On cross-intersecting uniform sub-families of hereditary families

Peter Borg
Department of Mathematics
University of Malta
Msida MSD 2080, Malta
p.borg.02@cantab.net

Submitted: Sep 15, 2009; Accepted: Apr 5, 2010; Published: Apr 19, 2010
Mathematics Subject Classification: 05D05

Abstract

A family \mathcal{H} of sets is hereditary if any subset of any set in \mathcal{H} is in \mathcal{H}. If two families \mathcal{A} and \mathcal{B} are such that any set in \mathcal{A} intersects any set in \mathcal{B}, then we say that $(\mathcal{A}, \mathcal{B})$ is a cross-intersection pair (cip). We say that a cip $(\mathcal{A}, \mathcal{B})$ is simple if at least one of \mathcal{A} and \mathcal{B} contains only one set. For a family \mathcal{F}, let $\mu(\mathcal{F})$ denote the size of a smallest set in \mathcal{F} that is not a subset of any other set in \mathcal{F}. For any positive integer r, let $[r]:=\{1,2, \ldots, r\}, 2^{[r]}:=\{A: A \subseteq[r]\}, \mathcal{F}^{(r)}:=\{F \in \mathcal{F}:|F|=r\}$.

We show that if a hereditary family $\mathcal{H} \subseteq 2^{[n]}$ is compressed, $\mu(\mathcal{H}) \geqslant r+s$ with $r \leqslant s$, and $(\mathcal{A}, \mathcal{B})$ is a cip with $\emptyset \neq \mathcal{A} \subset \mathcal{H}^{(r)}$ and $\emptyset \neq \mathcal{B} \subset \mathcal{H}^{(s)}$, then $|\mathcal{A}|+|\mathcal{B}|$ is a maximum if $(\mathcal{A}, \mathcal{B})$ is the simple cip $\left(\{[r]\},\left\{B \in \mathcal{H}^{(s)}: B \cap[r] \neq \emptyset\right\}\right)$; Frankl and Tokushige proved this for $\mathcal{H}=2^{[n]}$. We also show that for any $2 \leqslant r \leqslant s$ and $m \geqslant r+s$ there exist (non-compressed) hereditary families \mathcal{H} with $\mu(\mathcal{H})=m$ such that no $\operatorname{cip}(\mathcal{A}, \mathcal{B})$ with a maximum value of $|\mathcal{A}|+|\mathcal{B}|$ under the condition that $\emptyset \neq \mathcal{A} \subset \mathcal{H}^{(r)}$ and $\emptyset \neq \mathcal{B} \subset \mathcal{H}^{(s)}$ is simple (we prove that this is not the case for $r=1$), and we suggest two conjectures about the extremal structures in general.

1 Introduction

We shall use small letters such as x to denote elements of a set or positive integers, capital letters such as X to denote sets, and calligraphic letters such as \mathcal{F} to denote families (i.e. sets whose members are sets themselves). Unless otherwise stated, it is to be assumed that sets and families are finite.
\mathbb{N} is the set $\{1,2, \ldots\}$ of positive integers. For $m, n \in \mathbb{N}$ with $m \leqslant n$, the set $\{i \in$ $\mathbb{N}: m \leqslant i \leqslant n\}$ is denoted by $[m, n]$, and if $m=1$ then we also write $[n]$. The power set $\{A: A \subseteq X\}$ of a set X is denoted by 2^{X}, and $\{A \subseteq X:|A|=r\}$ is denoted by $\binom{X}{r}$.

We next develop some notation for certain sets and families defined on a family $\mathcal{F} \subseteq$ 2^{X}. Let $U(\mathcal{F})$ denote the union of all sets in \mathcal{F}. Let $\mathcal{F}^{(r)}:=\{F \in \mathcal{F}:|F|=r\}$. For a set Y, let $\mathcal{F}(Y):=\{F \in \mathcal{F}: F \cap Y \neq \emptyset\}$ and $\mathcal{F}[Y]:=\{F \in \mathcal{F}: Y \subseteq F\}$. For a single-element set $\{y\}$, we may abbreviate the notation $\mathcal{F}(\{y\})$ to $\mathcal{F}(y)$, and we set $\mathcal{F}\langle y\rangle:=\{F \backslash\{y\}: F \in \mathcal{F}(y)\}$.

For $i, j \in[n]$, let $\Delta_{i, j}: 2^{2^{[n]}} \rightarrow 2^{2^{[n]}}$ be the compression operation (see [4]) defined by

$$
\Delta_{i, j}(\mathcal{F}):=\left\{\delta_{i, j}(F): F \in \mathcal{F}, \delta_{i, j}(F) \notin \mathcal{F}\right\} \cup\left\{F \in \mathcal{F}: \delta_{i, j}(F) \in \mathcal{F}\right\}
$$

where $\delta_{i, j}: 2^{[n]} \rightarrow 2^{[n]}$ is defined by

$$
\delta_{i, j}(F):= \begin{cases}(F \backslash\{j\}) \cup\{i\} & \text { if } i \notin F \text { and } j \in F \\ F & \text { otherwise }\end{cases}
$$

