a contradiction because A〈n〉∪A]n[ is intersecting. So Z = A∗,

i.e. (c) holds. Hence we are done.
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Sub-case 2.2: n ∈ Z. Let m := max{a : a ∈ [n]\Z} and Z ′ := δm,n(Z). So n /∈ Z ′

and clearly Z ′ does not satisfy (c). Thus, according to what we have shown in Sub-case

2.1, we have |A(Z ′)| ≤ |S(Z ′)|+ 1, and equality holds only if Z ′ satis�es (a), in which

case Z satis�es (a) too. The result follows since |A(Z)| ≤ |A(Z ′)| by Lemma 3.2.2. 2

3.3 An application: the EKR properties of the sun-

�ower

We now start working towards the proofs of Theorems 3.1.4 and 3.1.5. We shall �rst

develop some further notation.

Let W :=
⋂p
i=1Xi. Let a := |W |, and let w1, ..., wa be the elements of W . For

i ∈ [p], let Vi := Xi\W and bi := |Vi|, and let vi1, ..., vibi be the elements of Vi; for

the purpose of the left-compression operation, we put the elements of Xi in the order

w1 < ... < wa < vi1 < ... < vibi .

Let µ := µ(H) and α := α(H). Fix r ≤ µ, and let U := H(r) =
⋃p
i=1

(
Xi

r

)
. For

A ⊂ U , let A(i) := {A ∈ A : A ⊂ Xi} and Ai := A(i)(Vi), i = 1, ..., p.

We will use the following lemma when dealing with the extremal cases of Theo-

rems 3.1.4 and 3.1.5; we will prove this lemma later.

Lemma 3.3.1 Let A be an intersecting sub-family of U . Suppose p > 1 or 2r < µ,

and ∆x,y(A) = U(x) for some x, y ∈ Xi, x < y, i ∈ [p]. Then A = U(x) or A = U(y)

or A = A(i).

We will often also use the following fact.

Lemma 3.3.2 Let A be an intersecting sub-family of U . Suppose U(j)(x) ⊆ A(j) for

some x ∈
⋃
i∈[p]Xi and j ∈ [p]. Then A ⊆ U(x).

Proof. We have U(j)(x) ⊆ A(j) and |Xj| ≥ µ ≥ 2r. Thus, for all B ∈ U\U(x), we can

�nd A ∈ A(j) such that A ∩B = ∅. Since A is intersecting, the result follows. 2

Proof of Theorem 3.1.4. We apply compressions ∆x,y, x, y ∈ X1, x < y, to A

until A(1) is compressed (see Section 2.2). We then repeat this procedure for A(2), ...,
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A(p) in the given order, and we observe that after the i'th procedure we get A(j) com-

pressed for all j ∈ [i] (i = 1, ..., p). Clearly, A remains intersecting, and A(i) becomes

compressed, i = 1, ..., p.

Clearly, A(1) ∪ A2 ∪ ... ∪ Ap is a partition of A. Let J := U(w1). Since 2r ≤ µ, by

taking X1 and X ′
1 := X1\{w1} to represent [n] and Z respectively in Corollary 3.1.2,

we get |A(1)| = |A(1)(X
′
1)| ≤ |J(1)(X

′
1)| = |J(1)|. Similarly, for i = 2, ..., p, by taking Xi

and Vi to represent [n] and Z respectively in Corollary 3.1.2, we get |Ai| ≤ |Ji|. So

|A| ≤ |J |. Therefore J ∈ ex(U) and hence (i).

Suppose 2r < µ and A(j) 6= J(j) for some j ∈ [p]. Taking Z ′ to be X ′
1 or Vj de-

pending on whether j = 1 or j > 1 respectively, Corollary 3.1.2 gives us |A(j)(Z
′)| <

|J(j)(Z
′)|, and hence |A| < |J |. Lemma 3.3.1 ensures that if A is initially non-centred

then the compressions mentioned above do not change A to J . Hence (ii). 2

Proof of Theorem 3.1.5. We now have 2r = µ and p > 1. We base this proof

on the proof of Theorem 3.1.4.

Suppose µ = α and 3 ≤ |W | ≤ r. Note that |X1| = ... = |Xp| = 2r. It is easy to

check that therefore (J \{A ∈ U : A ∩W = {w1}} ∪ {A ∈ U : A ∩W = W\{w1}} is a

non-centred intersecting family that is as large as J . Since J ∈ ex(U), the su�ciency

condition follows.

We now prove the necessary condition. So suppose A is a non-centred intersecting

family in ex(U). Then |A| = |J |. Let A′ be the resulting family after applying

compressions as in the proof of Theorem 3.1.4. So |A′| = |A| = |J |. Suppose A′ is

centred. Then, by Lemma 3.3.1, either A′ is a proper sub-family of a star of U or A′ is

a star of U and A′ = A′
(i) for some i ∈ [p]. Since J is a star of largest size, the former

case immediately gives us the contradiction that |A′| < |J |, and the latter case clearly

gives us A′ = U(vij) for some j ∈ [bi], which again results in the contradiction that

|A′| < |J |. So A′ is non-centred, and we may therefore assume that A = A′. Since

|A| = |J |, we have |Ai| = |Ji| for all i ∈ [2, p] (see the proof of Theorem 3.1.4). An

argument similar to that for A(1) (in the proof of Theorem 3.1.4) yields |A(i)| ≤ |J(i)|

for all i ∈ [p].
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Suppose 2r = µ < α. So there exists j ∈ [p] such that |Xj| = α > 2r. The proof

of Theorem 3.1.4(ii) for 2r < µ shows us that we must then have A(j) = J(j). By

Lemma 3.3.2, A ⊆ J , which contradicts A non-centred. So 2r = µ = α.

Next, suppose r < |W |. Let i ∈ [2, p]. Since 2r = µ = α = |W | + |Vi|, it follows

that |Vi| < r. Since |Ai| = |Ji|, it follows by Corollary 3.1.2 (with 2r = n = |Xi|

and |Z| = |Vi| < r) that A(i) = J(i). By Lemma 3.3.2, A ⊆ J , which contradicts A

non-centred. So r ≥ |W |.

Finally, suppose 1 ≤ |W | ≤ 2. If A ∩ W = ∅ for some A ∈ A then, since A

is intersecting, A ⊂
(
Xj

r

)
for some j ∈ [p], and hence |A| = |A(j)| ≤ |J(j)| < |J |.

Suppose instead A = A(W ). If W = {w1} then A ⊆ J , which contradicts A non-

centred. So W = {w1, w2}, and hence A(w1)]w2[∪A]w1[(w2) ∪ A(w1)(w2) is a par-

tition of A. Since A is non-centred, we have A(w1)]w2[ 6= ∅ and A]w1[(w2) 6= ∅.

Thus, since A is intersecting, A(w1)]w2[∪A]w1[(w2) ⊂
(
Xj

r

)
for some j ∈ [p]. So

A(w1)]w2[∪A]w1[(w2) ∪ A(w1)(w2)(Vj) = A(j), and we know that |A(j)| ≤ |J(j)|. It

remains to consider Ai = A(w1)(w2)(Vi) for each i ∈ [p]\{j}, for which we clearly have

|Ai| < |Ji|. Thus, since A(j) ∪
⋃
i∈[p]\j Ai is a partition for A, we get |A| < |J |, a

contradiction. So |W | ≥ 3. Hence result. 2

We now come to the proof of Lemma 3.3.1, for which we need the lemma below

that is often useful for determining the structure of extremal intersecting families.

Lemma 3.3.3 Suppose ∅ 6= A ⊆
(
X
r

)
, 2r < n := |X|, such that if A ∈ A and

B ∈
(
X\A
r

)
then B ∈ A. Then A =

(
X
r

)
.

Proof. Let A0 ∈ A and B ∈
(
X
r

)
such that 1 ≤ q0 := |A0 ∩ B| ≤ r − 1, i.e. B 6= A0

and B /∈
(
X\A
r

)
. It is required to show that B ∈ A. We claim that the following

procedure takes a �nite number of steps k, and we �rst assume the claim is true. For

i = 1, 2, ..., k, choose Ai ∈
(
X\Ai−1

r

)
such that |Ai ∩ B| is a minimum if i is odd, and

|Ai ∩B| is a maximum if i is even, where k is the �rst even integer that gives Ak = B.

So Ai ∈ A for all i ∈ [k], and hence we are done.

We now prove the claim. Let qi := |Ai ∩B| if i is even, and qi := r− |Ai ∩B| if i is

odd. If i is even then qi = r − |Ai−1 ∩ B| = qi−1. If i is odd then qi = r −max{0, r −
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((n− |Ai−1 ∪ B|))} = min{r, n− (2r − |Ai−1 ∩ B|)} = min{r, (n− 2r) + qi−1} > qi−1.

So the claim holds. 2

Proof of Lemma 3.3.1. Clearly, if x ∈ Vi then A = A(i).

Now consider x ∈ W . Suppose y /∈ Xi, i ∈ [p]. Then, since ∆x,y(A) = J , we

clearly have A(i) = J(i), and hence, by Lemma 3.3.2 and |A| = |∆x,y(A)| = |J |,

A = J . Therefore, we now assume that y ∈ Xi for all i ∈ [p]. So p = 1 or y ∈ W . We

also assume that A 6= J . Let K := U(y). Our main observation is that

A1, A2 ∈ K\J , A1 ∈ A, A1 ∩ A2 = {y} ⇒ A2 ∈ A (3.4)

because otherwise, since ∆x,y(A) = J , we get δx,y(A2) ∈ A and A1 ∩ δx,y(A2) = ∅,

contradicting A intersecting.

Suppose 2r < α. Let j ∈ [p] such that |Xj| = α. If A ∈ J ∩K then A = δx,y(A). So

J ∩K ⊂ A. Since A 6= J and ∆x,y(A) = J , there exists B ∈ A such that δxy(B) 6= B.

So B ∈ K\J . Let Y := Xj\{x} and Y := {A ∈
(
Y
r

)
: y ∈ A}. Let Z := Y \{y}

and B := {A\{y} : A ∈ A ∩ Y} ⊆
(
Z
r−1

)
. Since B\{y} ∈ B and A ∩ Y ⊆ K\J , it

follows by (3.4) and Lemma 3.3.3 that B =
(
Z
r−1

)
. So Y ⊂ A, and hence K(j) ⊆ A(j) as

J ∩ K ⊂ A. By Lemma 3.3.2, A ⊆ K. Since |K| ≤ |J | = |A|, A = K.

Finally, suppose 2r = µ = α. So p > 1 and y ∈ W . In this case, 2r = |Xi|

and b := b1 = ... = bp = 2r − a. Let C ∈ K. We show that C ∈ A. As above,

J ∩ K ⊂ A. So suppose C ∈ K\J . We have C ⊂ Xj for some j ∈ [p]. Since

∆xy(A) = J 6= A, there exists B0 ∈ K\J such that B0 ∈ A. Let Yi = Xi\{x},

i = 1, ..., p. We can assume that B0 ⊂ Yj because otherwise we can choose B′
0 ⊂ Yj

such that B′
0 ∩B0 = {y}, and B′

0 ∈ A by (3.4). Let j′ ∈ [p]\{j}. Take B1 ∈
(
Yj′
r

)
such

that B0 ∩B1 = {y} and |B1 ∩Vj′| = min{r− 1, b}. By (3.4), B1 ∈ A. If b ≥ r− 1 then

B1 ∩C = {y}, and hence C ∈ A by (3.4). Suppose b ≤ r − 2. Let U := W\{x, y} and

D := {(A∩W )\{y} : A ∈ A∩K\J , |A∩ (Vj ∪ Vj′)| = b} ⊆
(
U
s

)
, where s = r− b− 1 =

a − r − 1 ≤ (a − 1)/2 − 1 = (|U | + 1)/2 − 1 < |U |/2. D 6= ∅ as (B1 ∩W )\{y} ∈ D.

Moreover, D ∈ D ⇒ D ∪ Vj∗ ∪ {y} ∈ A for some j∗ ∈ {j, j′} ⇒ D′ ∪ Vj∼ ∪ {y} ∈ A
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for any D′ ∈
(
U\D
s

)
, j∼ ∈ {j, j′}\{j∗} (by (3.4)) ⇒ D′ ∈ D for any D′ ∈

(
U\D
s

)
. Thus,

by Lemma 3.3.3, D =
(
U
s

)
. Since |U | − |C ∩ U | ≥ (a − 2) − (r − 1) = s, there exists

D ∈ D such that D ∩C = ∅. Let B2 := D ∪ Vj′ ∪ {y}, B3 := D ∪ Vj ∪ {y}. So B2 ∈ A

or B3 ∈ A. Since B2 ∩C = {y}, if B2 ∈ A then C ∈ A by (3.4). Suppose B3 ∈ A. We

can take D′ ∈
(
U\D
s

)
such that D′ ⊂ C. Let B4 := D′ ∪ Vj′ ∪ {y}, B5 := (Yj\C) ∪ {y}.

Clearly, B3 ∩B4 = B4 ∩B5 = B5 ∩ C = {y}. So B4, B5, C ∈ A by (3.4). 2
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Chapter 4

Non-centred intersecting sub-families

of compressed hereditary families

4.1 Introduction

For any pair of families A and B, let

∂
(s)
B A := {B ∈ B(s) : there exists A ∈ A such that A ⊆ B or B ⊆ A}.

The following is a well-known result due to Sperner [57]:

|∂(r+1)

2[n] A| > |A| for any A ⊆
(
[n]
r

)
and r < bn/2c. (4.1)

A proof of this inequality is also found in [25, 38].

A family A is said to be an antichain or a Sperner family if all sets in A are maximal

in A, i.e. B ( A ∈ A implies B /∈ A.

Let ∼ be any of the relations <,≤,≥, > for numbers. We denote the sub-family

{Y ⊆ X : |Y | ∼ r} of 2X by
(
X
∼r

)
. For a family F , we denote the sub-family {A ∈

F : |A| ∼ r} of F by F (∼r).

Erd®s, Ko and Rado actually proved the following stronger version of Theorem 1.2.1.

Theorem 4.1.1 (Erd®s, Ko, Rado [25]) If r ≤ n/2 and A ⊂
(

[n]
≤r

)
be an intersect-

ing antichain, then |A| ≤ |{A ∈
(
[n]
r

)
: 1 ∈ A}| =

(
n−1
r−1

)
, and strict inequality holds if
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A ∩
(

[n]
<r

)
6= ∅.

Similarly, Hilton and Milner actually proved the following stronger version of Theo-

rem 1.2.2.

Theorem 4.1.2 (Hilton and Milner [38]) If r ≤ n/2 and A ⊂
(

[n]
≤r

)
is a non-

centred intersecting antichain, then |A| ≤ |{A ∈
(
[n]
r

)
: 1 ∈ A,A ∩ [2, r + 1] 6= ∅} ∪

{[2, r + 1]}|, and strict inequality holds if A ∩
(

[n]
<r

)
6= ∅.

These two versions were easily obtained from the respective weaker versions by applying

(4.1).

In this chapter, we obtain generalisations of Theorems 1.6.2 and 4.1.2 to sub-families

of compressed hereditary families using the compression method, exploiting the fact

that if F ⊆ 2[n] is a compressed family and A ⊆ F then ∆i,j(A) ⊆ F for any i, j ∈ [n],

i < j. We also determine extremal structures. More precisely, we prove the following

two results, which are stated with some light notation from Section 2.1.

Theorem 4.1.3 Let H ⊆ 2[n] be hereditary and compressed, H(n) 6= ∅. Let 1 ≤ r ≤

s ≤ µ(H) − r, and let ∅ 6= A ⊂ H(r) and ∅ 6= B ⊂ H(s) such that A and B are cross-

intersecting, and |A| ≤ |B| if r = s. Then:

(i) |A|+ |B| ≤ |A0|+ |B0| where A0 := {[r]} ⊂ H(r) and B0 := H(s)([r]);

(ii) if s < n− r then equality in (i) holds only if either A = {A} and B = H(s)(A) for

some A ∈ H(r) or r = s = 2 and A = B = H(2)(a) for some a ∈ [n].

Theorem 4.1.4 Let H ⊆ 2[n] be hereditary and compressed, H(n) 6= ∅. Suppose

2 ≤ r ≤ µ(H)/2 and A ⊆ H(≤r) is a non-centred intersecting antichain. Then:

(i) |A| ≤ |N | where N is a non-centred intersecting sub-family of H(r) given by {A ∈

H(r) : 1 ∈ A,A ∩ [2, r + 1] 6= ∅} ∪ {[2, r + 1]};

(ii) if r < n/2 then equality in (i) holds only if either A = {A ∈ H(r) : a ∈ A,A ∩B 6=

∅} ∪ {B} for some B ∈ H(r) and a ∈ [n]\B or A = {A ∈ H(3) : |A ∩ C| ≥ 2} for some

C ∈ H(3).

Theorem 4.1.4 is proved using Theorem 4.1.3 with r = s. The two theorems make

distinct use of a generalisation of (4.1) that is given in Section 4.3.
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We alert the reader to the fact that, in the subsequent sections of this chapter,

heavy use is made of the notation in Section 2.1, especially in the proofs of the main

results.

4.2 A consequence of Theorem 4.1.4 and a counterex-

ample

An immediate consequence of Theorem 4.1.4 is the following analogue of Theorem 1.3.2.

Theorem 4.2.1 Conjecture 1.3.5 is true if H is compressed.

Proof. Since H is compressed, [µ(H)] ∈ H. Therefore,

H compressed and hereditary ⇒ 2[µ(H)] ⊆ H. (4.2)

Let A ⊂ H(r) be non-centred and intersecting, and let N be as in Theorem 4.1.4. By

Theorem 4.1.4, |A| ≤ |N |. Let B := {B ∈
(
[µ(H)]\[2,r+1]

r

)
: 1 ∈ B}. Clearly, B ∩ N = ∅.

By (4.2), B ⊂ H(r)(1). So

|H(r)(1)| ≥ |(N\{[2, r + 1]}) ∪ B| = |N | − 1 +

(
µ(H)− r − 1

r − 1

)
.

Thus, since r ≤ µ(H)/2, |A| ≤ |H(r)(1)| with strict inequality if r < µ(H)/2. 2

Of course, this result can be proved directly; the 'non-strict' part can be obtained by

employing Lemmas 4.4.1 and 4.4.2 in an inductive argument (based on the compression

technique) similar to that in the original proof of the EKR Theorem. An improvement

of Theorem 4.2.1 similar to that given by Theorem 1.3.3 over Theorem 1.3.2 may be

regarded as a step worth attempting next towards Conjecture 1.3.5.

A counterexample. In view of the above, it is natural to ask the following ques-

tion: If H is taken to be any hereditary sub-family of 2[n] or to be at least compressed

with respect to 1, does Theorem 4.1.4 still hold in the sense that for any r ≤ µ(H)/2
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there exist B ∈ H(r) and a ∈ [n]\B such that H(r)(a)(B) ∪ {B} is an extremal non-

centred intersecting sub-family of H(r)? We now use a sun�ower setting to provide a

counterexample; note that this contrasts Conjecture 1.3.5.

Let m, l, p, r ∈ N such that 3 ≤ l ≤ m, l ≤ r ≤ (m + l)/2 and p
(
µ−l
r−l+1

)
>(

µ−l
r−1

)
−
(
µ−r−1
r−1

)
+ 1. Let Hi := [l] ∪ [(i − 1)m + l + 1, im + l], i = 1, ..., p. So Hi1 ∩

Hi2 = [l] for any i1, i2 ∈ [p] (and hence {Hi : i ∈ [p]} is a sun�ower). Let H be the

hereditary family
⋃p
i=1 2Hi . Note that H is compressed with respect to 1. We have

µ := µ(H) = |H1| = ... = |Hp| = m + l ≥ 2r. Fix B ∈ H(r) and a ∈ [pm + l]\B, and

let A1 := H(r)(a)(B) ∪ {B}. Let N be as in Theorem 4.1.4.

We �rst show that |A1| ≤ |N |. This is straightforward if a /∈ [l] because then

H(r)(a) ⊂
(
Hi′
r

)
for some i′ ∈ [p]. Suppose a ∈ [l] instead, and let j ∈ [p] such that

B ⊂ Hj. Then

|A1| =
(|Hj |−1

r−1

)
−
(|Hj |−r−1

r−1

)
+ 1 +

∑
i∈[p]\{j}

((|Hi|−1
r−1

)
−
(|Hi|−|B∩([l]\{a})|−1

r−1

))
≤ p

(
µ−1
r−1

)
−
(
µ−r−1
r−1

)
+ 1− (p− 1)

(
µ−l
r−1

)
= |N |.

Now let A2 := H(r)(1)([l]\{1}) ∪ {([l]\{1}) ∪ C : C ∈
(
Hi\[l]
r−l+1

)
for some i ∈ [p]} ⊂

H(r). So |A2| = p
((
µ−1
r−1

)
−
(
µ−l
r−1

)
+
(
µ−l
r−l+1

))
. Our aim is to show that |A2| > |A1|.

Indeed, |A2| − |A1| ≥ |A2| − |N | = p
(
µ−l
r−l+1

)
−
(
µ−l
r−1

)
+
(
µ−r−1
r−1

)
− 1 > 0 (by choice of p).

4.3 A Sperner-type lemma for hereditary families and

some corollaries

The �rst important tool that we forge is the generalisation of (4.1) given by Lemma 4.3.1

below. This lemma is a discovery of a very fundamental property of hereditary families.

We prove it using the double-counting method.

Lemma 4.3.1 If H is hereditary, r < s ≤ µ(H)− r and A ⊆ H(r) then

|∂(s)
H A| ≥

(
µ(H)−r
s−r

)(
s
s−r

) |A|.
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Proof. For A ∈ A, let MA be some maximal set of H such that A ⊂MA. Then

(
µ(H)− r

s− r

)
|A| ≤

∑
A∈A

(
|MA| − r

s− r

)
=
∑
A∈A

|(∂(s)
H {A}) ∩

(
MA

s

)
|

≤
∑
A∈A

|∂(s)
H {A}| =

∑
B∈∂(s)

H A

|∂(r)
A {B}| ≤

∑
B∈∂(s)

H A

(
s

r

)

=

(
s

s− r

)
|∂(s)
H A|.

Hence result. 2

Corollary 4.3.2 If H is hereditary and r < s ≤ µ(H) − r then |H(r)| ≤ |H(s)|, and

strict inequality holds if s < µ(H)− r.

Proof. Since s ≤ µ(H) − r, we have
(
s
s−r

)
≤
(
µ(H)−r
s−r

)
with strict inequality if s <

µ(H)−r. This result now follows immediately from Lemma 4.3.1 as ∂(s)
H H(r) ⊆ H(s). 2

Corollary 4.3.3 Let H be hereditary. Let A ⊂ H(≤r) be an antichain such that A ∩

H(<r) 6= ∅, where r ≤ µ(H)/2. Then |∂(r)
H A| > |A|.

Proof. Set m := min{|A| : A ∈ A}. So
⋃r
s=mA(s) is a partition for A. Since A ∩

H(<r) 6= ∅, m < r. Take 1A := (A\A(m)) ∪ ∂(m+1)
H A(m). Since A is an antichain,

we have (∂
(m+1)
H A(m)) ∩ A = ∅, and hence |1A| > |A| since |∂(m+1)

H A(m)| > |A(m)| by

Lemma 4.3.1. Also note that 1A is an antichain. Repeating the same procedure r−m

times, we obtain a family qA ∈ H(r), q = r − m + 1, such that |qA| > |A|. Clearly,

qA = ∂
(r)
H A. 2

Corollary 4.3.4 Let H be hereditary. If r ≤ µ(H)/2 and A is a largest intersecting

antichain sub-family of H(≤r) then A ⊂ H(r).

Proof. Suppose A∩H(<r) 6= ∅. Trivially, ∂(r)
H A is an intersecting antichain sub-family

of H(r). By Corollary 4.3.3, |∂(r)
H A| > |A|, a contradiction. 2

By the above corollary, if Conjecture 1.3.5 is true then for any intersecting antichain

A ⊂ H(≤r) such that H is hereditary and r ≤ µ(H)/2, |A| ≤ |H(r)(h)| for some

h ∈ U(H).
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Corollary 4.3.5 Let H be hereditary. If r ≤ µ(H)/2 and A is a largest non-centred

intersecting antichain sub-family of H(≤r) then A ⊂ H(r).

Proof. Suppose A ∩ H(<r) 6= ∅. Since A∗ := ∂
(r)
H A is an intersecting antichain sub-

family ofH(r) and |A∗| > |A| by Corollary 4.3.3, A∗ must be centred. Let a ∈
⋂
A∈A∗ A.

Since A is non-centred, a /∈ A′ for some A′ ∈ A. Suppose |A′| = r. Then A′ ∈ A∗,

but this contradicts A∗ = A∗(a). So |A′| < r. Let M be some maximal set in H such

that A′ ⊂ M . Since |A′| < r ≤ µ(H)/2 ≤ |M |/2 ≤ |M\{a}| and H is hereditary,

there exists A′′ ∈ H such that A′ ⊂ A′′ ⊆ M\{a} and |A′′| = r. So a /∈ A′′ ∈ A∗,

contradicting A∗ = A∗(a). Therefore A ∩H(<r) = ∅, and hence result. 2

We point out that the following corollary of Lemma 4.3.1 is much stronger than

Corollary 4.3.2; however, unlike all the preceding corollaries, we will not need to refer

to it.

Corollary 4.3.6 If H is hereditary and r < s ≤ µ(H)−r then there exists an injection

f : H(r) → H(s) such that A ⊂ f(A) for all A ∈ H(r). If s < µ(H)− r then f is not a

bijection.

Proof. The result follows immediately from Lemma 4.3.1 and Hall's Marriage Theorem

[36]. 2

4.4 Further tools for proofs

The following is the key lemma for the main results in this chapter.

Lemma 4.4.1 Let ∅ 6= F ⊆ 2[n] and a ∈ [n].

(i) If F(a) 6= ∅ then µ(F〈a〉) ≥ µ(F)− 1.

(ii) If F is hereditary then µ(F ]a[) ≥ µ(F)− 1.

(iii) If F is compressed and [n] /∈ F then µ(F ]n[) ≥ µ(F).

Proof. Suppose F(a) 6= ∅. Let M ∈ F〈a〉 be maximal in F〈a〉. Then M ′ := M ∪ {a}

is maximal in F . So |M | = |M ′| − 1 ≥ µ(F)− 1. Hence (i).
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Suppose F is hereditary. Then, since F 6= ∅, ∅ ∈ F . So F ]a[ 6= ∅. Suppose

M ∈ F ]a[ is maximal in F ]a[. Suppose also that |M | < µ(F). So M is not maximal

in F , and hence there exists M ′ ∈ F(a) such that M ⊂ M ′ and M ′ is maximal in

F . Since F is hereditary, M ′′ := M ′\{a} ∈ F . Since M is maximal in F ]a[ and

M ⊆M ′′ ∈ F ]a[, M = M ′′. So M ′ = M ∪ {a}. Therefore |M | = |M ′| − 1 ≥ µ(F)− 1.

Hence (ii).

Suppose F is compressed and [n] /∈ F . LetM ∈ F ]n[ be maximal in F ]n[. Suppose

|M | < µ(F). Then there exists M ′ ∈ F(n) such that M ⊂ M ′. Since [n] /∈ F ,

X := [n]\M ′ 6= ∅. Let x ∈ X and M ′′ := δx,n(M
′) = (M ′\{n}) ∪ {x}. Since F is

compressed,M ′′ ∈ F . ButM ( M ′′ ∈ F ]n[, which is a contradiction to the maximality

of M in F ]n[. So |M | ≥ µ(F). Hence (iii). 2

We remark that the inequalities above cannot be replaced by equalities. An example

for (iii) is that if n ≥ 3 and F is the compressed (hereditary) family 2[n−1] ∪ 2[n−3]∪{n}

then µ(F ]n[) = n− 1 > n− 2 = µ(F).

We shall say that a family F ⊆ 2[n] is quasi-compressed if δi,j(F ) ∈ F for any

i, j ∈ U(F) such that i < j. Therefore a quasi-compressed family F ⊆ 2[n] is isomorphic

to a compressed sub-family of 2[|U(F)|], and the isomorphism is induced by the bijection

β : U(F) → [|U(F)|] de�ned by β(ui) := i, i = 1, ..., |U(F)|, where {u1, ..., u|U(F)|} =

U(F) and u1 < ... < u|U(F)|.

The next lemma is straightforward, so we omit its proof.

Lemma 4.4.2 If H ⊆ 2[n] is hereditary/quasi-compressed and a ∈ [n] then H]a[ and

H〈a〉 are hereditary/quasi-compressed.

We shall frequently use the following generalisation of Lemma 3.2.2.

Lemma 4.4.3 Let F ⊆ 2[n] be a quasi-compressed family such that |U(F)| ≥ 2. Let

Z ⊆ [n] and {a, b} ⊂ U(F), a < b. Then:

(i) |F [Z]| ≤ |F [δa,b(Z)]|;

(ii) |F(Z)| ≤ |F(δa,b(Z))|.

Proof. Let Z ′ := δa,b(Z). Suppose Z ′ 6= Z. Setting Z ′′ := Z ∩ Z ′, we therefore

have Z = Z ′′ ∪ {b} 6= Z ′′ and Z ′ = Z ′′ ∪ {a} 6= Z ′′. Since F is quasi-compressed and
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{a, b} ⊂ U(F), we have ∆a,b(F [Z]]a[) ⊆ F [Z ′]]b[ and ∆a,b(F ]Z ′′[(b)]a[) ⊆ F ]Z ′′[(a)]b[,

and hence |F [Z ′]]b[|) ≥ |F [Z]]a[| and |F ]Z ′′[(a)]b[| ≥ |F ]Z ′′[(b)]a[|. So

|F [Z ′]| − |F [Z]| = (|F [Z ′′ ∪ {a, b}]|+ |F [Z ′]]b[|)

−(|F [Z ′′ ∪ {a, b}]|+ |F [Z]]a[|) ≥ 0,

which proves (i), and

|F(Z ′)| − |F(Z)| = (|F(Z ′′)|+ |F ]Z ′′[(a)|)− (|F(Z ′′)|+ |F ]Z ′′[(b)|)

= (|F ]Z ′′[(a)(b)|+ |F ]Z ′′[(a)]b[|)− (|F ]Z ′′[(b)(a)|+ |F ]Z ′′[(b)]a[|) ≥ 0,

which proves (ii). 2

For a set X := {x1, ..., xn} ⊂ N, x1 < ... < xn, and r ≤ n, call {x1, ..., xr} an initial

r-segment of X.

Corollary 4.4.4 Let F ⊆ 2[n] be quasi-compressed. Let ∅ 6= Z ⊆ [n], and let Y ∈
(

[n]
|Z|

)
such that if Z ∩U(F) 6= ∅ then Y contains an initial |Z ∩U(F)|-segment Y ′ of U(F).

Then:

(i) |F [Z]| ≤ |F [Y ]|;

(ii) |F(Z)| ≤ |F(Y )|.

Proof. Let Z ′ := Z ∩ U(F). Clearly, |F(Z)| = |F(Z ′)|, and F [Z] = ∅ if Z 6= Z ′.

So the result is trivial if Z ′ = ∅. Suppose Z ′ 6= ∅. Since F is quasi-compressed and

Z ′ ⊆ U(F), we can construct a composition of compressions δa,b, a < b, a, b ∈ U(F),

that yields Y ′ when applied on Z ′. By repeated application of Lemma 4.4.3, we there-

fore get |F [Z ′]| ≤ |F [Y ′]| and |F(Z ′)| ≤ |F(Y ′)|. Hence result. 2

The following is a well-known result that surfaced in the proof of the original EKR

Theorem [25].

Lemma 4.4.5 (Erd®s, Ko, Rado [25]) If A ⊂ 2[n] is intersecting and p, q ∈ [n]

then ∆p,q(A) is intersecting.
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Proof. Since 2[n] is (p, q)-compressed, the result follows by Proposition 2.2.1(ii).

4.5 Proof of Theorem 4.1.3

In order to prove Theorem 4.1.3, we need the lemma below. The �rst two parts of the

lemma are the important ones, and parts (iii) and (iv) are only needed for obtaining

Theorem 4.1.3(ii). Surprisingly, we need to do much more work than expected to prove

part (iv), hence the length of the whole proof.

Lemma 4.5.1 Let A and B be as in Theorem 4.1.3. Let 1 ≤ i < j ≤ n.

(i) ∆i,j(A) and ∆i,j(B) are cross-intersecting.

(ii) If ∆m,n(A) = A and ∆m,n(B) = B for all m ∈ [n − 1] then (A ∩ B)\{n} 6= ∅ for

any A ∈ A and B ∈ B.

(iii) If ∆i,j(A) = {A} and ∆i,j(B) = H(s)(A) for some A ∈ H(r) then A = {A′} and

B = H(s)(A′) for some A′ ∈ H(r).

(iv) If ∆i,j(A) = ∆i,j(B) = H(2)(a) for some a ∈ [n] then A = B = H(2)(a′) for some

a′ ∈ [n].

Proof. Let A′ := {A ∪ {n + 1} : A ∈ A}, A′′ := {A∗ ∪ {n + 1} : A∗ ∈ ∆i,j(A)},

B′ := {B∪{n+2} : B ∈ B}, B′′ := {B∗∪{n+2} : B∗ ∈ ∆i,j(B)}. Clearly, C := A′∪B′ is

intersecting, and hence ∆i,j(C) is intersecting by Lemma 4.4.5. Since ∆i,j(C) = A′′∪B′′,

(i) clearly follows.

Suppose ∆m,n(A) = A and ∆m,n(B) = B for all m ∈ [n− 1]. Suppose A∩B = {n}

for some A ∈ A and B ∈ B. Then, since |(A ∪ B)\{n}| = r + s − 2 < n − 1,

X := [n − 1]\(A ∪ B) 6= ∅. Let x ∈ X. Since ∆x,n(A) = A, δx,n(A) ∈ A. But

δx,n(A) ∩B = ∅, a contradiction. Hence (ii).

Suppose ∆i,j(A) = {A} and ∆i,j(B) = H(s)(A) for some A ∈ H(r). Then A = {A}

or A = {δj,i(A)}. If A = {A} then B = H(s)(A) since A and B are cross-intersecting

and ∆i,j(B) = H(s)(A). Suppose A = {δj,i(A)}. Then B ⊆ C := H(s)(δj,i(A)). By

Lemma 4.4.3(ii), |C| ≤ |H(s)(A)|. So B = C since |C| ≤ |H(s)(A)| = |∆i,j(B)| = |B| ≤

|C|. Hence (iii).
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We now prove (iv). Suppose r = 2 and ∆i,j(A) = ∆i,j(B) = H(2)(a) for some

a ∈ [n]. Without loss of generality, suppose A 6= ∆i,j(A). Let A1 ∈ A\∆i,j(A). So

a = i and A1 = δj,i(A
′
1) = {j, a1} for some A′

1 = {i, a1} ∈ H(2)\A, a1 ∈ [n]\{i, j}. From

A and B cross-intersecting and ∆i,j(B) = H(2)(i), we get B ⊂ H(2)(A1)∩H(2)({i, j}) =

H(2)(j) ∪ {A′
1}. Let us �rst assume that A′

1 /∈ B, i.e. B ⊆ H(2)(j). Since |B| =

|∆i,j(B)| = |H(2)(i)| and Lemma 4.4.3 gives us |H(2)(j)| ≤ |H(2)(i)|, we then have

B = H(2)(j). So A1 ∈ B\∆i,j(B), and hence, by a similar argument, A = H(2)(j). We

now verify (iv) by showing that A′
1 /∈ B indeed.

We �rst show that |H(2)(i)]j[| ≥ 3. LetMi be a maximal set in H such that i ∈Mi;

moreover, if {i, j} ∈ H(2) then take Mi ⊃ {i, j}. Let Mi :=
(
Mi

2

)
; so Mi ⊆ H(2) as

H is hereditary. Since 2 = r ≤ µ(H)/2 ≤ |Mi|/2, |Mi| ≥ 4. Thus, if {i, j} /∈ H

then H(2)(i)]j[≥ 3 is immediate, and if {i, j} ∈ H then |H(2)(i)]j[| ≥ 2. Suppose

|H(2)(i)]j[| = 2. So {i, j} ⊂ Mi, |Mi| = 4 = µ(H) and H(2)(i) = Mi(i). Suppose

Mi 6= [4]. Let x := min{l : l ∈ [4]\Mi} and y := max{m : m ∈ Mi}. So x < y. Since

i < j ∈Mi, i 6= y. So {i, x} ∈ H(2)(i) because δx,y({i, y}) = {i, x}, {i, y} ⊂Mi andH is

compressed and hereditary. But {i, x} /∈Mi(i), which contradicts H(2)(i) = Mi(i). So

Mi = [4]. Thus, since 2 = r < n/2, we have 5 ≤ n /∈Mi. Given thatH(n) 6= ∅, we have

µ(H(n)) ≥ µ(H) by Lemma 4.4.1(i). So µ(H(n)) ≥ 4. Thus, taking Mn to be de�ned

similarly toMi, we have |Mn| ≥ 4. Since H is compressed,M∗
n := [|Mn|−1]∪{n} ∈ H.

We have i ≤ 3 as i < j ∈Mi = [4]. So {i, n} ⊂M∗
n, and hence {i, n} ∈ H(2)(i)\Mi(i),

another contradiction. So |H(2)(i)]j[| ≥ 3 indeed.

Therefore |H(2)(i)]j[]a1[| ≥ 2. Let H1 := {i, h1} and H2 := {i, h2} be two distinct

sets in H(2)(i)]j[]a1[. We have H1, H2 ∈ ∆i,j(A) ∩ ∆i,j(B) since ∆i,j(A) = ∆i,j(B) =

H(2)(i). So H ′
1 := δj,i(H1) = {j, h1} ∈ B since H1 ∩ A1 = ∅ and A (3 A1) and B are

cross-intersecting. Similarly, H ′
2 := δj,i(H2) = {j, h2} ∈ A since H2 ∩ H ′

1 = ∅. Thus,

since A′
1 ∩H ′

2 = ∅, we obtain A′
1 /∈ B as desired. 2

Proof of Theorem 4.1.3. Consider �rst r = 1. Let Z := {z ∈ [n] : {z} ∈ A};

so |Z| = |A|. Clearly, B ⊆ H(s)[Z]. By Corollary 4.4.4(i), |B| ≤ |H(s)[[|Z|]]|. Thus, if

|Z| = 1 then |A| + |B| ≤ 1 +H(s)(1) = |A0| + |B0| and the result is straightforward.
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Suppose instead |Z| > 1. We are given that s ≤ µ(H) − 1. By (4.2),
(
[µ(H)]
s

)
⊆ H.