A family \mathcal{F} is said to be

- a hereditary family (or an ideal or a downset) if all subsets of any set in \mathcal{F} are in \mathcal{F};
- uniform if the sets in \mathcal{F} have the same size;
- intersecting if any set in \mathcal{F} intersects any other set in \mathcal{F};
- centred if the sets in \mathcal{F} contain a common element;
- compressed if $\mathcal{F} \subseteq 2^{[n]}$ and $\Delta_{i, j}(\mathcal{F})=\mathcal{F}$ for any $i, j \in[n]$ with $i<j$;
- compressed with respect to $x \in U(\mathcal{F})$ if $\Delta_{x, y}(\mathcal{F})=\mathcal{F}$ for any $y \in U(\mathcal{F})$.

Two families \mathcal{A} and \mathcal{B} are said to be cross-intersecting if any set in \mathcal{A} intersects any set in \mathcal{B}. We say that $(\mathcal{A}, \mathcal{B})$ is a cross-intersection pair (cip) if \mathcal{A} and \mathcal{B} are cross-intersecting. We say that $\operatorname{arp}(\mathcal{A}, \mathcal{B})$ is simple if at least one of \mathcal{A} and \mathcal{B} contains only one set.

Hilton and Milner [7] proved that if $r \leqslant n / 2$ and \mathcal{A}, \mathcal{B} are non-empty cross-intersecting sub-families of $\binom{[n]}{r}$, then $|\mathcal{A}|+|\mathcal{B}| \leqslant\binom{ n}{r}-\binom{n-r}{r}+1=\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|$, where \mathcal{A}_{0} is $\{[r]\}$ and \mathcal{B}_{0} is $\left\{B \in\binom{[n]}{r}: B \cap[r] \neq \emptyset\right\}$. A streamlined proof of this result was later obtained by Simpson [10] by means of the compression (also known as shifting) technique introduced in the seminal paper [4] (see [5] for a good survey on the uses of this technique in extremal set theory). Frankl and Tokushige [6] instead used the Kruskal-Katona Theorem [8, 9] to establish the following extension.

Theorem 1.1 (Frankl and Tokushige [6]) If $r \leqslant s, n \geqslant r+s$, and $(\mathcal{A}, \mathcal{B})$ is a cip with $\emptyset \neq \mathcal{A} \subseteq\binom{[n]}{r}$ and $\emptyset \neq \mathcal{B} \subseteq\binom{[n]}{s}$, then $|\mathcal{A}|+|\mathcal{B}| \leqslant\binom{ n}{s}-\binom{n-r}{s}+1=\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|$, where $\left(\mathcal{A}_{0}, \mathcal{B}_{0}\right)$ is the simple cip $\left(\{[r]\},\left\{B \in\binom{[n]}{s}: B \cap[r] \neq \emptyset\right\}\right)$.

In this paper we are interested in cip's $(\mathcal{A}, \mathcal{B})$ having a maximum value of $|\mathcal{A}|+|\mathcal{B}|$ under the condition that both \mathcal{A} and \mathcal{B} are non-empty uniform sub-families of a hereditary family \mathcal{H}. Note that Theorem 1.1 deals with the special case when \mathcal{H} is the power set $2^{[n]}$, which is the simplest example of a hereditary family. It is easy to see that a family is hereditary if and only if it is a union of power sets. There are many interesting examples of hereditary families, such as the family of independent sets of a graph or matroid.

Before stating our results, we shall introduce a few more definitions.

We say that a set M is \mathcal{F}-maximal if M is not a subset of any set in $\mathcal{F} \backslash\{M\}$. We denote the size of a smallest \mathcal{F}-maximal set in \mathcal{F} by $\mu(\mathcal{F})$.

For a family \mathcal{F}, we denote the set $\{(\mathcal{A}, \mathcal{B}):(\mathcal{A}, \mathcal{B})$ is a cip with a maximum value of $|\mathcal{A}|+|\mathcal{B}|$ under the condition that $\emptyset \neq \mathcal{A} \subset \mathcal{F}^{(r)}$ and $\left.\emptyset \neq \mathcal{B} \subset \mathcal{F}^{(s)}\right\}$ by $C(\mathcal{F}, r, s)$.

Using the compression technique, we generalise Theorem 1.1 as follows.
Theorem 1.2 If $r \leqslant s, n \geqslant r+s$, and \mathcal{H} is a compressed hereditary sub-family of $2^{[n]}$ with $\mu(\mathcal{H}) \geqslant r+s$, then the simple cip $\left(\{[r]\},\left\{B \in \mathcal{H}^{(s)}: B \cap[r] \neq \emptyset\right\}\right)$ is in $C(\mathcal{H}, r, s)$.

Theorem 1.1 is the case $\mathcal{H}=2^{[n]}$, in which $[n]$ is the only \mathcal{H}-maximal set in \mathcal{H} and hence $\mu(\mathcal{H})=n$. Note that we cannot relax the condition that $\mu(\mathcal{H}) \geqslant r+s$. Indeed, if $\mathcal{H}=2^{[n]}$ and $s \leqslant \mu(\mathcal{H})<r+s$, then any set in $\mathcal{H}^{(r)}=\binom{[n]}{r}$ intersects any set in $\mathcal{H}^{(s)}=\binom{[n]}{s}$ (since $n=\mu(\mathcal{H})<r+s)$, and hence $\left(\mathcal{H}^{(r)}, \mathcal{H}^{(s)}\right)$ is the only cip in $C(\mathcal{H}, r, s)$. Note that if $\mathcal{H}=2^{[n]}$ and $\mu(\mathcal{H})<s$, then $C(\mathcal{H}, r, s)=\emptyset\left(\right.$ since $n=\mu(\mathcal{H})<s$ and hence $\left.\mathcal{H}^{(s)}=\emptyset\right)$.

Remark 1.3 One of the central problems in extremal set theory is the famous Chvátal Conjecture [2], which claims that at least one of the largest intersecting sub-families of any hereditary family \mathcal{H} is centred. Chvátal [3] proved his conjecture for the case when \mathcal{H} is compressed. Snevily [11] improved Chvátal's result to the case when \mathcal{H} is compressed with respect to an element of $U(\mathcal{H})$. In the next section we show that no similar improvement can be made to Theorem 1.2 for $r \geqslant 2$; more precisely, we show that for any $2 \leqslant r \leqslant s$ and $m \geqslant r+s$ there are hereditary families \mathcal{H} with $\mu(\mathcal{H})=m$ such that \mathcal{H} is compressed with respect to an element of $U(\mathcal{H})$ and no cip in $C(\mathcal{H}, r, s)$ is simple. We then suggest two conjectures about the structure of at least one of the cip's in $C(\mathcal{H}, r, s)$ for any hereditary family \mathcal{H} with $\mu(\mathcal{H}) \geqslant r+s$.

For $r=1$ we do have the desired general result.
Theorem 1.4 If \mathcal{H} is a hereditary family with $\mu(\mathcal{H}) \geqslant 1+s$, then $C(\mathcal{H}, 1, s)$ has a simple cip $\left(\mathcal{A}_{0}, \mathcal{B}_{0}\right)$ with $\mathcal{A}_{0}=\{\{x\}\}$ and $\mathcal{B}_{0}=\left\{B \in \mathcal{H}^{(s)}: x \in B\right\}$ for some $x \in U(H)$.

Proof. Let $(\mathcal{A}, \mathcal{B}) \in C(\mathcal{H}, 1, s)$. Suppose $|\mathcal{A}|=1$. Then, since $\mathcal{A} \subset \mathcal{H}^{(1)}, \mathcal{A}=\{\{x\}\}$ for some $x \in U(\mathcal{H})$. Since $\mathcal{B} \subset \mathcal{H}^{(s)}$ and $|\mathcal{A}|+|\mathcal{B}|$ is a maximum (under the cross-intersection condition), \mathcal{B} must consist of all the sets in $\mathcal{H}^{(s)}$ which contain x.

Now suppose $|\mathcal{A}|>1$. Let $Z:=\{z \in U(\mathcal{H}):\{z\} \in \mathcal{A}\}$; so $|Z|=|\mathcal{A}|$ and hence $|Z|>1$. Since every set in \mathcal{B} must intersect every (single-element) set in \mathcal{A}, we clearly have $\mathcal{B} \subseteq \mathcal{H}^{(s)}[Z]\left(=\left\{H \in \mathcal{H}^{(s)}: Z \subseteq H\right\}\right)$. Let $B \in \mathcal{B}$. Since every (single-element) set in \mathcal{A} must intersect B, we have $Z \subseteq B$ and hence $|Z| \leqslant s$. Let $x \in Z$ and let M be an \mathcal{H}-maximal set in \mathcal{H} such that $B \subset M$. Then $|M| \geqslant 1+s$ (as $|M| \geqslant \mu(\mathcal{H})), Z \subset M$ (as $Z \subseteq B)$, and $\binom{M}{s} \subseteq \mathcal{H}^{(s)}$ (as \mathcal{H} is hereditary). Now let $\left(\mathcal{A}_{0}, \mathcal{B}_{0}\right)$ be the simple cip $\left(\{\{x\}\}, \mathcal{H}^{(s)}(x)\right)$. Since $(\mathcal{A}, \mathcal{B}) \in C(\mathcal{H}, 1, s),\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right| \leqslant|\mathcal{A}|+|\mathcal{B}|$. Also,

$$
\begin{aligned}
\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right| & =1+\left|\mathcal{H}^{(s)}(x)\right| \\
& \geqslant 1+\left|\mathcal{H}^{(s)}[Z]\right|+\left|\left\{A \in\binom{M}{s}: x \in A,|A \cap Z|=|Z|-1\right\}\right| \\
& =1+\left|\mathcal{H}^{(s)}[Z]\right|+\binom{|Z|-1}{|Z|-2}\binom{|M|-|Z|}{s-(|Z|-1)} \\
& \geqslant|Z|+\left|\mathcal{H}^{(s)}[Z]\right|=|\mathcal{A}|+\left|\mathcal{H}^{(s)}[Z]\right| \geqslant|\mathcal{A}|+|\mathcal{B}| .
\end{aligned}
$$

So we actually have $\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|=|\mathcal{A}|+|\mathcal{B}|$, and hence $\left(\mathcal{A}_{0}, \mathcal{B}_{0}\right) \in C(\mathcal{H}, 1, s)$.
The above result will be used in the proof of Theorem 1.2. It is easy to see from its proof that if $\mu(\mathcal{H})>1+s$, then any $(\mathcal{A}, \mathcal{B})$ in $C(\mathcal{H}, 1, s)$ is a simple cip as in the result.