Since ∅ 6= B ⊆ H(s)[Z], |Z| ≤ s. Therefore

|A0|+ |B0| = 1 + |H(s)(1)|

≥ 1 + |H(s)([|Z|])|

+ |{A ∈
(

[µ(H]

s

)
: 1 ∈ A, |A ∩ Z| = |Z| − 1} ∪ H(s)(1)(n)|

≥ 1 + |H(s)([|Z|])|+
(
|Z| − 1

|Z| − 2

)(
µ(H)− |Z|
s− (|Z| − 1)

)
+ x

≥ |Z|+ |H(s)([|Z|])|+ x ≥ |A|+ |B|+ x ≥ |A|+ |B|, (4.3)

where

x :=

 |H(s)(1)(n)| if µ(H) < n;

0 if µ(H) = n.

Suppose equality holds throughout (4.3). Then s = µ(H)− 1 and x = 0. We are given

that H(n) 6= ∅. By Lemma 4.4.1(i), µ(H(n)) ≥ µ(H). Thus, since H is hereditary

and s < µ(H), H(s)(n) 6= ∅. Let A ∈ H(s)(n). Since s ≥ |Z| > 1, A\{n} 6= ∅. Let

a ∈ A\{n} and A′ := δ1,a(A). So A′ ∈ H(s)(1)(n) as H is compressed. Since x = 0, it

follows by de�nition of x that µ(H) = n. Thus, since s = µ(H)− 1, we have s = n− 1,

which settles the case r = 1.

Next, suppose s = n − r. So µ(H) = n, and hence [n] ∈ H. So H(p) =
(
[n]
p

)
,

p = 1, ..., n, as H is hereditary. The result now follows easily from the fact that for

every A ∈
(
[n]
r

)
there is only one set B ∈

(
[n]
s

)
such that A ∩B = ∅.

We now need to consider r ≥ 2 and s ≤ n′ − r, n′ := n − 1, and we proceed by

induction on n.

In view of Lemma 4.5.1 (parts (i), (iii), (iv)) and the assumption that H is com-

pressed, if ∆m,n(A) 6= A or ∆m,n(B) 6= B for some m ∈ [n − 1] then we can replace

A and B by A′ := ∆m,n(A) and B′ := ∆m,n(B) respectively, and repeat the proce-

dure until we obtain families A∗ ⊂ H(r) and B∗ ⊂ H(s) such that ∆m,n(A∗) = A∗

and ∆m,n(B∗) = B∗ for all m ∈ [n − 1] (it is well-known and easy to see that such a

50



procedure indeed takes a �nite number of steps). We can therefore assume that

∆m,n(A) = A and ∆m,n(B) = B for all m ∈ [n− 1]. (4.4)

Thus, by Lemma 4.5.1(ii),

(A ∩B)\{n} 6= ∅ for any A ∈ A and B ∈ B. (4.5)

Note that A]n[ 6= ∅ and B]n[ 6= ∅ by (4.4). Since H is hereditary, if [n] ∈ H then

µ(H]n[) = n− 1. Thus, if [n] ∈ H then µ(H]n[)− r = n′ − r ≥ s, and if [n] /∈ H then,

since s ≤ µ(H)− r, it follows by Lemma 4.4.1(iii) that s ≤ µ(H]n[)− r. Clearly, H]n[

is hereditary and compressed. Therefore, by the inductive hypothesis,

|A]n[|+ |B]n[| ≤ |A0|+ |B0]n[|. (4.6)

Let J := H〈n〉. Clearly, J is hereditary and compressed, and µ(J ) ≥ µ(H)− 1 by

Lemma 4.4.1(i). Setting r′ := r−1 and s′ := s−1, we have A〈n〉 ⊂ J (r′), B〈n〉 ⊂ J (s′),

and

r′ ≤ s′ ≤ (µ(H)− 1)− r ≤ µ(J )− r < µ(J )− r′. (4.7)

By (4.5), A〈n〉 and B〈n〉 are cross-intersecting.

Suppose A〈n〉 6= ∅, B〈n〉 6= ∅. By the inductive hypothesis, |A〈n〉| + |B〈n〉| ≤

|{[r′]}|+ |J (s′)([r′])| with equality only if |A〈n〉| = 1. Since 2[µ(J )] ⊆ J (by (4.2)) and

B0〈n〉 = J (s′)([r]), we have

|B0〈n〉| − |J (s′)([r′])| = |J (s′)]{1, ..., r′}[(r)| ≥ |{B ∈
(

[µ(J )]\[r′]
s′

)
: r ∈ B}|

=

(
µ(J )− r′ − 1

s′ − 1

)
,

and hence, by (4.7), |B0〈n〉| ≥ |J (s′)([r′])| + 1 ≥ |A〈n〉| + |B〈n〉| with equality only if

s′ = 1 (thus r′ = 1) and A〈n〉 = B〈n〉 = {{a}} for some a ∈ [n′]. By (4.5) and (4.6),
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it follows that |A|+ |B| ≤ |A0|+ |B0| with equality only if A = B = H(2)(a).

Suppose A〈n〉 = ∅. Let A ∈ A]n[. By (4.5), |B〈n〉| ≤ |J (s′)(A)| with equality only

if A]n[ = {A}. Since J is compressed, we clearly have U(J ) = [l] for some l ∈ [n′],

and hence |J (s′)(A)| ≤ |J (s′)([r])| by Corollary 4.4.4(ii). Since B0〈n〉 = J (s′)([r]), it

follows by (4.5) and (4.6) that |A| + |B| ≤ |A0| + |B0| with equality only if A = {A}

and B = H(r)(A).

We �nally consider B〈n〉 = ∅. Suppose r′ = s′, i.e. r = s. Then, by an argument

similar to the one for the previous case A〈n〉 = ∅, |A|+ |B| ≤ |A0|+ |B0| with equality

only if |B| = 1. Suppose equality holds. Since for r = s we require |A| ≤ |B|, then

|A| = |B| = 1. So |A0|+|B0| = 2, but this is not true for r > 1. So |A|+|B| < |A0|+|B0|.

Now suppose r′ < s′. By Lemma 4.4.2, J ]1[ and J 〈1〉 are hereditary and quasi-

compressed. By (i) and (ii) of Lemma 4.4.1, µ(J ]1[) ≥ µ(J ) − 1 and µ(J 〈1〉) ≥

µ(J ) − 1. Thus, by (4.7), r′ ≤ s′ ≤ µ(J ) − r′ − 1 ≤ µ(J ]1[) − r′. By the inductive

hypothesis,

|J ]1[(r
′)([2, s])|+ |{[2, s]}| ≤ |J ]1[(s

′)([2, r])|+ |{[2, r]}|.

Thus, since J1 := J (r′)([s])]1[ = J ]1[(r
′)([2, s]) and B0〈n〉]1[ = J ]1[(s

′)([2, r]), |J1| ≤

|B0〈n〉]1[|. Similarly to (4.7), r′′ := r′ − 1 < s′′ := s′ − 1 < µ(J 〈1〉) − r′′. By

Corollary 4.3.2, |J 〈1〉(r′′)| < |J 〈1〉(s′′)|. Thus, since J2 := J (r′)([s])〈1〉 = J 〈1〉(r′′) and

B0〈n〉〈1〉 = J 〈1〉(s′′), |J2| < |B0〈n〉〈1〉|. We therefore have

|J (r′)([s])| = |J1|+ |J2| < |B0〈n〉]1[|+ |B0〈n〉〈1〉| = |B0〈n〉|. (4.8)

Now let B ∈ B]n[. By (4.5), |A〈n〉| ≤ |J (r′)(B)|. Since U(J ) = [l] for some l ∈ [n′] (see

above), |J (r′)(B)| ≤ |J (r′)([s])| by Corollary 4.4.4(ii). Thus, by (4.8), |A〈n〉| < |B0〈n〉|.

Together with (4.6) and B〈n〉 = ∅, this gives us |A|+ |B| < |A0|+ |B0|. 2
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4.6 Consequences of Theorem 4.1.3 with r = s

The scope of the main results in this section (i.e. Propositions 4.6.2, 4.6.5 and 4.6.6) is

to ensure that in the proof of Theorem 4.1.4 we can work with a non-centred intersecting

family A that is compressed. This will become clear in the proof itself.

Lemma 4.6.1 Let H ⊆ 2[n] be hereditary and compressed, H(n) 6= ∅, µ(H) > 2. Let

z1 < z2 < ... < zn−2 such that Z := {z1, ..., zn−2} = [n]\{p, q}. Let 1 ≤ p < q ≤ n and

Z := H〈p〉]q[.

(i) If p > µ(H)− 1 then Z(zµ(H)−1) 6= ∅.

(ii) If p ≤ µ(H)− 1 then Z(zn−2) 6= ∅.

Proof. By Lemma 4.4.2, H〈n〉 is hereditary and compressed. Thus, by (4.2) and

Lemma 4.4.1(i), [µ(H)− 1] ∈ H〈n〉. So M := [µ(H)− 1] ∪ {n} ∈ H(n).

Suppose p > µ(H)− 1. Then zµ(H)−1 = µ(H)− 1. Also, since p < q < n and H is

compressed, δp,n(M) ∈ H(p)]q[(µ(H)− 1). Hence (i).

Now consider (ii). If [n] ∈ H then H = 2[n] (as H is hereditary), and hence

Z ∈ Z(zn−2). Suppose [n] /∈ H instead. So M 6= [n], and hence n − 1 /∈ M and

µ(H) − 1 < n − 1. Also, p ∈ M as p ≤ µ(H) − 1. Suppose q = n. Since p < n − 1,

we then have zn−2 = n− 1, and hence δn−1,n(M) = δzn−2,q(M) ∈ H(p)]q[(zn−2) as H is

compressed and {n − 1, n} ∩M = {n}. Now suppose q < n. So zn−2 = n, and hence

zn−2 ∈ M ′ := M\{q}. Since H is hereditary, M ′ ∈ H. So M ′ ∈ H(p)]q[(zn−2). Hence

(ii). 2

Proposition 4.6.2 Let H ⊆ 2[n] be hereditary and compressed, H(n) 6= ∅. Suppose

1 ≤ p < q ≤ n, 2 ≤ r ≤ µ(H)/2, r < n/2. Let A be a non-centred intersecting

sub-family of H(r) such that ∆p,q(A) is centred. Then |A| ≤ |H(r)(p)(I ∪ {q})|, where

I is an initial (r − 1)-segment of [n]\{p, q}.

Proof. We are given that ∆p,q(A) ⊆ H(r)(a) for some a ∈ [n]. If a 6= p then A ⊆

H(r)(a), contradicting A non-centred. So

∆p,q(A) ⊆ H(r)(p), (4.9)
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and hence A = A({p, q}). So

|A| = |A(p)(q)|+ |A〈p〉]q[|+ |A]p[〈q〉|. (4.10)

A〈p〉]q[ and A]p[〈q〉 are cross-intersecting. A〈p〉]q[ and A]p[〈q〉 are also non-empty

because otherwise A ⊆ H(r)(p) or A ⊆ H(r)(q) (contradicting A non-centred). Since

H is compressed and p < q, H]p[〈q〉 ⊆ H〈p〉]q[ =: Z. So A〈p〉]q[,A]p[〈q〉 ⊂ Z(r′),

r′ := r−1. Z is hereditary and quasi-compressed by Lemma 4.4.2, and µ(Z) ≥ µ(H)−2

by (i) and (ii) of Lemma 4.4.1. Thus, since r ≤ µ(H)/2, we have r′ ≤ (µ(H)− 2)/2 ≤

µ(Z)/2. Let Z := {z1, ..., zn−2} as in Lemma 4.6.1. So Z ⊆ 2Z . Let n′′ := n − 2

and µ′ := µ(H) − 1. By Lemma 4.6.1, if p > µ′ then Z(zn′′) 6= ∅, and if p ≤ µ′ then

Z(zµ′) 6= ∅. Note that r′ < (n′′)/2 (as r < n/2) and r′ < µ′/2 (as r ≤ µ(H)/2). Thus,

by Theorem 4.1.3,

|A〈p〉]q[|+ |A]p[〈q〉| ≤ |Z(r′)(I)|+ 1 (4.11)

with equality only if

(a) A〈p〉]q[ = {A′} and A′]p[〈q〉 = Z(r′)(A′) for some A′ ∈ Z(r′), or

(b) A〈p〉]q[ = Z(r′)(B′) and A]p[〈q〉 = {B′} for some B′ ∈ Z(r′), or

(c) A〈p〉]q[ = A]p[〈q〉 = Z(r′)(z) for some z ∈ Z if r′ = 2.

Suppose (a) holds. Then A′ ∈ A〈p〉]q[∩A]p[〈q〉, and hence A′ ∪ {p}, A′ ∪ {q} ∈ A.

But this gives us A′ ∪ {q} ∈ ∆p,q(A)\H(r)(p), which contradicts (4.9). So (a) does not

hold. (b) and (c) do not hold for a similar reason. We therefore have strict inequality

in (4.11). Thus, by (4.10),

|A| ≤ |H(r)(p)(q)|+ |Z(r′)(I)| = |H(r)(p)(q)|+ |H(r)(p)]q[(I)|

= |H(r)(p)(I ∪ {q})|. (4.12)

2

Lemma 4.6.3 Let F ⊆ 2[n] be compressed. If A ⊆ F , 1 ≤ p < q ≤ n, and

∆q,p(∆p,q(A)) ∩ F ⊆ ∆p,q(A) then ∆p,q(A) = A.
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Proof. Suppose instead A\∆p,q(A) 6= ∅. Let A ∈ A\∆p,q(A). So δp,q(A) ∈ ∆p,q(A)\A

and A = δq,p(δp,q(A)) ∈ ∆q,p(∆p,q(A))\∆p,q(A). Also, A ∈ F as A ⊆ F . So A ∈

(∆q,p(∆p,q(A)) ∩ F)\∆p,q(A), a contradiction. 2

Lemma 4.6.4 Let F ⊆ 2[n] be compressed. Suppose B ∈ F (r) 6= ∅, 2 ≤ r < n, and

a ∈ [n]\B. Then |F (r)(a)(B)| ≤ |F (r)(1)([2, r + 1])|.

Proof. Let B := F (r)(a)(B). Since F is compressed, we clearly have ∆1,a(B) ⊆

F (r)(1)(C) where

C =

 (B\{1}) ∪ {a} if a 6= 1 ∈ B;

B if a = 1 or 1 /∈ B,

It is easy to see that having F compressed and F (r) 6= ∅ for 2 ≤ r < n implies that

F (r)〈1〉 is quasi-compressed and U(F (r)〈1〉) = [2,m], m = min{k ∈ [2, n] : F (r) ⊆ 2[k]]}.

So |F (r)〈1〉(C)| ≤ |F (r)〈1〉([2, r+1])| by Corollary 4.4.4(ii). Since 1 /∈ C, |F (r)〈1〉(C)| =

|F (r)(1)(C)|. So we have |B| = |∆1,a(B)| ≤ |F (r)(1)(C)| ≤ |F (r)(1)([2, r + 1])|. 2

Proposition 4.6.5 Let H, n, p, q, r be as in Proposition 4.6.2. Let A be an intersecting

sub-family of H(r) such that

(i) |A| = |H(r)(1)([2, r + 1]) ∪ {[2, r + 1]}| and

(ii) A 6= ∆p,q(A) = H(r)(a)(B) ∪ {B} for some B ∈ H(r) and a ∈ [n]\B.

Then A = H(r)(c)(D) ∪ {D} for some D ∈ H(r) and c ∈ [n]\D.

Proof. Let E := {a} ∪ B. Let B := H(r)(a)(B) ∪ {B}. Let A1 ∈ B\A. Since

B = ∆p,q(A), we have

p ∈ A1, q /∈ A1, (4.13)

A1 6= A2 := δq,p(A1) ∈ A\B. (4.14)

Since B ∈ ∆p,q(A),

δp,q(B) ∈ ∆p,q(A). (4.15)
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We now start treating all the possible cases of p and q.

Suppose p /∈ E. If q ∈ B then δp,q(B) /∈ B, but this contradicts (4.15) since

B = ∆p,q(A). So q /∈ B. Suppose q = a; then, by (4.13), we get A1 /∈ B, a contradiction.

So q /∈ E, and hence ∆q,p(B) ∩ H ⊆ B. Since B = ∆p,q(A), it follows by Lemma 4.6.3

that B = A, a contradiction. So p ∈ E.

Suppose p ∈ B. Then ∆b,p(B) ∩ H ⊆ B for any b ∈ B\{p}, and hence, by

Lemma 4.6.3, q /∈ B since B = ∆p,q(A) 6= A. Suppose q = a. Then, by (4.13)

and A1 ∈ B, A1 = B. Hence A2 ∈ H(r)(a)(B) ⊂ B, contradicting (4.14). So

q /∈ E. Since p ∈ B and ∆p,q(A) = B and A ⊆ H(r) is intersecting, it follows

that B∗ ∈ A ⊆ B∗ := H(r)(a)(B∗) ∪ {B∗} for some B∗ ∈ {B, δq,p(B)}. By (i) and

Lemma 4.6.4, we must have A = B∗ (and hence B∗ = δq,p(B) 6= B since A 6= B), and

this proves the result for this case.

Finally, suppose p = a. So q ∈ B or q /∈ E. Consider �rst q ∈ B. So δp,q(B) 6= B.

Thus, since B, δp,q(B) ∈ ∆p,q(A) = B, we have B ∈ A(q)]p[, δp,q(B) ∈ A(p)]q[, and

A = A({p, q}); moreover,

A〈p〉]q[∩A〈q〉]p[ = {L}, L = B\{q} = δp,q(B)\{p} (4.16)

(which again follows from ∆p,q(A) = B, p = a /∈ B, and q ∈ B). As in the proof

of Proposition 4.6.2, (4.11) holds, and equality in (4.11) holds only if one of (a), (b)

and (c) holds. Suppose we have strict inequality in (4.11). Then (4.12) also holds,

and hence, together with Lemma 4.6.4, this gives us |A| ≤ |H(r)(1)([2, r + 1])|, a

contradiction to (i). So equality in (4.11) holds, and hence one of (a), (b) and (c) holds.

However, by (4.16), (c) cannot be the case. Suppose (b) holds; so A]p[〈q〉 = {B′}. By

(4.16), we have B′ = L, and hence A]p[(q) = {B}. Since A = A({p, q}) and A is

intersecting, it follows that A ⊆ H(r)(p)(B) ∪ {B}. Since p = a, A ⊆ B. Since

B = ∆p,q(A), we get the contradiction that A = ∆p,q(A). So (a) holds, and hence

A ⊆ H(r)(q)(L∪{p})∪{L∪{p}} (by an argument similar to the one for the supposition

that (b) holds); by (i) and Lemma 4.6.4, we have equality. So the result for q ∈ B is

veri�ed.
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Suppose q /∈ E instead. Since ∆p,q(A) = B, in this case we haveA = A({p, q})∪{B}

and

A〈p〉]q[∩A〈q〉]p[ = ∅. (4.17)

Suppose A〈p〉]q[ and A〈q〉]p[ are both non-empty. Again, as in the proof of Proposi-

tion 4.6.2, (4.11) follows; however, since (4.17) implies that none of (a), (b) and (c)

hold, strict inequality in (4.11) holds here too, i.e. |A〈p〉]q[|+|A]p[〈q〉| ≤ |H(r)〈p〉]q[(I)|,

where I is also as in Proposition 4.6.2. Since {p, q} ∩ B = ∅ and A is intersect-

ing, |A〈p〉〈q〉| ≤ |H(r)〈p〉〈q〉(B)|. Let J be an initial r-segment for [n]\{p, q}; so

J = I ∪ {j} for some j ∈ [n]\I. Note that having H ⊆ 2[n] compressed implies

that H(r)〈p〉〈q〉 is quasi-compressed and that if H(r)〈p〉〈q〉 6= ∅ then U(H(r)〈p〉〈q〉) is an

initial segment of [n]\{p, q}. By Corollary 4.4.4(ii), |H(r)〈p〉〈q〉(B)| ≤ |H(r)〈p〉〈q〉(J)|.

So |A〈p〉〈q〉| ≤ |H(r)〈p〉〈q〉(J)|. Therefore,

|A| = |A({p, q}) ∪ {B}| = |A〈p〉〈q〉|+ (|A〈p〉]q[|+ |A]p[〈q〉|) + 1

≤ |H(r)〈p〉〈q〉(J)|+ |H(r)〈p〉]q[(I)|+ 1

= |H(r)(p)(J)| − |H(r)(p)(j)]I ∪ {q}[|) + 1. (4.18)

Since A1 ∈ H(p) and r ≤ µ(H)/2, we have µ(H〈p〉) ≥ 2r − 1 by Lemma 4.4.1(i). Let

M be the initial µ(H〈p〉)-segment of [n]\{p}. Since H is compressed, M ∈ H〈p〉. So

2M ⊆ H〈p〉 as H is hereditary. Since |M\{q}| ≥ 2r − 2 ≥ r = |J |, J ⊂ M . So j ∈ M .

Since |I ∪ {q}| = r and j /∈ I ∪ {q}, there exists S ∈
(
M
r−1

)
such that S ∩ (I ∪ {q}) = ∅

and j ∈ S. So S ∪ {p} ∈ H(r)(p)(j)]I ∪ {q}[. Thus, by (4.18) and Lemma 4.6.4,

|A| ≤ |H(r)(p)(J)| ≤ |H(r)(1)([2, r+ 1])|, a contradiction to (ii). Therefore A〈p〉]q[ = ∅

or A〈q〉]p[ = ∅. If A〈q〉]p[ = ∅ then ∆p,q(A) = A, a contradiction. So A〈p〉]q[ = ∅, and

hence A ⊆ C := H(r)(q)(B)∪ {B} (as A = A({p, q})∪ {B} and A is intersecting). By

Lemma 4.6.4, |C| ≤ |H(r)(1)([2, r + 1]) ∪ {[2, r + 1]}|. So, by (i), A = C. 2

Proposition 4.6.6 Let H, n, p, q, r be as in Proposition 4.6.2, except that r = 3. Let

A be an intersecting sub-family of H(3) such that
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(i) |A| = |T |, T := {A ∈ H(3) : |A ∩ [3]| ≥ 2}, and

(ii) A 6= ∆p,q(A) = {A ∈ H(3) : |A ∩ C| ≥ 2} for some C ∈ H(3).

Then A = {A ∈ H(3) : |A ∩B| ≥ 2} for some B ∈ H(3).

Proof. Let C := {A ∈ H(3) : |A∩C| ≥ 2}. Let A∗ ∈ C\A. Since C = ∆p,q(A), we have

p ∈ A∗, q /∈ A∗ and A∗ 6= A′ := δq,p(A
∗) ∈ A\C. (4.19)

Suppose q ∈ C. Then, by (4.19), q ∈ A′∩C. Since C ∈ C, A′ 6= C. So |A′∩C| ≤ 2.

Therefore, if p /∈ C then

|A∗ ∩ C| = |δp,q(A′) ∩ C| = |(A′\{q}) ∩ C| = |(A′ ∩ C)\{q}| = |A′ ∩ C| − 1 ≤ 1,

contradicting A∗ ∈ C. So p ∈ C, and hence |A′ ∩ C| = |A∗ ∩ C|. Since A∗ ∈ C,

|A∗ ∩ C| ≥ 2. So |A′ ∩ C| ≥ 2, and hence A′ ∈ C, contradicting (4.19). So q /∈ C.

Suppose p /∈ C. Then ∆q,p(C)∩H ⊆ C, and hence, since C = ∆p,q(A), Lemma 4.6.3

gives us ∆p,q(A) = A, a contradiction. So p ∈ C.

Let C ′ := C\{p} ⊂ [n]\{p, q}, and let I be an initial 2-segment of [n]\{p, q}.

Since ∆p,q(A) = C, A]{p, q}[⊆ H(3)]{p, q}[[C ′]. Note that having H ⊆ 2[n] com-

pressed implies that H(3)]{p, q}[ is quasi-compressed and that if H(3)]{p, q}[ 6= ∅ then

U(H(3)]{p, q}[) is an initial segment of [n]\{p, q}. So |H(3)]{p, q}[[C ′]| ≤ |H(3)]{p, q}[[I]|

by Lemma 4.4.4(i). Therefore

|A]{p, q}[| ≤ |H(3)]{p, q}[[I]|. (4.20)

Since ∆p,q(A) = C and {p, q} ∩C = {p}, A(p)(q) ⊆ H(3)(p)(q)(C ′). By the same argu-

ment for obtaining |H(r)〈p〉〈q〉(B)| ≤ |H(r)〈p〉〈q〉(J)| in the proof of Proposition 4.6.5,

|H(3)〈p〉〈q〉(C ′)| ≤ |H(3)〈p〉〈q〉(I)|. Therefore

|A(p)(q)| ≤ |H(3)(p)(q)(I)|. (4.21)
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By (4.19), A]p[〈q〉 6= ∅. We now show that we also have A〈p〉]q[ 6= ∅ by establishing

that

C ′ ∈ A〈p〉]q[. (4.22)

Suppose δq,p(C) /∈ H. Then δq,p(C) /∈ A (as A ⊂ H), and hence C ∈ A as C ∈ ∆p,q(A)

(by (ii)). Since C ∩ {p, q} = {p}, (4.22) follows. Suppose δq,p(C) ∈ H instead. Then

δq,p(C) ∈ C as |δp,q(C) ∩ C| = 2. So δq,p(C) ∈ ∆p,q(A) (as C = ∆p,q(A)). Also,

C ∈ ∆p,q(A) by (ii). Therefore C, δq,p(C) ∈ A, and (4.22) follows again.

Let Z := H〈p〉]q[. As in the proof of Proposition 4.6.2, we have

|A〈p〉]q[|+ |A]p[〈q〉| ≤ |Z(2)(I) ∪ {I}| (4.23)

with equality only if

(d) A〈p〉]q[ = {D} and A]p[〈q〉 = Z(2)(D) for some D ∈ Z(2), or

(e) A〈p〉]q[ = Z(2)(E) and A]p[〈q〉 = {E} for some E ∈ Z(2), or

(f) A〈p〉]q[ = A]p[〈q〉 = Z(2)(z) for some z ∈ [n]\{p, q}.

Let I := {A ∈ H(3) : |A ∩ {I ∪ {p}| ≥ 2}. Since |A| = |A]{p, q}[| + |A(p)(q)| +

|A〈p〉]q[|+ |A]p[〈q〉|, we have

|A| ≤ |H(3)]{p, q}[[I]|+ |H(3)(p)(q)(I)|+ |H(3)(p)]q[(I) ∪ {I ∪ {p}}| = |I| (4.24)

by (4.20), (4.21) and (4.23).

Given that µ(H) ≥ 2r ≥ 4 and H(n) 6= ∅, we have µ(H〈n〉) ≥ 3 by Lemma 4.4.1(i).

Since H is hereditary and compressed, H〈n〉 is hereditary and compressed, and hence

2[µ(H〈n〉)] ⊆ H〈n〉 (see (4.2)). So T := [2, 3]∪{n} ∈ H(3)(n). Clearly, for any F ∈ T ′ :=

{A ∈
(
[n]
3

)
: |A ∩ [3]| ≥ 2} there exists a composition of compressions δi,j, i < j, that

yields F when applied on T . Since H is compressed and T ∈ T , we therefore have

T ′ ⊆ T . Trivially, T ⊆ T ′. Therefore

T = {A ∈
(

[n]

3

)
: |A ∩ [3]| ≥ 2}. (4.25)
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This gives us |I| ≤ |T |. Thus, by (i), we have equality in (4.24), and hence we also

have equalities in (4.20), (4.21) and (4.23), the �rst two yielding

A]{p, q}[ = H(3)]{p, q}[[C ′] and A(p)(q) = H(3)(p)(q)(C ′) (4.26)

respectively, and the third requiring one of (d), (e) and (f) to hold. By (4.19),

A′′ := A′\{q} ∈ A]p[〈q〉. (4.27)

Since A′′ ∪ {p} = A∗ /∈ A, A′′ /∈ A〈p〉]q[. So A〈p〉]q[ 6= A]p[〈q〉, implying (f) does

not hold. Suppose (e) holds. So A]p[〈q〉 = {E} ⊂ A〈p〉]q[. By (4.27), E = A′′. So

A′′ ∪ {p} ∈ A(p)]q[, which is a contradiction since A′′ ∪ {p} = A∗ /∈ A. So (d) holds.

By (4.22), D = C ′. So we have A〈p〉]q[ = {C ′}, A]p[〈q〉 = Z(2)(C ′). It follows by

(4.26) that A = {A ∈ H(3) : |A ∩ (C ′ ∪ {q})| ≥ 2}. By (i) and (4.25), we must have

A = {A ∈
(
[n]
3

)
: |A ∩ (C ′ ∪ {q})| ≥ 2}, and hence C ′ ∪ {q} ∈ H(3). 2

4.7 Proof of Theorem 4.1.4

We �nally come to the proof of the main result in this chapter, i.e. Theorem 4.1.4.

We start by stating another well-known fact that emerged in [25], the proof of which

is similar to that of Lemma 4.5.1(ii).

Lemma 4.7.1 (Erd®s, Ko, Rado [25]) If A ⊆
(
[n]
r

)
is intersecting, r ≤ n/2, and

∆a,n(A) = A for all a ∈ [n− 1] then (A ∩B)\{n} 6= ∅ for any A,B ∈ A.

Proposition 4.7.2 Let H ⊆ 2[n] be hereditary and compressed, H(n) 6= ∅. Suppose

2 ≤ r ≤ µ(H)/2. Let A ⊆ H(r) be compressed and intersecting, and let k ≥ r + 1,

K := [2, k], 1K := H(r)(1)(K) ∪ {K} and 2K := H(r)(1).

(i) If k = r + 1 then |A(K)| ≤ |1K(K)| (= |1K|).

(ii) If k ≥ r + 2 then |A(K)| ≤ |2K(K)|.

If moreover r < n/2 and A is such that equality in (i) or (ii) holds then:

(iii) if k = r + 1 then either A = 1K or A = {A ∈ H(3) : |A ∩ [3]| ≥ 2};

(iv) if k ≥ r + 2 then either 2K(K) ⊆ A ⊆ 2K or k = 3 and A =
(
[3]
2

)
.
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Proof. Suppose r = n/2. Then µ(H) = 2r, and hence [2r] ∈ H. So H(r) =
(
[2r]
r

)
(as

H is hereditary). For every A ∈
(
[2r]
r

)
, A′ := [2r]\A is the unique set in

(
[2r]
r

)
such that

A∩A′ = ∅. So |A| ≤ 1
2

(
2r
r

)
= |1K(K)|. Since |1K(K)| = |2K(K)| for k ≥ r+ 2, (i) and

(ii) follow.

Given that A is a compressed intersecting family, it is trivial that if r = 2 then A =(
[3]
2

)
or A ⊆ H(2)(1), depending on whether A is non-centred or centred respectively.

So the result for r = 2 is easy to check.

We now consider 3 ≤ r < n/2, and we proceed by induction on n. Let n′ := n− 1.

Clearly, H]n[ and H〈n〉 are compressed hereditary sub-families of 2[n′]. We have A]n[⊂

H]n[(r) and A〈n〉 ⊂ H〈n〉(r′), r′ = r − 1. Since H(n) 6= ∅ and r ≤ µ(H)/2, it follows

by Lemma 4.4.1(i) that r′ < µ(H〈n〉)/2. If [n] ∈ H then n = µ(H) = µ(H]n[) + 1, and

hence r ≤ µ(H]n[)/2 as r < n/2. If instead [n] /∈ H then r ≤ µ(H]n[)/2 follows from

Lemma 4.4.1(iii) and r ≤ µ(H)/2. Thus, by the inductive hypothesis,

|A]n[(K)| ≤ |K]n[(K)| and |A〈n〉(K)| ≤ |2K〈n〉(K)|,

where

K =

 1K if k = r + 1;

2K if k ≥ r + 2.

It is clear that we therefore have

|A(K)| = |A]n[(K)|+ |A〈n〉(K)| ≤ |K]n[(K)|+ |2K〈n〉(K)| = |K(K)|,

and hence (i) and (ii).

We now prove (iii) and (iv). So consider |A| = |K(K)|. Then |A]n[(K)| = |K]n[(K)|

and |A〈n〉(K)| = |2K〈n〉(K)|. It follows by the inductive hypothesis that

(g) 2K〈n〉(K) ⊆ A〈n〉 or

(h) k = 3 and A〈n〉 =
(
[3]
2

)
.

Suppose (g) holds. Since r′ < µ(H〈n〉)/2, µ(H〈n〉) ≥ 2r − 1. Thus, by (4.2), we

have 2[2r−1] ⊂ H〈n〉, which gives us
(
[2r−1]
r′

)
(1) ⊆ 2K〈n〉. Since A〈n〉 ⊇ 2K〈n〉(K) (by
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(g)) and 2r − 1 = r + r′, it follows that

A〈n〉 ⊇


(
[2r−1]
r′

)
(1)\{[2r − 1]\K} if k = r + 1;(

[2r−1]
r′

)
(1) if k ≥ r + 2,

Therefore, if H ∈ H(r)\(2K ∪ {K}) then there exists L ∈
(
[2r−1]
r′

)
(1) ∩ A〈n〉 such that

L ∩H = ∅, and hence H /∈ A by Lemma 4.7.1. So

A ⊆

 2K(K) ∪ {K} = 1K if k = r + 1 and K ∈ A;

2K if k ≥ r + 2 or K /∈ A,

i.e. A ⊆ K. Therefore, since |A(K)| = |K(K)|, if k = r + 1 then A = 1K, and if

k ≥ r + 2 then 2K(K) ⊆ A ⊆ 2K.

Now suppose (h) holds. So r = k = 3. If H ∈ H and |H ∩ [3]| ≤ 1 then, since

A〈n〉 =
(
[3]
2

)
, there exists L ∈ A〈n〉 such that H ∩ L = ∅, and hence H /∈ A by

Lemma 4.7.1. So A ⊆ T := {A ∈ H(3) : |A∩ [3]| ≥ 2}. Note that T is compressed since

H is compressed. Since |T | = |T (K)| ≤ |K(K)| = |A(K)| = |A| (where the inequality

is given by (i) and (ii)), we actually have A = T . 2

Proof of Theorem 4.1.4. By Corollary 4.3.5, we need only consider A ⊂ H(r).

The case r = n/2 follows by an argument similar to the one given in the proof of

Proposition 4.7.2 for the same case. So we assume r < n/2.

By (4.2) and the given condition that µ(H) ≥ 2r ≥ 4, we have [3], [2, r + 1] ∈

2[2r] ⊂ H. So [3] ∈ T := {A ∈ H(3) : |A ∩ [3]| ≥ 2} and N is a non-centred intersecting

sub-family of H(r).

We may assume that A is a non-centred intersecting sub-family of largest size. So

|A| ≥ |N |. (4.28)

If A is not compressed then, similarly to the proof of Theorem 4.1.3, we apply com-

pressions ∆p,q, p < q, until a compressed family A∗ is obtained. A∗ is intersecting by

Lemma 4.4.5, and A∗ ⊂ H(r) as H is compressed.
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Suppose A∗ is centred. By Proposition 4.6.2, |A∗| ≤ |H(r)(p∗)(I ∪ {q∗})| for some

p∗, q∗ ∈ [n], p∗ < q∗, where I is an initial (r − 1)-segment of [n]\{p∗, q∗}. Thus, by

Lemma 4.6.4, |A∗| ≤ |H(r)(1)([2, r + 1])| = |N | − 1, a contradiction to (4.28). So

A∗ is non-centred, and hence [2, r + 1] ∈ A∗ as A∗ is compressed. Thus, since A∗ is

intersecting, we have |A∗| = |A∗([2, r + 1])| and, by Proposition 4.7.2(i),

|A∗([2, r + 1])| ≤ |N ([2, r + 1])|. (4.29)

Since |A| = |A∗| and N ([2, r + 1]) = N , part (i) of our result follows. By (4.28) and

(4.29), |A∗([2, r + 1])| = |N ([2, r + 1])|. By Proposition 4.7.2(iii), A∗ = N or A∗ = T .

By Propositions 4.6.5 and 4.6.6, part (ii) of our result follows. 2
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Chapter 5

Intersecting systems of signed sets

5.1 The motivating conjecture

As was mentioned in Section 1.4, Theorem 1.4.3 with r > n/2 provides an example

of a family F such that SF ,k is EKR but F is not. This chapter is motivated by the

question "Do families F such that SF ,k is not EKR for some k ≥ 2 exist after all?".

We conjecture that the answer is "no", and, as is described below, we will present

some strong evidence for this conjecture. This conjecture has some resemblance with

the famous Chvátal Conjecture, i.e. Conjecture 1.3.1. Indeed, let F be a family,

and let A be an intersecting sub-family of SF ,k. In view of a result we present later,

stated as Corollary 5.3.2, we may assume that the any two sets in A intersect on

X := (
⋃
G∈F G)× [1]. Thus, by de�ning A′ := {A∩ (X× [1]) : A ∈ A}, we may further

assume that A is the family of all sets in SF ,k that contain a set that is a member of A′.

Note thatA′ is a sub-family of the hereditary family {H×[1] : H ⊆ G for some G ∈ F}.

So our conjecture can be vaguely described as a "weighted" version of the Chvátal

Conjecture, where, however, the distribution of the "weights" does not seem to exhibit

any characteristic by which we can reduce one conjecture to the other.

We are also concerned with strict and non-strict EKR cases. For this reason, it is

convenient to introduce the following notation, using some notation from Section 2.1,

before stating the conjecture fully and formally.
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For any u ∈ U(F), set

OF(u) := {u′ ∈ U(F) : F(u′) = F(u)}.

We call OF(u) the F-orbit of u. Thus, two elements u, u′ ∈ U(F) are in the same

F -orbit i� they belong to exactly the same members of F . Recall from Section 2.1

that L(F) is the set {u ∈ U(F) : F(u) is a largest star of F}.

Conjecture 5.1.1 Let F be any family of sets, and let k ≥ 2. Then

(i) SF ,k is EKR;

(ii) SF ,k is strictly EKR unless k = 2 and |OF(u)| ≥ 3 for some (u, 1) ∈ L(SF ,2).