2 A construction and two conjectures

The following is the proof of the claim in Remark 1.3.
Proposition 2.1 Let $2 \leqslant l+1 \leqslant r \leqslant s, m \geqslant r+s$ and $p>\left(\binom{m-l}{s}-\binom{m-r}{s}+1\right) /\binom{m-l}{r-l}$. For each $i \in[p]$, let $M_{i}:=[l] \cup[(i-1)(m-l)+l+1, i(m-l)+l]$. Let $\mathcal{E}=\bigcup_{i=1}^{p} 2^{M_{i}}$. Then \mathcal{E} is hereditary, \mathcal{E} is compressed with respect to $1, \mu(\mathcal{E})=m$, and no cip in $C(\mathcal{E}, r, s)$ is simple.

Proof. It is straightforward that \mathcal{E} is hereditary, \mathcal{E} is compressed with respect to 1 , and $\mu(\mathcal{E})=\left|M_{1}\right|=\ldots=\left|M_{p}\right|=m$. Let $(\mathcal{A}, \mathcal{B})$ be a simple cip with $\emptyset \neq \mathcal{A} \subseteq \mathcal{E}^{(r)}$ and $\emptyset \neq \mathcal{B} \subseteq \mathcal{E}^{(s)}$. Let $L:=[l], \mathcal{A}_{1}:=\left\{L \cup C: C \in\binom{M_{i} \backslash L}{r-l}\right.$ for some $\left.i \in[p]\right\}, \mathcal{B}_{1}=\mathcal{E}^{(s)}(L)$ $\left(=\left\{E \in \mathcal{E}^{(s)}: E \cap L \neq \emptyset\right\}\right)$. Since $\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)$ is a non-simple cip with $\emptyset \neq \mathcal{A}_{1} \subseteq \mathcal{E}^{(r)}$ and $\emptyset \neq \mathcal{B}_{1} \subseteq \mathcal{E}^{(s)}$, the result follows if we show that $|\mathcal{A}|+|\mathcal{B}|<\left|\mathcal{A}_{1}\right|+\left|\mathcal{B}_{1}\right|$.

Let $R:=[r], \mathcal{A}_{0}:=\{R\}, \mathcal{B}_{0}:=\mathcal{E}^{(s)}(R)$. We will show that

$$
\begin{equation*}
|\mathcal{A}|+|\mathcal{B}| \leqslant\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right| . \tag{1}
\end{equation*}
$$

Let us first assume this. Note that \mathcal{B}_{0} is the disjoint union of \mathcal{B}_{1} and the family \mathcal{R} of sets in $\mathcal{E}^{(s)}$ that intersect R but not L. Since R is a subset of M_{1} but not a subset of any other set M_{i}, we clearly have $\mathcal{R}=\left\{A \in\binom{M_{1} \backslash L}{s}: A \cap(R \backslash L) \neq \emptyset\right\}$. We have

$$
\begin{aligned}
\left(\left|\mathcal{A}_{1}\right|+\left|\mathcal{B}_{1}\right|\right)-(|\mathcal{A}|+|\mathcal{B}|) & \left.\geqslant\left(\left|\mathcal{A}_{1}\right|+\left|\mathcal{B}_{1}\right|\right)-\left(\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|\right) \quad \text { (by }(1)\right) \\
& =\left(\left|\mathcal{A}_{1}\right|+\left|\mathcal{B}_{1}\right|\right)-\left(\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{1}\right|+|\mathcal{R}|\right)=\left|\mathcal{A}_{1}\right|-\left|\mathcal{A}_{0}\right|-|\mathcal{R}| \\
& =p\binom{m-l}{r-l}-\binom{m-l}{s}+\binom{m-r}{s}-1 \\
& >0 \quad \text { (by choice of } p)
\end{aligned}
$$

and hence $|\mathcal{A}|+|\mathcal{B}|<\left|\mathcal{A}_{1}\right|+\left|\mathcal{B}_{1}\right|$ as required.