As we show in Chapter 6, it is not very di�cult to prove that for an integer k0(F),

the above conjecture indeed holds if k ≥ k0(F). In Chapter 7, we go beyond this

by showing that for k su�ciently large, an even stronger statement for t-intersecting

families of signed sets is true. The main result here provides a strong generalisation

of Theorem 1.4.3 by establishing the truth of our conjecture for families F that are

compressed with respect to an element.

Theorem 5.1.2 Conjecture 5.1.1 is true if F ⊆ 2[n] is compressed with respect to 1.

We also con�rm Conjecture 5.1.1(ii) for families F as in Theorem 1.4.2.

Theorem 5.1.3 Conjecture 5.1.1 is true if F is r-uniform and EKR.

We now proceed to the proofs, employing the notation in Section 2.1 and the

notation θk(A) and θqk(A) introduced in Section 1.4 as we go along.

5.2 An auxiliary result for the special case k = 2

We shall generalise (1.1) in the following direction.

Theorem 5.2.1 Let I ⊆ N. For each i ∈ I, let Xi be a �nite set and let Ai ⊂ SXi,2.

Suppose
⋃
i∈I Ai is intersecting. Then Ai ∈ ex(SXi,2) holds for all i ∈ I i� X :=⋂

i∈I Xi 6= ∅ and, for some X ∈ ex(SX,2) and for all i ∈ I, Ai = {A ∈ SXi,2 : A ∩ (X ×

[2]) ∈ X}.
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Proof. The su�ciency condition is straightforward since then, for all i ∈ I, Ai satis�es

(1.1). Now assume that for all i ∈ I, Ai ∈ ex(SXi,2). We prove the necessary condition

by induction on m := min{|Xi| : i ∈ I}.

Suppose there exist i1, i2, l ∈ I such that Ai1 ∩ Ai2 ∩ (Xl × [2]) = ∅ for some

Ai1 ∈ Ai1 and Ai2 ∈ Ai2 . Let Bp := Aip ∩ (Xl× [2]), p = 1, 2. Let Y := Xl\(Xi1 ∪Xi2).

If Y 6= ∅ then choose C ∈ SY,2, otherwise take C := ∅. Let D := B1\(Xi2 × [2])

and E := B2 ∪ θ2(D) ∪ C ∈ SXl,2. So E ∩ Ai1 = ∅ and θ2(E) ∩ Ai2 = ∅. Therefore

E, θ2(E) /∈ Al, and hence, by (1.1), we have Al /∈ ex(SXl,2), a contradiction. Thus,

for any A,B ∈
⋃
i∈I Ai and l ∈ I, A ∩B ∩ (Xl × [2]) 6= ∅. (5.1)

Let X := {A ∩ (X × [2]) : A ∈
⋃
i∈I Ai} (X :=

⋂
i∈I Xi). Let j ∈ I such that

|Xj| = m.

Suppose X = Xj. So X ⊇ Aj and, by (5.1) (with l = j), X is intersecting. Since

Aj ∈ ex(SXj ,2), it follows that X = Aj, and hence result. It will be clear from the

following that we have also just covered the basis of induction m = 1.

Now supposeX 6= Xj. So there exists h ∈ I such thatXj\Xh 6= ∅. Let xj ∈ Xj\Xh.

Let X ′
j := Xj\{xj}, and for each i ∈ I\{j}, let X ′

i := Xi. So
⋂
i∈I X

′
i = X. If

X ′
j = ∅ then Xj ∩ Xh = ∅, and hence Aj = ∅ or Ah = ∅, a contradiction. Therefore

m′ := min{|X ′
i| : i ∈ I} = |X ′

j| = m− 1 ≥ 1. For each i ∈ I\{j}, we have A′
i := Ai ∈

ex(SX′
i,2

). Let A′
j := {A\{(xj, 1), (xj, 2)} : A ∈ Aj} ⊆ SX′

j ,2
. By (5.1), for any A,B ∈⋃

i∈I Ai, A∩B∩ (Xh× [2]) 6= ∅; hence
⋃
i∈I A′

i is intersecting. Suppose A′
j /∈ ex(SX′

j ,2
).

Then, by (1.1), A′
j, θ2(A

′
j) /∈ A′

j for some A′
j ∈ SX′

j ,2
. So Aj := A′

j ∪ {xj, 1} /∈ Aj

and θ2(Aj) /∈ Aj, which, by (1.1), contradicts Aj /∈ ex(SXj ,2). Hence A′
j ∈ ex(SX′

j ,2
).

Clearly, the result follows immediately after applying the inductive hypothesis for the

families A′
i, i ∈ I. 2

Corollary 5.2.2 If f ∈ U(F) and A ∈ ex(SF(f),2) then:

(i) A = {F ∈ F : F ∩ (OF(f)(f)× [2]) ∈ X} for some X ∈ ex(SOF(f)(f),2);

(ii) if |OF(f)(f)| ≤ 2 then A = SF ,2((f ′, b)) for some (f ′, b) ∈ OF(f)(f)× [2].
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Proof. Let B := SF ,2((f, 1)). Set n := |F(f)|, and let X1, ..., Xn be the sets in F(f).

For each i ∈ [n], let Ai := A ∩ SXi,2, Bi := B ∩ SXi,2. So
⋃n
i=1Ai and

⋃n
i=1 Bi are

partitions of A and B respectively. By (1.1), Bi ∈ ex(SXi,2), i = 1, ..., n, and hence

B ∈ ex(SF(f),2). Thus, if Ai /∈ ex(SXi,2) for some i ∈ [n] then |A| < |B|, but this

contradicts A ∈ ex(SF(f),2). So Ai ∈ ex(SXi,2), i = 1, ..., n. By Theorem 5.2.1, for

some X ∈ ex(SX,2) and for all i ∈ [n], Ai = {A ∈ SXi,2 : A ∩ (X × 2) ∈ X )}, where

X =
⋂n
i=1Xi 3 f . So (i) follows if X = OF(f)(f). Let x ∈ U(F(f)). If x /∈ X then

there exists j ∈ [n] such that x /∈ Xj, and hence x /∈ OF(f)(f); contrapositively, if

x ∈ OF(f)(f) then x ∈ X. So OF(f)(f) ⊆ X. If x ∈ X then F(f)(x) = F(f). So

X ⊆ OF(f)(f), and hence X = OF(f)(f) indeed.

Suppose |OF(f)(f)| ≤ 2. So 1 ≤ |OF(f)(f)| = |X| ≤ 2, and it is trivial that X can

only be a star in this case. Hence (ii). 2

The strict and non-strict EKR cases for k = 2 in each of Theorems 5.1.2 and 5.1.3

will be determined using Theorem 5.2.1, Corollary 5.2.2 and the following fact.

Proposition 5.2.3 If |OF(f)| ≥ 3 for some (f, 1) ∈ L(SF ,2) then SF ,2 is not strictly

EKR.

Proof. We have F(f1) = F(f2) = F(f3) = F(f) for some distinct f1, f2, f3 ∈ OF(f)

(possibly, f ∈ {f1, f2, f3}). It follows that for all F ∈ F(f), f1, f2, f3 ∈ F . De�ne Y1 :=

{(f1, 1), (f2, 1), (f3, 1)}, Y2 := {(f1, 1), (f2, 1), (f3, 2)}, Y3 := {(f1, 1), (f2, 2), (f3, 1)},

Y4 := {(f1, 2), (f2, 1), (f3, 1)}. Then
⋃
F∈F{Yi ∪ Z : i ∈ [4], Z ∈ SF\{f1,f2,f3},2} is a

non-trivial intersecting family that is as large as SF ,2((f, 1)), a largest star of SF ,2. 2

5.3 Two compression methods

The proof of Theorem 5.1.2 will be based on two di�erent compression methods.

The �rst compression operation was used in [22] for the proof of Theorem 1.4.3.

For (a, b) ∈ [n]× [2, k], instead of writing δ(a,1),(a,b) and ∆(a,1),(a,b) we will write δa,b and
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∆a,b respectively; so ∆a,b : 2
S

2[n],k → 2
S

2[n],k is de�ned by

∆a,b(A) := {δa,b(A) : A ∈ A} ∪ {A ∈ A : δa,b(A) ∈ A},

where δa,b : S2[n],k → S2[n],k is de�ned by

δa,b(A) :=

 A\{(a, b)} ∪ {(a, 1)} if (a, b) ∈ A;

A otherwise

Clearly, S2[n],k is ((a, 1), (a, b))-compressed. So Proposition 2.2.1(ii) tells us that if

A ⊂ S2[n],k is t-intersecting then ∆a,b(A) (as de�ned here) is t-intersecting. We now

prove a bit more than this, and we shall also use the following result in the next two

chapters.

Lemma 5.3.1 Let A ⊂ S2[n],k and V ⊆ [n]× [2, k] such that |(A ∩ B)\V | ≥ t for any

A,B ∈ A. Then |(C ∩D)\(V ∪ {(a, b)})| ≥ t for any C,D ∈ ∆a,b(A).

Proof. Let C,D ∈ ∆a,b(A). Let C ′ := (C\{(a, 1)}) ∪ {(a, b)}, D′ := (D\{(a, 1)}) ∪

{(a, b)}. Suppose |(C ∩ D)\V | < t. So C and D cannot both be in A. Suppose

C,D /∈ A; then C ′, D′ ∈ A and |(C ′ ∩ D′)\V | ≤ |(C ∩ D)\V | < t, a contradiction.

Thus, without loss of generality, C /∈ A and D ∈ A. So C ′ ∈ A. If (a, b) /∈ D then

|(C ′ ∩ D)\V | = |(C ∩ D)\V | < t, contradicting C ′, D ∈ A. So (a, b) ∈ D, and hence

δa,b(D) ∈ A (otherwise D /∈ ∆a,b(A)). But then |(C ′ ∩ δa,b(D))\V | = |(C ∩D)\V | < t,

contradicting C ′, δa,b(D) ∈ A. We therefore conclude that |(C ∩D)\V | ≥ t.

Now suppose |(C ∩D)\(V ∪ {(a, b)})| < t. Since |(C ∩D)\V | ≥ t, (a, b) ∈ C ∩D.

Hence C, δa,b(C), D, δa,b(D) ∈ A and (C ∩ δa,b(D))\V = ∅, a contradiction. 2

Corollary 5.3.2 Let A∗ be a t-intersecting sub-family of S2[n],k. Let

A := ∆n,k ◦ ... ◦∆n,2 ◦ ... ◦∆1,k ◦ ... ◦∆1,2(A∗).

Then |A ∩B ∩ ([n]× [1])| ≥ t for any A,B ∈ A.
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Proof. By repeated application of Lemma 5.3.1, |(A ∩ B)\([n] × [2, k])| ≥ t for any

A,B ∈ A. The result follows since (A ∩B)\([n]× [2, k]) = A ∩B ∩ ([n]× [1]). 2

We next introduce our second compression operation. We set K := ([1] × [k]) ∪

{(n, 1)} and de�ne λ : S2[n],k → S2[n],k by

λ(A) :=


A\{(n, 1)} ∪ {(1, 1)} if A ∩K = {(n, 1)};

A\{(1, b), (n, 1)} ∪ {(1, 1), (n, b)} if A ∩K = {(1, b), (n, 1)};

A otherwise.

Similarly to ∆a,b, we de�ne Λ: 2
S

2[n],k → 2
S

2[n],k by

Λ(A) := {λ(A) : A ∈ A} ∪ {A ∈ A : λ(A) ∈ A}.

At this point, we need to introduce some further notation. For A ∈ SF,k, let

γ(A) := F.

For A ⊆ SF ,k, let Γ(A) be the sub-family of F given by

Γ(A) := {γ(A) : A ∈ A} = {F ∈ F : A ∩ SF,k 6= ∅}.

Lemma 5.3.3 Let F ⊆ 2[n] be compressed with respect to 1. Let A ⊂ SF ,k. Then:

(i) |Λ(A)| = |A|;

(ii) Λ(A) ⊂ SF ,k;

(iii) if A ∩A′ ∩ ([n]× [1]) 6= ∅ for any A,A′ ∈ A then B ∩B′ ∩ ([n]× [1]) 6= ∅ for any

B,B′ ∈ Λ(A).

Proof. (i) is straightforward.

If A ∈ SF ,k and γ(λ(A)) 6= γ(A) then n ∈ γ(A), 1 /∈ γ(A) and γ(λ(A)) =

(γ(A)\{n})∪{1}. Since F is compressed with respect to 1, it follows that Γ(Λ(A)) ⊆ F .

Hence (ii).

Suppose A ∩ A′ ∩ ([n] × [1]) 6= ∅ for any A,A′ ∈ A. Let B1, B2 ∈ Λ(A). Then,
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for each p ∈ [2], Bp = Ap or Bp = λ(Ap) for some Ap ∈ A. It is straightforward that

(iii) holds if Bp = Ap, p = 1, 2, or Bp = λ(Ap), p = 1, 2. Without loss of generality,

suppose B1 = A1, B2 = λ(A2) 6= A2 and B1 ∩ B2 ∩ ([n] × [1]) = ∅. It follows that

A1∩A2∩([n]×[1]) = {(n, 1)} and A1 6= λ(A1) ∈ A. But then λ(A1)∩A2∩([n]×[1]) = ∅,

a contradiction. Hence (iii). 2

5.4 Proof of main result

We here prove Theorem 5.1.2. In the process of doing so, we also determine the

extremal intersecting sub-families of SF ,k for F as in the theorem.

Theorem 5.4.1 Let 1 ∈ J ⊆ [n]. Let F ⊆ 2[n] such that F is compressed with respect

to j ∈ [n] i� j ∈ J . Let A∗ ⊂ SF ,k be intersecting. Then

(i) |A∗| ≤ |SF ,k((1, 1))|, and

(ii) equality holds i� A∗ = SF ,k((j, b)), (j, b) ∈ J × [k], or k = 2, |OF(1)| > 1 and

A∗ = {F ∈ F : F ∩ (OF(1)× [2]) ∈ X}, X ∈ ex(SOF (1),2).

Proof of Theorem 5.4.1(i). The case n = 2 is trivial, so we assume n > 2. Let

A′ := ∆n,k ◦ ... ◦∆n,2 ◦ ... ◦∆1,k ◦ ... ◦∆1,2(A∗), and let A := Λ(A′). So |A| = |A∗| and,

by Corollary 5.3.2 and Lemma 5.3.3,

A ∩B ∩ Z 6= ∅ for any A,B ∈ A, (5.2)

where Z := [n]× [1].

Let B := {A ∈ A((n, 1))((1, 1)) : A ∩B ∩ Z = {(n, 1)} for some B ∈ A((n, 1))}. Let

A1 := A((n, 1))\B. For l ∈ [2, k], let Bl := {(A\{(n, 1)}) ∪ {n, l} : A ∈ B} and Al :=

A((n, l))∪Bl. If A((n, l))∩Bl 6= ∅ and A ∈ A((n, l))∩Bl then δn,l(A)∩B∩Z = {(n, 1)}

for some B ∈ A((n, 1)), and hence A ∩ B ∩ Z = ∅, a contradiction to (5.2). So

A((n, l)) ∩ Bl = ∅. Therefore

k∑
i=1

|A((n, i))| ≤ (|A((n, 1))| − |B|) +
k∑
l=2

(|A((n, l))|+ |B|) =
k∑
i=1

|Ai|. (5.3)
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Let Z ′ := [n−1]× [1]. Suppose that for some i ∈ [k] and A,B ∈ Ai, A∩B∩Z ′ = ∅.

It is immediate by (5.2) that i /∈ [2, k]. So A,B ∈ A1 and A ∩ B = {(n, 1)}. By

de�nition of A1, (1, 1) /∈ A ∪B. But λ(A) ∈ A and λ(A) ∩B ∩Z = ∅, a contradiction

to (5.2). Thus,

for any i ∈ [k] and A,B ∈ Ai, A ∩B ∩ Z ′ 6= ∅. (5.4)

Let F0 := F\F(n) and F1 := F〈n〉. Clearly, F0 and F1 are compressed with

respect to 1. Let A0 := A ∩ SF0,k. By (5.4), Ai〈(n, i)〉 is an intersecting sub-family of

SF1,k, i = 1, ..., k. The result now follows by induction on n since

|A∗| = |A| = |A0|+
k∑
i=1

|A((n, i))| ≤ |A0|+
k∑
i=1

|Ai〈(n, i)〉|

≤ |SF0,k((1, 1))|+ k|SF1,k((1, 1))| = |SF ,k((1, 1))|, (5.5)

where the �rst inequality is obtained from (5.3). 2

We need to do more work to prove the extremal structures given in Theorem 5.4.1(ii).

We start with a simple lemma that we will use often.

Lemma 5.4.2 Let A ⊆ SF ,k be intersecting. Suppose that for some (a, b) ∈ U(F) and

F ∈ F , SF,k((a, b)) ⊆ A. Then A ⊆ SF ,k((a, b)).

Proof. It su�ces to show that if B ∈ SF ,k\SF ,k((a, b)) then A ∩ B = ∅ for some

A ∈ SF,k((a, b)). Let C ∈ SF,k\SF,k((a, b)) such that B ∩ (F × [k]) ⊆ C. Clearly, for

some q ∈ [k − 1], θqk(C) ∈ SF,k((a, b)) and B ∩ θqk(C) = ∅. 2

Lemma 5.4.3 Let F ⊆ 2[n]. Let A ⊂ SF ,k be intersecting, where k ≥ 3. If A 6=

∆a,b(A) = SF ,k((a′, b′)) then A = SF ,k((a, b)).

Proof. Since A 6= ∆a,b(A) = SF ,k((a′, b′)), there exists A ∈ A such that A /∈

SF ,k((a′, b′)) and δa,b(A) ∈ SF ,k((a′, b′)). This implies that (a′, b′) = (a, 1). Let

F := γ(A). Let AF := A ∩ SF,k. Clearly, ∆a,b(AF ) = ∆a,b(A) ∩ SF,k = SF,k((a, 1))

and |AF | = |∆a,b(AF )| = |SF,k((a, 1))|. Thus, by Theorem 1.4.1, AF = SF,k((c, d))
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for some (c, d) ∈ F × [k]. Since A ∈ AF\SF,k((a, 1)) and ∆a,b(AF ) = SF,k((a, 1)), it

follows that (c, d) = (a, b). By Lemma 5.4.2, A ⊆ SF ,k((a, b)). Since |A| = |∆a,b(A)| =

|SF ,k((a, b))|, A = SF ,k((a, b)). 2

For F ∈ F and f, g ∈ U(F), let ψf,g(F ) := (F\{g}) ∪ {f}.

Proposition 5.4.4 Let F and J be as in Theorem 5.4.1. Then L(SF ,k) = J × [k].

Proof. Let j ∈ J and h ∈ [n]. Then, since F is compressed with respect to j,

|SF ,k((h, b))| =
∑

H∈F(h)(j)

|SH,k((h, b))|+
∑

G∈F(h)\F(j)

|SG,k((h, b))|

=
∑

H∈F(j)(h)

|SH,k((j, b))|+
∑

G∈F(h)\F(j)

|Sψj,h(G),k((j, b))|

≤ |SF ,k((j, b))| (5.6)

with equality i� for all F ∈ F(j)\F(h), ψh,j(F ) ∈ F(h). This already gives J × [k] ⊆

L(F). Now consider equality in (5.6). Suppose h /∈ J . So there exist F ∈ F\F(h)

and f ∈ F such that F1 := ψh,f (F ) /∈ F(h). Therefore f 6= j. If j /∈ F then

F2 := ψj,f (F ) ∈ F(j)\F(h), ψh,j(F2) = F1, and hence ψh,j(F2) /∈ F(h); but this is a

contradiction as it yields a strict inequality in (5.6). So F ∈ F(j)\F(h), and hence

F3 := ψh,j(F ) ∈ F(h)\F(j). Thus, F4 := ψj,f (F3) ∈ F(j). But F4 = F1 /∈ F(h), which

is a contradiction because h ∈ F4. So h ∈ J . Therefore L(F) ⊆ J × [k], and hence

result. 2

Lemma 5.4.5 Let A′ be as in the Proof of Theorem 5.4.1(i). Suppose A′ 6= Λ(A′) =

SF ,k((a, 1)). Then n ∈ J and A′ = SF ,k((n, 1)).

Proof. Since A′ 6= Λ(A′) = SF ,k((a, 1)), there exists A′ ∈ A′ such that A′ /∈

SF ,k((a, 1)) and λ(A′) ∈ SF ,k((a, 1)), and hence a = 1. Let A := {(n, 1)} ∪ {(a, 2) : a ∈

γ(A′)\{n − 1}}. Since Λ(A′) = SF ,k((1, 1)), exactly one of A and λ(A) 6= A is in

A′. Recall that we arrived at (5.2) using the fact that, by Corollary 5.3.2, A1 ∩ A2 ∩

([n] × [1]) 6= ∅ for any A1, A2 ∈ A′. Since λ(A) ∩ A′ ∩ ([n] × [1]) = ∅, it follows

that A ∈ A′ and, since A ∩ ([n] × [1]) = {(n, 1)}, A′ ⊆ SF ,k((n, 1)). Since 1 ∈ J
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and |A′| = |Λ(A′)| = |SF ,k((1, 1))|, it follows by Proposition 5.4.4 that n ∈ J and

A′ = SF ,k((n, 1)). 2

Before coming to the proof of Theorem 5.4.1(ii), we �nally determine two nice

properties of F -orbits of elements j ∈ U(F) such that F is compressed with respect

to j. This will be very useful when dealing with the case k = 2 of Theorem 5.4.1(ii).

Proposition 5.4.6 Let F and J be as in Theorem 5.4.1. Let j∗ ∈ J .

(i) If OF(j∗)\{j∗} 6= ∅ then F(j∗) = F and OF(j∗) = J .

(ii) If OF(j∗) = {j∗} then OF(j) = {j} for all j ∈ J .

Proof. Suppose OF(j∗)\{j∗} 6= ∅. Suppose F(j∗) 6= F . Let F ∈ F\F(j∗) and

j′ ∈ OF(j∗)\{j∗}. So j′ /∈ F since F /∈ F(j∗) = F(j′). But then, since F is compressed

with respect to j∗, for any f ∈ F we have (F\{f}) ∪ {j∗} ∈ F(j∗)\F(j′), which

contradicts F(j∗) = F(j′). So F(j∗) = F .

Let j ∈ J . Suppose j /∈ OF(j∗). So F(j) ( F(j∗) as F(j∗) = F . Let F ∗ ∈

F(j∗)\F(j). Since F is compressed with respect to j, we have (F ∗\{j∗}) ∪ {j} ∈

F\F(j∗), which contradicts F(j∗) = F . Therefore J ⊆ OF(j∗). Also, OF(j∗) ⊆ J

because if j ∈ OF(j∗) then F(j) = F(j∗) = F . Hence (i).

Now suppose OF(j∗) = {j∗} and OF(j)\{j} 6= ∅ for some j ∈ J . By (i), OF(j) = J .

So j∗ ∈ OF(j), but this implies OF(j∗) = OF(j), a contradiction. Hence (ii). 2

Proof of Theorem 5.4.1(ii). By Proposition 5.4.4, |SF ,k((j, b))| = |SF ,k((1, 1))|

i� (j, b) ∈ J × [k]. Also, if k = 2 and A∗ = {F ∈ F : F ∩ (OF(1)× [2]) ∈ X} for some

X ∈ ex(SOF (1),2) then |A∗| = |SF ,2((1, 1))| as SF ,2((1, 1)) = {F ∈ F : F∩(OF(1)×[2]) ∈

X ∗}, where X ∗ = SOF (1),2((1, 1)) ∈ ex(SOF (1),2). By Theorem 5.4.1(i), the su�ciency

condition follows.

We now continue on the Proof of Theorem 5.4.1(i) to prove the necessary condition.

Therefore, we now consider equality in (5.5). This gives us equality in (5.3) together

with |A0| = |SF0,k((1, 1))| and |Ai〈(n, i)〉| = |SF1,k((1, 1))|, i = 1, ..., k.

Since we are proving the result by induction on n, we may assume that F(n) 6= ∅

and n ∈ γ(A∗) for some A∗ ∈ A∗. If |U(F(n))| = 1 then γ(A∗) = {n} and A∗ = {A∗}.
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So we assume that |U(F(n))| ≥ 2, which implies |U(F〈n〉)| ≥ 1. Thus, for each i ∈ [k],

we have |Ai〈(n, i)〉| = |SF1,k((1, 1))| > 0.

Let J0 := {j0 ∈ [n− 1] : F0 is compressed with respect to j0} and J1 := {j1 ∈ [n−

1] : F1 is compressed with respect to j1}. Clearly, 1 ∈ J0 ∩ J1.

Consider �rst k ≥ 3. Since we have equality in (5.3), it follows that B = ∅ and

Ai = A((n, i)), i = 1, ..., k. Thus, by (5.2) and (5.4), A− := A0 ∪
⋃k
i=1A〈(n, i)〉 is

an intersecting sub-family of SF0∪F1,k. Now, by the inductive hypothesis and (5.4),

A1〈(n, 1)〉 = SF1,k((j1, 1)) for some j1 ∈ J1. Since A((n, 1)) = A1, we have A〈(n, 1)〉 =

SF1,k((j1, 1)), and hence A− ⊆ SF0∪F1,k((j1, 1)) by Lemma 5.4.2. So A ⊆ SF ,k((j1, 1)).

Since we have equality in (5.5), Proposition 5.4.4 gives us j1 ∈ J and A = SF ,k((j1, 1).

Therefore, by Lemmas 5.4.3 and 5.4.5, A∗ is as required.

Next, consider k = 2 and |OF(1)| > 1. By Proposition 5.4.6(i), F = F(1). By

Corollary 5.2.2(i), A∗ = {F ∈ F : F ∩ (OF(1)× [2]) ∈ X} for some X ∈ ex(SOF (1),2).

Finally, consider k = 2 and OF(1) = {1}. Suppose F0 = ∅. Then F = F(n). If

F(n)\F(1) 6= ∅ and F ∈ F(n)\F(1) then, given that 1 ∈ J , we have (F\{n}) ∪ {1} ∈

F0, a contradiction. So F(n)\F(1) = ∅, and hence, since F(n) = F , F(n) = F(1); but

this contradicts OF(1) = {1}. So F0 6= ∅, and hence |A0| > 0 as |A0| = |SF0,2((1, 1))|

and 1 ∈ J0. It remains to consider the following three cases.

Case 1: |OF0(1)| = 1. By the inductive hypothesis and (5.2), A0 = SF0,2((j0, 1))

for some j0 ∈ J0. Clearly, A0 ∪ A1 and A0 ∪ A2 are intersecting. By Lemma 5.4.2,

we therefore have A0 ∪A1,A0 ∪A2 ⊆ SF ,2((j0, 1)), and hence A ⊆ SF ,2((j0, 1)). Since

we have equality in (5.5), Proposition 5.4.4 gives us j0 ∈ J and A = SF ,k((j0, 1). By

Lemma 5.4.5, A′ = SF ,k((j, 1)), where j ∈ {j0, n} ∩ J . Since 1 ∈ J and OF(1) = {1},

Proposition 5.4.6(ii) gives us OF(j) = {j}. Since Γ(A∗) = Γ(A′) = F(j), it follows by

Corollary 5.2.2(ii) that A∗ = SF ,k(j, b) for some b ∈ [2].

Case 2: |OF1(1)| = 1. By the inductive hypothesis and (5.4), we have A1〈(n, 1)〉 =

SF1,2((j1, 1)) for some j1 ∈ J1. Since A0 ∪ A1〈(n, 1)〉 is an intersecting sub-family

of SF0∪F1,k, Lemma 5.4.2 gives us A0 ∪ A1〈(n, 1)〉 ⊆ SF0∪F1,2((j1, 1)). So A0 ⊆

SF0,2((j1, 1)). Since |A0| = |SF0,2((1, 1))|, it follows by Proposition 5.4.4 that j1 ∈ J0

and A0 = SF0,2((j1, 1)). As in Case 1, this leads us to the desired result.
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Case 3: |OF0(1)| > 1, |OF1(1)| > 1. By Proposition 5.4.6(i), F0(1) = F0 and

F1(1) = F1. So F(1) = F . Thus, by Corollary 5.2.2(ii), A∗ = SF ,2((1, b)) for some

b ∈ [2]. 2

Proof of Theorem 5.1.2. By Theorem 5.4.1, (1, 1) ∈ L(SF ,k) and, furthermore,

SF ,k((1, 1)) ∈ ex(SF ,k); hence SF ,k is EKR. By Theorem 5.4.1(ii), if k ≥ 3 then SF ,k is

strictly EKR. Now consider k = 2. If SF ,2 is not strictly EKR then, by Theorem 5.4.1(ii)

and Corollary 5.2.2(ii), |OF(1)| ≥ 3; the converse holds by Proposition 5.2.3 with

f = 1. 2

5.5 Proof of Theorem 5.1.3

We now give a simple proof of Theorem 1.4.2 and prove the stronger Theorem 5.1.3.

Thus, in the following, F is taken to be r-uniform. Our �rst simple observation is that

f ∗ ∈ L(F) ⇔ (f ∗, 1) ∈ L(SF ,k) (5.7)

since for all f ∈ U(F), kr−1|F(f)| = kr−1|Γ(SF ,k((f, 1)))| = |SF ,k((f, 1))|.

For A ⊆ SF ,k, let Θq(A) := {θqk(A) : A ∈ A}. Suppose F = {F} and A is

intersecting. If A ∈ A and q ∈ [k − 1] then θqk(A) /∈ A as θqk(A) ∩ A = ∅. So

A,Θ1(A), ...,Θk−1(A) are k disjoint copies of the same intersecting family, and hence

k|A| ≤ |SF,k| = kr. Therefore

A ⊂ SF,k intersecting ⇒ |A| ≤ kr−1, (5.8)

which proves Theorem 1.4.1(i) since |SF,k((f, 1))| = kr−1.

Proof of Theorem 1.4.2. Let F be EKR, and let A ⊂ SF ,k be intersecting. Clearly,

Γ(A) is intersecting. Thus, for f ∗ ∈ L(F), |Γ(A)| ≤ |F(f ∗)|. For any F ∈ Γ(A), let
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AF := A ∩ SF,k. By (5.8), |AF | ≤ kr−1. Thus, for any b ∈ [k],

|A| =
∑

F∈Γ(A)

|AF | ≤ kr−1|Γ(A)| ≤ kr−1|F(f ∗)| = |SF ,k((f ∗, b))|, (5.9)

and hence result. 2

Proof of Theorem 5.1.3. We continue on the proof of Theorem 1.4.2, and we now

consider equality in (5.9). So Γ(A) = F(f ∗) and for all F ∈ Γ(A), |AF | = kr−1. Thus,

by (5.8),

for all F ∈ Γ(A), AF ∈ ex(SF,k). (5.10)

Case 1: k ≥ 3. Let F ∗ ∈ Γ(A). By (5.10) and Theorem 1.4.1(ii), AF =

SF,k((a∗, b∗)) for some (a∗, b∗) ∈ F ∗ × [k]. By Lemma 5.4.2, A ⊆ SF ,k((a∗, b∗)). So

SF ,k is strictly EKR.

Case 2: k = 2 and for all f ∈ L(F), |OF(f)| ≤ 2. Let X :=
⋂
F∈Γ(A) F . By (5.10)

and Theorem 5.2.1, |X| ≥ 1. Let f ′ ∈ X; so Γ(A) ⊆ F(f ′). Since |Γ(A)| = |F(f ∗)|

and f ∗ ∈ L(F), Γ(A) = F(f ′) and f ′ ∈ L(F). So |OF(f ′)| ≤ 2. Since A ∈ ex(SF(f ′),2)

(by (5.10)), it follows by Corollary 5.2.2(ii) that A is a star of SF ,2. So SF ,2 is strictly

EKR.

Case 3: k = 2 and |OF(f)| ≥ 3 for some f ∈ L(F). By (5.7), (f, 1) ∈ L(SF ,2).

Thus, by Proposition 5.2.3, SF ,2 is not strictly EKR. 2

76



Chapter 6

Non-centred intersecting families of

signed sets

6.1 Introduction

For r ∈ [n], let Sn,r,k := S([n]
r ),k. The main objective of this chapter is to establish a

characterisation of the extremal non-centred intersecting sub-families of Sn,r,k.

In Section 1.6, we alluded to the fact that in [38], Theorem 1.6.1 was used as a

stepping stone to Theorem 1.2.2. Similarly, in Section 6.2, we prove the following

signed sets analogue of Theorem 1.6.1 in order to arrive at our main result.

Theorem 6.1.1 If A1 and A2 are non-empty cross-intersecting sub-families of Sn,r,k

then |A1| + |A2| ≤ |{A ∈ Sn,r,k : A ∩ ([r] × [1]) 6= ∅}| + 1. Unless r = n and k = 2,

equality holds i� either A1 = A2
∼= {A ∈ Sn,2,k : (1, 1) ∈ A} or Ai = {A∗} and

A3−i = {A ∈ Sn,r,k : A ∩ A∗ 6= ∅} for some i ∈ [2] and A∗ ∈ Sn,r,k.

For 2 ≤ r ≤ n, let Nn,r,k := {A ∈ Sn,r,k : (1, 1) ∈ A,A ∩ N1 6= ∅} ∪ {N1, ..., Nk−1}

where

Ni :=

 [2, r + 1]× [1] if r < n;

{(1, i+ 1)} ∪ ([2, n]× [1]) if r = n,
i = 1, ..., k − 1.

Note that if r < n thenNi = [2, r+1]×[1], i = 1, ..., k−1, and henceNn,r,k is the 'Hilton-

Milner-type' family {A ∈ Sn,r,k : (1, 1) ∈ A,A∩ ([2, r+1]× [1]) 6= ∅}∪{[2, r+1]× [1]}.
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For 3 ≤ r ≤ n, let Tn,r,k be the triangle family {A ∈ Sn,r,k : |A ∩ ([3]× [1])| ≥ 2}.

In Section 6.3, using Theorem 6.1.1, we prove our desired 'Hilton-Milner-type' ex-

tension of Theorem 1.4.3.

Theorem 6.1.2 If A is a non-centred intersecting sub-family of Sn,r,k then |A| ≤

|Nn,r,k|. Unless r = n and k = 2, equality holds i� A ∼= Nn,r,k or A ∼= Tn,3,k or

A ∼= T4,4,k.

In Section 6.4, we give two proofs of the fact that there exists an integer k0(F) such

that Conjecture 5.1.1 is true if k ≥ k0(F). The �rst proof is a direct proof based on an

argument that Erd®s, Ko and Rado used for proving Theorem 1.2.4, and the second

proof is based on Theorem 6.1.2 with r = n. Comparing the two proofs, we see that

the latter yields a much better value of k0(F).

Before starting the proofs, we point out to the reader that we will be making use

of the notation in Section 2.1, especially in Section 6.3.

6.2 Non-empty cross-intersecting families of signed

sets

This section is dedicated to the proof of Theorem 6.1.1, which, like the proof of Theo-

rem 6.1.2, will be based on the compression ∆a,b as de�ned in Section 5.4 (and hence

not as de�ned in Section 2.2).

Lemma 6.2.1 Let A1 and A2 be non-empty cross-intersecting sub-families of Sn,2,k,

where (2, k) 6= (n, 2). Suppose Ai 6= ∆a,b(A1) = ∆a,b(A2) = Sn,2,k((c, d)) for some

i ∈ [2] and (c, d) ∈ [n]× [k]. Then A1 = A2 = Sn,2,k((a, b)).

Proof. We may assume that i = 1. So there exists A1 ∈ A1\∆a,b(A1) such that

δa,b(A1) ∈ ∆a,b(A1)\A1; let A′
1 := δa,b(A1). Thus, for some (a1, b1) ∈ ([n]\{a}) × [k],

A1 = {(a, b), (a1, b1)} and (c, d) ∈ A′
1 = {(a, 1), (a1, b1)}. If (c, d) = (a1, b1) then

A1 ∈ Sn,2,k((c, d)), and hence A1 ∈ ∆a,b(A1), a contradiction. So (c, d) = (a, 1)

and hence, by the assumptions of the lemma, ∆a,b(A1) = ∆a,b(A2) = Sn,2,k((a, 1)).
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Note that this implies that |A ∩ {(a, 1), (a, b)}| = 1 for all A ∈ A1 ∪ A2. If there

exists A2 ∈ A2 such that (a, 1) ∈ A2, then, since A1 ∩ A2 6= ∅ (as A1,A2 are cross-

intersecting), A2 can only be A′
1. Together with ∆a,b(A2) = Sn,2,k((a, 1)), this implies

that A2 contains B := Sn,2,k((a, b))\{A1}. Given that (2, k) 6= (n, 2) (i.e. k ≥ 3 if

n = 2), for any A ∈ Sn,2,k((a, 1)) there exists B ∈ B such that A ∩ B = ∅. By the

above, it follows that A1 = Sn,2,k((a, b)), which in turn forces A2 to be Sn,2,k((a, b)). 2

Proof of Theorem 6.1.1. The result is trivial for r = 1. If r = n and k = 2

then the result follows from the fact that for any A := {(a1, k1), ..., (an, kn)} ∈ Sn,n,2,

the unique set in Sn,n,2 that does not intersect A is {(a1, 3− k1), ..., (an, 3− kn)}. We

will therefore assume that r ≥ 2 and (r, n) 6= (n, 2).

Let C := A′
1 ∪ A′

2 ⊂ Sn+1,r+1,k, where A′
1 := {A1 ∪ {(n + 1, 1)} : A1 ∈ A1} and

A′
2 := {A2 ∪ {(n+ 1, 2)} : A2 ∈ A2}. So C is intersecting. Let

D := ∆n,k ◦ ... ◦∆n,2 ◦ ... ◦∆1,k ◦ ... ◦∆1,2(C).

Let B1,B2 ⊂ Sn,r,k be given by B1 := {D\{(n + 1, 1)} : (n + 1, 1) ∈ D ∈ D} and

B2 := {D\{(n+ 1, 2)} : (n+ 1, 2) ∈ D ∈ D}. By Corollary 5.3.2, we have

D1 ∩D2 ∩ (([n+ 1]× [1]) ∪ {(n+ 1, 2)}) 6= ∅ for any D1, D2 ∈ D,

and hence

B1 ∩B2 ∩ ([n]× [1]) 6= ∅ for any B1 ∈ B1 and B2 ∈ B2. (6.1)

For each i ∈ [2], let A∗
i ∈ Ai and B∗

i := {(a, 1) : A∗
i ∩ ({a} × [k]) 6= ∅}. It is easy to see

that B∗
1 ∈ B1 and B∗

2 ∈ B2.

Let X := [n] × [1]. For each i ∈ [2], let B(q)
i := {B ∈ Bi : |B ∩ X| = q}, Xi :=

{B ∩ X : B ∈ Bi}, X (q)
i := {A ∈ Xi : |A| = q}. For each q ∈ [r], let E (q) := {A ∈(

X
q

)
: A ∩ ([r] × [1]) 6= ∅} and wq := |Sn−q,r−q,k−1| =

(
n−q
r−q

)
(k − 1)r−q. For each i ∈ [2],
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⋃r
q=1 B

(q)
i is a partition for Bi by (6.1). So we have

|A1|+ |A2| = |C| = |D| = |B1|+ |B2| =
r∑
q=1

(|B(q)
1 |+ |B(q)

2 |)

≤
r∑
q=1

(|X (q)
1 |+ |X (q)

2 |)wq (6.2)

and

1 +
r∑
q=1

|E (q)|wq = |Sn,r,k([r]× [1])|+ 1. (6.3)

Let 1 ≤ p ≤ min{r, n/2}. If X (p)
1 6= ∅ and X (p)

2 6= ∅ then, by Theorem 1.6.1, we

have |X (p)
1 | + |X (p)

2 | ≤
(
n
p

)
−
(
n−p
p

)
+ 1, and hence |X (p)

1 | + |X (p)
2 | ≤ |E (p)| + 1 with

equality only if p = r. Now, without loss of generality, suppose X (p)
2 = ∅. Then

|X (p)
1 | + |X (p)

2 | = |X (p)
1 | ≤ |{A ∈

(
X
p

)
: A ∩ B∗

2 6= ∅}| ≤ |E (p)|, where the �rst inequality

follows by (6.1).

Therefore, we have just shown that

1 ≤ p ≤ min{r, n/2} ⇒ |X (p)
1 |+ |X (p)

2 | ≤

 |E (p)| if p < r;

|E (p)|+ 1 if p = r.
(6.4)

If r ≤ n/2 then the upper bound in the theorem is immediate from (6.2), (6.3)

and (6.4). So suppose r > n/2. Set w0 := 0, E (0) := X (0)
1 := X (0)

2 := ∅. Let

n− r ≤ p ≤ bn/2c. Then,

|E (n−p)| =
(

n

n− p

)
, |E (p)| =


(
n
p

)
if p ≥ n− r + 1;(

n
p

)
− 1 if p = n− r.

(6.5)

Also, since (r, n) 6= (n, 2), an easy calculation yields

wp ≥ wn−p with strict inequality if p < n/2. (6.6)

80



By (6.1), for any A ∈ X (p)
i and B ∈ X (n−p)

3−i , we cannot have A = X\B; hence

|X (p)
i |+ |X (n−p)

3−i | ≤
(

n

n− p

)
. (6.7)

Therefore,

r∑
q=n−r

(|X (q)
1 |+ |X (q)

2 |)wq =

bn/2c∑
p=n−r

(
(|X (p)

1 |+ |X (p)
2 |)wp + (|X (n−p)

1 |+ |X (n−p)
2 |)wn−p

)

≤
bn/2c∑
p=n−r

(
(|X (p)

1 |+ |X (p)
2 |)wp +

(
2

(
n

n− p

)
− (|X (p)

1 |+ |X (p)
2 |)

)
wn−p

)
(by (6.7))

≤
bn/2c∑
p=n−r

(
|E (p)|wp +

(
2

(
n

n− p

)
− |E (p)|

)
wn−p

)
(by (6.4), (6.6))

=

bnc/2∑
p=n−r

|E (p)|wp +

 |E (n−p)|wn−p if p ≥ n− r + 1;

(|E (n−p)|+ 1)wn−p if p = n− r.

 (by (6.5))

= wr +
r∑

q=n−r

|E (q)|wq = 1 +
r∑

q=n−r

|E (q)|wq (6.8)

We know that if n − r ≥ 2 then (6.4) holds for p = 1, ..., n − r − 1. Together with

(6.2), (6.3) and (6.8) (recall that (6.8) holds for p = n− r, ..., bn/2c), this gives us the

desired upper bound for |A1|+ |A2|.

Now suppose the upper bound is attained. Then |X (1)
1 | + |X (1)

2 | = |E (1)| = r if

n − r ≥ 2 (by (6.4)), and the same holds by (6.6) and (6.8) if n − r ≤ 1. For each

i ∈ [2], since (6.1) tells us that each set in Xi intersects each set in X3−i, it is clear that

each single-element set in X (1)
i must be contained in the intersection of sets in X3−i.

Assuming without loss of generality that |X (1)
1 | ≥ |X (1)

2 |, it follows by the equality

|X (1)
1 | + |X (1)

2 | = r above that if X (1)
2 = ∅ then |X (1)

1 | = r and hence X2 owns only the

set B∗
2 , and if instead X (1)

2 6= ∅ then X (1)
1 = X (1)

2 = {x} (x ∈ X) and hence r = 2.

Suppose X2 = {B∗
2}. Clearly, this implies B2 = {B∗

2} and hence A2 = {A∗
2}. So

A1 ⊆ Sn,r,k(A∗
2). Since |A1|+ |A2| = |Sn,r,k([r]× [1])|+ 1, A1 = Sn,r,k(A∗

2).
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Suppose instead X (1)
1 = X (1)

2 = {x} (x ∈ X) and r = 2. Then, by (6.1), B1,B2 ⊆

Sn,2,k(x). Since |B1| = |B2| = |A1| + |A2| = |Sn,2,k([2] × [1])| + 1 = 2|Sn,2,k(x)|, we

actually have B1 = B2 = Sn,2,k(x). It follows by Lemma 6.2.1 that A1 = A2 =

Sn,2,k((a, b)) for some (a, b) ∈ [n]× [k]. 2

6.3 Non-centred intersecting families of signed sets

This section is dedicated to the proof of the main result of this chapter, i.e. Theo-

rem 6.1.2. We shall �rst provide a set of lemmas that ensure that in the proof we

may work with a non-centred intersecting family A ⊂ Sn,r,k that is invariant under any

compression ∆a,b; this will become clear in the proof itself.

Lemma 6.3.1 Let a ∈ [n], b ∈ [2, k] and (r, k) 6= (n, 2). Suppose A is a non-centred

intersecting sub-family of Sn,r,k and ∆a,b(A) is centred. Then |A| < |Nn,r,k|.

Proof. Since A is non-centred and ∆a,b(A) is centred, we have A = A({(a, 1), (a, b)}),

A((a, 1))](a, b)[ 6= ∅ and A](a, 1)[((a, b)) 6= ∅. So A1 := A〈(a, 1)〉](a, b)[ and A2 :=

A](a, 1)[〈(a, b)〉 are non-empty cross-intersecting sub-families of S([n]\{a}
r−1 ),k. Thus, by

Theorem 6.1.1,

|A1|+ |A2| ≤ |Sn−1,r−1,k([r − 1]× [1])|+ 1

< |S([2,n]
r−1),k

([2, r + 1]× [1])|+ 1 = |Nn,r,k|.

Since |A| = |A({a, b})| = |A1|+ |A2|, the result follows. 2

Lemma 6.3.2 Let a ∈ [n], b ∈ [2, k] and (r, k) 6= (n, 2). Suppose A is an intersecting

sub-family of Sn,r,k and A 6= ∆a,b(A) ∼= Nn,r,k. Then A ∼= Nn,r,k.

Proof. We may assume without loss of generality that

∆a,b(A) = N ′ := Sn,r,k((1, k1))([2,min{r + 1, n}]× {k2}) ∪ {N ′
i : i ∈ [k]}, k1, k2 ∈ [k],

where N ′
i := [2, r + 1]× {k2} if r < n, and N ′

i := {(1, i)} ∪ ([2, n]× {k2}) if r = n. Let

N := [2,min{r + 1, n}]× {k2}.
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Since ∆a,b(A) 6= A, there exists A∗ ∈ A\∆a,b(A) such that A′ := δa,b(A
∗) ∈

∆a,b(A)\A, and hence (a, 1) ∈ A′ ∈ N ′. Suppose r + 1 < a ≤ n. Then, by def-

inition of N ′, we must have (A′\{(a, 1)}) ∪ {(a, b)} ∈ N ′ (i.e. A∗ ∈ N ′), but this

contradicts A∗ /∈ ∆a,b(A) = N ′. So a ≤ min{r + 1, n}.

Let A0 := A\(A1 ∪ A2), where A1 := A((1, 1)) and A2 := A((1, b)). Let A′
1 :=

A〈(1, 1)〉 and A′
2 := A〈(1, b)〉.

Case I: r < n.

Consider �rst a = 1. By (a, 1) ∈ A′ ∈ N ′ and the de�nition of N ′, we then have

k1 = 1; also, A = A1∪A2∪{N} and A∗ ∈ A2. Suppose A1 6= ∅. Then, A′
1 and A′

2 are

non-empty and cross-intersecting sub-families of S([2,n]
r−1),k

. By Theorem 6.1.1, we obtain

|A′
1| + |A′

2| ≤ |{A ∈ Sn−1,r−1,k : A ∩ ([r − 1]× [1]) 6= ∅}| + 1, and hence |A| < |Nn,r,k|,

which is a contradiction as |A| = |∆a,b(A)| = |N ′| = |Nn,r,k|. So A((1, 1)) = ∅, and

hence A ⊆ N ′′ := Sn,r,k((1, b))(N) ∪ {N} ∼= N ′. Since |A| = |N ′|, A = N ′′.

Now consider 2 ≤ a ≤ r + 1. Suppose k2 6= 1. Since (a, 1) ∈ A′ ∈ N ′, we then get

A′ 6= N , (1, k1) ∈ A′∩A∗, |A∗∩N | ≥ |A′∩N | > 0, and hence A∗ ∈ N ′, a contradiction.

So k2 = 1. Let N ′ := (N\{(a, 1)}) ∪ {(a, b)}. Since ∆a,b(A) = N ′, we clearly have

A ⊂ Sn,r,k((1, k1)) ∪ {M}, where M ∈ {N,N ′} and M ∈ A. Since A is intersecting

and |A| = |∆a,b(A)| = |Nn,r,k|, A = Sn,r,k((1, k1))(M) ∪ {M}. Since A 6= N ′, M = N ′.

Case II : r = n. Since (r, k) 6= (n, 2), k ≥ 3.

Consider �rst a = 1. Suppose k1 6= 1. Then, since (1, 1) ∈ A′ ∈ N ′, we must have

A′ = N ′
1, and hence A∗ = N ′

b, a contradiction to A∗ /∈ ∆a,b(A) = N ′. So k1 = 1. Thus,

since ∆a,b(A) = N ′, we clearly have A0 = {N ′
i : i ∈ [k]\{1, b}}, A′

1 ∪A′
2 = S([2,n]

n−1),k
(N),

A′
1∩A′

2 = {N}, |A′
1|+ |A′

2| = |Sn−1,n−1,k([n−1]× [1])|+1. By Theorem 6.1.1, it follows

that for some i ∈ [2], A′
i = {N} and A′

3−i = S([2,n]
n−1),k

(N). Since A = A0 ∪A1 ∪A2, we

thus have A = {A ∈ Sn,n,k((1, b)) : A ∩N 6= ∅} ∪ {N ′
i : i ∈ [k]} ∼= N ′ or A = N ′; since

A 6= ∆a,b(A) = N ′, the former holds.

If 2 ≤ a ≤ n then, by the same argument for the corresponding sub-case 2 ≤

a ≤ r + 1 of Case I, N = [2, n] × [1] and A = Sn,n,k((1, k1))((N\{(a, 1)}) ∪ {a, b}) ∪

{N\{(a, 1)} ∪ {(a, b), (1, i)} : i ∈ [k]} ∼= Nn,n,k.

Lemma 6.3.3 Let a ∈ [n], b ∈ [2, k] and (3, k) 6= (n, 2). Suppose A is an intersecting
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sub-family of Sn,3,k and A 6= ∆a,b(A) ∼= Tn,3,k. Then A ∼= Tn,3,k.

Proof. We may assume without loss of generality that

∆a,b(A) = T ′ := {A ∈ Sn,3,k : |A ∩ T | ≥ 2},

where T := [3] × {k′} and k′ ∈ [k]. Since A 6= ∆a,b(A), there exists A∗ ∈ A\∆a,b(A)

such that A′ := δa,b(A
∗) ∈ ∆a,b(A)\A. Since A′ ∈ T ′, |A′ ∩ T | ≥ 2. Thus, since

(a, 1) ∈ A′, we have (a, 1) ∈ T because otherwise we get |A∗ ∩ T | ≥ |A′ ∩ T | = 2

contradicting A∗ /∈ ∆a,b(A) = T ′. So a ∈ [3], k′ = 1 and T ′ = T := Tn,3,k. We may

assume that a = 1.

Let A1 := A((1, 1)), A′
1 := A〈(1, 1)〉, A2 := A((1, b)), A′

2 := A〈(1, b)〉, A0 :=

A\(A1 ∪ A2). Let Z := [2, 3] × [1]. Since ∆1,b = T , we clearly have A0 = {A ∈

Sn,3,k]{(1, 1), (1, b)}[ : Z ⊂ A}, A′
1 ∪ A′

2 = S([2,n]
2 ),k(Z), A′

1 ∩ A′
2 = {Z}, |A′

1| + |A′
2| =

|S([2,n]
2 ),k(Z)| + 1. By Theorem 6.1.1, it follows that for some i ∈ [2], A′

i = {Z} and

A′
3−i = S([2,n]

2 ),k(Z). Since A = A0 ∪ A1 ∪ A2, we thus have A = {A ∈ Sn,3,k : A ∩

({(1, b)} ∪ Z) 6= ∅} ∼= T or A = T . Since A 6= ∆a,b(A) = T , the former holds. 2

Lemma 6.3.4 Let a ∈ [4], b ∈ [2, k] and k ≥ 3. Suppose A is an intersecting sub-

family of S4,4,k and A 6= ∆a,b(A) ∼= T4,4,k. Then A ∼= T4,4,k.

Proof. By the argument in the proof of Lemma 6.3.3, we may assume that a = 1

and ∆1,b(A) = T := T4,4,k. Taking Z, A0, A1, A′
1, A2 and A′

2 to be as in the proof of

Lemma 6.3.3, we now (similarly) have

A0 = {A ∈ S4,4,k]{(1, 1), (1, b)}[ : Z ⊂ A}, (6.9)

A′
1 ∪ A′

2 = S ′ := S([2,4]
3 ),k(Z), (6.10)

A′
1 ∩ A′

2 = {Z ∪ {(4, k′)} : k′ ∈ [k]}. (6.11)
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For j = 1, 2, let jS ′ := {A′ ∈ S ′ : |A ∩ Z| = j} and jA′
i := {A′

i ∈ A′
i : |A ∩ Z| = j},

i = 1, 2. By (6.10) and (6.11),

1A′
1 ∪ 1A′

2 = 1S ′, (6.12)

2A′
1 = 2A′

2 = 2S ′. (6.13)

Suppose 1A′
1 6= ∅ and 1A′

2 6= ∅. For each i ∈ [2], let A′
i ∈ 1A′

i. Suppose that

A′
1 ∩ A′

2 ∩ Z = ∅. Then, for some i ∈ [2], k1, k2 ∈ [2, k] and k′, k′′ ∈ [k], we have

A′
i = {(2, 1), (3, k1), (4, k

′)} and A′
3−i = {(2, k2), (3, 1), (4, k′′)}; we may assume that

i = 1. Since A is intersecting, we have 1A′
1, 1A′

2 cross-intersecting, and hence k′ =

k′′. We have |[k]\{k′}| ≥ 2 as k ≥ 3. Let k3, k4 ∈ [k]\{k′}, k3 6= k4. By (13),

A′
3 := {(2, 1), (3, k1), (4, k3)} and A′

4 := {(2, k2), (3, 1), (4, k4)} are in A′
1 ∪ A′

2. Since

A′
2 ∩ A′

3 = ∅, we must have A′
3 ∈ A′

2. Similarly, A′
4 ∈ A′

1 as A′
1 ∩ A′

4 = ∅. But this is

a contradiction (to A intersecting) because A′
3 ∩ A′

4 = ∅. So A′
1 ∩ A′

2 = {z} for some

z ∈ Z, and hence, by the same argument, A′′
1 ∩ A′

2 = A′′
2 ∩ A′

1 = {z} for any A′′
1 ∈ 1A′

1

and A′′
2 ∈ 1A′

2. This gives us 1A′
1 ∪ 1A′

2 ⊆ S ′(z), a contradiction to (6.12).

Therefore, 1A′
1 = ∅ or 1A′

2 = ∅. Thus, since A = A0 ∪ A1 ∪ A2, it follows by (6.9),

(6.12) and (6.13) that A = {A ∈ S4,4,k : |A∩ ({(1, b)} ∪Z)| ≥ 2} ∼= T or A = T . Since

A 6= ∆a,b(A) = T , the former holds. 2

We now come to the proof of 6.1.2, in which we use the Hilton-Milner Theorem.

As in Chapter 3, we use Nn,r to denote the 'Hilton-Milner-type' family
(
[n]
r

)
(1)([2, r +

1]) ∪ {[2, r + 1]}.

Proof of Theorem 6.1.2. The result is trivial for r = 2 because a 2-uniform non-

centred intersecting family can only be of the form {{a, b}, {a, c}, {b, c}}. The case

k = 2 and r = n is also easy because for any A := {(a1, k1), ..., (an, kn)} ∈ Sn,n,2, the

unique set in Sn,n,2 that does not intersect A is {(a1, 3 − k1), ..., (an, 3 − kn)}; hence

an intersecting sub-family of Sn,n,2 can have size at most 2n−1 = |Nn,n,2|. So we now

assume that r ≥ 3 and (r, k) 6= (n, 2).
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Let N := Nn,r,k. We will assume that

|N | ≤ |A|. (6.14)

Let A∗ := ∆n,k ◦ ...◦∆n,2◦ ...◦∆1,k ◦ ...◦∆1,2(A). So |A∗| = |A|. By Lemma 5.3.1, A∗ is

intersecting. By (6.14) and Lemma 6.3.1, A∗ is non-centred. By Lemmas 6.3.2 - 6.3.4,

if A∗ ∼= N or A∗ ∼= Tn,3,k or A∗ ∼= T4,4,k then A ∼= N or A ∼= Tn,3,k or A ∼= T4,4,k. We

may therefore assume that A = A∗. Taking X := [n]× [1], Corollary 5.3.2 gives us

A1 ∩ A2 ∩X 6= ∅ for any A1, A2 ∈ A. (6.15)

De�ne A(q) := {A ∈ A : |A ∩X| = q} and A(q)
X := {A ∩X : A ∈ A(q)}; de�ne N (q)

and N (q)
X similarly. By (6.15),

⋃r
q=1A(q) is a partition for A. De�ne wq as in the proof

of Theorem 6.1.1. So

|A| =
r∑
q=1

|A(q)| ≤
r∑
q=1

|A(q)
X |wq, |N | =

r∑
q=1

|N (q)| =
r∑
q=1

|N (q)
X |wq. (6.16)

By considering such partitions and summations, it is easy to check that |Tn,3,k| =

|Nn,3,k| and |T4,4,k| = |N4,4,k|. It remains to show that equality holds in (6.14) and that

A ∈ {Nn,r,k, Tn,3,k, T4,4,k}.

Let AX :=
⋃r
p=1A

(q)
X . Since A is non-centred, it follows by (6.15) that

AX is non-centred. (6.17)

An immediate implication of (6.15) and (6.17) is that

A(1)
X = ∅ = N (1)

X . (6.18)

Consider 2 ≤ p ≤ min{r, n/2}. If A(p)
X is non-centred then, by Theorem 1.2.2, we

have |A(p)
X | ≤ |Nn,p|, and hence |A(p)

X | ≤ |N (p)
X |; note that if p = r then |Nn,p| = |N (p)

X |,

and if p < r then |Nn,p| < |N (p)
X | unless p = 2, A(2)

X
∼=
(
[3]×[1]

2

)
and either r = 3 or

r = 4 = n. Now suppose A(p)
X is centred and x ∈

⋂
A∈A(p)

X
A. By (6.17), there exists
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B ∈ AX such that x /∈ B. Thus, by (6.15), A(p)
X ⊆

(
X
p

)
(x)(B), and hence |A(p)

X | ≤ |N (p)
X |

with equality only if p < r and A(p)
X
∼= N (p)

X .

Therefore, we have just shown that

|A(p)
X | ≤ |N (p)

X |, p = 1, ...,min{r, bn/2c}; (6.19)

p ≤ min{r, n/2}, p < r, |A(p)
X | = |N (p)

X |, A(p)
X � N (p)

X

⇒ p = 2, min{r, n− 1} = 3, A(p)
X =

(
T

2

)
for some T ∈

(
X

3

)
. (6.20)

Case I : r ≤ n/2 (so n ≥ 6 as r ≥ 3). Then, by (6.14), we have equalities in (6.19).

By (6.20), it follows that either A(2)
X
∼= N (2)

X or r = 3 and A(2)
X
∼=
(
T
2

)
(T ∈

(
X
3

)
).

Suppose A(2)
X

∼= N (2)
X . Then A(2)

X =
(
X
2

)
(x)(A∗) for some set A∗ ∈

(
X\{x}
r

)
. Let

B := Sn,r,k(x)(A∗) ∪ {A∗}. Clearly, for any C ∈ Sn,r,k\B there exists A ∈ A(2)
X such

that A∩C = ∅; thus, by (6.15), A ⊆ B. Since B ∼= N , it follows by (6.14) that A = B.

Now suppose r = 3 and A(2)
X
∼=
(
T
2

)
(T ∈

(
X
3

)
). Let T ′ := {A ∈ Sn,3,k : |A∩T | ≥ 2}.

Clearly, for any C ∈ Sn,r,k\T ′ (i.e. |C ∩ T | ≤ 1) there exists A ∈ A(2)
X such that

A ∩ C = ∅; thus, by (6.15), A ⊆ T ′. Since |T ′| = |Nn,3,k|, it follows by (6.14) that

A = T ′. So A ∼= Tn,3,k.

Case II: r > n/2. Suppose n = r = 3. Then, by (6.17), (6.18) and A(3)
X ∈ {∅, X},

we clearly must have A(2)
X
∼=
(
[3]×[1]

2

)
. By the argument in Case I, A ⊆ T3,3,k. Since

T3,3,k = N3,3,k, it follows by (6.14) that A = N3,3,k.

We now consider n ≥ 4. Let n − r ≤ p ≤ n/2. Note that since we are assuming

(r, k) 6= (n, 2),

wp ≥ wn−p with strict inequality if p < n/2. (6.21)

By (6.15), for any A ∈ A(p)
X and B ∈ A(n−p)

X , we cannot have A = X\B; therefore

|A(p)
X |+ |A(n−p)

X | ≤
(

n

n− p

)
= |N (p)

X |+ |N (n−p)
X | (6.22)

(note that if p > n − r then N (p)
X =

(
X
p

)
((1, 1)) and N (n−p)

X =
(
X
n−p

)
((1, 1)), and if

p = n − r then N (p)
X =

(
X
p

)
((1, 1))\{X\([2r + 1] × [1])} and N (n−p)

X =
(
X
n−p

)
((1, 1)) ∪
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{[2r + 1]× [1]}). We have

|A(p)|+ |A(n−p)| = |A(p)
X |wp + |A(n−p)

X |wn−p

≤ |N (p)
X |wp + (

(
n

n− p

)
− |N (p)

X |)wn−p (by (6.19), (6.21), (6.22))

= |N (p)
X |wp + |N (n−p)

X |wn−p = |N (p)|+ |N (n−p)|. (6.23)

Suppose n − r ≤ 2. Then, by (6.16), (6.19) and (6.23), |A| ≤ |N | with equality

only if equality holds in (6.23). By (6.14), equality holds in (6.23) indeed. Note

that we therefore have |A(2)
X | = |N (2)

X | by (6.21). By (6.20), either A(2)
X

∼= N (2)
X or

min{r, n − 1} = 3 and A(2)
X
∼=
(
T
2

)
(T ∈

(
X
3

)
). By the argument in Case I, it follows

that A ∼= N or A ∼= Tn,r,k, and the latter holds only if r = 3 or n = r = 4.

Finally, suppose n− r > 2 instead. By (6.16), (6.19) (for p = 1, 2, ..., n− r− 1) and

(6.23) (for p = n− r, ..., bn/2c), |A| ≤ |N | with equality i� equality holds in (6.19) for

p = 1, 2, ..., n− r− 1 and in (6.23) for p = n− r, ..., bn/2c. By (6.14), |A| = |N |. Since

we thus have equality in (6.19) for p = 2, it follows by (6.20) that either A(2)
X
∼= N (2)

X

or r = 3 (note that n− 1 > 3 as n− r > 2 and r ≥ 3) and A(2)
X
∼=
(
T
2

)
(T ∈

(
X
3

)
). As

above, this yields A ∼= N or A ∼= Tn,3,k. 2

6.4 Conjecture 5.1.1 is true for k ≥ k0(F)

Let F be a family. It is trivial that if α(F) = 1 then SF ,k is strictly EKR for all k.

If α(F) = 2, k ≥ 2 and A is a non-centred intersecting sub-family of SF ,k, then A

can only be a triangle {A ∈ SF ,k : |A ∩ {(a1, k1), (a2, k2), (a3, k3)}| = 2} for some dis-

tinct a1, a2, a3 ∈ U(F), and hence the centred sub-family {{(a1, k1), (a
′, k′)} : (a′, k′) ∈

({a2} × [k]) ∪ ({a3} × [k])} of SF ,k is larger than A. This proves Conjecture 5.1.1 for

families F with α(F) ≤ 2.

We now consider families F with α(F) ≥ 3, and we give the two proofs, mentioned

in Section 6, of the fact that there exists an integer k0(F) such that Conjecture 5.1.1 is

true if k ≥ k0(F). We then compare the two bounds that come out of the two proofs.

The following is an ingredient common to both proofs.
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Lemma 6.4.1 Let n, k ∈ N, k ≥ 3. Let bn,k ∈ N such that for all r ∈ [n], the size

of a largest non-centred intersecting sub-family of S[r],k is not greater than bn,k. Let F

be a family with α(F) ≤ n, and let A be a non-centred intersecting sub-family of SF ,k.

Then |A ∩ SX,k| ≤ bn,k for all X ∈ F .

Proof. Let X ∈ F , and let AX := A∩SX,k. If AX is non-centred then |AX | ≤ bn,k is a

simple consequence of having α(F) ≤ n. So supposeAX is centred, i.e. |
⋂
A∈AX

A| ≥ 1.

Case 1: |
⋂
A∈AX

A| = 1. Let (x, y) be the unique member of
⋂
A∈AX

A. Since A

is non-centred, there exists A∗ ∈ A such that (x, y) /∈ A∗. Let A′ := A∗ ∩ U(SX,k),

and choose A′′ ∈ SX,k such that (x, y) /∈ A′′ and A′ ⊂ A′′. Clearly, AX ∪ {A′′} is a

non-centred intersecting sub-family of SX,k, and hence |AX | ≤ bn,k − 1.

Case 2 : |
⋂
A∈AX

A| ≥ 2. Let I :=
⋂
A∈AX

A, and let (x1, y1), ..., (x|I|, y|I|) be the

distinct elements of I. Since I ⊆ A for any A ∈ AX , x1, ..., x|I| are distinct. If |I| = |X|

then I is the unique member of AX , so suppose |I| < |X|. Let x∗ ∈ X\{x1, ..., x|I|}. It

is easy to see that, given that k ≥ 3, we can choose two sets A1, A2 ∈ SX,k such that

A1 ∩ I = {x1, y1}, A2 ∩ I = {x2, y2} and A1 ∩ A2 = {(x∗, 1)}. So AX ∪ {A1, A2} is a

non-centred intersecting sub-family of SX,k, and hence |AX | ≤ bn,k − 2. 2

We now give the �rst proof, borrowing some ideas from the proof of Theorem 1.2.4

in [25].

Theorem 6.4.2 For a family F with α(F) ≥ 3, let k0(F) :=
(

n
bn/2c

)
(3n−3)n|F|+n+1

where n := α(F). Then SF ,k is strictly EKR for all k ≥ k0(F).

Proof. Let k ≥ k0 := k0(F), and let B be a non-centred intersecting sub-family of

S[n],k. We �rst show that there exists a set I of size at most 3n−3 such that |B∩I| ≥ 2

for any B ∈ B. If A is 2-intersecting then we take I to be a set in B. Now suppose

A is not 2-intersecting. Then there exist B1, B2 ∈ B such that |B1 ∩ B2| = 1. Let

b be the unique element of B1 ∩ B2. Since B is non-centred, there exists B3 ∈ A

such that b /∈ B3. Let I := B1 ∪ B2 ∪ B3. Since B is intersecting, B ∩ I 6= ∅ for all

B ∈ B. Suppose there exists B∗ ∈ B such that |B∗ ∩ I| = 1. Since B1 ∩ B2 = {b} and

B∗ ∩ Bi 6= ∅ for each i ∈ [2], we must then have B∗ ∩ (B1 ∪ B2) = {b}. Thus, by our
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supposition, B∗ ∩ I = {b}. But then B∗ ∩ B3 = ∅, a contradiction. So |B ∩ I| ≥ 2 for

all B ∈ B. Now |I| = |B1 ∪ B2| + |B3| − |B3 ∩ (B1 ∪ B2)|, and hence, by the above,

|I| = (2n− 1) + n− (|B3 ∩B1|+ |B3 ∩B2|) ≤ 3n− 3 as required.

Let J be the smallest set such that I ⊂ [n] × J . So 1 ≤ |J | ≤ 3n − 3. For each

i ∈ [2, n], let Bi := {B ∈ B : |B∩([n]×J)| = i}. So, by the above,
⋃n
i=2 Bi is a partition

for B. Let q be the quantity
∑n

i=2 |{A ∈ S[n],k : |A∩ ([n]×J)| = i}|. We therefore have

|B| =
n∑
i=2

|Bi| < q =
n∑
i=2

(
n

i

)
(|J |)i(k − |J |)n−i

<

n∑
i=2

(
n

i

)
(3n− 3)i(k − 1)n−i <

(
n

bn/2c

)
(3n− 3)n

n∑
i=2

(k − 1)n−i

=

(
k0(F)− n− 1

|F|

)(
1− (k − 1)n−1

1− (k − 1)

)
≤ (k − 1)n−1 − 1

|F|
.

Since n := α(F), it follows by Lemma 6.4.1 with bn,k = ((k − 1)n−1 − 1)/|F| that if A

is a non-centred intersecting sub-family of SF ,k then |A| ≤ (k − 1)n−1 − 1 and hence

|A| < kn−1. This concludes the proof because, since n := α(F) implies that there

exists a set X ∈ F of size n, the size of a largest star of SF ,k is at least as large as the

size kn−1 of a star of SX,k. 2

We now give the second proof, which is based on Theorem 6.1.2 with r = n.

Theorem 6.4.3 For a family F with α(F) ≥ 3, let k0(F) :=
((

n−1
b(n−1)/2c

)
+ 1
)
|F|+ 2

where n := α(F). Then SF ,k is strictly EKR for all k ≥ k0(F).

Proof. Let k ≥ k0 := k0(F). Let A be a non-centred intersecting sub-family of SF ,k.

For any X ∈ F , let AX := A ∩ SX,k.

By Lemma 6.4.1 with bn,k = |Nn,n,k| and Theorem 6.1.2 with r = n, we have
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|AX | ≤ |Nn,n,k| for all X ∈ F . Therefore,

|A| =
∑
X∈F

|AX | ≤
∑
X∈F

|N|X|,|X|,k| ≤
∑
X∈F

|Nn,n,k|

= (kn−1 − (k − 1)n−1 + k − 1)|F|

= ((1 + (k − 1))n−1 − (k − 1)n−1 + k − 1)|F|

=

(
n−1∑
i=0

(
n− 1

i

)
(k − 1)n−1−i − (k − 1)n−1 + k − 1

)
|F|

=

(
n−1∑
i=1

(
n− 1

i

)
(k − 1)n−1−i + k − 1

)
|F|

<

((
n− 1

b(n− 1)/2c

) n−1∑
i=1

(k − 1)n−1−i + k − 1

)
|F|

<

((
n− 1

b(n− 1)/2c

)
+ 1

)
1− (k − 1)n−1

1− (k − 1)
|F|

< (k0 − 2)
kn−1

k − 2
≤ kn−1.

Similarly to the proof of Theorem 6.4.2, this concludes the proof. 2

It is obviously clear that the value of k0(F) in Theorem 6.4.3 is signi�cantly better

than the one in Theorem 6.4.2. As we have shown, this improvement is the result of

removing a `non-delicate' argument borrowed from [25] and applying Theorem 6.1.2

instead.
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Chapter 7

t-intersecting families of signed sets

and partial permutations

7.1 Introduction

A natural question that arises from Conjecture 5.1.1 is whether a similar statement for

t-intersecting families of signed sets is true. Theorem 1.4.4 tells us that for k ≥ t+ 1,

ex(S[n],k; t) contains trivial t-intersecting families. Together with Conjecture 5.1.1, this

seems to suggest that for any family F and any k ≥ t + 1, ex(SF ,k; t) contains trivial

t-intersecting families. This is not true if t > 1. Indeed, consider (r− t+ 1)(2 + t−1
2

) <

n < (r− t+ 1)(t+ 1), and let G := {A ∈
(
[n]
r

)
: |A∩ [t+ 2]| ≥ t+ 1}. By Theorem 1.2.5

(with m = 1), |G| > |
(
[n]
r

)
[t]|. Let B := {A ∈ S[r],t+1 : |A ∩ ([t + 2] × [1])| ≥ t + 1}.

By Theorem 1.4.4 (with n = r and m = 0), |B| = |S[r],t+1[[t] × [1]]|. Taking A to be

the non-trivial t-intersecting family {A ∈ S([n]
r ),t+1

: |A ∩ ([t + 2] × [1])| ≥ t + 1}, we

therefore get

|A| − |S([n]
r ),t+1

[[t]× [1]]| = |G||B| − |
(

[n]

r

)
[t]||B| > 0,

which proves what we set out to show.

However, we suggest the following conjecture.

Conjecture 7.1.1 For any t there exists k0(t) ∈ N such that for any family F with
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α(F) ≥ t and any k ≥ k0(t), the largest t-intersecting sub-families of SF ,k are trivial.

The example that we gave above simply proves that if t > 1 and k0(t) exists then

k0(t) > t + 1. We are able to prove the following relaxation of the statement of the

conjecture.

Theorem 7.1.2 For t ≤ r there exists k0(r, t) ∈ N such that for any family F with

t ≤ α(F) ≤ r and any k ≥ k0(r, t), the largest t-intersecting sub-families of SF ,k are

trivial.

We in fact show that k0(r, t) can be taken to be
(
r
t

)(
r
t+1

)
.

We next pose a similar problem for t-intersecting sub-families of S∗F ,k.

Conjecture 7.1.3 For any t there exists k∗0(t) ∈ N such that for any family F with

α(F) ≥ t and any k ≥ k∗0(t), the largest t-intersecting sub-families of S∗F ,k are trivial.

This generalises Conjecture 1.5.3: take F = {[k]}, k ≥ k∗0(t). We are able to prove the

following analogue of Theorem 7.1.2.

Theorem 7.1.4 For t ≤ r there exists k∗0(r, t) ∈ N such that for any family F with

t ≤ α(F) ≤ r and any k ≥ k∗0(r, t), the largest t-intersecting sub-families of S∗F ,k are

trivial.

The value we compute for k∗0(r, t) is
(
r
t

)(
3r−2t+1
b 3r−2t+1

2
c

)
r!

(r−t−1)!
+ r + 1. Theorem 1.5.4 is an

immediate consequence of this result: take F =
(
[k]
r

)
, k ≥ k∗0(r, t).

We now proceed to the proofs of the two theorems above, employing the notation

in Section 2.1 as we go along.

7.2 t-intersecting families of signed sets

We shall base the proof of Theorem 7.1.2 on the compression technique. We point

out that this can be avoided using an argument similar to the one for Theorem 7.1.4;

however, the compression technique enables us to obtain a neater proof and a better

value for k0(r, t).

For (a, b) ∈ [n]× [2, k], let the compression ∆a,b be as de�ned in Section 5.4.
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Lemma 7.2.1 Let F ⊆ 2[n], k ≥ 3 and (a, b) ∈ [n]× [2, k]. Suppose A is a non-trivial

t-intersecting sub-family of SF ,k and ∆a,b(A) ⊆ SF ,k[Z] for some Z ∈
(
[n]×[k]

t

)
. Then

|A| < |SF ,k[Z]|.

Proof. Let Y := {z : (z, l) ∈ Z for some l ∈ [k]}. Given that ∆a,b(A) ⊆ SF ,k[Z],

A ⊂ SF [Y ],k and, since A is non-trivial, there exists A2 ∈ A such that |A2 ∩ Z| = t− 1

and Z ⊆ A1 := δa,b(A2). So (a, 1) ∈ Z and Z ′ := Z\{(a, 1)} ⊂ A for all A ∈ A. Let

Y ′ := Y \{a}. Setting F ′ := {F\Y ′ : F ∈ F [Y ′]} and A′ := {A\Z ′ : A ∈ A[Z ′]}, we

then have A′ ⊂ SF ′(a),k (as A ⊂ SF [Y ],k and Y = Y ′∪{a}) and |A′| = |A|. Since A is a

non-trivial t-intersecting family and |Z ′| = t− 1, A′ is a non-trivial intersecting family.

For F ′ ∈ F ′(a), let A′
F ′ := A′ ∩ SF ′,k. Since A′ is intersecting, A′

F ′ is intersecting.

Suppose A′
F ′ 6= ∅. If A′

F ′ is non-trivial then, Theorem 1.4.1 or Theorem 6.1.2, |A′
F ′| <

k|F
′|−1. Suppose A′

F ′ is trivial; so A′
F ′ ⊆ SF ′,k((c, d)) for some (c, d) ∈ F ′× [k]. Since A′

is non-trivial, there exists A′ ∈ A′ such that (c, d) /∈ A′. Thus, since A′ is intersecting,

we actually have A′
F ′ ⊆ {A ∈ SF ′,k((c, d)) : A ∩ A′ 6= ∅}, and hence we again get

|A′
F ′| < k|F

′|−1.