We now prove (1). Suppose \mathcal{A} contains only one set A. Then $\mathcal{B} \subseteq \mathcal{E}^{(s)}(A)$. Since $l<r$ and $M_{i} \cap M_{j}=L$ for any distinct i and j in $[p]$, there is a unique k in $[p]$ such that $A \subset M_{k}$, and it is therefore easy to see that $\left|\mathcal{E}^{(s)}(A)\right| \leqslant\left|\mathcal{B}_{0}\right|$; so (1) holds in this case. Now suppose $|\mathcal{A}|>1$. Then, since $(\mathcal{A}, \mathcal{B})$ is a simple cip, \mathcal{B} contains only one set B and $\mathcal{A} \subseteq \mathcal{E}^{(r)}(B)$. Let $S:=[s], \mathcal{C}_{0}:=\mathcal{E}^{(r)}(S), \mathcal{D}_{0}:=\{S\}$. Similarly to the above, it is easy to see that $\left|\mathcal{E}^{(r)}(B)\right| \leqslant\left|\mathcal{C}_{0}\right|$; so $|\mathcal{A}|+|\mathcal{B}| \leqslant\left|\mathcal{C}_{0}\right|+\left|\mathcal{D}_{0}\right|$. If $r=s$ then $\left|\mathcal{C}_{0}\right|+\left|\mathcal{D}_{0}\right|=\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|$ and hence (1) holds again. Suppose $r<s$. For each $i \in[p]$, let $\mathcal{F}_{i}:=\binom{M_{i}}{s}$ and $\mathcal{G}_{i}:=\binom{M_{i}}{r}$. Since $R \subset M_{1}$ and $R \cap M_{i}=S \cap M_{i}=L$ for each $i \in[2, p]$, we clearly have $\left|\mathcal{B}_{0}\right|=\left|\mathcal{F}_{1}(R)\right|+\sum_{i=2}^{p}\left|\mathcal{F}_{i}(L)\right|$ and $\left|\mathcal{C}_{0}\right|=\left|\mathcal{G}_{1}(S)\right|+\sum_{i=2}^{p}\left|\mathcal{G}_{i}(L)\right|$. We have $\left|\mathcal{G}_{1}(S)\right|<\left|\mathcal{F}_{1}(R)\right|$ since

$$
\begin{aligned}
& \left|\mathcal{F}_{1}(R)\right|-\left|\mathcal{G}_{1}(S)\right|=\left(\binom{m}{s}-\binom{m-r}{s}\right)-\left(\binom{m}{r}-\binom{m-s}{r}\right) \\
& =\left(\binom{m}{s}-\binom{m}{r}\right)-\left(\binom{m-r}{s}-\binom{m-s}{r}\right) \\
& =\binom{m}{r}\left(\frac{r!(m-r) \ldots(m-s+1)}{s!}-1\right)-\binom{m-s}{r}\left(\frac{r!(m-r) \ldots(m-s+1)}{s!}-1\right)>0
\end{aligned}
$$

By a similar calculation, we obtain that $\left|\mathcal{G}_{i}(L)\right|<\left|\mathcal{F}_{i}(L)\right|$ for each $i \in[2, p]$. So we have

$$
\left|\mathcal{C}_{0}\right|+\left|\mathcal{D}_{0}\right|=\left|\mathcal{G}_{1}(S)\right|+\sum_{i=2}^{p}\left|\mathcal{G}_{i}(L)\right|+1<\left|\mathcal{F}_{1}(R)\right|+\sum_{i=2}^{p}\left|\mathcal{F}_{i}(L)\right|+1=\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|
$$

and hence, since $|\mathcal{A}|+|\mathcal{B}| \leqslant\left|\mathcal{C}_{0}\right|+\left|\mathcal{D}_{0}\right|$, (1) holds again.
Something common to the $\operatorname{cip}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)$ in the above proof and the extremal structures determined in Theorems 1.2 and 1.4 is that the first family in the pair is centred. We conjecture that there always exist cip's $(\mathcal{A}, \mathcal{B})$ with \mathcal{A} centred that are extremal under the conditions we have been considering, where by extremal we mean that $|\mathcal{A}|+|\mathcal{B}|$ is a maximum.

Conjecture 2.2 (Weak Form) If $r \leqslant s$ and \mathcal{H} is a hereditary family with $\mu(\mathcal{H}) \geqslant r+s$, then for some $\left(\mathcal{A}_{0}, \mathcal{B}_{0}\right) \in C(\mathcal{H}, r, s), \mathcal{A}_{0}$ is centred.

Conjecture 2.3 (Strong Form) If $r \leqslant s$ and \mathcal{H} is a hereditary family with $\mu(\mathcal{H}) \geqslant r+$ s, then there exists a set H in \mathcal{H} with $1 \leqslant|H| \leqslant r$ such that for some $\left(\mathcal{A}_{0}, \mathcal{B}_{0}\right) \in C(\mathcal{H}, r, s)$, $\mathcal{A}_{0}=\left\{A \in \mathcal{H}^{(r)}: H \subseteq A\right\}$ and $\mathcal{B}_{0}=\left\{B \in \mathcal{H}^{(s)}: B \cap H \neq \emptyset\right\}$.

Note that the families \mathcal{A}_{1} and \mathcal{B}_{1} in the proof of Proposition 2.1 have the structure of \mathcal{A}_{0} and \mathcal{B}_{0} in the above conjecture.