We therefore have

|A| = |A′| =
∑

F ′∈F ′(a)

|A′
F ′| <

∑
F ′∈F ′(a)

k|F
′|−1 =

∑
F∈F [Y ]

k|F |−t,

and the result follows since
∑

F∈F [Y ] k
|F |−t = |SF ,k[Z]|. 2

Proof of Theorem 7.1.2. Let F be a family with t ≤ α(F) ≤ r. We may as-

sume that F ⊆ 2[n] for some n ∈ N. Let k ≥ k0(r, t) :=
(
r
t

)(
r
t+1

)
, and let A∗ be a

non-trivial t-intersecting sub-family of SF ,k.

Let A := ∆n,k ◦ ... ◦ ∆n,2 ◦ ... ◦ ∆1,k ◦ ... ◦ ∆1,2(A∗). So A ⊂ SF ,k and |A| = |A∗|.

Also, setting X := [n]× [1], it follows by Corollary 5.3.2 that

|A ∩B ∩X| ≥ t for any A,B ∈ A. (7.1)

Suppose A is a trivial t-intersecting family, i.e. A ⊆ SF ,k[Y ] for some Y ∈
(
S
t

)
,
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S ∈ SF ,k. By Lemma 7.2.1, we then have |A∗| < |SF ,k[Y ]|, and hence we are done.

Now suppose A is a non-trivial t-intersecting family. If |A′ ∩ X| = t for some

A′ ∈ A then, by (7.1), A′ ∩ X ⊆ A for all A ∈ A, which contradicts A non-trivial.

So |A ∩X| ≥ t + 1 for all A ∈ A, and hence we obtain a crude bound for the size of

AF := A ∩ SF,k (F ∈ F) as follows:

|AF | ≤ |{A ∈ SF,k : |A ∩ (F × [1])| ≥ t+ 1}| <
(
|F |
t+ 1

)
k|F |−t−1. (7.2)

Let B ∈ A. Since A is t-intersecting (by (7.1)), each A ∈ A must contain at least

one of the sets in
(
B
t

)
, and hence A =

⋃
C∈(B

t )
A[C]. Choose C∗ ∈

(
B
t

)
such that

|A[C]| ≤ |A[C∗]| for all C ∈
(
B
t

)
. We then have

|A| = |
⋃

C∈(B
t )

A[C]| ≤
∑
C∈(B

t )

|A[C]| ≤
(
|B|
t

)
|A[C∗]| ≤

(
r

t

)
|A[C∗]|. (7.3)

Set G := {F ∈ F : A[C∗] ∩ SF,k 6= ∅} and C :=
⋃
G∈G SG,k[C∗]. Bringing all the

pieces together, we get

|C| =
∑
G∈G

k|G|−t ≥
∑
G∈G

k0(r, t)k
|G|−t−1 =

∑
G∈G

(
r

t

)(
r

t+ 1

)
k|G|−t−1

>

(
r

t

)∑
G∈G

|AG| (by (7.2))

≥
(
r

t

)
|A[C∗]| ≥ |A|, (by (7.3))

and hence |A∗| < |C| ≤ |SF ,k[C∗]| as |A∗| = |A|. 2

7.3 t-intersecting families of partial permutations

The proof of Theorem 7.1.4 is based on ideas from the preceding section and ideas

used by Erd®s, Ko and Rado [25] for their result concerning t-intersecting sub-families

of
(
[n]
r

)
. Unfortunately, the compression technique fails to work for intersecting sub-

families of S∗[n],k.

Let l(n, k, t) be the size of a largest non-trivial t-intersecting sub-family of S∗[n],k,
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and let Pj := {(i, i) : i ∈ [j]}.

Lemma 7.3.1 For c, n, t ∈ N, t ≤ n, let k∗0(c, n, t) := c
(

3n−2t+1
b 3n−2t+1

2
c

)
n!

(n−t−1)!
+n+1. Then

for any k ≥ k∗0(c, n, t),

|S∗[n],k[Pt]| > cmax{l(n, k, t), |S∗[n],k[Pt+1]|}.

Proof. The result is trivial if n = t, so we assume that n ≥ t+1. Let k ≥ k∗0(c, n, t), and

let A ⊂ S∗[n],k be a non-trivial t-intersecting family of size l(n, k, t). Choose A1, A2 ∈ A

such that |A1 ∩ A2| ≤ |A ∩B| for all A,B ∈ A.

Suppose |A1 ∩ A2| ≥ t + 1. Let (i∗, j∗) ∈ [n] × [k] such that (i∗, j∗) ∈ A1 ∩ A2.

Let j′ ∈ [k] such that (i, j′) /∈ A1 ∪ A2 for all i ∈ [n] (note that such a j′ exists

since k ≥ k∗0(c, n, t) > |A1 ∪ A2|). Let A′
1 := (A1\{(i∗, j∗)}) ∪ (i∗, j′). By choice of

j′, A′
1 ∈ S∗[n],k. Let A′ := A ∪ A′

1. Since |A′
1 ∩ A2| < |A1 ∩ A2|, it follows by choice

of A1 and A2 that A′
1 /∈ A, and hence |A′| = |A| + 1. Also by choice of A1 and A2,

we have |A ∩ B| ≥ t + 1 for all A,B ∈ A, which implies that A′ is t-intersecting.

Since A ⊂ A′ and A is non-trivially t-intersecting, |
⋂
A′∈A′ A

′| ≤ |
⋂
A∈AA| < t. So

A′ is a non-trivial t-intersecting sub-family of S∗[n],k of size greater than |A|; but this

contradicts |A| = l(n, k, t). We therefore conclude that |A1 ∩ A2| = t. Thus, since A

is non-trivially t-intersecting, there exists A3 ∈ A such that A1 ∩ A2 * A3, and hence

|A1 ∩ A2 ∩ A3| < t.

Let I := A1∪A2∪A3. Suppose there exists A∗ ∈ A such that |A∗∩I| < t+1. Since

|A1 ∩ A2| = t and |A∗ ∩ Ai| ≥ t for each i ∈ [2], we must then have A∗ ∩ (A1 ∪ A2) =

A1∩A2. Thus, by our supposition, A∗∩I = A1∩A2. But then A∗∩A3 = A1∩A2∩A3,

which gives the contradiction that |A∗ ∩ A3| < t. Therefore

|A ∩ I| ≥ t+ 1 for all A ∈ A. (7.4)

Now |I| = |A1∪A2|+|A3|−|A3∩(A1∪A2)|. Since |A1∪A2| = 2n−|A1∩A2| = 2n−t

and |A3∩(A1∪A2)| = |A3∩A1|+|(A3∩A2)\A1| ≥ t+(t−|A3∩A2∩A1|) ≥ 2t−(t−1) =
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t+ 1, it follows that

|I| ≤ (2n− t) + n− (t+ 1) = 3n− 2t− 1.

Taking J to be the smallest set such that I ⊂ [n]× J , we then have

n ≤ |J | ≤ 3n− 2t− 1.

For each i ∈ [t+ 1, n], let Ai := {A ∈ A : |A ∩ ([n]× J)| = i}. By (7.4),
⋃n
i=t+1Ai

is a partition for A. Let x :=
∑n

i=t+1 |{A ∈ S∗[n],k : |A ∩ ([n] × J)| = i}|. We therefore

have

l(n, k, t) = |A| =
n∑

i=t+1

|Ai| < x =
n∑

i=t+1

(
|J |
i

)(
n

i

)
i!

(
k − |J |
n− i

)
(n− i)!

<
n∑

i=t+1

(
3n− 2t+ 1

i

)(
n

i

)
i!

(
k − n

n− i

)
(n− i)!

≤
n∑

i=t+1

(
3n− 2t+ 1

i

)
n!

(n− i)!
(k − n)(n−i)

≤
(

3n− 2t+ 1

b3n−2t+1
2

c

)
n!

(n− t− 1)!

n∑
i=t+1

(k − n)(n−i)

=

(
k∗0(c, n, t)− n− 1

c

)(
1− (k − n)n−t

1− (k − n)

)
≤ (k − n)n−t − 1

c

<
1

c

(
(k − t)!

(k − n)!

)
=
|S∗[n],k[Pt]|

c
.

The result now follows since we also have |S∗[n],k[Pt+1]| < x. 2

Proof of Theorem 7.1.4. Let F be a family with t ≤ α(F) ≤ r. Let k∗0(
(
r
t

)
, n, t) be

as in the statement of Lemma 7.3.1 with c =
(
r
t

)
. Let

k ≥ k∗0(r, t) := max{k∗0(
(
r

t

)
, n, t) : n ∈ [r]}. (7.5)

Note that therefore k∗0(r, t) = k∗0(
(
r
t

)
, r, t). Let A be a non-trivial t-intersecting sub-

family of S∗F ,k. So A ⊆ S∗F(≥t),k
, and we may therefore assume that F = F (≥t).

For any F ∈ F and any family B ⊆ S∗F ,k, set BF := B∩S∗F,k. For all F ∈ F , choose
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F ′ ∈ S∗
(F

t ),k
. We show that for all F ∈ F ,

(
r

t

)
|AF | < |S∗F,k[F ′]|. (7.6)

IfAF is non-trivially t-intersecting then this follows immediately from (7.5) and Lemma

7.3.1. Now suppose AF is a trivial t-intersecting family. Setting T :=
⋂
A∈AF

A,

we then have |T | ≥ t. If |T | ≥ t + 1 then (7.6) again follows immediately from

(7.5) and Lemma 7.3.1. It remains to consider |T | = t. Since A is a non-trivial t-

intersecting family, there exists A1 ∈ A such that T * A1 and hence |T ∩A1| < t. Let

D1 := A1 ∩ (F × [k]). Let F1 be the subset of F such that D1 ∈ S∗F1,k
. Let E2 be the

subset of F such that T ∈ S∗E2,k
. Let F2 := E2\F1, and let T ′ be the set in S∗F2,k

given

by T ′ := T ∩ (F2 × [k]). If T ′ 6= ∅ and (x1, y1), ..., (x|T ′|, y|T ′|) are the distinct elements

of T ′ then take D2 := {(xi, yi + 1 mod k) : i ∈ [|T ′|]}; otherwise take D2 := ∅. Let

F3 := F\(F1 ∪F2). If F3 6= ∅ then take D3 to be a set in S∗F3,k
; otherwise take D3 := ∅.

Now let A2 := D1 ∪D2 ∪D3. Clearly, A2 ∈ S∗F,k. Therefore AF ∪ {A2} is a non-trivial

t-intersecting sub-family of S∗F,k because |
⋂
A′∈AF∪{A2}A

′| = |T ∩ A2| = |T ∩ D1| =

|T ∩ A1| < t and for all A ∈ AF , |A2 ∩ A| ≥ |D1 ∩ A| = |A1 ∩ A| ≥ t. By (7.5) and

Lemma 7.3.1, it follows that
(
r
t

)
|AF ∪ {A2}| < |S∗F,k[F ′]|, and hence (7.6).

Now, as in the proof of Theorem 7.1.2, by choosing B ∈ A and C∗ ∈
(
B
t

)
such that

|A[C]| ≤ |A[C∗]| for all C ∈
(
B
t

)
, we get

|A| ≤
(
r

t

)
|A[C∗]|. (7.7)

Set G := {F ∈ F : A[C∗] ∩ S∗F,k 6= ∅} and C :=
⋃
G∈G S∗G,k[C∗]. Bringing all the

pieces together, we get

|S∗F ,k[C∗]| ≥ |C| =
∑
G∈G

|CG| >
∑
G∈G

(
r

t

)
|AG| ≥

(
r

t

)
|A[C∗]| ≥ |A|,

where the strict inequality and the last inequality follow by (7.6) and (7.7) respectively.

Hence result. 2

98



Chapter 8

The Erd®s-Ko-Rado properties of set

systems de�ned by double partitions

8.1 Introduction

A double partition P of a �nite set V is a partition of V into large sets Vi (0 ≤ i ≤ n)

(the top partition), each partitioned into ki small sets Vi1, . . . , Viki
. The family V(P)

induced by P is the family of subsets of V that intersect each large set in at most one of

its small sets. Note that S2[n],k can be re-formulated as V(P) with ki = k and |Vij| = 1

for all i ∈ [n] and j ∈ [k].

Here, we are interested in the EKR and strict EKR properties of V(P)(r) for di�erent

values of r, particularly for r ≤ µ(V(P))/2.

Let P be a double partition. Throughout the chapter, we shall assume that for

0 ≤ i ≤ n, the small sets Vij are presented in non-increasing order of size: |Vi1| ≥ |Vi2| ≥

. . . ≥ |Viki
| ≥ 1. Note that therefore µ(V(P)) =

∑k
i=0 |Viai

| and α(V(P)) =
∑k

i=0 |Vi1|.

The elements of each small set Vij are given some arbitrary ordering and denoted by

vij1, . . . , vijaij
, where aij = |Vij|.

The case V = V0, k0 = 1 gives V(P) = 2V . The EKR properties for this particularly

simple case are therefore given by the EKR Theorem and the Hilton-Milner Theorem

(see Section 1.2).

The EKR problem for the case when the small sets are singletons has attracted
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much attention. Theorem 1.4.3 solves the problem completely for the case when,

furthermore, the large sets are non-singleton sets of the same cardinality.

Theorem 8.1.1 (Theorem 1.4.3 rephrased) Let P be a double partition of V into

n large sets each of cardinality k ≥ 2, where each small set is a singleton. Then, for

each r ∈ [n],

(i) V(P)(r) is EKR, and

(ii) strictly so unless k = 2 and r = n ≥ 3.

Holroyd, Spencer and Talbot [40] extended Theorem 8.1.1(i) as follows.

Theorem 8.1.2 (Holroyd, Spencer, Talbot [40]) Let P be a double partition of V

into n large sets each of cardinality at least 2, where each small set is a singleton. Then

V(P)(r) is EKR for all r ∈ [n].

The case r = n is given by Theorem 1.4.1(i), and it is easy to see that this special case

implies that V(P)α(V(P)) is EKR for any partition P.

For the case when all small sets are again singletons and at least one large set is

also a singleton, Bey [4] and Holroyd, Spencer and Talbot [40] independently obtained

the following generalisation of the EKR Theorem.

Theorem 8.1.3 (Bey [4], Holroyd, Spencer, Talbot [40]) Let P be a double par-

tition of V into n large sets, where at least one large set is a singleton and each small

set is a singleton. Then V(P)(r) is EKR if r ≤ n/2.

For r > n/2, Bey [4] determined a list of families such that ex(V(P)(r)) must contain a

member in the list.

A slightly stronger version of Theorem 3.1.4 of Holroyd and Talbot [41] and Theo-

rem 3.1.5 may be combined in the following statement for the case when the small sets

are not necessarily singletons but there are just two large sets.

Theorem 8.1.4 Let P be the double partition V = V0 ∪ V1 with k1 > 1.

(i) If r ≤ µ(V(P))/2 then V(P)(r) is EKR;

(ii) if r < µ(V(P))/2 then V(P)(r) is strictly EKR;
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(iii) if r = µ(V(P))/2 and k0 = 1 then V(P)(r) fails to be strictly EKR i� 3 ≤ |V0| ≤ r

and µ(V(P)) = α(V(P)).

Note that if k0 = 1 then we get Theorems 3.1.4 and 3.1.5. Only when n = 1, as in the

result above, the problem immediately reduces to the one with k0 = 1; see [41]. We

recall from Chapter 3 that for this "reduced" problem, the family {V0∪V11, ..., V0∪V1a1}

of maximal sets of V(P) is a sun�ower.

The main contribution of the present chapter is to develop the method used in

[41] to allow us to prove quite a general result concerning double partitions. Before

proceeding, we note that there is a considerable di�erence between the case when there

is a set Vi that is not further partitioned (that is, Vi is both a large and a small set, so

ki = 1) and the case where this is not so. This requires the following modi�cation of

our notation.

Suppose that for some non-empty S ⊆ [n] and for all i ∈ S, ki = 1. Then replacing

the large sets Vi, i ∈ S, by the single large set
⋃
i∈S Vi does not alter V(P). Thus

we adopt the following convention: The set V0 is the unique large set that is trivially

partitioned (i.e., also a small set), and also the only large set that is allowed to be

empty. We say that P is anchored if V0 6= ∅, and unanchored if V0 = ∅. A double

partition that is given to be unanchored may, if convenient, be described by a top

partition V =
⋃n
j=1 Vi and the empty V0 ignored.

The width of a double partition P is the number of non-trivially partitioned large

sets.

Our main theorem concerns anchored double partitions and is as follows.

Theorem 8.1.5 Let P be an anchored double partition of width n > 0. Let 1 ≤ r ≤

µ(P)/2. Then:

(i) V(P)(r) is EKR;

(ii) V(P)(r) fails to be strictly EKR i� 2r = µ(V(P)) = α(V(P)), 3 ≤ |V0| ≤ r, n = 1.

Clearly, this result signi�cantly generalises Theorems 8.1.3 and 8.1.4 (recall that Theo-

rem 8.1.4 follows immediately from the statement of Theorem 8.1.5 with n = 1). Unlike

Theorems 8.1.1 and 8.1.2, this result in general does not hold for µ(P)/2 < r < α(P);
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examples can be constructed easily, especially for anchored partitions of width 1 (see

[41]).

Removing the anchor condition from Theorem 8.1.5 seems to make the problem

much harder. However, in the special case of an unanchored double partition of width

3 where all the Vij have the same cardinality, we have the following result.

Theorem 8.1.6 Let P be an unanchored double partition of width 3 such that every

small set is of size c. Then V(P)(r) is strictly EKR for all r ≤ µ(V(P))/2 = 3c/2.

8.2 Crossing sets

Let Y := {X0, X1, . . . , Xl} be a family of disjoint non-empty �nite sets, Y :=
⋃l
i=0Xi,

xi := |Xi| (0 ≤ i ≤ l), y := |Y |. A subset A of Y is a crossing set of Y if A∩Xi 6= ∅ for

i = 0, 1, ..., l. We denote by ×Y the family of crossing sets of Y ; thus, for l+1 ≤ m ≤ y,

×Y (m) is the family of crossing m-sets of Y . We denote |×Y (m)| by (x0, . . . , xl)
(m) or,

where the xi are clear from context, by y(m). These numbers mimic the behaviour of

the binomial coe�cients
(
y
m

)
in some respects; in particular, they have the following

property.

Lemma 8.2.1 If l + 1 ≤ m < y/2 and m < m′ ≤ y −m, then

y(m) ≤ y(m′)

with equality if and only if m′ = y −m and l = 0.

Proof. For each A ∈ ×Y(m) there are
(
y−m
m′−m

)
sets B ∈ ×Y(m′) that contain A (since

every m′-subset of Y containing A is also a crossing set). Moreover, any such set B

has at most
(
m′

m

)
subsets that belong to ×Y(m). Counting in two ways the pairs (A,B)

with A ∈ ×Y(m), B ∈ ×Y(m′), we obtain

y(m)

(
y −m

m′ −m

)
≤ y(m′)

(
m′

m

)
. (8.1)

Since
(
m′

m

)
=
(

m′

m′−m

)
, the inequality holds under the stated conditions and is strict

when m′ < y −m.
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Now consider the case m′ = y − m. If l = 0 then y(m) =
(
x0

m

)
=
(
x0

m′

)
= y(m′);

so assume l ≥ 1. We shall show that the inequality (8.1) is strict by �nding some

B ∈ ×Y(m′) having an m-subset A such that A /∈ ×Y(m).

There exists Xi ∈ Y such that |Xi| ≤ y/2. Let z := |Xi|. Choose B ∈ ×Y(m′)

such that |B ∩Xi| is as small as possible; that is, |B ∩Xi| = max{1,m′ − |Y \Xi|} =

max{1,m′ − y + z}. Then, since m < y/2, we conclude

|B ∩ (Y \Xi)| = min{m′ − 1, y − z} ≥ min{m′ − 1, y/2} ≥ m.

Therefore, there exists A ⊆ B ∩ (Y \Xi) with |A| = m. Then A /∈ ×Y(m), as

required. 2

Remark. We note that (8.1) still holds if we replace ×Y(m) by any subsetM of ×Y(m)

and ×Y(m′) by N := {B ∈ ×Y(m′) : A ⊂ B for some A ∈M}. Thus, by Hall's Marriage

Theorem [36], there is an injection f : ×Y(m) → ×Y(m′) such that A ⊂ f(A) for all

A ∈ ×Y (m).

Let l + 1 ≤ r ≤ y and v ∈ X0. We call a family ×Y(r)(v) a crossing r-star of Y . A

family F of crossing sets of Y is said to be strongly intersecting if A ∩B ∩X0 6= ∅ for

any A,B ∈ F .

We now prove an `EKR-type' theorem for strongly intersecting families of cross-

ing sets. (The proof is actually the most technically complex part of proving Theo-

rem 8.1.5.)

Theorem 8.2.2 Let Y := {X0, . . . , Xq} be a family of disjoint non-empty sets and let

Y :=
⋃q
i=0Xi, 2 ≤ q + 1 ≤ r ≤ |Y |/2. Then:

(i) the crossing r-stars with centres in X0 are extremal strongly intersecting sub-families

of ×Y(r);

(ii) these are the only extremal such families, unless 3 ≤ |X0| ≤ r = |Y |/2 and q = 1.

Proof. Let F be a strongly intersecting sub-family of ×Y(r). A necessary condition

for it to be extremal is that it be a maximal such family, and we may therefore assume

this. Let G := {A ∩X0 : A ∈ F}; then by maximality, F = {A ∈ ×Y(r) : A ∩X0 ∈ G}.
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Thus, for any P ∈ G with |P | = p and any crossing (r − p)-set Q of {X1, . . . , Xl},

we have P ∪Q ∈ F so that

|{A ∈ F : A ∩X0 = P}| = (x1, . . . , xq)
(r−p).

Similarly, let ×Y(r)(v) be a crossing r-star with v ∈ X0 and let H := {A∩X0 : A ∈
×Y(r)(v)}. For any P ∈ H with |P | = p we obtain

|{A ∈ Y (r)(v) : A ∩X0 = P}| = (x1, . . . , xq)
(r−p).

We shall denote (x1, . . . , xq) by x.

We thus have a weighted Erd®s-Ko-Rado problem to solve concerning intersecting

families of subsets of X0.

It is convenient to set w := x0 and x := y − w. Observe that for any crossing r-set

A of Y , we have s ≤ |A ∩X0| ≤ t, where s := max{1, r − x} and t := min{r − q, w}.

Thus, partitioning G and H by cardinality, and noting that |H(p)| =
(
w−1
p−1

)
, we need to

show that

t∑
p=s

|G(p)|x(r−p) ≤
t∑

p=s

(
w − 1

p− 1

)
x(r−p) (8.2)

and that, if G is non-centred, then the inequality is strict unless q = 1 and 3 ≤ w ≤

r = |Y |/2.

To establish (8.2), it is su�cient to show that:

1. if either p = t = w or p ≤ w/2, then

|G(p)|x(r−p) ≤
(
w−1
p−1

)
x(r−p)

(that is, |G(p)| ≤
(
w−1
p−1

)
);

2. if w/2 < p ≤ min{t− 1, w}, then

|G(p)|x(r−p) + |G(w−p)|x(r−(w−p)) ≤
(
w−1
p−1

)
x(r−p) +

(
w−1
w−p−1

)
xr−(w−p)).

Statement 1 follows easily since if p = w then
(
w−1
p−1

)
= 1 and G(p) is either empty or

consists of the single set X0, and if p ≤ w/2 then |G(p)| ≤
(
w−1
p−1

)
by the EKR Theorem.
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To prove Statement 2, observe that the strong intersection condition implies that no

set in G(p) can be the complement in X0 of a set in G(w−p), and hence |G(p)|+ |G(w−p)| ≤(
w
p

)
. Thus, for such a pair p, w − p:

|G(p)|x(r−p) + |G(w−p)|x(r−(w−p)) ≤
((

w

p

)
− |G(w−p)|

)
x(r−p) + |G(w−p)|x(r−(w−p)).

Since q ≤ w− p < y/2 and w− p < p ≤ y− (w− p), the conditions of Lemma 8.2.1

hold with l = q − 1, m = r − p, m′ = r − (w − p). Since the EKR Theorem gives

us |G(w−p)| ≤
(
w−1
w−p−1

)
=
(
w−1
p

)
, it follows that the maximum value of |G(p)|x(r−p) +

|G(w−p)|x(r−(w−p)) is obtained when |G(w−p)| =
(
w−1
p

)
= |H(w−p)| and |G(p)| =

(
w
p

)
−(

w−1
p

)
=
(
w−1
p−1

)
= |H(p)|, and unless x(r−p) = x(r−(w−p)), this is the only way to achieve

the maximum. This already veri�es (8.2) and hence part (i) of the theorem.

To prove part (ii) of the theorem, observe that (unless |X0| = 1, when the theorem

is trivial) p < w/2 for at least one p ∈ [s, t]. Thus, unless x(r−(w−p)) = x(r−p), we

know that G(p) is a star, say with centre v. Then every other set of G must intersect

each element of G(p), and hence F = ×Y(r)(v). So the only possibility for an extremal

non-star occurs when:

(a) x(r−(w−p)) = x(r−p) for every p ∈ [s, t] with p < w/2 < w − p;

(b) there is no p < w/2 with w − p > t.

By Lemma 8.2.1, (a) happens only if 2r−w = x (that is, r = |Y |/2) and q = 1. Clearly

we also require |X0| ≥ 3 in order to obtain a non-star for G. Finally, (b) requires w ≤ r,

and part (ii) is proved.

Finally, we note that if q = 1 and 3 ≤ |X0| ≤ r = |Y |/2 then we may construct

a non-star family A of crossing r-sets such that |A| = |×Y(r)(v)| (where v ∈ X0) as

follows. Let B := {A ∈ ×Y(r)(v) : A ∩ X0 = {v}}, C := {Y \A : A ∈ B}. Then de�ne

A := (×Y(r)(v)\B) ∪ C. 2

8.3 Double partitions and compressions

We shall now develop some further notation.

Let P be a double partition. Recall that, within each large set, the small sets are
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ordered by size. The set V0 and the small sets Vi1, 1 ≤ i ≤ n, are said to be the �oor

sets, while the remaining small sets Vij, 1 ≤ i ≤ n, 2 ≤ j ≤ ki, are said to be the upper

sets. The union of the �oor sets is said to be the �oor and is denoted by F .

We now de�ne the compressions that we will be used in the main proofs.

For i = 1, ..., n, j = 2, ..., ki, de�ne δi,j : V → V by δi,j(vijp) := vi1p (p = 1, ..., aij),

and δi,j(v) := v otherwise. Thus, each δi,j maps an upper set to the corresponding �oor

set and leaves all other small sets una�ected.

Let A ∈ V(P). We may denote {δi,j(x) : x ∈ A} by δi,j(A); note that δi,j(A) ∈ V(P).

De�ne the compression operation ∆i,j on sub-families A of V(P) by

∆i,j(A) := {δi,j(A) : A ∈ A} ∪ {A ∈ A : δi,j(A) ∈ A}.

The following lemma outlines the fundamental properties of ∆i,j(A).

Lemma 8.3.1 Let A be an intersecting sub-family of V(P). Then

(i) ∆i,j(A) ⊆ V(P).

(ii) |∆i,j(A)| = |A|,

(iii) ∆i,j(A) is intersecting,

(iv) if V ′ is a union of upper sets of V(P) such that (A ∩B)\V ′ 6= ∅ for all A,B ∈ A,

then (C ∩D)\(V ′ ∪ Vij) 6= ∅ for all C,D ∈ ∆i,j(A).

Proof. (i) and (ii) are straightforward, and (iii) follows from (iv) by setting V ′ = ∅.

We now prove (iv).

Let C,D ∈ ∆i,j(A). If C /∈ A, let A ∈ A such that δi,j(A) = C. If D ∈ A,

let G := δi,j(D) (note that in this case G ∈ A); otherwise, let B ∈ A such that

δi,j(B) = D.

If at least one of C,D belongs to A, we may assume D ∈ A. If also C ∈ A

then (C ∩ D)\(V ′ ∪ Vij) ⊇ (C ∩ G)\V ′ (since G ∩ Vij = ∅), and C,G ∈ A; hence

(C ∩D)\(V ′ ∪ Vij) 6= ∅. If C /∈ A then (C ∩D)\(V ′ ∪ Vij) ⊇ (A ∩G)\V ′ 6= ∅.

If C,D /∈ A then (A ∩ B)\V ′ 6= ∅; moreover, C ∩ D = δi,j(A ∩ B) and hence

(C ∩D)\(V ′ ∪ Vij) 6= ∅. 2
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Lemma 8.3.2 Let A∗ := ∆1,2 ◦ ... ◦ ∆1,k1 ◦ ... ◦ ∆n,2 ◦ ... ◦ ∆n,kn(A), where A is an

intersecting subfamily of V(P). Then

(i) A∗ ⊆ V(P).

(ii) |A∗| = |A|,

(iii) A∗ is an intersecting sub-family of V(P),

(iv) A ∩B ∩ F 6= ∅ for any A,B ∈ A∗,

Proof. Each part follows by repeated application of the corresponding part of Lemma

8.3.1. 2

Throughout the remainder of the chapter, we use A∗ as in the statement of Lemma

8.3.2.

Let A ⊆ V(P)(r) be an intersecting family. By (i) and (ii) of Lemma 8.3.1, if A is

non-centred and ∆i,j(A) is a star of largest size, then V(P)(r) is not strictly EKR. Thus,

in order to demonstrate the strict EKR property of V(P)(r) by considering families that

are obtained through compression operations, we must �rst show that a star of largest

size cannot be obtained from a compression operation on a non-centred intersecting

family. Now when P is anchored, then a star with centre in V0 certainly cannot be

obtained through a compression operation ∆ij on any other sub-family of V(P)(r).

Moreover, if x ∈ V0, y /∈ V0 and r ≤ µ(V(P)) then more sets of V(P)(r) contain x but

not y than contain y but not x, and hence the stars with centres in V0 are precisely

those of maximum size. Thus, for an anchored double partition, a star of largest size

can never result from a compression operation on a non-centred intersecting family.

However, for the more general case when the double partition may be unanchored, we

require the following less trivial result, the proof of which also employs Lemma 3.3.3.

(In the statement and proof of this lemma, we abbreviate V(P) to V .)

Lemma 8.3.3 Let P be a double partition, let r ≤ µ(V)/2, and suppose that A is an

intersecting sub-family of V(r) such that A 6= ∆i,j(A) = V(r)(x) := {A ∈ V(r) : x ∈ A}

for some x ∈ V and some compression ∆i,j. Then |Vij| = |Vi1| and A = V(r)(y) :=

{A ∈ V(r) : y ∈ A}, where y ∈ Vij and x = δi,j(y) (∈ Vi1).
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Proof. Let A∗ ∈ A\∆i,j(A). So δi,j(A∗) ∈ ∆i,j(A). Since ∆i,j(A) = V(r)(x), x ∈

δi,j(A
∗). Since A∗ /∈ ∆i,j(A) = V(r)(x), x /∈ A∗. So x ∈ δi,j(A

∗)\A∗. So x = δi,j(y) for

some y ∈ A∗ ∩ Vij, j > 1, and x ∈ Vi1.

Let M be any maximal set of V that contains A∗ ∪ Vij, and let AM := {A ∈

A ∩ V(r)(y) : A ⊂ M}. Let N := M\{y} and A′
M := {A\{y} : A ∈ AM} ⊆

(
N
r′

)
, where

r′ = r− 1 ≤ µ(V)/2− 1 ≤ |M |/2− 1 = (|M | − 1)/2− 1/2 < |N |/2. Suppose A′ ∈ A′
M

and B′ /∈ A′
M for some B′ ∈

(
N\A′
r′

)
. Then A′′ := A′ ∪ {y} ∈ AM , B′′ := B′ ∪ {y} /∈ A,

and δi,j(B′′) /∈ A since δi,j(B′′)∩A′′ = ∅. So δi,j(B′′) ∈ V(r)(x)\∆i,j(A), a contradiction.

Therefore, if A′ ∈ A′
M then B′ /∈ A′

M for all B′ ∈
(
N\A′
r′

)
. Also, A∗\{y} ∈ A′

M . By

Lemma 3.3.3, A′
M =

(
N
r′

)
. Hence AM = {A ∈ V(r)(y) : A ⊂M}.

Since 2r ≤ µ(V), for any A ∈ V(r)\V(r)(y) there exists B ∈ AM such that A∩B = ∅.

So A ⊆ V(r)(y). Since |V(r)(x)| ≥ |V(r)(y)| (as |Vi1| ≥ |Vij|) and |A| = |∆i,j(A)| =

|V(r)(x)|, it follows that |A| = |V(r)(y)| = |V(r)(x)|, and hence |Vij| = |Vi1|. 2

8.4 Proof of Theorem 8.1.5

Let P be anchored. In the proof that follows, we abbreviate V(P) to V .

If r = 1 then there is nothing to prove, so we may assume r ≥ 2 and thus µ(V) ≥ 4.

Moreover, |V | ≥ 5 since V1 is non-trivially partitioned. Since a non-centred family of

2-sets must be of size 3, it immediately follows that V is strictly 2-EKR. We therefore

assume 3 ≤ r ≤ µ(V)/2.

Now let A be an intersecting sub-family of V(r) such that

|A′| ≤ |A| for any intersecting family A′ ⊂ V(r). (8.3)

By Lemmas 8.3.2 and 8.3.3, we may assume thatA = A∗, and hence (by Lemma 8.3.2(iv))

that

A ∩B ∩ F 6= ∅ for any A,B ∈ A. (8.4)

Let x be a �xed element of V0, and let J be the star of V(r) with centre x.
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We now develop a notation for partitioning sub-families of F (r) in accordance with

their intersections with the upper sets.

Let U := {(i, j) : 1 ≤ i ≤ n, 2 ≤ j ≤ ki}; that is, U is the set of subscript pairs

associated with the upper sets of P. By (8.4), each set of A intersects at least one �oor

set and thus at most r − 1 upper sets. This is true also of J . Thus, let

U := {S ⊆ U : |S| < r, (i1, j1) 6= (i2, j2) ∈ S implies i1 6= i2}

(note that ∅ ∈ U). Then a family B of elements of V(r) each intersecting at least one

�oor set is partitioned as follows: B =
⋃
S∈U BS where BS is the sub-family of B whose

sets intersect all the sets Vij, (i, j) ∈ S, and no other upper sets. For S ∈ U , let FS

denote the union of those �oor sets that are not `under' any of the upper sets of S:

FS = F\
⋃

(i,j)∈S Vi1. Then, for S 6= ∅, a sub-family BS is a family of crossing r-sets in

which FS takes the role of X0 and the upper sets take the role of the Xi for i ≥ 1 (see

Section 8.2); moreover, for BS = AS, we have BS strongly intersecting by (8.4).

Therefore, by Theorem 8.2.2(i), |AS| ≤ |JS| for each S ∈ U\{∅}. By the EKR

Theorem, we also have |A∅| ≤ |J∅|. Thus |A| ≤ |J | (which proves (i)). By (8.3),

|A| = |J |, and hence |AS| = |JS| for each S ∈ U .

For any S ∈ U , if we can show that AS = (V(r)(v))S for some v ∈ F , then it

follows that A ⊆ V(r)(v), since for all A ∈ V(r)]v[ there exists B ∈ (V(r)(v))S such that

A∩B = ∅, as every maximal set is of size ≥ 2r. We have already noted (in Section 8.3)

that |V(r)(v)| is maximised only if v ∈ V0; hence, if we show that AS = (V(r)(v))S for

some v ∈ F , then, by (8.3), A = V(r)(v) where v ∈ V0.

If r < µ(V)/2 or r = µ(V)/2 < α(V)/2 = |F |/2 then by taking S = ∅ and applying

the Hilton-Milner Theorem we indeed obtain AS = (V(r)(v))S for some v ∈ F (since

|AS| = |JS|).

If r = µ(V)/2 = α(V)/2 and n > 1 then we choose S such that |S| ≥ 2. By

Theorem 8.2.2, AS = (V(r)(v))S for some v ∈ F .

It remains to consider the case n = 1. Recall that we are assuming r ≥ 3. If

|V0| < 3 or |V0| > r then we take S = {(1, j)}, j > 1, and again apply Theorem 8.2.2.
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If 3 ≤ |V0| ≤ r then the non-centred intersecting family (J \{A ∈ J : A ∩ V0 =

{x}}) ∪ {A ∈ V(r) : A ∩ V0 = V0\{x}} ⊂ V(r) has size equal to |J |. Thus the strict

EKR property fails only in the cases stated in the theorem. 2

8.5 Proof of Theorem 8.1.6

Recall that P is unanchored with n = 3, aij = c (j = 1, ..., ki, i = 1, 2, 3) and V0 = ∅.

For simplicity, we assume that k1 ≤ k2 ≤ k3. As in Section 8.3, V11 ∪ V21 ∪ V13 is the

�oor, denoted by F , and as in Section 8.4, we abbreviate V(P) to V .

Suppose 2r ≤ µ(V) (= α(V)) and A is an intersecting sub-family of V(r) that is not

a star. By Lemma 8.3.3, A∗ is not a star either. Thus, using Lemma 8.3.2, we may

assume that A = A∗ and that A ∩B ∩ F 6= ∅ for any A,B ∈ A.

Let Di := {0, ..., ki}, i = 1, 2, 3. For any (d1, d2, d3) ∈ D1 × D2 × D3, let Ad1,d2,d3

be the sub-family of sets A ∈ A such that A ∩ Vidi
6= ∅ for all i such that di 6= 0, and

A ∩ Vij = ∅ otherwise. So the families Ad1,d2,d3 partition A. Let J be the star of V(r)

with centre v111 and partition it similarly. Note that J is a star of largest size.

By Lemma 8.3.2(iv), for any (d1, d2, d3), (d′1, d
′
2, d

′
3) ∈ D1 × D2 × D3 such that

Ad1,d2,d3 6= ∅ and Ad′1,d
′
2,d

′
3
6= ∅, we must have di = d′i = 1 for some i ∈ [3]. We now

consider two cases.

Case 1: {i ∈ [3] : di = 1} = {i′} for some Ad1,d2,d3 6= ∅. Then di′ = 1 for any

Ad1,d2,d3 6= ∅. Thus, let Q be the double partition obtained from P by deleting the

small sets V12, . . . , V1k1 ; then A is a subfamily of G := V(Q). Now Q is an anchored

partition of width 2, and hence, by Theorem 8.1.5, G(r) is strictly EKR. So |A| <

|V(r)(vi′11)| ≤ |J |.