3 Some tools

This section provides the main tools we need for the proof of Theorem 1.2. We start with a crucial lemma concerning the levels of a hereditary family (see [1, Corollary 3.2]).

Lemma 3.1 (Borg [1]) If \mathcal{H} is a hereditary family and $r<s \leqslant \mu(\mathcal{H})-r$, then

$$
\left|\mathcal{H}^{(r)}\right| \leqslant \frac{\binom{s}{s-r}}{\binom{\mu(\mathcal{H}-r}{s-r}}\left|\mathcal{H}^{(s)}\right| .
$$

The following is our second important lemma, which purely concerns the parameter $\mu(\mathcal{F})$ of a family \mathcal{F}.

Lemma 3.2 Let $\emptyset \neq \mathcal{F} \subseteq 2^{[n]}$ and $a \in[n]$. Let $\mathcal{D}:=\mathcal{F} \backslash \mathcal{F}(a)$ and $\mathcal{E}:=\mathcal{F} \backslash \mathcal{F}(n)$.
(i) If $\mathcal{F}(a) \neq \emptyset$, then $\mu(\mathcal{F}\langle a\rangle) \geqslant \mu(\mathcal{F})-1$.
(ii) If \mathcal{F} is hereditary, then $\mu(\mathcal{D}) \geqslant \mu(\mathcal{F})-1$.
(iii) If \mathcal{F} is compressed and $[n] \notin \mathcal{F}$, then $\mu(\mathcal{E}) \geqslant \mu(\mathcal{F})$.

Proof. Suppose $\mathcal{F}(a) \neq \emptyset$. Let M be an $\mathcal{F}\langle a\rangle$-maximal set in $\mathcal{F}\langle a\rangle$. Then $M^{\prime}:=M \cup\{a\}$ is an \mathcal{F}-maximal set in \mathcal{F}. So $|M|=\left|M^{\prime}\right|-1 \geqslant \mu(\mathcal{F})-1$. Hence (i).

Suppose \mathcal{F} is hereditary. Then, since $\mathcal{F} \neq \emptyset, \emptyset \in \mathcal{F}$. So $\mathcal{D} \neq \emptyset$. Let M be a \mathcal{D} maximal set in \mathcal{D}. Suppose also that $|M|<\mu(\mathcal{F})$. So M is not \mathcal{F}-maximal, and hence there exists a set $M^{\prime} \in \mathcal{F}(a)$ such that $M \subset M^{\prime}$ and M^{\prime} is \mathcal{F}-maximal. Since \mathcal{F} is hereditary, $M^{\prime \prime}:=M^{\prime} \backslash\{a\} \in \mathcal{F}$. Since M is \mathcal{D}-maximal and $M \subseteq M^{\prime \prime} \in \mathcal{D}, M=M^{\prime \prime}$. So $M^{\prime}=M \cup\{a\}$. Therefore $|M|=\left|M^{\prime}\right|-1 \geqslant \mu(\mathcal{F})-1$. Hence (ii).

Suppose \mathcal{F} is compressed and $[n] \notin \mathcal{F}$. Let M be an \mathcal{E}-maximal set in \mathcal{E}. Suppose $|M|<\mu(\mathcal{F})$. Then there exists a set $M^{\prime} \in \mathcal{F}(n)$ such that $M \subset M^{\prime}$. Since $[n] \notin \mathcal{F}$, $X:=[n] \backslash M^{\prime} \neq \emptyset$. Let $x \in X$ and $M^{\prime \prime}:=\delta_{x, n}\left(M^{\prime}\right)=\left(M^{\prime} \backslash\{n\}\right) \cup\{x\}$. Since \mathcal{F} is compressed, $M^{\prime \prime} \in \mathcal{F}$. But then $M \subsetneq M^{\prime \prime} \in \mathcal{E}$, a contradiction (as M is \mathcal{E}-maximal). So $|M| \geqslant \mu(\mathcal{F})$. Hence (iii).

We remark that the inequalities above cannot be replaced by equalities. An example for (iii) is that if $n \geqslant 3$ and \mathcal{F} is the compressed (hereditary) family $2^{[n-1]} \cup 2^{[n-3] \cup\{n\}}$, then $\mu(\mathcal{E})=n-1>n-2=\mu(\mathcal{F})$.

We shall say that a family $\mathcal{F} \subseteq 2^{[n]}$ is quasi-compressed if $\delta_{i, j}(F) \in \mathcal{F}$ for any $F \in$ \mathcal{F} and any $i, j \in U(\mathcal{F})$ with $i<j$. Therefore a quasi-compressed family $\mathcal{F} \subseteq 2^{[n]}$ is isomorphic to a compressed sub-family of $2^{[\| U(\mathcal{F}) \mid]}$, and the isomorphism is induced by the bijection $\beta: U(\mathcal{F}) \rightarrow[|U(\mathcal{F})|]$ defined by $\beta\left(u_{i}\right):=i, i=1, \ldots,|U(\mathcal{F})|$, where $\left\{u_{1}, \ldots, u_{|U(\mathcal{F})|}\right\}=U(\mathcal{F})$ and $u_{1}<\ldots<u_{|U(\mathcal{F})|}$.