Case 2: |{i ∈ [3] : di = 1}| > 1 whenever Ad1,d2,d3 6= ∅. So the non-empty classes

can only be A1,1,1, Ad1,1,1, A1,d2,1, and A1,1,d3 , di ∈ Di (i = 1, 2, 3).

Let A0 := A1,1,1 ∪A0,1,1 ∪A1,0,1 ∪A1,1,0 and, similarly, J0 := J1,1,1 ∪J0,1,1 ∪J1,0,1 ∪

J1,1,0. (These are the sub-families of A and J that consist of r-subsets of F ). By

Theorem 1.2.1, |A0| ≤ |J0|.

Now, for d2 > 1, A1,d2,1 is a family of crossing r-sets for Y := {V11 ∪ V31, Vd2},
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obeying the conditions of Theorem 8.2.2. Thus, for all d2 ∈ [2, k2], we have |A1,d2,1| ≤

|×Y(r)(v111)| = |J1,d2,1∪J1,d2,0|. Similarly, if d3 > 1 then |A1,1,d3| ≤ |J1,1,d3 ∪J1,0,d3|. In

particular, we note that if k3 > k1 then |A1,1,d3| ≤ |J1,1,d3 ∪J1,0,d3 | for k1 +1 ≤ d3 ≤ k3.

The remaining sub-families Ad1,d2,d3 that need to be compared with sub-families of

J are {A1,1,d,Ad,1,1 : 2 ≤ d ≤ k1}. Our strategy is to show that |A1,1,d| + |Ad,1,1| <

|J1,0,d| + |J1,1,d| + |J1,2,d|, d = 2, ..., k1, from which the result clearly follows, since we

shall have made comparisons linking all the sub-families of A with sub-families of J ,

and at least one of these comparisons involves a strict inequality.

Let us �x d ∈ [2, k1] and de�ne A′ := A1,1,d ∪Ad,1,1. We now de�ne two bijections,

δ1 : V31 → V11 and δ2 : V1d → V3d, as follows.

δ1(v31p) = v11p (p = 1, . . . , c);

δ2(v1dp) = v3dp (p = 1, . . . , c).

For any X1 ⊆ V31, X2 ⊆ V1d, we may denote {δ1(x) : x ∈ X1} and {δ2(x) : x ∈

X2} by δ1(X1) and δ2(X2) respectively. Now de�ne an injective mapping δ : Ad,1,1 →(
V11∪V21∪V3d

r

)
by

δ(A) = δ1(A ∩ V31) ∪ (A ∩ V21) ∪ δ2(A ∩ V1d) (A ∈ Ad,1,1).

De�ne the compression ∆ on A′ by

∆(A′) = A1,1,d ∪ {δ(A) : A ∈ Ad,1,1} ∪ {A ∈ Ad,1,1 : δ(A) ∈ A1,1,d}.

Now let B := ∆(A′). Thus, B = B1,1,d ∪ Bd,1,1 where B1,1,d = A1,1,d ∪ (B\A) and

Bd,1,1 = B\B1,1,d.

Claim 8.5.1 (i) |B| = |A|.

(ii) A ∩B ∩ (V11 ∪ V21) 6= ∅ for any A,B ∈ B.

Proof. (i) is straightforward.

We now de�ne f : A′ → B by f(A) = δ(A) if A ∈ Ad,1,1 and δ(A) /∈ A1,1,d, and
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f(A) = A otherwise. So f is a bijection. We prove (ii) by showing that

f(A) ∩ f(B) ∩ (V11 ∪ V21) 6= ∅ for any A,B ∈ A′. (8.5)

We recall that, by Lemma 8.3.2(iv), A ∩B ∩ F 6= ∅ for any A,B ∈ A. If A,B ∈ A1,1,d

then (8.5) is immediate. If A ∈ A1,1,d and B ∈ Ad,1,1 then f(A) ∩ f(B) ∩ V21 =

A∩B∩V21 6= ∅, and hence (8.5). Suppose A,B ∈ Ad,1,1. Since A∩B∩ (V21∪V31) 6= ∅,

if δ(A), δ(B) /∈ A1,1,d then (8.5) is straightforward. Suppose δ(A) ∈ A1,1,d and δ(B) /∈

A1,1,d. Since δ(A)∩B ∩ V21 6= ∅, we have A∩ δ(B)∩ V21 6= ∅, and hence (8.5). Finally,

suppose δ(A), δ(B) ∈ A1,1,d. So A ∩ B ∩ V21 6= ∅ because A ∩ δ(B) ∩ V21 6= ∅; hence

(8.5). 2

By Theorem 8.2.2,

|B1,1,d| ≤ |J1,0,d|+ |J1,1,d|. (8.6)

By Claim 8.5.1(ii), we have A ∩ B ∩ V21 6= ∅ for all A,B ∈ Bd,1,1. By Theorem 8.2.2,

|Bd,1,1| ≤ |J1,2,d|. If |Bd,1,1| < |J1,2,d| then we are done.

Suppose |Bd,1,1| = |J1,2,d|. By Theorem 8.2.2(ii), there exists v′ ∈ V21 such that

Bd,1,1 = Kd,1,1 where K := V(r)(v′). Let C := {A ∈ Bd,1,1 : A ∩ V21 = v′}. C 6= ∅ since

2r ≤ µ(V) = 3c. Let C ∈ C. If there exists A ∈ B1,1,d such that v′ /∈ A then A∩C = ∅,

a contradiction. So B1,1,d ⊆ K1,1,d, and hence |B1,1,d| ≤ |K1,1,d| = |J1,1,d|. Since 2r ≤ 3c,

we have |J1,0,d| > 0, and hence a strict inequality in (8.6). It follows that |A| < |J |. 2
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Chapter 9

An extension of the Erd®s-Ko-Rado

Theorem and multiple

cross-intersecting families

9.1 Introduction

For the purpose of this chapter only, we de�ne families A∗ and A′ on a family A ⊆ 2[n]

as follows:

A∗ := {A ∈ A : A ∩B 6= ∅ for all B ∈ A},

A′ := A\A∗ = {A ∈ A : A ∩B = ∅ for some B ∈ A}.

Here we �rst show that the elegant cycle method by which Katona [42] obtained

a beautiful short proof of the EKR Theorem extends to a proof of the signi�cant

extension of the EKR Theorem that was revealed in Section 1.1 and that is stated

formally as Theorem 9.2.2 below. We then demonstrate the usefulness and importance

of Theorem 9.2.2 by showing that it yields a slight extension of Theorem 1.6.3 almost

immediately.
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9.2 Results and proofs

If σ is a cyclic ordering of the elements of a set X, and the elements of a subset A of

X are consecutive in σ, then we say that A meets σ.

Lemma 9.2.1 Let r ≤ n/2. Let σ be a cyclic ordering of [n], and let B ⊆ C := {B ∈(
[n]
r

)
: B meets σ}. Then

|B∗|+ r

n
|B′| ≤ r,

and if r < n/2 then equality holds i� either |B∗| = r and B′ = ∅ or B∗ = ∅ and B′ = C.

Proof. Clearly there are n r-subsets of [n] that meet σ, i.e. |C| = n. So the result

is straightforward if B∗ = ∅. Suppose B∗ 6= ∅. Let B∗ ∈ B∗, and let x1, ..., xr be

the consecutive points in σ such that B∗ = {x1, ..., xr}. For i ∈ [r], let Ci be the

r-set in C beginning with xi in σ, and let C ′
i be the r-set in C ending with xi in

σ. Let D := {C1, ..., Cr} ∪ {C ′
1, ..., C

′
r}. Note that B∗ = C1 = C ′

r and hence D =

{B∗}∪{C2, ..., Cr}∪{C ′
1, ..., C

′
r−1}. By the de�nitions of B∗ and B′, we have B∗∪B′ ⊆ D

(because B∗ ∈ B∗) and, since r ≤ n/2, C ′
j−1 /∈ B∗ ∪ B′ for any j ∈ [2, r] such that

Cj ∈ B∗. It follows that there are at least |B∗| − 1 sets in D\(B∗ ∪ B′), and hence

|B′| ≤ |D| − |B∗| − (|B∗| − 1) = 2r − 2|B∗|. So

|B∗|+ r

n
|B′| ≤ |B∗|+ 1

2
|B′| ≤ |B∗|+ 1

2
(2r − 2|B∗|) = r,

and it is immediate from this expression that if r
n
< 1

2
then equality holds throughout

i� |B∗| = r and B′ = ∅. Hence result. 2

Theorem 9.2.2 Let r ≤ n/2 and A ⊆
(
[n]
r

)
. Then

|A∗|+ r

n
|A′| ≤

(
n− 1

r − 1

)
,

and if r < n/2 then equality holds i� either |A∗| =
(
n−1
r−1

)
and A′ = ∅ or A∗ = ∅ and

A′ =
(
[n]
r

)
.

Proof. If A′ = ∅ then the result is trivial, so we consider A′ 6= ∅. Let E :=
(
[n]
r

)
. For a

cyclic ordering σ of [n], a family F ⊆ E and a set E ∈ E , let Fσ := {F ∈ F : F meets σ}
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and

Φ(σ,E) :=

 1 if E meets σ;

0 otherwise.

Note that

(A∗)σ ∪ (A′)σ = (Aσ)
∗ ∪ (Aσ)

′ and (A∗)σ ⊆ (Aσ)
∗. (9.1)

Let N be the set of all (n− 1)! cyclic orderings of [n]. Note that any r-subset of [n]

meets r!(n− r)! cyclic orderings of [n]. We therefore have

r!(n− r)!
(
|A∗|+ r

n
|A′|

)
=
∑
A∗∈A∗

r!(n− r)! +
r

n

∑
A′∈A′

r!(n− r)!

=
∑
A∗∈A∗

∑
σ∈N

Φ(σ,A∗) +
r

n

∑
A′∈A′

∑
σ∈N

Φ(σ,A′)

=
∑
σ∈N

( ∑
A∗∈A∗

Φ(σ,A∗) +
r

n

∑
A′∈A′

Φ(σ,A′)

)

=
∑
σ∈N

(
|(A∗)σ|+

r

n
|(A′)σ|

)
≤
∑
σ∈N

(
|(Aσ)

∗|+ r

n
|(Aσ)

′|
)

(by (9.1)) (9.2)

≤
∑
σ∈N

r (by Lemma 9.2.1) (9.3)

= r(n− 1)!,

which yields the inequality in the theorem.

Now suppose r < n/2 and we have equality in the theorem. So we have equality in

(9.2) and (9.3). The former equality and (9.1) clearly give us

(A∗)σ = (Aσ)
∗ and (A′)σ = (Aσ)

′. (9.4)
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The equality in (9.3) and Lemma 9.2.1 give us that for any σ ∈ N , if (Aσ)
′ 6= ∅ then

(Aσ)
′ = Eσ (and (Aσ)

∗ = ∅). Thus, by (9.4),

for any σ ∈ N , if (A′)σ 6= ∅ then (A′)σ = Eσ. (9.5)

Let A be any set in A′; recall that we are considering A′ 6= ∅. Let B be any set

in
(
[n]\A
r

)
. We can choose σA,B ∈ N such that both A and B meet σA,B. Since

A ∈ (A′)σA,B
and B ∈ EσA,B

, we have B ∈ (A′)σA,B
by (9.5). So B ∈ A′. Therefore

A′ = E by Lemma 3.3.3. Hence result. 2

For convenience, we state our slightly extended version of Theorem 1.6.3 in full.

Note that the slight improvement is given by parts (ii) and (iii) below.

Theorem 9.2.3 (Extension of Theorem 1.6.3) If r ≤ n/2, k ≥ 2, and A1, ..., Ak

are cross-intersecting sub-families of
(
[n]
r

)
then

k∑
i=1

|Ai| ≤


(
n
r

)
if k ≤ n

r
;

k
(
n−1
r−1

)
if k ≥ n

r
.

Suppose equality holds and A1 6= ∅:

(i) if k < n/r then A1 =
(
[n]
r

)
and Ai = ∅ for i = 2, ..., k;

(ii) if k > n/r then A1 = ... = Ak and |A1| =
(
n−1
r−1

)
;

(iii) if k = n/r > 2 then A1, ...,Ak are as in (i) or (ii).

Proof. Let A :=
⋃k
i=1Ai. Clearly A∗ =

⋃k
i=1A∗

i and A′ =
⋃k
i=1A′

i. Suppose

A′
i ∩A′

j 6= ∅, i 6= j. Let A ∈ A′
i ∩A′

j. Then there exists Ai ∈ A′
i such that A∩Ai = ∅,

which is a contradiction because A ∈ Aj. So A′
i ∩ A′

j = ∅ for i 6= j, and hence

|A′| =
∑k

i=1 |A′
i|. Applying Theorem 9.2.2, we therefore get

k∑
i=1

|Ai| =
k∑
i=1

|A′
i|+

k∑
i=1

|A∗
i | ≤ |A′|+ k|A∗| ≤

(
n

r

)
+ (k − n

r
)|A∗|. (9.6)

Suppose k < n
r
. Then

∑k
i=1 |Ai| ≤

(
n
r

)
, and equality holds i� A∗ = ∅ and A = A′ =(

[n]
r

)
. If A ∈ A1 and B ∈

(
[n]\A
r

)
\A1 then B /∈ Ai, i = 2, ..., k, and hence B ∈

(
[n]
r

)
\A.
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Thus, if A =
(
[n]
r

)
then the conditions of Lemma 3.3.3 hold for A1 (recall that A1 6= ∅),

and therefore A1 = A =
(
[n]
r

)
. Hence (i).

Next, suppose k > n
r
. Then, by (9.6) and Theorem 9.2.2,

k∑
i=1

|Ai| ≤
(
n

r

)
+ (k − n

r
)

(
n− 1

r − 1

)
= k

(
n− 1

r − 1

)
,

and equality holds i� A∗
1 = ... = A∗

k = A∗ and |A∗| =
(
n−1
r−1

)
= |A|. Hence (ii).

Finally, suppose k = n
r
. Then, by (9.6),

∑k
i=1 |Ai| ≤ |A′| + n

r
|A∗| ≤

(
n
r

)
. Suppose

k > 2. Thus, since k = n
r
, r < n

2
. Therefore, if A∗ = ∅ then A is as in the case

k < n
r
, and, since |A′|+ n

r
|A∗| ≤

(
n
r

)
implies |A∗|+ r

n
|A′| ≤

(
n−1
r−1

)
, it is immediate from

Theorem 9.2.2 that if A∗ 6= ∅ then A∗ is as in the case k > n
r
. Hence (iii). 2
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Chapter 10

Erd®s-Ko-Rado with monotonic

non-decreasing separations

10.1 Introduction

For a monotonic non-decreasing (mnd) sequence of non-negative integers {di}i∈N (i.e.

0 ≤ d1 ≤ d2 ≤ ...) and a set X ⊂ N, we de�ne

P({di}i∈N) := {{a1, ..., ar} ⊂ N : r ∈ N, ai+1 > ai + dai
, i = 1, ..., r − 1},

PX({di}i∈N) := P({di}i∈N) ∩ 2X .

IfX = [n] then we also write Pn({di}i∈N). For convenience and neatness of notation, we

assume that {di}i∈N is some �xed mnd sequence, and we drop the argument '({di}i∈N)'

from any of the notation for the families de�ned above unless we consider a di�erent

sequence.

In this chapter, we are concerned with the extremal intersecting sub-families of P(r)
n .

Due to some fundamental di�erences, we will treat the case d1 > 0 separately from the

complementary case d1 = 0. One di�erence has to do with the extremal structures.

Another di�erence is that, as we will show, the EKR property holds for all r if d1 > 0,

whereas it is not guaranteed to hold for d1 = 0 and α(Pn)/2 < r < α(Pn)/2. A simple

example for the latter case is that if di = 0 for all i ∈ N and n/2 < r < n then P(r)
n

is non-centred, intersecting, and of course larger than the star of P(r)
n with centre 1;

118



other examples with 0 = d1 < dn−1 can be easily constructed.

For the case d1 > 0, we determine every single extremal structure and exactly when

it arises (i.e. for which sequences {di}i∈N it is extremal); the proof is self-contained.

For the case d1 = 0, we determine precisely the cases when P(r)
n has the strict and

non-strict EKR property for r ≤ α(Pn)/2. The proof is based on the EKR Theorem,

the Hilton-Milner Theorem and Theorem 9.2.3. Although we do not give an extensive

list of all the extremal structures for the non-strict EKR case, we give a characterisation

in terms of necessary and su�cient conditions that their sets must satisfy.

The answer to the EKR problem for the case when di = d for all i ∈ [n − 1] is

known. If d = 0 then P(r)
n =

(
[n]
r

)
, and hence we know precisely what are the extremal

intersecting sub-families of P(r)
n ; see Section 1.2.

Theorem 10.1.1 (Erd®s, Ko, Rado [25], Hilton, Milner [38]) Suppose

di = 0 for all i ∈ [n− 1]. Let A be an extremal intersecting sub-family of P(r)
n .

(i) If r < n/2 (which is equal to α(Pn)/2) then A is a star of P(r)
n .

(ii) If r = n/2 then for any A ∈ P(r)
n =

(
[n]
r

)
, exactly one of A and [n]\A is in A.

(iii) If r > n/2 then A = {P(r)
n }.

Holroyd, Spencer and Talbot proved the EKR property for d > 0, but they left the

problem of determining the whole set of extremal structures open.

Theorem 10.1.2 (Holroyd, Spencer, Talbot [40]) If di = d > 0 for all i ∈ [n −

d− 1] then the star of P(r)
n with centre 1 is an extremal intersecting sub-family of P(r)

n .

To be able to state our main results, we need to develop some further notation and

de�nitions. We point out to the reader that, for various purposes (such as statements,

proofs, explanations) in this chapter, the notation in Section 2.1 will also be used, and

heavily so for the proofs of the main results.

10.2 Further notation, de�nitions and main results

For a �nite set A ⊂ N, let

l(A) := min{a ∈ A}, u(A) := max{a ∈ A}.
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For i, r ∈ N, de�ne Pi,r := {p1, ..., pr} ∈ P by p1 := i and pj+1 := pj + dpj
+ 1,

j = 1, ..., r − 1 (if r > 1). We need to de�ne Pi,0 := ∅.

For r ≤ α(Pn), let

kn,r := max{i : u(Pi,r) ≤ n}.

For i ≥ 2, let

Ei := {a ∈ [i− 1] : a+ da ≥ i}, ei := |Ei|.

Clearly, since {di}i∈N is mnd,

Ei = [j, i− 1] for some j ∈ [i− 1].

For any z ∈ Z := {0} ∪ N ∪ {−n : n ∈ N}, let sz : P → 2N be de�ned by

sz(A) = {a+ z : a ∈ A}.

We will often use the fact that

A ∈ P , l(A) ≥ 2, x ∈ [l(A)− 1] ⇒ s−x(A) ∈ P ,

which is again a consequence of {di}i∈N being mnd.

We say that P[x,y] is symmetric if P[x,y] = P[x,y]({d∗i = d}i∈N) for some d ∈ N∪ {0},

otherwise we say that P[x,y] is asymmetric. Note that if α(P[x,y]) > 1 then P[x,y] is

symmetric i� ey = dx.

Suppose d1 = d3 = 1, y ∈ P3,r = s1(P2,r), r ≥ 2, and for

m :=

 max{a ∈ [y] : da = 1} if Py is asymmetric;

y if Py is symmetric,

m = 2t+ 1 for some t ∈ N. Then we say that P(r)
y is type I, and we say that A ⊂ P(r)

y

is special i� A = {A1, ..., Aq} ∪ (P(r)
y (1)\{B1, ..., Bq}) for some q ∈ [t], where

A1 := P3,r = P3,t ∪ Pm+2,r−t, Bt := P1,t ∪ Pm+1,r−t,
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and for all i ∈ [t− 1] (if t > 1),

Ai+1 := {2j : j ∈ [i]} ∪ {2j + 1: j ∈ [i+ 1, t]} ∪ Pm+2,r−t, Bi := s−1(Ai+1).

Clearly, a special family as above is P(r)
y (y) i� q = t and Py is symmetric. Also note

that

A (⊂ P(r)
y ) special; Py asymmetric or A 6= P(r)

y (y)

⇒ P(r)
y (1)(y) ∪ {P1,r, P3,r} ⊆ A. (10.1)

That a special family is intersecting is not di�cult to check; however, for the sake of

completeness, this is proved in Section 10.4 (Lemma 10.4.4).

If Py is asymmetric, y ∈ Pk,r = sk−1(P1,r), k := ky,r, and k ≤ d1 + 1 then we say

that P(r)
y is type II. Note that Pk,r = sk−1,r(P1,r) implies Pi,r = s1(Pi−1,r), i = 2, ..., k

(if k > 1). An example of a type II family is P(3)
10 ({d∗i }i∈N) with d∗1 = d∗2 = d∗3 = 2 and

d∗4 = d∗5 = d∗6 = 3.

This brings us to our �rst and main result.

Theorem 10.2.1 Suppose d1 > 0 and 2 ≤ r ≤ α(Pn).

(i) If P(r)
n is type I then ex(P(r)

n ) = {P(r)
n (1)} ∪ {A ⊂ P(r)

n : A special }.

(ii) If P(r)
n is type II, or Pn is symmetric but P(r)

n is not type I, then ex(P(r)
n ) = {P(r)

n (1),

P(r)
n (n)}.

(iii) In any other case, ex(P(r)
n ) = {P(r)

n (1)}.

Clearly, this immediately yields the strict and non-strict EKR property for d1 > 0.

Corollary 10.2.2 If d1 > 0 and r ≤ α(Pn) then P(r)
n is EKR, and strictly so unless

P(r)
n is type I.

The following is our result for the complementary case d1 = 0.

Theorem 10.2.3 Suppose d1 = 0 < dn−1 and r ≤ α(Pn)/2. Let m := min{i ∈

[n] : di 6= 0}. Let A ⊂ P(r)
n .

(i) If n ∈ P1,2r and m = 2r − 1 then A ∈ ex(P(r)
n ) i�
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(a) A]{2r − 1, 2r, ..., n}[ =
(
[2r−2]
r

)
\{[2r − 2]\A : A ∈ A〈2r − 1〉〈n〉}, A〈2r − 1〉〈n〉

intersecting,

(b) A〈i〉 ∩
(
[2r−2]
r−1

)
= A〈n〉 ∩

(
[2r−2]
r−1

)
∈ ex(

(
[2r−2]
r−1

)
), i = 2r − 1, ..., n− 1, and

(c) A〈n〉 ∩
(
[2r−2]
r−1

)
and A〈2r − 1〉〈n〉 are cross-intersecting.

(ii) If n ∈ P1,2r and r + 2 ≤ m ≤ 2r − 2 then A ∈ ex(P(r)
n ) i� for some j ∈ [m − 1]

and H0 ⊆
(
[m−1]\{j}

r

)
, A = H0 ∪ (P(r)

n (j)\{P1,2r\A : A ∈ H0}).

(iii) If n /∈ P1,2r or m ≤ r + 1 then A ∈ ex(P(r)
n ) i� A = P(r)

n (j) for some j ∈ [m− 1].

This result and Theorem 10.1.1 give a characterisation of the extremal structures for

the case d1 = 0. It is easy to see that they yield the following.

Corollary 10.2.4 If d1 = 0 and r ≤ α(Pn)/2 then P(r)
n is EKR, and strictly so unless

n ∈ P1,2r and max{i ∈ [2r − 1] : di = 0} ≥ r + 1.

10.3 The key fact and the compression operation

An interesting key fact is that the 'forward' mnd separations separations di induce

'backward' mnd separations ei with the following additional property.

Proposition 10.3.1 For i ≥ 2, ei ≤ ei+1 ≤ ei + 1.

Proof. If Ei = [i− 1] or Ei = ∅ then ei+1 ≤ ei + 1 trivially. Suppose Ei 6= [i− 1] and

Ei 6= ∅. Then Ei = [j, i − 1] for some j ∈ [2, i − 1]. So (j − 1) + dj−1 < i, and hence

Ei+1 ⊆ Ei ∪ {i}. Therefore ei+1 ≤ ei + 1.

If Ei = ∅ then ei ≤ ei+1 trivially. Suppose Ei 6= ∅. Then Ei = [j, i − 1] for some

j ∈ [i − 1]. Since dj+1 ≥ dj, we thus have (j + 1) + dj+1 ≥ j + dj + 1 ≥ i + 1. So

[j + 1, i] ⊆ Ei+1, and hence |Ei| ≤ |Ei+1|. Therefore ei ≤ ei+1. 2

Using the above result, we can now prove the compression lemma for our problem.

For p, q ∈ N, let ∆p,q : 2P → 2P be as de�ned in Section 2.2.

Lemma 10.3.2 Let A∗ be an intersecting sub-family of P. Let p, q ∈ N such that

dp > 0 and dq > 0. Let A := ∆p,q(A∗).
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(i) If p = q − 1 then A〈q〉 and A]q[ are intersecting.

(ii) If p = q − 1 and ep < eq then A〈q〉 ∪ A]q[ is intersecting.

(iii) If p = q + 1 and dp = dq then A〈q〉 and A]q[ are intersecting.

Proof. By Proposition 2.2.1(i), A]q[ is intersecting.

Note that if p = q − 1 or p = q + 1 then, since dp > 0 and dq > 0, P [{p, q}] = ∅.

Suppose p = q − 1. Let w := max{1, q − eq − 1}, and let P ∈ P ]w[(q). Then

P ∩ [w, p] = ∅, w = max{1, p − eq}. If p − eq > 1 then 1 < w ≤ p − ep since ep ≤ eq

by Proposition 10.3.1. Since P ∩ [w, p] = ∅, we thus have P ∩ [max{1, p− ep}, p] = ∅,

implying (P\{q}) ∪ {p} ∈ P. So P ]w[ is (p, q)-compressed. By Proposition 2.2.1(iv),

(i) follows.

Suppose p = q − 1 and ep < eq. Let P ∈ P(q). Then P ∩ [max{1, q − eq}, p] = ∅.

Since q − eq = p+ 1− eq ≤ p− ep, we thus have P ∩ [max{1, p− ep}, p] = ∅, implying

(P\{q}) ∪ {p} ∈ P . So P is (p, q)-compressed. By Proposition 2.2.1(iii), (ii) follows.

Suppose p = q + 1 and dp = dq. Let w := q + dq + 1, and let P ∈ P]w[(q).

Then P ∩ [p, p + dp] = P ∩ [p, w] = P ∩ [p, w − 1] = P ∩ [q + 1, q + dq] = ∅, and

hence (P\{q}) ∪ {p} ∈ P . So P ]w[ is (p, q)-compressed. By Proposition 2.2.1(iv), (iii)

follows. 2

10.4 The case d1 > 0

Throughout this section, we assume that d1 > 0 and α(Pn) ≥ 2. We set

n′ := n− en − 1.

Note that n′ ≥ 1 since α(Pn) ≥ 2. So n′ + dn′ < n, and hence

dn′ ≤ en.

Lemma 10.4.1 kn,r = kn′,r−1.

Proof. Let k := kn,r and k′ := kn′,r−1. So u(Pk,r) ≤ n < u(Pk+1,r) and u(Pk′,r−1) ≤

n′ < u(Pk′+1,r−1). Thus, since u(Pk′,r−1)+du(Pk′,r−1) +1 ≤ n′+dn′ +1 ≤ n′+en+1 = n,
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we have u(Pk′,r) ≤ n, and hence k′ ≤ k. Now,

u(Pk,r−1) = u(Pk,r)− eu(Pk,r) − 1 ≤ u(Pk,r)− (en − (n− u(Pk,r)))− 1 = n′,

where the �rst inequality follows by n − u(Pk,r) applications of Lemma 10.3.1. So

k ≤ k′. Since k′ ≤ k, the result follows. 2

Lemma 10.4.2 Suppose 1 ≤ q ≤ α(Py−1) and either Py is symmetric or P(q)
y is type

II. Then s1(A) ∈ P(q)
y for any A ∈ P(q)

y−1.

Proof. If q = 1 or Py is symmetric then the result is straightforward. So consider

q ≥ 2 and P(q)
y type II. Setting k := ky,q, we then have y ∈ Pk,q = sk−1(P1,q) and

k ≤ d1 + 1. For each i ∈ [d1 + 1], let pi,1 < ... < pi,q such that Pi,q = {pi,1, ..., pi,q}. By

de�nition of Pi,q, pi,j = pi,j−1 + dpi,j−1
+ 1 for each j = [2, q]. Since Pk,q = sk−1(P1,q),

pk,j = p1,j + k− 1 for each j ∈ [q]. Thus, for each j ∈ [2, q], pk,j−1 + dpk,j−1
+ 1 = pk,j =

(p1,j−1 +dp1,j−1
+1)+k−1, and hence dpk,j−1

= dp1,j−1
+p1,j−1 +k−1−pk,j−1 = dp1,j−1

.

Therefore, for each j ∈ [q− 1], dpk,j
= dp1,j

, and hence, for each i ∈ [k], dpi,j
= dp1,j

(as

dp1,j
≤ dpi,j

≤ dpk,j
= dp1,j

).

Now let A ∈ P(q)
y−1, and let a1 < ... < aq ≤ y − 1 such that A = {a1, ..., aq}. Let

h ∈ [q], and let Ah := {aq−h+1, ..., aq}; so |Ah| = h. Since y ∈ Pk,q and k := ky,q, we

have Pky,h,h = {pk,q−h+1, ..., pk,q} and pk,q = y. Since aq ≤ y − 1 = pk,q − 1 and {di}i∈N

is mnd, it follows that aq−h+1 ≤ pk,q−h+1 − 1. So aj ≤ pk,j − 1 for all j ∈ [q]. It is

straightforward that we also have p1,j ≤ aj for all j ∈ [q]. So p1,j ≤ aj ≤ pk,j − 1 for all

j ∈ [q]. Since we established that dpi,j
= dp1,j

for any i ∈ [k] and j ∈ [q − 1], the result

follows. 2

Lemma 10.4.3 Suppose Pn is asymmetric, Pn〈n〉 (= Pn′) is symmetric and either

Pn〈1〉 (= P[d1+2,n]) is symmetric or d2 > d1. Then α(Pn) ≤ 3.

Proof. Since Pn is asymmetric, we have d1 < en, and hence d1 = ... = dp < dp+1 for

some p ∈ [n′]. Since Pn′ is symmetric, it follows that (p + 1) + dp+1 ≥ n′. Let p1 <

p2 < p3 < p4 such that P1,4 = {p1, p2, p3, p4}. So p1 = 1, p2 = d1 + 2, p3 = p2 + dp2 + 1,

p4 = p3 + dp3 + 1.
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Suppose p ≤ d1 + 1. Then p+ 1 ≤ p2, and hence p3 ≥ (p+ 1) + dp+1 + 1 ≥ n′ + 1,

p4 ≥ (n′ + 1) + dn′+1 + 1 ≥ n+ 1. So u(P1,4) > n, and hence α(Pn) ≤ 3.

Now suppose p ≥ d1 + 2. So d2 = d1 as d1 ≤ d2 ≤ dp and d1 = dp. Thus, by the

conditions of the lemma, P[d1+2,n] is symmetric. Since d1 + 2 ≤ p and d1 = ... = dp,

dd1+2 = d1. So dd1+2 < en, but this contradicts P[d1+2,n] symmetric. 2

Lemma 10.4.4 Let A ⊂ P(r)
y be a special family as de�ned in Section 10.2. Then A

is intersecting.

Proof. We are required to show that for any q ∈ [t], the sets that do not intersect Aq

are members of {B1, ..., Bq}. Recall that di = 1 for all i ∈ [m] (m = 2t+ 1).

Consider �rst q = 1. So Aq = P3,r. Let B ∈ P(r)
y (1) such that B ∩ Aq = ∅, and let

B′ := B\{1}. Since B ∩ P3,r = ∅ and d1 = 1, l(B′) ≥ 4. So B′′ := B′ ∪ {2} ∈ P(r)
[2,y] as

d2 = 1. Now, given that y ∈ P3,r = s1(P2,r), P2,r is the unique set in P(r)
[2,y−1], and hence,

since B ∩ P3,r = ∅ implies n /∈ B′′, we have B′′ = P2,r. So B = (P2,r\{2}) ∪ {1} = B1,

and hence A is intersecting.

Now consider q > 1. So Aq = {2j : j ∈ [q − 1]} ∪ ({2j + 1: j ∈ [q, t] ∪ Pm+2,r−t) =

P2,q−1 ∪ P2q+1,r−q+1. Now P2q+1,r−q+1 = P3,r\P3,q−1. Since y ∈ P3,r = s1(P2,r), we

have y ∈ P2q+1,r−q+1 = s1(P2q,r−q+1), and hence C := P2q,r−q+1 is the unique set

in P(r−q+1)
[2q,y−1] . Note that C ∩ Aq = ∅. Let D be a set in P(r−q+1)

[2q−1,y] \{C} such that

D ∩ Aq = ∅. Then y /∈ D (since y ∈ Aq) and 2q − 1 ∈ D (otherwise D ∈ P(r−q+1)
[2q,y−1] ,

which leads to the contradiction that D = C). Now d2q = 1 and, since 2q + 1 ∈ Aq,

2q + 1 /∈ D. So E := (D\{2q − 1}) ∪ {2q} ∈ P(r−q+1)
[2q,y−1] , and hence E = C. So

D = (C\{2q}) ∪ {2q − 1}. Since P2,q−1 ⊂ Aq, P1,q−1 is the unique set in P(q−1)
2q−2 that

does not intersect Aq. Therefore F1 := P1,q−1 ∪ C and F2 := P1,q−1 ∪ D are the only

sets in P(r)
y that do not intersect Aq. It is clear from the above that F1 = Bq−1 and

F2 = Bq. Hence result. 2

Lemma 10.4.5 If Py is symmetric or P(r)
y is a type II family then |P(r)

y (y)| = |P(r)
y (1)|.

Proof. If r = 1 then the result is trivial, so we assume r > 1 and prove the re-

sult by induction on r. If Py is symmetric then the result follows immediately by
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symmetry, so suppose P(r)
y is a type II family. Clearly, y ≥ u(P1,r). If y = u(P1,r)

then P(r)
y = {P1,r} = P(r)

y (1) = P(r)
y (y). We now assume that y > u(P1,r) and

proceed by induction on y. Since P(r)
y is type II, we have y ∈ Pky,r = sky,r−1(P1,r)

and ky,r ≤ d1 + 1; note that this implies y ∈ Pky,r\{ky,r} = sky,r−1(P1,r\{1}) and

d1 + 2 = l(P1,r\{1}) ≤ l(Pky,r\{ky,r}) ≤ (d1 + 1) + dd1+1 + 1 ≤ dd1+2 + (d1 + 2). Since

Py〈1〉 = P[d1+2,y], it follows that either Py〈1〉 is symmetric or Py〈1〉(r−1) is isomorphic to

a type II family in the obvious way. Also, it is fairly straightforward that either Py]1[ (=

P[2,y]) is symmetric or Py]1[(r) is isomorphic to a type II family in the obvious way.

Therefore, by the inductive hypotheses, we get |Py〈1〉(r−1)(y)| = |Py〈1〉(r−1)(d1 + 2)|

and |Py]1[(r)(y)| = |Py]1[(r)(2)|. So |P(r)
y (y)| = |Py〈1〉(r−1)(d1 + 2)| + |Py]1[(r)(2)| =

|P(r)
y (1)(d1 + 2)| + |P(r)

y (1)]{2, 3, ..., d2 + 2}[|, and hence the result follows if d2 = d1.

Since u(P1,r) < y ∈ Pky,r , ky,r > 1. Thus, as we showed in the proof of Lemma 10.4.2,

d2 = d1 indeed. 2

We now come to the proof of Theorem 10.2.1. Recall from Section 10.2 that

s−x(A) ∈ P if A ∈ P , l(A) ≥ 2 and x ∈ [l(A) − 1]; this tool will be used often in

the proof.

Proof of Theorem 10.2.1. Let J := P(r)
n (1). If P(r)

n is type I and A∗ ⊂ P(r)
n is

special then trivially |A∗| = |J |, and Lemma 10.4.4 tells us that A∗ is intersecting.

Lemma 10.4.5 tells us that |P(r)
n (n)| = |J | if either Pn is symmetric or P(r)

n is type II.

Thus, taking

A∗ ∈ ex(P(r)
n ), (10.2)

the result follows if we show that |A∗| = |J | and that if A∗ 6= J then one of the

following holds:

- P(r)
n is type I and A∗ is special;

- A∗ = P(r)
n (n) and either Pn is symmetric or P(r)

n is type II.

Given that r ≤ α(Pn), we have P(r)
n 6= ∅ and hence A∗ 6= ∅.
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Suppose r = 2 and A∗ is centred. Then A∗ = P(2)
n (i) for some i ∈ [n]. If ei < d1

then, since {di}i∈N is mnd, we clearly must have i ≤ d1, in which case n > i + di as

A∗ 6= ∅. So

|A∗| = i− 1− ei + max{0, n− (i+ di)}

=


i− 1− ei if ei ≥ d1, n ≤ i+ di;

n− i− di if ei < d1, n > i+ di;

n− 1− di − ei if ei ≥ d1, n > i+ di,

and hence |A∗| ≤ n− 1− d1 = |J | with equality i� either i = 1 or i = n and en = d1.

Thus, by (10.2), either A∗ = J or A∗ = P(2)
n (n) and Pn is symmetric.

Next, suppose r = 2 and A∗ is non-centred. Then A∗ can only be of the form

{{a1, a2}, {a1, a3}, {a2, a3}} (a1 6= a2 6= a3 6= a1), which implies {a1, a2, a3} ∈ Pn. If

a3 > a2 + 2 then |P(2)
n (a1)| ≥ |{{a1, ah} : h ∈ [a2, a3]}| ≥ 4 > |A∗|, which contradicts

(10.2). So a3 = a2 + 2, and hence da2 ≤ 1. Since 1 ≤ d1 ≤ da2 , da2 = d1 = 1. So

|J | = n − 2, and hence, since |A∗| = 3, n ≤ 5 by (10.2). Also, n ≥ a3 ≥ a2 + 2 ≥

(a1 + 2) + 2 ≥ 5. So n = 5, and hence a1 = 1, a2 = 3, a3 = 5, d1 = d3 = 1. Together

with the above, this clearly settles the result for r = 2.

We now consider r ≥ 3. Since n ≥ u(P1,α(Pn)) and r ≤ α(Pn), n ≥ u(P1,r). If

n = u(P1,r) then the result is trivial since we get A∗ = P(r)
n = {P1,r}, so we assume

that n > u(P1,r) and proceed by induction on n.