The next lemma is straightforward, so we omit its proof.
Lemma 3.3 Let $\mathcal{H} \subseteq 2^{[n]}$ and $a \in[n]$.
(i) If \mathcal{H} is hereditary, then $\mathcal{H} \backslash \mathcal{H}(a)$ and $\mathcal{H}\langle a\rangle$ are hereditary.
(ii) If \mathcal{H} is quasi-compressed, then $\mathcal{H} \backslash \mathcal{H}(a)$ and $\mathcal{H}\langle a\rangle$ are quasi-compressed.

We shall frequently use the following property of quasi-compressed families.
Lemma 3.4 Let $\mathcal{F} \subseteq 2^{[n]}$ be a quasi-compressed family with $U(\mathcal{F}) \neq \emptyset$. Let $Z \subseteq[n]$ and let $i, j \in U(\mathcal{F}), i \leqslant j$. Then $|\mathcal{F}(Z)| \leqslant\left|\mathcal{F}\left(\delta_{i, j}(Z)\right)\right|$.

Proof. Let $Y:=\delta_{i, j}(Z)$. Suppose $Y \neq Z$, and let $W:=Z \cap Y$. Then $i<j$, $Z=W \cup\{j\} \neq W$ and $Y=W \cup\{i\} \neq W$. Let $\mathcal{D}:=\{F \in \mathcal{F}: i \in F, F \cap W=\emptyset\}$, $\mathcal{E}:=\{F \in \mathcal{F}: j \in F, F \cap W=\emptyset\}$. Since \mathcal{F} is quasi-compressed and $i, j \in U(\mathcal{F})$, we have $\Delta_{i, j}(\mathcal{E} \backslash \mathcal{E}(i)) \subseteq \mathcal{D} \backslash \mathcal{D}(j)$; so $|\mathcal{D} \backslash \mathcal{D}(j)| \geqslant\left|\Delta_{i, j}(\mathcal{E} \backslash \mathcal{E}(i))\right|=|\mathcal{E} \backslash \mathcal{E}(i)|$. Note that $\mathcal{D}(j)=\mathcal{E}(i)$. Thus, since $|\mathcal{F}(Y)|-|\mathcal{F}(Z)|=(|\mathcal{F}(W)|+|\mathcal{D}|)-(|\mathcal{F}(W)|+|\mathcal{E}|)=$ $(|\mathcal{D}(j)|+|\mathcal{D} \backslash \mathcal{D}(j)|)-(|\mathcal{E}(i)|+|\mathcal{E} \backslash \mathcal{E}(i)|)=|\mathcal{D} \backslash \mathcal{D}(j)|-|\mathcal{E} \backslash \mathcal{E}(i)| \geqslant 0$, the result follows.

For a set $X:=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{N}$ with $x_{1}<\ldots<x_{n}$ and $r \in[n]$, call $\left\{x_{1}, \ldots, x_{r}\right\}$ the initial r-segment of X. For convenience, we call \emptyset the initial 0 -segment of X.
Corollary 3.5 Let $\mathcal{F} \subseteq 2^{[n]}$ be quasi-compressed. Let $\emptyset \neq Z \subseteq[n]$ and let $Y \in\binom{[n]}{|Z|}$ such that Y contains the initial $|Z \cap U(\mathcal{F})|$-segment of $U(\mathcal{F})$. Then $|\mathcal{F}(Z)| \leqslant|\mathcal{F}(Y)|$.

Proof. Let $Z^{\prime}:=Z \cap U(\mathcal{F})$. If $Z^{\prime}=\emptyset$ then $|\mathcal{F}(Z)|=0 \leqslant|\mathcal{F}(Y)|$. Suppose $Z^{\prime} \neq \emptyset$. Let Y^{\prime} be the initial $\left|Z^{\prime}\right|$-segment of $U(\mathcal{F})$. Since \mathcal{F} is quasi-compressed and $Z^{\prime} \subseteq U(\mathcal{F})$, we can construct a composition of compressions $\delta_{i, j}$ with $i, j \in U(\mathcal{F}), i \leqslant j$, that yields Y^{\prime} when applied on Z^{\prime}. Thus $\left|\mathcal{F}\left(Z^{\prime}\right)\right| \leqslant\left|\mathcal{F}\left(Y^{\prime}\right)\right|$ by repeated application of Lemma 3.4. Since $Y^{\prime} \subseteq Y$ and $|\mathcal{F}(Z)|=\left|\mathcal{F}\left(Z^{\prime}\right)\right|$, we have $|\mathcal{F}(Z)| \leqslant\left|\mathcal{F}\left(Y^{\prime}\right)\right| \leqslant|\mathcal{F}(Y)|$.

The following is a well-known fundamental property of compressions that emerged in [4] and that is not difficult to prove.

Lemma 3.6 If $\mathcal{A} \subset 2^{[n]}$ is intersecting and $i, j \in[n]$, then $\Delta_{i, j}(\mathcal{A})$ is intersecting.