Let A := ∆n−1,n(A∗). Since A(n) ⊆ A∗(n), we have

∆n−1,n(A(n)) ⊆ A∗(n); (10.3)

and since A∗ is intersecting, the following holds:

A ∈ A]n[, A ∩B = ∅ for some B ∈ A〈n〉 ⇒ n− 1 ∈ A, δn,n−1(A) ∈ A∗. (10.4)

Note that Pn〈n〉 = Pn′ . Since we are considering 3 ≤ r ≤ α(Pn) and n > u(P1,r), we

clearly have 2 ≤ r − 1 ≤ α(Pn′) and 3 ≤ r ≤ α(Pn−1). So A〈n〉 ⊂ P(r−1)
n′ 6= ∅, J 〈n〉 =
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P(r−1)
n′ (1) 6= ∅, A]n[⊂ P(r)

n−1 6= ∅, J ]n[ = P(r)
n−1(1) 6= ∅. Now, by Lemma 10.3.2(i), A〈n〉

and A]n[ are intersecting. So the inductive hypothesis yields |A〈n〉| ≤ |J 〈n〉| and

|A]n[| ≤ |J ]n[|, and hence |A| ≤ |J |. Since |A| = |A∗| and A∗ ∈ ex(P(r)
n ), we obtain

|A| = |J | and

J ∈ ex(P(r)
n ). (10.5)

So |A〈n〉| = |J 〈n〉|, |A]n[| = |J ]n[|, and hence, since the inductive hypothesis gives us

J 〈n〉 ∈ ex(P(r−1)
n′ ) and J ]n[∈ ex(P(r)

n−1), we have

A〈n〉 ∈ ex(P(r−1)
n′ ), (10.6)

A]n[∈ ex(P(r)
n−1). (10.7)

Thus, by the inductive hypothesis again, the following must hold:

A〈n〉 = J 〈n〉 or A〈n〉 = P(r−1)
n′ (n′) or A〈n〉 is special; (10.8)

A]n[ = J ]n[ or A]n[ = P(r)
n−1(n− 1) or A]n[ is special. (10.9)

Suppose A〈n〉 = J 〈n〉. Then J (n− 1) ⊆ ∆n−1,n(A(n)), and hence J (n− 1) ⊂ A∗

by (10.3). Suppose A∗]1[(n) 6= ∅. Let A ∈ A∗]1[(n) and B := (s−1(A\l(A))) ∪ {1}.

Then B ∈ J (n− 1), and hence B ∈ A∗. But A∩B = ∅, contradicting A∗ intersecting.

Next, suppose A∗]1[]n[ 6= ∅. Let C ∈ A∗]1[]n[ and D := (s−1(A\(l(A) ∪ u(A))) ∪ {1}.

So D ∈ A〈n〉, and hence E := D ∪ {n} ∈ A∗. But C ∩ E = ∅, contradicting A∗

intersecting. So A∗]1[]n[ = ∅. Since we also established A∗]1[(n) = ∅, A∗]1[ = ∅. So

A∗ ⊆ J . By (10.2), A∗ = J .

We now consider A〈n〉 6= J 〈n〉. Thus, by (10.8), A〈n〉 = P(r−1)
n′ (n′) or A〈n〉 is

special. We also keep in mind that A]n[ is as in (10.9).

Suppose kn′,r−1 = 1. If A〈n〉 is special then kn′,r−1 = 3, so A〈n〉 = P(r−1)
n′ (n′). By

(10.6) and the inductive hypothesis, either Pn′ is symmetric or P(r−1)
n′ is type II. So

u(Pkn′,r−1,r−1) = n′. Together with kn′,r−1 = 1, this gives us A〈n〉 = {P1,r−1} = J 〈n〉,
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a contradiction. So

kn′,r−1 ≥ 2. (10.10)

Thus, by Lemma 10.4.1,

kn,r ≥ 2. (10.11)

We will consider the case Pn symmetric separately from the case Pn asymmetric.

Case 1: Pn symmetric. So |P(r)
n (n)| = |J |, and hence P(r)

n (n) ∈ ex(P(r)
n ) by (10.5).

Now, in this case, we clearly have n ∈ Pkn,r,r. By (10.11), kn,r ≥ 2. The case kn,r = 2

is trivial since then P(r)
n = P(r)

n (1)(n) ∪ {P1,r, P2,r} and either A∗ = P(r)
n \{P2,r} = J

or A∗ = P(r)
n \{P1,r} = P(r)

n (n).

Consider next kn,r = 3 and d1 = 1. Since Pn is symmetric, n = 2r + 1. Note

that this is the unique case when Pn is symmetric and P(r)
n is type I. Let A1 := P3,r,

Ar+1 := P2,r and Ai+1 := {2j : j ∈ [i]} ∪ {2j + 1: j ∈ [i + 1, r]}, i = 1, ..., r − 1.

Let Br+1 := {1} ∪ P5,r−1 and Bi := s−1(Ai+1), i = 1, ..., r. For each i ∈ [r], let Si

be the special family {A1, ..., Ai} ∪ (J \{B1, ..., Bi}). Since |S1| = ... = |Sr| = |J |, it

follows by (10.5) that S1, ...,Sr ∈ ex(P(r)
n ). For each i ∈ [r + 1], |A∗ ∩ {Ai, Bi}| ≤ 1

as Ai ∩ Bi = ∅. Since |A∗| = |J | (by (10.2), (10.5)) and P(r)
n \J = {A1, ..., Ar+1}, we

actually have |A∗ ∩ {Ai, Bi}| = 1 for all i ∈ [r + 1]. Suppose A∗ 6= J . Then Aq ∈ A∗

for some q ∈ [r + 1]; assume that q is the largest such integer. Suppose q > 1 and

there exists p ∈ [2, q] such that Ap ∈ A∗ and Ap−1 /∈ A∗; then, since Bp−1 ∩Ap = ∅, we

get the contradiction that |A∗ ∩ {Ap−1, Bp−1}| = 0. So Ap ∈ A∗ for all p ∈ [q]. Since

A1 ∩ Ar+1 = ∅, q ≤ r. Therefore A∗ is the special family Sq.

Now suppose that either d1 = 1 and kn,r ≥ 4 or d1 > 1 and kn,r ≥ 3. Then, by

Lemma 10.4.1, P(r−1)
n′ is not type I, and henceA〈n〉 is not special. SoA〈n〉 = P(r−1)

n′ (n′),

and hence A1 := Pkn′,r−1,r−1∪{n} ∈ A∗, A2 := (A1\l(A1))∪{l(A1)− 1} ∈ A∗ (we have

l(A2) ≥ 2 because, since l(A1) = kn′,r−1 and kn,r ≥ 3, l(A1) ≥ 3 by Lemma 10.4.1).

Let A′ := ∆2,1(A∗). By Lemma 10.3.2(iii), A′〈1〉 and A′]1[ are intersecting. By an

argument similar to the one for A above, A′〈1〉 and A′]1[ must obey conditions similar
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to (10.8) and (10.9); in particular, A′〈n〉 must be P(r−1)
[d1+2,n](d1 + 2) or P(r−1)

[d1+2,n](n) (note

that, since Pn is symmetric, A′〈n〉 cannot be isomorphic to a special family just like

A〈n〉 cannot be special). Suppose A′〈1〉 = P(r−1)
[d1+2,n](d1 + 2). Taking A3 := s−1(A1), we

then have A4 := (A3\{l(A3), l(A3\l(A3))}) ∪ {1, d1 + 2} ∈ A∗. If l(A1) = d1 + 2 then

A2 ∩ A4 = ∅, otherwise A1 ∩ A4 = ∅; a contradiction. So A′〈1〉 = P(r−1)
[d1+2,n](n). Since

Pn is symmetric, we can use an argument similar to the one we applied for the case

A〈n〉 = J 〈n〉 to obtain A∗ = P(r)
n (n).

Case 2: Pn asymmetric. Note that therefore en > 1. As we showed above, the following

are the cases that must be investigated.

Sub-case 2.1: A〈n〉 = P(r−1)
n′ (n′). Thus, by (10.6) and the inductive hypothesis,

either Pn′ is symmetric or P(r−1)
n′ is type II. So

n′ ∈ Pkn′,r−1,r−1 = skn′,r−1−1(P1,r−1), (10.12)

where kn′,r−1 ≥ 2 by (10.10).

Suppose A]n[ is special but not P(r)
n−1(n − 1). By de�nition, we have kn−1,r = 3,

d1 = 1, u(P3,r) = n − 1, and hence u(P1,r+1) = u({1} ∪ P3,r) = n − 1. So u(P1,r) =

(n−1)−en−1−1 ≤ n−en−1 = n′, where the inequality follows by Proposition 10.3.1.

Since kn′,r−1 = kn,r ≥ kn−1,r = 3 > d1 + 1 (where the �rst equality is given by

Lemma 10.4.1), P(r−1)
n′ is not type II. So Pn′ is symmetric with en′ = d1 = 1. Suppose

u(P1,r) < n′. Since Pn′ is symmetric, we then get P2,r = s1(P1,r) and u(P2,r) ≤ n′. So

A1 := P2,r−2∪{n′} ∈ A〈n〉. By (10.1), P1,r ∈ A]n[. Since A1∩P1,r = ∅, (10.4) gives us

n−1 ∈ P1,r, which contradicts u(P3,r) = n−1. So u(P1,r) = n′. Since P3,r−1 = P1,r\{1}

andA〈n〉 = P(r−1)
n′ (n′), we therefore have P3,r−1 ∈ A〈n〉, and hence A2 := P3,r−1∪{n} ∈

A∗. Since P3,r = δn−1,n(A2), we obtain P3,r ∈ A∗ by (10.3). Now, since A]n[ is special,

P3,r = s1(P2,r) and, by (10.1), A3 := {1, n− 1} ∪ (P2,r−1\{2}) ∈ A]n[. So A2 ∩A3 = ∅,

and hence A4 := δn,n−1(A3) ∈ A∗ by (10.4). But then P3,r ∩ A4 = ∅, a contradiction.

We therefore conclude that A]n[ = J ]n[ or A]n[ = P(r)
n−1(n− 1).

Sub-sub-case 2.1.1: A]n[ = J ]n[. Let A1 := (Pkn′,r−1−1,r−1\{n′ − 1}) ∪ {n′}. Note

that n′−1 ∈ Pkn′,r−1−1,r−1 by (10.12). SinceA〈n〉 = P(r−1)
n′ (n′), we thus haveA1 ∈ A〈n〉.
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Suppose kn′,r−1 > 2. Then A2 := (Pkn′,r−1−2,r−1\{kn′,r−1 − 2}) ∪ {1, n− 2} ∈ A]n[. By

(10.12), we have Pkn′,r−1−1,r−1 = s1(Pkn′,r−1−2,r−1), and hence A1 ∩ A2 = ∅. But then

(10.4) gives us n − 1 ∈ A2, a contradiction. So kn′,r−1 ≤ 2. By (10.10), kn′,r−1 = 2,

and hence u(P2,r−1) = n′ by (10.12). Thus, A3 := P2,r−1 ∈ A〈n〉 and, by (10.12),

n′−1 = u(P1,r−1). Suppose dn′−1 < en. Then (n′−1)+dn′−1 +1 ≤ n′+ en−1 = n−2,

and hence A4 := P1,r−1∪{n−2} ∈ P (as n′−1 = u(P1,r−1)). So A4 ∈ A]n[. Since (10.12)

implies A3 ∩ A4 = ∅, (10.4) gives us n− 1 ∈ A4, a contradiction. So dn′−1 = dn′ = en.

Thus, since u(P1,r−1) = n′ − 1 and P2,r−1 = s1(P1,r−1) (by (10.12)), we have P1,r =

P1,r−1∪{(n′−1)+en+1} = P1,r−1∪{n−1}, P2,r = P2,r−1∪{n′+en+1} = P2,r−1∪{n},

and hence P2,r = s1(P1,r−1∪{n−1}) = s1(P1,r). So P(r)
n is type II. Now u(P1,r) = n−1

implies A]n[ = {P1,r}. Since P2,r−1 ∈ P(r−1)
n′ (n′) = A〈n〉 ⊆ A∗〈n〉 and P1,r∩P2,r−1 = ∅,

it follows by (10.4) that A∗]n[ = ∅ and A∗]n′[(n) = {(P1,r\{n − 1}) ∪ {n}}. So

A∗]n′[(n) = P(r)
n ]n′[(n) as u(P1,r\{n−1}) = u(P1,r−1) = n′−1. Since A(n′)(n−1) = ∅,

we have A∗(n′)(n) = A(n′)(n), and hence A∗(n′)(n) = P(r)
n (n′)(n). Therefore A∗ =

P(r)
n (n).

Sub-sub-case 2.1.2: A]n[ = P(r)
n−1(n−1). Suppose dn′ < en. Then A1 := Pkn′,r−1,r−1∪

{n − 1} ∈ A]n[. Recall that A〈n〉 = P(r−1)
n′ (n′). Thus, by (10.12), A2 := Pkn′,r−1,r−1 ∪

{n} ∈ A(n), and hence A2 ∈ A∗. Since A1 = δn−1,n(A2), A1 ∈ A∗ by (10.3). By

(10.10), kn′,r−1 − 1 ≥ 1; so let A3 := Pkn′,r−1−1,r−1 ∪ {n− 1}. We have A3 ∈ A]n[, and

A2 ∩ A3 = ∅ since A2 = s1(A3) by (10.12). Hence A4 := δn,n−1(A3) ∈ A∗ by (10.4).

But A1 ∩ A4 = A2 ∩ A3 = ∅, a contradiction. So dn′ = en, which implies en−1 = en.

Let A ∈ A]n[. Since n − 1 ∈ A and (n − 1) − en−1 − 1 = n − en − 2 ≤ n′ − 1,

we have n′ /∈ A and B := A\{n − 1} ∈ P(r−1)
n′−1 . Since Pn′ is symmetric or P(r−1)

n′ is

type II, Lemma 10.4.2 gives us s1(B) ∈ P(r−1)
n′ . So C := (s1(B)\u(s1(B))) ∪ {n′, n} ∈

P(r)
n (n′)(n). Since P(r)

n (n′)(n) = A(n) ⊆ A∗(n), C ∈ A∗. Since A ∩ C = ∅, it follows

by (10.4) that A /∈ A∗ and δn,n−1(A) ∈ A∗]n′[(n). We have therefore shown that

A]n[(n′) = ∅, A∗]n[ = ∅ and A∗]n′[(n) = ∆n,n−1(A]n[) = ∆n,n−1(P(r)
n−1(n − 1)) =

P(r)
n ]n′[(n). Since A]n[(n′) = ∅ implies A∗(n′)(n) = A(n′)(n), we have A∗(n′)(n) =

P(r)
n (n′)(n). So A∗ = P(r)

n (n).
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We now need to show that P(r)
n is type II. Since en−1 = en and Pn is asymmetric,

Pn−1 is asymmetric. Since A]n[ = P(r)
n−1(n− 1) ∈ ex(P(r)

n−1), it follows by the inductive

hypothesis that P(r)
n−1 is type II, and hence kn−1,r ≤ d1 +1. By the inductive hypothesis

for A〈n〉 = P(r−1)
n′ (n′) ∈ ex(P(r−1)

n′ ), either P(r−1)
n′ is type II or Pn′ is symmetric. If

P(r−1)
n′ is type II then, by de�nition, kn′,r−1 ≤ d1 +1. We now show that this inequality

also holds if Pn′ is symmetric.

So suppose we instead have Pn′ symmetric and kn′,r−1 > d1 + 1. Then {1, n} ∪

Pkn′,r−1,r−1 ∈ P(r+1)
n , and hence r < α(Pn). If Pn〈1〉 is symmetric or d2 > d1

then Lemma 10.4.3 gives us α(Pn) ≤ 3, and hence r ≤ 2; but we are now con-

sidering r ≥ 3. So Pn〈1〉 is asymmetric and d2 = d1. Let A′ := ∆2,1(A∗). By

Lemma 10.3.2(iii), A′〈1〉 and A′]1[ are intersecting. The inductive hypothesis gives

us |A′〈1〉| ≤ |Pn〈1〉(r−1)(d1 + 2)| = |P(r)
n (1)(d1 + 2)| and |A′]1[| ≤ |Pn]1[(r)(2)| =

|P(r)
n (1)]{2, 3, ..., d2+2}[| ≤ |P(r)

n (1)]{2, 3, ..., d1+2}[|, and therefore |A′| ≤ |P(r)
n (1)(d1+

2)| + |P(r)
n (1)]{2, 3, ..., d1 + 2}[| = |P(r)

n (1)|. Since |A′| = |A| and A ∈ ex(P(r)
n ), it

follows that |A′〈1〉| = |Pn〈1〉(r−1)(d1 + 2)| and |A′]1[| = |Pn]1[(r)(2)|. Since the in-

ductive hypothesis gives us Pn〈1〉(r−1)(d1 + 2) ∈ ex(Pn〈1〉(r−1)), we therefore have

A′〈1〉 ∈ ex(Pn〈1〉(r−1)). Thus, by the inductive hypothesis, one of the following holds:

(a) A′〈1〉 = Pn〈1〉(d1 + 2)(r−1), (b) A′〈1〉 = Pn〈1〉(n)(r−1), (c) A′〈1〉 is isomorphic to

a special family. Suppose (a) holds. Then Pd1+2,r−1 ∈ A′〈1〉, and hence P1,r ∈ A′(1).

So P1,r ∈ A∗ as A′(1) ⊂ A∗; but this clearly contradicts A∗ = P(r)
n (n) and (10.11).

Suppose (c) holds. Since Pn〈1〉 is asymmetric, (10.1) then gives us Pd1+2,r−1 ∈ A′〈1〉;

but, as we have just shown, this leads to a contradiction. Hence (b) holds. Since

P〈1〉 is asymmetric, it follows by the inductive hypothesis that Pn〈1〉(r−1) is isomor-

phic to a type II family, and hence, by de�nition of a type II family, we must have

r − 1 = α(Pn〈1〉); but this clearly contradicts r < α(Pn).

Therefore, as we claimed earlier, kn′,r−1 ≤ d1 +1. So kn,r ≤ d1 +1 by Lemma 10.4.1.

Now, since P(r)
n−1 is type II, n−1 ∈ Pkn−1,r,r = skn−1,r−1(P1,r). Since en−1 = en, it follows

that n′ − 1 = (n− 1)− en−1 − 1 ∈ Pkn−1,r,r−1 = skn−1,r−1(P1,r−1). Since either P(r−1)
n′ is

type II or Pn′ is symmetric, n′ ∈ Pkn′,r−1,r−1 = skn′,r−1−1(P1,r−1). Therefore Pkn′,r−1,r−1 =

s1(Pkn−1,r,r−1) and kn−1,r = kn′,r−1 − 1. Since dn′ = en, we have n′ + dn′ + 1 = n, and
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hence Pkn,r,r = Pkn′,r−1,r−1 ∪ {n} as n′ = u(Pkn′,r−1,r−1). Bringing together the relations

we have just established, we get

Pkn,r,r = s1(Pkn−1,r,r−1) ∪ {n} = s1(Pkn−1,r,r−1 ∪ {n− 1}) = s1(Pkn−1,r,r)

= s1(skn−1,r−1(P1,r)) = skn−1,r(P1,r) = skn′,r−1−1(P1,r).

Together with Lemma 10.4.1, this gives us Pkn,r,r = skn,r−1(P1,r). Since we also estab-

lished kn,r ≤ d1 + 1 and n ∈ Pkn,r,r, P
(r)
n is type II.

Sub-case 2.2: A〈n〉 special, A〈n〉 6= P(r−1)
n′ (n′). By de�nition and (10.1), n′ ∈

P3,r−1 = s1(P2,r−1) and P1,r−1, P3,r−1 ∈ A〈n〉. Taking Q1 := P1,r−1 ∪ {n} and Q3 :=

P3,r−1 ∪ {n}, we then have Q1, Q3 ∈ A∗(n) (as A〈n〉 ⊆ A∗〈n〉).

Suppose A]n[ = P(r)
n−1(n − 1). So A1 := s−1(Q3) = P2,r−1 ∪ {n − 1} ∈ A]n[ and

A2 := P1,r−1∪{n−1} ∈ A]n[. Since A2 = δn−1,n(Q1), it follows by (10.3) that A2 ∈ A∗.

Since A1 ∩ Q3 = ∅, we have A3 := P2,r−1 ∪ {n} ∈ A∗ by (10.4). Now, by (10.7) and

the inductive hypothesis, we should have P(r)
n−1 type II or Pn−1 symmetric, and hence

P2,r = s1(P1,r); but then A2 ∩ A3 = ∅, a contradiction. So A]n[ 6= P(r)
n−1(n− 1).

Next, suppose A]n[ is special. Then A1 := s1(P2,r) = P3,r = P3,r−1∪{n−1} ∈ A]n[

and, by (10.1), A2 := {1, n − 1} ∪ (P2,r−1\{2}) ∈ A]n[. Since A1 = δn−1,n(Q3),

(10.3) gives us A1 ∈ A∗. Since A2 ∩ Q3 = A2 ∩ δn,n−1(A1) = ∅, (10.4) gives us

A3 := δn,n−1(A2) ∈ A∗. But A1 ∩ A3 = ∅, a contradiction.

Therefore A]n[ = J ]n[. Suppose dn′−1 < en. Then (n′ − 1) + dn′−1 + 1 ≤ n′ +

en − 1 = n − 2. Now n′ − 1 ∈ P2,r−1 as n′ ∈ P3,r−1 = s1(P2,r−1). Taking A1 :=

{1, n − 2} ∪ (P2,r−1\{2}), we thus get A1 ∈ A]n[∩A∗. However, since Q3 3 n′ ≤

n− 2− dn′−1 ≤ n− 3 implies n− 2 /∈ Q3, we also get A1 ∩Q3 = ∅, a contradiction. So

dn′−1 = en, and hence dn′−1 = dn′ = en (as dn′ ≤ en). Thus, since u(P2,r−1) = n′ − 1

and u(P3,r−1) = n′, u(P2,r) = (n′ − 1) + dn′−1 + 1 = n′ + en = n − 1 and similarly

u(P3,r) = n. So P3,r = P3,r−1 ∪ {n} = s1(P2,r−1 ∪ {n− 1}) = s1(P2,r). Given that A〈n〉

is special, d1 = d3 = 1. Since Pn is asymmetric, we therefore have en > 1, and hence

m := max{a ∈ [n] : da = 1} ≤ n′. Thus, since A〈n〉 is special, m = 2t + 1 for some

t ∈ [n′]. So P(r)
n is type I.
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It remains to show that A∗ is special. Let us take Ai, Bi, i = 1, ..., t, to be as

in the de�nition of a special family with y = n in Section 10.2. Since n ∈ P3,r =

P3,t ∪ Pm+2,r−t = s1(P2,r) = s1(P2,t ∪ Pm+1,r−t), we have n ∈ Pm+2,r−t = s1(Pm+1,r−t),

and hence n ∈ Ai and n − 1 ∈ Pm+1,r−t ⊂ Bi for all i ∈ [t]. For each i ∈ [t], let

A′
i := Ai\{n}, B′

i := Bi\{n − 1}, B′′
i := B′

i ∪ {n}. If r = t + 1 then Pm+2,r−t =

Pm+2,1 = {m + 2}, and hence n = m + 2, which clearly contradicts m ≤ n′ and

dn′ = en > 1 (which we established above). So r ≥ t + 2, and hence Pm+2,r−t−1 6= ∅,

Pm+1,r−t−1 6= ∅. Clearly, for all i ∈ [t], A′
i = (Ai\Pm+2,r−t) ∪ Pm+2,r−t−1 and B′

i =

(Bi\Pm+1,r−t)∪Pm+1,r−t−1 (recall that Pm+1,r−t ⊂ Bi). Therefore, since A〈n〉 is special,

A〈n〉 = {A′
1, ..., A

′
q} ∪ (P(r−1)

n′ (1)\{B′
1, ..., B

′
q}) for some q ∈ [t]. So A∗

1 := A(n) =

{A1, ..., Aq} ∪ (P(r)
n (1)(n)\{B′′

1 , ..., B
′′
q }). Since A(n) ⊆ A∗(n), A∗

1 ⊆ A∗. Now, we also

have A]n[ = J ]n[ = P(r)
n−1(1). So A∗

2 := P(r)
n−1(1)]n − 1[ = A]n[]n − 1[⊂ A∗. Finally,

consider A ∈ A]n[(n − 1) = P(r)
n−1(1)(n − 1). If A = Bi for some i ∈ [q] then, since

Ai ∩ Bi = ∅ and Ai ∈ A∗
1, we must have A /∈ A∗ and (A\{n − 1}) ∪ {n} ∈ A∗.

If A /∈ {B1, ..., Bq} then (A\{n − 1}) ∪ {n} ∈ A∗
1, and hence A ∈ A∗ by (10.3).

Setting A∗
3 := A∗\(A∗

1 ∪ A∗
2), we therefore have A∗

3 = (P(r)
n−1(1)(n− 1)\{B1, ..., Bq}) ∪

{B′′
1 , ..., B

′′
q }. So A∗ = A∗

1 ∪ A∗
2 ∪ A∗

3 = {A1, ..., Aq} ∪ (P(r)
n (1)\{B1, ..., Bq}). So A∗ is

special. 2

10.5 The case d1 = 0

We start with a lemma concerning sets in hereditary families.

Lemma 10.5.1 Let F be hereditary. If there exist F1, F2 ∈ F such that F1 ∩ F2 = ∅

and |F1| = |F2| = α(F) then for any F ∈ F there exists F ′ ∈ F such that F ∩ F ′ = ∅

and |F |+ |F ′| > α(F).

Proof. Let F ∈ F . If F ⊆ F1 then the result follows immediately by taking

F ′ ∈
(

F2

α(F)+1−|F |

)
. If F * F1 then |F1\F | ≥ |F1| − (|F | − 1) = α(F ) + 1 − |F |,

and hence the result follows by taking F ′ ∈
(

F1\F
α(F)+1−|F |

)
. 2

The converse of this result is not true; to see this, take F to be 2[n+1]\{[n + 1]}.
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Also, in a sense, the conditions on F1 and F2 cannot be improved; by considering

F = 2F1 ∪ 2F2 and F = {f}, it is easy to see that we can neither allow F1 and F2 to

have non-empty intersection nor allow F1 or F2 to have size less than α(F).

Lemma 10.5.2 If d1 > 0, α(Pn) ≥ 3 and n ∈ P1,α(Pn) then for any A ∈ Pn]2[ there

exists A′ ∈ Pn(2) such that A ∩ A′ = ∅ and |A|+ |A′| ≥ α(Pn).

Proof. Let 1 = p1 < p2 < ... < pα(Pn) such that P1,α(Pn) = {p1, ..., pα(Pn)}. We

have Pn〈2〉 ⊂ 2[a,n], where a := 2 + d2 + 1. Let a =: q1 < ... < qα(Pn)−2 such that

Pa,α(Pn)−2 = {q1, ..., qα(Pn)−2}. So

p2 = 1 + d1 + 1 < 2 + d2 + 1 = q1 < p2 + dp2 + 1 = p3, (10.13)

and if α(Pn) ≥ 4 then, proceeding inductively, we also get

pi = pi−1 + dpi−1
+ 1 < qi−2 + dqi−2

+ 1 = qi−1 < pi + dpi
+ 1 = pi+1, (10.14)

i = 3, ..., α(Pn) − 1. Let F1 := Pp3,α(Pn)−2 = P\{p1, p2}, F2 := Pa,α(Pn)−2. By (10.13)

and (10.14), F1, F2 ∈ Pn〈2〉 and F1 ∩ F2 = ∅. Since |F1| = α(Pn) − 2, α(Pn〈2〉) ≥

α(Pn)−2. By de�nition of a, Pa,α(Pn〈2〉) ∈ Pn〈2〉 (for the same reason that P1,α(Pn) ∈ Pn,

being that {di}i∈N is mnd). So u(Pa,α(Pn〈2〉)) ≤ n. Now n = pα(Pn) as we are given that

n ∈ P1,α(Pn).

Suppose α(Pn〈2〉) > α(Pn) − 2. Then qα(Pn)−2 ∈ Pa,α(Pn〈2〉)\{u(Pa,α(Pn〈2〉))}. To-

gether with (10.13) and (10.14), this gives us u(Pa,α(Pn〈2〉)) ≥ qα(Pn)−2 + dqα(Pn)−2
+ 1 >

pα(Pn), contradicting u(Pa,α(Pn〈2〉)) ≤ n = pα(Pn). So α(Pn〈2〉) = α(Pn) − 2 = |F1| =

|F2|.

Let A ∈ Pn]2[. Suppose A ∈ Pn〈2〉. By Lemma 10.5.1, there exists A′′ ∈ Pn〈2〉

such that A ∩ A′′ = ∅ and |A| + |A′′| ≥ α(Pn〈2〉) + 1 = α(Pn) − 1. Hence A′ :=

A′′ ∪ {2} ∈ Pn(2), A ∩ A′ = ∅ and |A| + |A′| ≥ α(Pn). Now suppose A /∈ Pn〈2〉. We

have A∗ := A ∩ [a, n] ∈ Pn〈2〉 ∪ {∅}. If A∗ 6= ∅ then we apply the argument for A

above to get |A∗| + |A′| ≥ α(Pn) for some A′ ∈ Pn(2) such that A∗ ∩ A′ = ∅, which

clearly yields the result. Suppose A∗ = ∅. Let A′ := F1 ∪ {2}. So A ∩ A′ = ∅ and
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|A|+ |A′| ≥ 1 + (α(Pn)− 1) = α(Pn). 2

Proof of Theorem 10.2.3. We start with (i), for which we have d2r−2 = 0 and

d2r−1 = n − 2r. We �rst consider A ∈ ex(P(r)
n ) and prove the necessary condition.

Let B := P(r)
n (1). Let A0 = A ∩

(
[2r−2]
r

)
, A2 := A(2r − 1)(n) and A1,i := A(i)\A2,

i = 2r − 1, ..., n. De�ne B0, B2, and B1,i similarly. Note that since (2r − 1) + d2r−1 +

1 = n (and di ≥ d2r−1 for all i ≥ 2r), if A ∈ A and |A ∩ [2r − 1, n]| > 1 then

A ∩ [2r − 1, n] = {2r − 1, n}. So A0 ∪ A2 ∪
⋃n
i=2r−1A1,i is a partition for A. Let

A′
2 := A〈2r − 1〉〈n〉 ⊆

(
[2r−2]
r−2

)
and A′

1,i := A〈i〉 ∩
(
[2r−2]
r−1

)
= A1,i〈i〉, i = 2r − 1, ..., n.

De�ne B′2 and B′1,i (i = 2r − 1, ..., n) similarly. So

|A| = |A0|+ |A′
2|+

n∑
i=2r−1

|A′
1,i|, |B| = |B0|+ |B′2|+

n∑
i=2r−1

|B′1,i| (10.15)

Clearly, A0 and A′
2 must be cross-intersecting. So

|{A, [2r − 2]\A} ∩ (A0 ∪ A′
2)| ≤ 1 for all A ∈

(
[2r − 2]

r − 2

)
∪
(

[2r − 2]

r

)
, (10.16)

and hence

|A0|+ |A′
2| ≤

(
2r − 2

r

)
= |B0|+ |B′2|. (10.17)

Let us now consider A′
1,i, i = 2r − 1, ..., n. These families must also be cross-

intersecting. Thus, by Theorem 9.2.3, we have

n∑
i=2r−1

|A′
1,i| ≤ (n− 2r + 2)

(
2r − 3

r − 2

)
=

n∑
i=2r−1

|B′1,i|. (10.18)

By (10.15), (10.17) and (10.18), we have |A| ≤ |B|. Thus, since A ∈ ex(P(r)
n ),

we actually have |A| = |B|. It follows that the inequalities in (10.17) and (10.18) are

actually equalities. By Theorem 9.2.3 and the EKR Theorem, an equality in (10.18)

yields A′
1,2r−1 = ... = A′

1,n ∈ ex(
(
[2r−2]
r−1

)
); hence (b).
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Since dn−1 > 0 and 2r ≤ α(Pn), n ≥ 2r + 1. So the sets of A1,2r do not intersect

with those of A2 on [2r − 1, n], and hence A′
1,2r and A′

2 are cross-intersecting. By the

equalities in (b), (c) follows.

Since we established equality in (10.17), we also have equality in (10.16), which

implies that A0 =
(
[2r−2]
r

)
\{[2r − 2]\A : A ∈ A′

2}. Thus, to obtain (a), it remains to

show that A′
2 is intersecting. Suppose there exist A1, A2 ∈ A′

2 such that A1 ∩ A2 = ∅.

So [2r − 2]\(A1 ∪ A2) = {x, y} for some distinct x, y ∈ [2r − 2]. Let A3 := A1 ∪ {x}

and A4 := A2 ∪ {y}. So A3 ∩ A2 = ∅ and A4 ∩ A1 = ∅. Since A′
1,2r and A′

2 are

cross-intersecting (see above), we therefore get A3, A4 /∈ A′
1,2r. Since A4 = [2r− 2]\A3,

this implies that A′
1,2r /∈ ex(

(
[2r−2]
r−1

)
) (see Theorem 10.1.1(ii)), a contradiction to (b).

So A′
2 is intersecting. Hence (a).

We now prove the su�ciency condition in (i). So let A be a sub-family of P(r)
n that

obeys (a), (b) and (c). De�ne A0, A2 and A1,i, i = 2r − 1, ..., n, as above. As we

showed above, A0 ∪ A2 ∪
⋃n
i=2r−1A1,i is a partition for A. By de�nition, A0, A2 and

A1,i, i = 2r− 1, ..., n, are intersecting. By (a), A0 ∪A2 is intersecting. By (b) and (c),

A2 ∪
⋃n
i=2r−1A1,i is intersecting. If A ∈

⋃n
i=2r−1A1,i then A ∩ [2r − 2] = r − 1 and

hence A intersects each set in
(
[2r−2]
r

)
; so A0 and

⋃n
i=2r−1A1,i are cross-intersecting.

Therefore A is intersecting. Now, it is immediate from (a), (b) and (c) that the bounds

in (10.17) and (10.18) are attained. So A ∈ ex(P(r)
n ).

We now prove (ii) and (iii) by induction on n. We �rst consider A∗ ∈ ex(P(r)
n ) and

prove the necessary conditions for A∗. Unlike we did in the Proof of Theorem 10.2.1,

we do not use ∆n−1,n because if α(Pn)/2 = r > α(Pn−1)/2 (which is possible) then we

cannot apply the inductive hypothesis. Instead, we work with A := ∆m,m+1(A∗). By

Lemma 10.3.2(ii), A]m+1[∪A〈m+1〉 is intersecting. We have A]m+1[⊂ P(r)
n ]m+1[ =

Pn]m + 1[(r) and A〈m + 1〉 ⊂ P(r)
n 〈m + 1〉 = Pn〈m + 1〉(r′′), where r′′ = r − 1. Since

m,m+ dm + 1 ∈ P1,α(Pn) ∈ Pn, we have α(Pn) = α(Pn]m+ 1[) and

r′′ ≤ (α(Pn)− 2)/2 = α(Pn〈m〉〈m+ dm + 1〉)/2 ≤ α(Pn〈m+ 1〉)/2. (10.19)
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Observe that Pn]m+1[ and Pn〈m+1〉 are isomorphic to Pn′({d′i}i∈N) and Pn′′({d′′i }i∈N)

respectively, where n′ = n − 1, n′′ = max{m − 1, n − dm+1 − 2}, and mnd sequences

{d′i}i∈N and {d′′i }i∈N are given by

d′i :=


di = 0 if i ∈ [m− 1];

dm − 1 if i = m;

di+1 if i ∈ N\[m],

and d′′i :=

 di = 0 if i ∈ [m− 1];

di+dm+1+2 if i ∈ N\[m− 1].

Therefore, we can apply the inductive hypothesis or Theorem 10.1.1 to each of A]m+1[

and A〈m+ 1〉 to get

|A]m+ 1[| ≤ |P(r)
n ]m+ 1[(1)|, |A〈m+ 1〉| ≤ |P(r)

n 〈m+ 1〉(1)|, (10.20)

and hence |A| ≤ |P(r)
n (1)|. Since |A| = |A∗| and A∗ ∈ ex(P(r)

n ), A ∈ ex(P(r)
n ). So we

actually have equalities in (10.20), and hence

A]m+ 1[∈ ex(P(r)
n ]m+ 1[), A〈m+ 1〉 ∈ ex(P(r)

n 〈m+ 1〉). (10.21)

Claim 10.5.3 Suppose a ∈ [m] and A]m+ 1[ = P(r)
n ]m+ 1[(a). Then a ∈ [m− 1] and

A = P(r)
n (a).

Proof. Suppose A]m+1[ = P(r)
n ]m+1[(a), a ∈ [m]. Then, since a ∈ P1,α(Pn) ∈ Pn and

r ≤ α(Pn)/2, for any A ∈ P(r)
n 〈m+1〉]a[ there exists A′ ∈ A]m+1[ such that A∩A′ = ∅.

Since A]m + 1[∪A〈m + 1〉 is intersecting, it follows that A〈m + 1〉 ⊆ P(r)
n 〈m + 1〉(a).

So A = P(r)
n (a) as A ∈ ex(P(r)

n ). If a = m then A〈m + 1〉 = ∅, and hence |A| =

|P(r)
n ]m+ 1[(a)| ≤ |P(r)

n ]m+ 1[(1)| < |P(r)
n (1)|, contradicting A ∈ ex(P(r)

n ). 2

Claim 10.5.4 Suppose n ∈ P1,2r and m ≤ 2r−2. Let j ∈ [m−1]. Let A ∈ P(r)
n ]j[]m+

1[ such that A∩ [m,n] 6= ∅. Then there exists A′ ∈ P(r)
n (j)(m+1) such that A∩A′ = ∅.

Proof. Let Q := Pn ∩ 2[m,n]. So Q is isomorphic to Pn−(m−1)({di+m−1}i∈N). Clearly,

n ∈ P1,2r implies n ∈ Pm,α(Q) and α(Pn) = 2r. Since m ≤ 2r − 2 and α(Q) =

α(Pn) − (m − 1) = 2r − (m − 1), α(Q) ≥ 2r − (2r − 3) = 3. Let B := A ∩ [m,n] ∈

Q]m + 1[. By Lemma 10.5.2, there exists B′ ∈ Q(m + 1) such that B ∩ B′ = ∅ and
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|B| + |B′| = α(Q). Let A′ := B′ ∪ ([m − 1]\A). So |A′| = |B′| + |[m − 1]\A| =

(α(Q) − |B|) + ((m − 1) − (r − |B|)) = α(Q) + m − 1 − r = r. Since j /∈ A, j ∈ A′.

The truth of the claim is now clear. 2

Note that P1,2r ∈ Pn since 2r ≤ α(Pn).

Consider �rst n /∈ P1,2r. Since m ∈ P1,2r, m + 1 /∈ P1,2r. So P1,2r ∈ Pn]m + 1[]n[.

By (10.21) and the inductive hypothesis, it follows that A]m+ 1[ = P(r)
n ]m+ 1[(j) for

some j ∈ [m] (note that if dm = 1 then d′m = 0 and d′m+1 > 0). By Claim 10.5.3,

A = P(r)
n (j) and j ∈ [m− 1].

Now consider n ∈ P1,2r and m ≤ 2r − 2. Let m =: p1 < p2 < ... < pα(Q) := n such

that Pm,α(Q) = {p1, ..., pα(Q)}, where Q is as in the Proof of Claim 10.5.4 and hence

α(Q) ≥ 3; note that P1,2r = [m − 1] ∪ Pm,α(Q). Let m′′ := (m + 1) + dm+1 + 1. Let

m′′ =: q1 < ... < qα(Q)−2 such that Pm′′,α(Q)−2 = {q1, ..., qα(Q)−2}. Similarly to (10.13)

and (10.14), we have

p2 = m+ dm + 1 < (m+ 1) + dm+1 + 1 = q1 < p2 + dp2 + 1 = p3, (10.22)

and if α(Q) ≥ 4 then

pi = pi−1 + dpi−1
+ 1 < qi−2 + dqi−2

+ 1 = qi−1 < p2 + dp2 + 1 = pi+1, (10.23)

i = 3, ..., α(Q) − 1. Let P ′′
1,2r′′ := {p′′1, ..., p′′2r′′} ∈ P({d′′i }i∈N), where p′′1 := 1 and

p′′l+1 := p′′l + d′′p′′l
+ 1, l = 1, ..., 2r′′ − 1. Clearly, p′′j = j, j = 1, ...,m − 1, and p′′l =

ql−m+1 − dm+1 − 2, l = m, ..., 2r′′. Note that 2r′′ = 2r − 2 = (m − 1) + α(Q) − 2

(as P1,2r = [m − 1] ∪ Pm,α(Q)). Now, by (10.22) and (10.23), qα(Q)−2 < pα(Q). So we

have p′′2r′′ = p′′m+α(Q)−3 = qα(Q)−2 − dm+1 − 2 < n − dm+1 − 2 = n′′. By the inductive

hypothesis, it follows that A〈m+ 1〉 = P(r)
n 〈m+ 1〉(j) for some j ∈ [m− 1]. Therefore

A(m+ 1) = P(r)
n (m+ 1)(j). (10.24)

Let H0 ∪ H1 ∪ H2 be the partition of A]m + 1[ given by H0 := A]m + 1[∩
(
[m−1]
r

)
,

H1 := {A ∈ A]m + 1[ : Pm,α(Q) ⊆ A}, H2 := A]m + 1[\(H0 ∪ H1). De�ne a partition
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I0 ∪ I1 ∪ I2 of P(r)
n ]m + 1[(j) similarly. Since A is intersecting, it follows by (10.24)

and Claim 10.5.4 that

H1 ⊆ I1, H2 ⊆ I2. (10.25)

Supposem ≤ r+1. Ifm < r+1 thenH0 = ∅, and ifm = r+1 thenH0 = {[m−1]} ∈

P(r)
n ]m + 1[(j). Together with (10.24) and (10.25), this gives us A ⊆ P(r)

n (j). Since

A ∈ ex(P(r)
n ), A = P(r)

n (j).

Now suppose m ≥ r + 2. If A ∈ H0\I0 then P1,2r\A ∈ I1\H1; hence |H0|+ |H1| ≤

|I0| + |I1| as H1 ⊆ I1 (by (10.25)). By (10.20), (10.21) and (10.25), it follows that

H2 = I2 and |H0|+ |H1| = |I0|+ |I1|. We now prove that A = (P(r)
n (j)\{P1,2r\A : A ∈

H0})∪H0 by showing that for anyA ∈
(
[m−1]
r

)
, P1,2r\A is the unique set in P(r)

n that does

not intersect A. Indeed, let A′ ∈ P(r)
n such that A∩A′ = ∅. Then A′ = A′

1∪A′
2 for some

A′
1 ⊆ [m− 1]\A and A′

2 ∈ Q. Suppose A′
1 6= [m− 1]\A or |A′

2| < α(Q) (= 2r−m+1);

then |A′| < (m− 1− r) + (2r −m + 1) = r, a contradiction. So A′
1 = [m− 1]\A and

|A′
2| = α(Q). Clearly, since n ∈ Pm,α(Q) = P1,2r\[m− 1], Pm,α(Q) is the only set in Q of

size α(Q). So A′
2 = Pm,α(Q), and hence A′ = P1,2r\A.

We conclude the proof of the necessary conditions in (ii) and (iii) by showing that

A∗ = A. Suppose A∗ 6= A instead. Then there exists A∗ ∈ A∗\A such that A :=

δm,m+1(A
∗) ∈ A\A∗. Now we have shown that for some j ∈ [m − 1] and H0 ⊆(

[m−1]\{j}
r

)
, A = (P(r)

n (j)\{P1,2r\A : A ∈ H0}) ∪ H0 (where H0 = ∅ if n /∈ P1,2r or

m ≤ r + 1). Thus, since m ∈ A, A ∈ P(r)
n (j)(m). Therefore A∗ ∈ P(r)

n (j)(m + 1)\A,

but this is a contradiction because, since m+ 1 /∈ P1,2r, P(r)
n (j)(m+ 1) ⊂ A.

It remains to prove the su�ciency conditions in (ii) and (iii). We have shown

that for any intersecting family A ⊂ P(r)
n , |A| ≤ |P(r)

n (1)|. This already proves the

su�ciency condition in (iii) because for any j ∈ [2,m − 1], P(r)
n (j) is isomorphic to

P(r)
n (1). Therefore the su�ciency condition in (ii) follows from the already established

fact that if n ∈ P1,2r, r + 2 ≤ m ≤ 2r − 2 and A ∈
(
[m−1]
r

)
then P1,r\A is the unique

set in P(r)
n that does not intersect A. 2
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Chapter 11

Graphs with the Erd®s-Ko-Rado

property

11.1 A graph-theoretical formulation and result

A graph G is a pair (V (G), E(G)) such that E(G) ⊆
(
V (G)

2

)
. V (G) and E(G) are called

the vertex set and the edge set of G respectively. If v, w ∈ V (G) and {v, w} ∈ E(G)

then v and w are said to be adjacent and edge vw is said to be incident to v and w. If

G has no edges incident to a vertex x then x is said to be a singleton.

In the following, we represent an edge {v, w} of a graph by the abbreviation vw.

A set I ⊆ V (G) is said to be an independent set if the vertices in I are pair-wise

non-adjacent. We denote the family of all independent sets of vertices of G by IG. We

shall abbreviate α(IG) and µ(IG) to α(G) and µ(G) respectively; so α(G) denotes the

independence number max{|I| : I ∈ IG} and µ(G) denotes the minimum cardinality of

a maximal independent set of vertices of G.

A graph G is said to be connected if for any {v, w} ∈
(
V (G)

2

)
\E(G) there exist

v1, ..., vp ∈ V (G) such that vv1, vpw ∈ E(G) and if p > 1 then vivi+1 ∈ E(G) for

i = 1, ..., p− 1. If G is a disjoint union of connected graphs G1, ..., Gq then Gj (j ∈ [q])

is said to be a component of G.

It is interesting that many EKR-type results can be expressed in terms of the EKR

or strict EKR property of I(r)
G for some graph G and r ∈ X ⊆ [α(G)]. Before coming
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to the crux of this chapter, we give a brief review of such results, recalling certain

well-known classes of graphs and also de�ning new ones as we go along.

Let En denote the empty graph on n vertices, i.e. the graph consisting of n single-

tons. By the EKR Theorem and the Hilton-Milner Theorem, we have the following.

Theorem 11.1.1 Let r ≤ n/2. Then I(r)
En

is EKR, and strictly so if r < n/2.

Theorem 1.5.2 for permutations and partial permutations can also be phrased in a

graph-theoretical form as follows.

Theorem 11.1.2 Let G be the graph de�ned by V (G) := [n]×[n] and E(G) := {{(i, j),

(i′, j′)} ∈
(
V (G)

2

)
: i = i′ or j = j′}. Then I(r)

G is strictly EKR for all r ∈ [n].

Note that the case r = n is actually Theorem 1.5.1.

Suppose G is a graph whose vertex set has a partition V (G) = V1∪...∪Vp into partite

sets such that any two vertices are adjacent i� they belong to distinct partite sets. Such

a graph is said to be a complete multipartite graph of order p. If |V1| = ... = |Vp| = 1

then G is called a complete graph, and it is denoted by Kp.

Theorem 1.4.3 can be rephrased as follows.

Theorem 11.1.3 Let r ≤ n and k ≥ 2. Let G be a disjoint union of n copies of Kk.

Then I(r)
G is EKR, and strictly so unless r = n and k = 2.

Similarly, Theorem 8.1.2 can be rephrased as follows.

Theorem 11.1.4 If G is a disjoint union of complete graphs each of order at least 2

then I(r)
G is EKR for all r ≤ n.

In [41], parts (i) and (ii) of Theorem 8.1.4 were actually phrased in the graph-

theoretical form and hence along the following lines.

Theorem 11.1.5 Let G be a disjoint union of two complete multipartite graphs. Let

r ≤ µ(G)/2. Then I(r)
G is EKR, and strictly so if r < µ(G)/2.

Similarly, Theorem 8.1.5 can be rephrased as follows.
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Theorem 11.1.6 Let G be a disjoint union of k complete multipartite graphs and a

non-empty set V0 of singletons. Let 1 ≤ r ≤ µ(G)/2. Then:

(i) I(r)
G is EKR;

(ii) I(r)
G fails to be strictly EKR i� 2r = µ(G) = α(G), 3 ≤ |V0| ≤ r, k = 1.

We now introduce the �rst of two de�nitions that are crucial for achieving the target

of this chapter, which is revealed towards the end of this section.

De�nition 11.1.7 For a monotonic non-decreasing (mnd) sequence {di}i∈N of non-

negative integers, let M := M({di}i∈N) be a graph such that V (M) = N and for

a, b ∈ V (M) with a < b, ab ∈ E(M) i� b ≤ a + da. Let Mn := Mn({di}i∈N) be the

sub-graph induced fromM by the subset [n] of V (M). We refer toMn as an mnd graph.

Suppose Mn = Mn({di = d}i∈N), d ∈ N, and G is a copy of Mn. Then G is called a

d'th power of a path, and if d = 1 then G is also simply called a path.

Let Pn({di}i∈N) be as de�ned in Chapter 10, and let Pn := Pn({di}i∈N). Note that

P(r)
n = I(r)

Mn
. Thus, by Theorems 10.2.1 and 10.2.3, we have the following.

Theorem 11.1.8 (i) If d1 > 0 and r ≤ α(IMn) then I(r)
Mn

is EKR, and strictly so

unless P(r)
n is type I (see Chapter 10 for de�nition).

(ii) If d1 = 0 and r ≤ α(IMn)/2 then I(r)
Mn

is EKR, and strictly so if r < α(IMn)/2.

Note that Theorem 10.1.2 gives the "non-strict part" in (i) above for the special case

when Mn is a power of a path; see [40].

We now come to our second important de�nition. First of all, a directed graph (or

digraph) D is a pair (V (D), E(D)) such that E(D) ⊆ V (D)× V (D).

De�nition 11.1.9 (i) For n > 2, 1 ≤ k < n−1, 0 ≤ q < n, let qD
k,k+1
n be the digraph

({vi : i ∈ [n]}, E) such that if 1 ≤ i ≤ q then (vi, vi+s (mod n)) ∈ E i� s ∈ [k + 1], and if

q + 1 ≤ i ≤ n then (vi, vi+s (mod n)) ∈ E i� s ∈ [k].

(ii) Let qC
k,k+1
n be the graph such that vw ∈ E(qC

k,k+1
n ) i� (v, w) ∈ E(qD

k,k+1
n ) or

(w, v) ∈ E(qD
k,k+1
n ). 0C

k,k+1
n is called a k'th power of a cycle (or simply a cycle if

k = 1) and also denoted by Ck
n. If q > 0 then we call qC

k,k+1
n a modi�ed k'th power of

a cycle.
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A nice EKR-type result of Talbot [58] for separated sets can be stated as follows.

Theorem 11.1.10 (Talbot [58]) Let r ≤ α(Ck
n). Then I(r)

Ck
n
is EKR, and strictly so

unless k = 1 and n = 2r + 2.

The clique number cl(G) of a graph G is the size of a largest complete sub-graph

of G. Hilton and Spencer proved the following.

Theorem 11.1.11 (Hilton and Spencer [39]) Let G be a disjoint union of graphs

P,C1, ..., Cn such that cl(P ) ≤ min{cl(Ci) : i ∈ [n]}, where P is a power of a path and

Ci (i ∈ [n]) is a power of a cycle. Then I(r)
G is EKR for all r ≤ α(G).

As we explain later, the work in this chapter is inspired by the following result.

Theorem 11.1.12 (Holroyd, Spencer, Talbot [40]) Let G be a disjoint union of

n components consisting of complete graphs, paths, cycles, and at least one singleton.

Then I(r)
G is EKR for all r ≤ n/2.

Note that, unlike all the preceding theorems, this result does not live up to Con-

jecture 1.3.4 because (for any graph G) µ(G) is at least as large as the number of

components of G, and there is no bound as to how much larger it can be.

The idea of the graph-theoretical formulation we have been discussing emerged in

[41], in which Holroyd and Talbot in fact initiated the study of the general EKR problem

for independent sets of graphs and made Conjecture 1.3.4. By proving Theorem 11.1.5,

they provided an example of a graph G such that G obeys the conjecture and, as we

demonstrate in a stronger fashion below, I(r)
G may not be EKR if µ(G)/2 < r < α(G)

(it is easy to see that for such a graph G, I(r)
G is EKR for r = α(G)). They gave

various other examples of graphs H and values r > µ(H)/2 for which I(r)
H is not

EKR, and one particularly interesting example of this kind has r = α(H). The idea

behind Conjecture 1.3.4 is that if I is any maximal independent set of a graph G with

µ(G) ≥ 2r, then, since |I| ≥ µ(G), it holds by the EKR Theorem that
(
I
r

)
is EKR, and

strictly so if µ(G) > 2r.

We now show that there are graphs G such that µ(G) < α(G) and I(r)
G is not EKR

for all µ(G)/2 < r < α(G). Indeed, let G be the graph consisting of a 3-set V0 of
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singletons and a complete bipartite graph with partite sets V1 and V2 of size 5 and 4

respectively. So 7 = µ(G) < α(G) = 8. For r ∈ [α(G)], let Jr be a star of I(r)
G with

centre x ∈ V0, and let Ar := (Jr\{A ∈ Jr : A ∩ V0 = {x}}) ∪ {A ∈ I(r)
G : A ∩ V0 =

V0\{x}}. Clearly Jr is a star of I(r)
G of largest size. For all µ(G)/2 < r < α(G), we

have |Ar| > |Jr|. This proves what we set out to show.

Conjecture 1.3.4 seems very hard to prove or disprove. However, restricting the

problem to some classes of graphs with singletons makes it tractable. Theorem 11.1.1

and the example that we gave above demonstrate the fact that when an arbitrary

number of singletons are allowed in a graph G, I(r)
G may not be EKR for r > µ(G)/2.

We now come to the objective of this chapter, which is to provide an improvement

of the techniques in [40] that enables us to con�rm the conjecture for the class of

graphs in Theorem 11.1.12 and even larger classes. The key idea that leads us to

this improvement is to consider a suitable larger class of graphs, namely to allow

copies of mnd graphs and modi�ed powers of cycles in the disjoint union speci�ed in

Theorem 11.1.12. Since the proof goes by induction, we will need to perform certain

deletions on the original graph. When a deletion is performed on a power of a cycle,

which is the most di�cult component to treat, we obtain a modi�ed power of a cycle

(mpc) or a power of a path, and if a deletion is performed on an mpc then we obtain an

mnd graph or another mpc. So the idea is that every time a deletion is performed, the

resulting graph is in the admissible class. Although not necessary for our main aim,

we show that our method allows us to include trees (connected graphs that contain no

cycles as sub-graphs) as components; the scope is to illustrate the fact that the method

we employ works for many classes of graphs.

Theorem 11.1.13 Conjecture 1.3.4 is true if G is a disjoint union of complete multi-

partite graphs, copies of mnd graphs, powers of cycles, modi�ed powers of cycles, trees,

and at least one singleton.

As from the next section, we employ the notation in Section 2.1.
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11.2 The compression operation for independent sets

of graphs

For v ∈ V (G), let NG(v) be the set of neighbours of v in G, i.e.

NG(v) := {w ∈ V (G)\{v} : vw ∈ E(G)}.

As in [40], we use G−v to denote the graph obtained from G by deleting v ∈ V (G)

(and hence edges incident to v), and G ↓ v to denote the graph obtained by deleting

also all vertices in NG(v). Note that

IG〈v〉 = IG↓v, IG]v[ = IG−v.

For u, v ∈ V (G), let ∆u,v : IG → IG be de�ned as in Section 2.2.

Lemma 11.2.1 Let uv ∈ E(G). Let A∗ ⊂ I(r)
G be an intersecting family, and let

A := ∆u,v(A∗).

(i) If NG(u) ⊆ NG(v) ∪ {v} then A〈v〉 ∪ A]v[ is intersecting.

(ii) If |NG(u)\(NG(v) ∪ {v})| ≤ 1 then A〈v〉 and A]v[ are intersecting.

Proof: Since uv ∈ E(G), IG[{u, v}] = ∅.

Suppose NG(u) ⊆ NG(v) ∪ {v}. Then, for any independent set I ∈ IG]u[(v), we

have NG(u) ∩ (I\{v}) ⊆ NG(v) ∩ (I\{v}) = ∅, and hence (I\{v}) ∪ {u} ∈ IG. So IG

is (u, v)-compressed, and hence (i) follows by Proposition 2.2.1(ii).

Now suppose |NG(u)\(NG(v) ∪ {v})| ≤ 1. Then NG(u)\(NG(v) ∪ {v}) = {w} for

some w ∈ V (G)\{v}. So NG−w(u)\(NG−w(v) ∪ {v}) = ∅, and hence, similarly to the

above, (I\{v}) ∪ {u} ∈ IG−w for any independent set I ∈ IG−w]u[(v). Thus, since

IG]w[ = IG−w, IG]w[ is (u, v)-compressed. So (ii) follows by Proposition 2.2.1(i),(iv).

11.3 Graph deletion lemmas

The following property of graphs will have a very important role in our improvement

of Theorem 11.1.12.
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Lemma 11.3.1 Let G be a graph, and let v ∈ V (G). Then

min{µ(G ↓ v), µ(G− v)} ≥ µ(G)− 1.

Proof: The inequality µ(G ↓ v) ≥ µ(G)− 1 follows by Lemma 4.4.1(i) since IG〈v〉 =

IG↓v. The inequality µ(G−v) ≥ µ(G)−1 follows by Lemma 4.4.1(ii) since IG]v[ = IG−v

and IG is a hereditary family. 2

Corollary 11.3.2 Let r ≤ µ(G)/2, and let v, w ∈ V (G). Then:

(i) r − 1 < µ(G ↓ v)/2;

(ii) r − 1 ≤ µ(G− v ↓ w)/2.

Proof. By r ≤ µ(G)/2 and Proposition 11.3.1, we have

(i) r − 1 < (µ(G)− 1)/2 ≤ µ(G ↓ v)/2 and

(ii) r − 1 ≤ (µ(G)− 2)/2 ≤ (µ(G− v)− 1)/2 ≤ µ(G− v ↓ w)/2. 2

One of the various properties of non-singleton trees (i.e. trees containing at least

two vertices and hence at least one edge) is that they contain vertices which have

only one neighbour. To see this, consider picking any vertex in a graph G and then

traversing vertices without visiting any vertex twice until no new vertex can be visited;

if G is a non-singleton tree then, since a tree contains no cycles, this procedure stops

when a vertex with one neighbour has been visited.

Lemma 11.3.3 Let T be a tree with |V (T )| ≥ 2, and let w ∈ V (T ) such that NT (w)

consists only of one vertex v. Then

µ(T − v) ≥ µ(T ).

Proof. Let Z be a maximal independent set of T − v. Since w is a singleton of T − v,

we must have w ∈ Z. So Z is also a maximal independent set of T because vw ∈ E(T ).

Hence result. 2
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Lemma 11.3.4 LetMn({di}i∈N) be as in De�nition 11.1.7, and letMn := Mn({di}i∈N).

If d1 > 0 then

µ(Mn − 2) ≥ µ(Mn).

Proof: Let Z be a maximal independent set ofMn−2. Then 1 ∈ Z or 1z ∈ E(Mn−2)

for some z ∈ Z. Suppose 1 ∈ Z. Since d1 > 0, we have 12 ∈ E(Mn), and hence Z is a

maximal independent set of Mn. Now suppose 1z ∈ E(Mn− 2) for some z ∈ Z. Then,

by de�nition of Mn, z ≤ 1 + d1 < 2 + d2, and hence 2z ∈ E(Mn). Thus, Z is again a

maximal independent set of Mn. Therefore µ(Mn − 2) ≥ µ(Mn). 2

Lemma 11.3.5 Let qC
k,k+1
n be as in De�nition 11.1.9. If q > 0 then

µ(qC
k,k+1
n − vk+2) ≥ µ(qC

k,k+1
n ).

Proof. Let C := qC
k,k+1
n and V := V (C). If NC(v1) = V \{v1} then trivially

µ(C − vk+2) = µ(qC
k,k+1
n ) = 1. So suppose NC(v1) 6= V \{v1}. Let Z be a maxi-

mal independent set of C − vk+2, and let s := min{i : vi ∈ Z}, t := max{i : vi ∈ Z}. If

s ≤ k + 1 then vsvk+2 ∈ E(C), and hence Z is also maximal in C. Suppose s ≥ k + 3.

Suppose also that vk+2vs /∈ E(C). Then vk+1vs /∈ E(C − vk+2) and, since q < n (by

de�nition of C) and s ≤ t ≤ n, vtvk+1 /∈ E(C − vk+2). So Z ∪ {vk+1} ∈ IC−vk+2
, but

this contradicts the maximality of Z. So vk+2vs ∈ E(C), and hence Z is also maximal

in C. Therefore µ(C − vk+2) ≥ µ(C). 2

Lemma 11.3.6 Let Ck
n be as in De�nition 11.1.9. If n ≥ 2k + 2 then

µ(Ck
n − vk+1 − v2k+2) ≥ µ(Ck

n).

Proof. Let Z be a maximal independent set of Ck
n − vk+1 − v2k+2. If Z contains

z ∈ {vk+2, ..., v2k+1} then zvk+1, zv2k+2 ∈ E(Ck
n), and hence Z is also maximal in Ck

n.

Now consider Z ∩ {vk+2, ..., v2k+1} = ∅. Thus, if zvk+1, zv2k+2 /∈ E(Ck
n) for all z ∈ Z

then Z ∪ {v} is an independent set of C − vk+1 − v2k+2 for all v ∈ {vk+2, ..., v2k+1},

but this is a contradiction. We therefore have zw ∈ E(Ck
n) for some z ∈ Z and

w ∈ {vk+1, v2k+1}. Suppose w = vk+1 and Z ∪ {v2k+2} is an independent set of Ck
n.
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Then zv2k+1 /∈ E(Ck
n − vk+1 − v2k+2), and hence Z ∪ {v2k+1} is an independent set of

Ck
n − vk+1 − v2k+2, a contradiction. By symmetry, we can neither have both w = v2k+2

and Z ∪ {vk+1} an independent set of Ck
n. Therefore there exist z1, z2 ∈ Z such that

z1vk+1, z2v2k+2 ∈ E(Ck
n), and hence Z is maximal in Ck

n. So µ(Ck
n − vk+1 − v2k+2) ≥

µ(Ck
n). 2

11.4 Proof of result

We shall now use the lower bounds obtained for µ(qC
k,k+1
n − vk+2), µ(Ck

n − vk+1 −

v2k+2), and µ(P k↑
n −v2) in terms of µ(qC

k,k+1
n ), µ(Ck

n), and µ(P k↑
n ) respectively to prove

Theorem 11.1.13.

Lemma 11.4.1 Let G be a graph containing an edge vw and a singleton x. Suppose

2 ≤ r ≤ µ(G). Then |I(r)
G (v)| < |I(r)

G (x)|.

Proof. Since x is a singleton, A\{y} ∪ {x} ∈ I(r)
G for any A ∈ I(r)

G ]x[ and y ∈ A.

Setting J := {A\{v} ∪ {x} : A ∈ I(r)
G (v)]x[}, it follows that J ⊆ I(r)

G (x)]v[. Given

that vw ∈ E(G), we have IG(v)(w) = ∅, and hence actually J ⊆ I(r)
G (x)]v[\I(r)

G (x)(w);

also, I(r)
G (x)(w) ⊆ I(r)

G (x)]v[, and hence |J | ≤ |I(r)
G (x)]v[| − |I(r)

G (x)(w)|. We therefore

have

|I(r)
G (v)| = |I(r)

G (v)(x)|+ |I(r)
G (v)]x[| = |I(r)

G (v)(x)|+ |J |

≤ |I(r)
G (x)(v)|+ |I(r)

G (x)]v[| − |I(r)
G (x)(w)|

= |I(r)
G (x)| − |I(r)

G (x)(w)|.

Now, since {x,w} ∈ I(2)
G and 2 ≤ r ≤ µ(G), there exists I ∈ I(r)

G such that {x,w} ⊂ I,

i.e. I(r)
G (x)(w) 6= ∅. Hence result. 2

Lemma 11.4.2 Let G be a graph, and let r ≤ µ(G)/2. Let A be an intersecting

sub-family of I(r)
G such that A〈v〉 = I(r−1)

G↓v (y) 6= ∅ for some y ∈ V (G ↓ v). Then

A ⊆ I(r)
G (y).

Proof. Suppose there exists A ∈ A]v[ such that y /∈ A. We are given that I(r−1)
G↓v (y) 6=

∅, and so IG(v)(y) 6= ∅. Therefore there exists a maximal independent set Y of G
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such that v, y ∈ Y . Given that 2r ≤ µ(G), we have 2r ≤ |Y |. Since y, v ∈ Y \A, it

follows that
(
Y \A
r

)
[{y, v}] 6= ∅. Let A′ ∈

(
Y \A
r

)
[{y, v}]. So A′\{v} ∈ I(r−1)

G↓v (y), and

hence A′ ∈ A(v). But A ∩ A′ = ∅, which contradicts A intersecting. Hence result. 2

Proof of Theorem 11.1.13. By induction on |E(G)|. If |E(G)| = 0 then the

result is given by Theorem 11.1.1, so we assume that |E(G)| > 0. This means that

G contains a non-singleton component. If G consists solely of complete multipartite

graphs and singletons then the result is given by Theorem 11.1.6. We now consider

the case when G contains a component G1 that is neither a singleton nor a complete

mulitpartite graph.

Let G2 be the graph obtained by removing G1 from G. Note that

µ(G) = µ(G1) + µ(G2). (11.1)

By our de�nition of component, G1 is connected, and hence G1 contains no sin-

gletons. Thus, since G contains at least one singleton, G2 contains some singleton

x.

Let r ≤ µ(G)/2, and let A∗ ∈ ex(I(r)
G ). Let J := I(r)

G (x). So |J | ≤ |A∗|. By

Lemma 11.4.1, J is a largest star of I(r)
G , and for any v ∈ V (G1), J 〈v〉 and J ]v[ are

largest stars of I(r−1)
G↓v and I(r)

G−v respectively.

Now G1 is a tree or a copy of an mnd graph or a modi�ed power of a cycle or a

power of a cycle. We consider each of these four possibilities separately and in the

order we have listed them. We will actually show that in each of the �rst three cases,

I(r)
G is in fact strictly EKR even if r = µ(G)/2.

Case I: G1 is a tree T , |V (T )| ≥ 2. So there exists u ∈ V (G1) such that NG1(u)

consists solely of one vertex v (see the preceding section). Let A := ∆u,v(A∗). Since

NG(u) = NG1(u) = {v}, it follows by Lemma 11.2.1(i) that A〈v〉 ∪A]v[ is intersecting.

Since G1 contains no cycles, G1− v and G1 ↓ v contain no cycles, and hence G1− v

and G1 ↓ v are disjoint unions of trees and singletons. So G − v and G ↓ v belong to

the class of graphs speci�ed in the theorem.
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By Corollary 11.3.2(i), r − 1 < µ(G ↓ v)/2. By Lemma 11.3.3, µ(G1 − v) ≥ µ(G1);

so µ(G− v) = µ(G1 − v) + µ(G2) ≥ µ(G1) + µ(G2) = µ(G) ≥ 2r.

Therefore, since A〈v〉 ⊂ I(r−1)
G↓v and A]v[⊂ I(r)

G−v, the inductive hypothesis gives us

|A〈v〉| ≤ |J 〈v〉| and |A]v[| ≤ |J ]v[|. So |A| ≤ |J |. Since |A∗| = |A| and A∗ ∈

ex(I(r)
G ), |A〈v〉| = |J 〈v〉| and |A]v[| = |J ]v[|. Since r − 1 < µ(G ↓ v)/2, it follows

by the inductive hypothesis that A〈v〉 = I(r−1)
G↓v (y) for some y ∈ V (G ↓ v). Thus, by

Lemma 11.4.2, A ⊆ I(r)
G (y). If y is not a singleton of G then Lemma 11.4.1 gives us

|I(r)
G (y)| < |J |, but this leads to the contradiction that |A∗| < |J |. So y is a singleton

of G, and hence A∗ ⊆ I(r)
G (y) (as A ⊆ I(r)

G (y)). Therefore I(r)
G is strictly EKR.

Case II: G1 is a copy of an mnd graph Mn := Mn({di}i∈N). We may assume that

G1 = Mn. Since G1 contains no singletons, n ≥ 2 and d1 ≥ 1. Let v := 2 and u := 1,

and let A := ∆u,v(A∗). By de�nition of Mn and d1 ≥ 1, NG1(u) ⊂ NG1(v)∪{v}. Since

NG(u) = NG1(v), it follows by Lemma 11.2.1(i) that A〈v〉 ∪ A]v[ is intersecting.

Clearly, G1 − v is a copy of Mn−1({d′i}i∈N), where d′1 = d1 − 1 and d′i = di+1 for all

i ≥ 2. Also, if n ≤ 2 + d2 then G1 ↓ v = (∅, ∅), and if n > 2 + d2 then G1 ↓ v is a copy

of Mn−2−d2({d′′i }i∈N), where d′′i = di+2+d2 for all i ≥ 1. So G − v and G ↓ v belong to

the class of graphs speci�ed in the theorem.

The rest follows as in the preceding case, except that we get µ(G1− v) ≥ µ(G1) by

Lemma 11.3.4.

Case III: G1 is a modi�ed k'th power of a cycle qC
k,k+1
n . So q > 0. Let vi, i = 1, ..., n,

be as in De�nition 11.1.9. Let u := vk+1 and v := vk+2, and let A := ∆u,v(A∗).

Since q < n (by de�nition), (vs, u) /∈ E(qD
k,k+1
n ) for all s ≥ k + 1. Since q > 0,

(vs, v) ∈ E(qD
k,k+1
n ) for all s ≤ k+ 1. Therefore NG(u) = NG1(u) ⊆ NG1(v)∪ {v}, and

hence, by Lemma 11.2.1(i), A〈v〉 ∪ A]v[ is intersecting.

It is also not di�cult to check that

G1 − v is a copy of


n+q−k−2C

k−1,k
n−1 if q < k + 1;

Ck
n−1 if q = k + 1;

q−k−2C
k,k+1
n−1 if q > k + 1.
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If NG1(v) ∪ {v} = V (G1) then G1 ↓ v = (∅, ∅). Suppose NG1(v) ∪ {v} 6= V (G1). Then

V (G1 ↓ v) = {vm, ..., vn}, where

m =

 2k + 3 if q < k + 2;

2k + 4 if q ≥ k + 2.

Let n′ := n − m + 1. By considering the bijection β : V (G1 ↓ v) → [n′] de�ned by

β(vi) = n − i + 1 (i ∈ [m,n]), it is easy to see that G1 ↓ v is a copy of Mn′({dj}j∈N),

where

dj =

 k if j ≤ n− (q + k + 1);

k + 1 if j > n− (q + k + 1).

So G− v and G ↓ v belong to the class of graphs speci�ed in the theorem.

The rest follows as in Case I, except that we get µ(G1−v) ≥ µ(G1) by Lemma 11.3.5.

Case IV: G1 is a power of a cycle Ck
n. Let vi, i = 1, ..., n, be as in De�nition 11.1.9,

and let u := vk and v := vk+1. If n < 2k+2 then NG(v)∪{v} = NG1(v)∪{v} = V (G1),

G1 ↓ v = (∅, ∅), G1 − v is a copy of n−k−1C
k−1,k
n−1 , µ(G1 − v) = µ(G1) = 1, and

hence, by the same line of argument for each of the preceding cases, we conclude

that I(r)
G is strictly EKR. Now suppose n ≥ 2k + 2. Let A := ∆u,v(A∗). Since

N(u)\(N(v) ∪ {v}) = {vn}, it follows by Lemma 11.2.1(ii) that A〈v〉 and A]v[ are

intersecting.

Clearly, G1 ↓ v is a power of a path. As in Case I, it follows that |A〈v〉| ≤ |J 〈v〉|.

Now G1 − v is a path (if k = 1) or a copy of n−k−1C
k−1,k
n−1 (if k > 1); however, we

are not guaranteed that µ(G1− v) = µ(G1) (this is the case if, for example, G1 = C1
4).

Let B∗ := A]v[. Let u′ := v2k+1 and v′ := v2k+2, and let B := ∆u′,v′(B∗). Clearly,

NG−v(u
′) = NG1−v(u

′) ⊂ NG1(v
′) ∪ {v′}. Thus, by Lemma 11.2.1(ii), B〈v′〉 ∪ B]v′[ is

intersecting.

If k = 1 then G1 − v− v′ is a disjoint union of a path and a singleton, and if k > 1

then G1 − v− v′ is a copy of n−2k−2C
k−1,k
n−2 . It is easy to see that G1 − v ↓ v′ is a power

of a path. So G − v − v′ and G − v ↓ v′ belong to the class of graphs speci�ed in the

theorem.
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By Corollary 11.3.2(ii), r−1 ≤ µ(G−v ↓ v′)/2. By Lemma 11.3.3, µ(G1−v−v′) ≥

µ(G1); so µ(G− v − v′) = µ(G1 − v − v′) + µ(G2) ≥ µ(G1) + µ(G2) = µ(G) ≥ 2r.

Therefore, since B〈v′〉 ⊂ I(r−1)
G−v↓v′ and B]v′[⊂ I(r)

G−v−v′ , the inductive hypothesis gives

us |B〈v′〉| ≤ |J ]v[〈v′〉| and |B]v′[| ≤ |J ]v[]v′[|. So |B∗| = |B| ≤ |J ]v[|. Since |A| =

|A〈v〉|+ |B∗| ≤ |J 〈v〉|+ |J ]v[|, we have |A| ≤ |J |, and hence I(r)
G is EKR.

Now suppose r < µ(G)/2. Since |A∗| = |A| and A∗ ∈ ex(I(r)
G ), we must have

|A〈v〉| = |J 〈v〉| and |B∗| = |J ]v[|. By Corollary 11.3.2(i), we have r−1 < µ(G ↓ v)/2,

and hence, by the inductive hypothesis, A〈v〉 = I(r−1)
G↓v (y1) for some y1 ∈ V (G ↓ v) ⊂

V (G)\{u, v}. Since |B∗| = |J ]v[|, we have |B〈v′〉| = |J ]v[〈v′〉| and |B]v′[| = |J ]v[]v′[|.

Since r < µ(G)/2, r − 1 < (µ(G) − 2)/2 ≤ µ(G − v ↓ v′)/2 by Lemma 11.3.1. Thus,

by the inductive hypothesis, B〈v′〉 = I(r−1)
G−v↓v′(y2) for some y2 ∈ V (G − v ↓ v′). By

Lemma 11.4.2, B ⊆ I(r)
G−v(y2). We next show that y1 = y2.

If y2 is not a singleton of G − v then Lemma 11.4.1 gives us |I(r)
G−v(y2)| < |J ]v[|,

but this leads to the contradiction that |B∗| < |J ]v[|. So y2 is a singleton of G − v,

and hence, since G1−v contains no singletons, y2 ∈ V (G)\V (G1) ⊂ V (G)\{u, v, u′, v′}.

Note that, by de�nition of B, B(v′) ⊆ B∗. Thus, since B〈v′〉 = I(r−1)
G−v↓v′(y2), I(r)

G−v(y2)(v
′) ⊆

A]v[. Suppose y1 6= y2. Let A1 ∈ I(r)
G−v(y2)(v

′)]{u, y1}[. So A1 ∈ A]v[, {u, v} ∩ A1 =

∅, and hence A1 ∈ A∗. Let Y be a maximal independent set of G containing y1

and v. Since 2r ≤ µ(G) ≤ |Y | and {y1, v} ∩ A1 = ∅,
(
Y \A1

r

)
[{y1, v}] 6= ∅. Let

A2 ∈
(
Y \A1

r

)
[{y1, v}]. Since A〈v〉 = I(r−1)

G↓v (y1), A2 ∈ A(v). Now, by de�nition of A,

A(v) ⊆ A∗. Hence A2 ∈ A∗. But A1 ∩ A2 = ∅, which contradicts A∗ intersecting. So

y1 = y2 indeed.

Since y2 /∈ {u′, v′} and B ⊆ I(r)
G−v(y2), we clearly have B∗ ⊆ I(r)

G−v(y2). So we have

A∗ = A(v) ∪ B∗ ⊆ I(r)
G (y2). This proves that I(r)

G is strictly EKR. 2
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