4 Proof of Theorem 1.2

Lemma 4.1 Let r, s, n and \mathcal{H} be as in Theorem 1.2, and let $(\mathcal{A}, \mathcal{B})$ be a cip with $\emptyset \neq$ $\mathcal{A} \subset \mathcal{H}^{(r)}$ and $\emptyset \neq \mathcal{A} \subset \mathcal{H}^{(s)}$. Let $1 \leqslant i<j \leqslant n$. Then:
(i) $\Delta_{i, j}(\mathcal{A})$ and $\Delta_{i, j}(\mathcal{B})$ are cross-intersecting;
(ii) if either $\Delta_{m, n}(\mathcal{A})=\mathcal{A}$ for all $m \in[n-1]$ or $\Delta_{m, n}(\mathcal{B})=\mathcal{B}$ for all $m \in[n-1]$, then $(A \cap B) \backslash\{n\} \neq \emptyset$ for any $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Proof. Let $\mathcal{A}^{\prime}:=\{A \cup\{n+1\}: A \in \mathcal{A}\}, \mathcal{A}^{\prime \prime}:=\left\{A^{*} \cup\{n+1\}: A^{*} \in \Delta_{i, j}(\mathcal{A})\right\}$, $\mathcal{B}^{\prime}:=\{B \cup\{n+2\}: B \in \mathcal{B}\}, \mathcal{B}^{\prime \prime}:=\left\{B^{*} \cup\{n+2\}: B^{*} \in \Delta_{i, j}(\mathcal{B})\right\}$. Clearly, the family $\mathcal{C}:=\mathcal{A}^{\prime} \cup \mathcal{B}^{\prime}$ is intersecting, and hence $\Delta_{i, j}(\mathcal{C})$ is intersecting by Lemma 3.6. Since $\Delta_{i, j}(\mathcal{C})=\mathcal{A}^{\prime \prime} \cup \mathcal{B}^{\prime \prime}$, (i) clearly follows.

Suppose without loss of generality that $\Delta_{m, n}(\mathcal{A})=\mathcal{A}$ for all $m \in[n-1]$. Suppose $A \cap B=\{n\}$ for some $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Then, since $|(A \cup B) \backslash\{n\}|=r+s-2<n-1$, the set $X:=[n-1] \backslash(A \cup B)$ is non-empty. Let $x \in X$. Since $\Delta_{x, n}(\mathcal{A})=\mathcal{A}, \delta_{x, n}(A) \in \mathcal{A}$. But $\delta_{x, n}(A) \cap B=\emptyset$, a contradiction. Hence (ii).

Proof of Theorem 1.2. Let $R:=[r]$ and let $\left(\mathcal{A}_{0}, \mathcal{B}_{0}\right)$ be the simple cip $\left(\{R\}, \mathcal{H}^{(s)}(R)\right)$. We clearly have $[\mu(\mathcal{H})] \in \mathcal{H}$ (since \mathcal{H} is compressed) and hence

$$
\begin{equation*}
2^{[\mu(\mathcal{H})]} \subseteq \mathcal{H} \tag{2}
\end{equation*}
$$

(since \mathcal{H} is hereditary). So $R \in \mathcal{H}^{(r)}$. We therefore have $\emptyset \neq \mathcal{A}_{0} \subset \mathcal{H}^{(r)}$ and $\emptyset \neq \mathcal{B}_{0} \subset \mathcal{H}^{(s)}$. It remains to show that $|\mathcal{A}|+|\mathcal{B}| \leqslant\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|$ for any $\operatorname{cip}(\mathcal{A}, \mathcal{B})$ with $\emptyset \neq \mathcal{A} \subset \mathcal{H}^{(r)}$ and $\emptyset \neq \mathcal{B} \subset \mathcal{H}^{(s)}$, and we do this using induction on r.

Consider the base case $r=1$. By Theorem 1.4, there exists a (single-element) set $Z \in \mathcal{H}^{(1)}$ such that $\left(\{Z\}, \mathcal{H}^{(s)}(Z)\right) \in C(\mathcal{H}, 1, s)$ and hence $|\mathcal{A}|+|\mathcal{B}| \leqslant 1+\left|\mathcal{H}^{(s)}(Z)\right|$. By Corollary 3.5, $\left|\mathcal{H}^{(s)}(Z)\right| \leqslant\left|\mathcal{B}_{0}\right|$. So $|\mathcal{A}|+|\mathcal{B}| \leqslant\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|$.

Now consider $r \geqslant 2$. Suppose $n=r+s$. So $\mu(\mathcal{H})=n$ and hence $[n] \in \mathcal{H}$. Thus, since \mathcal{H} is hereditary, $\mathcal{H}^{(p)}=\binom{[n]}{p}$ for each $p \in[n]$. Having $n=r+s$ means that for every $A \in\binom{[n]}{r}$ there is only one set $B \in\binom{[n]}{s}$ such that $A \cap B=\emptyset$, so $|\mathcal{A}|+|\mathcal{B}| \leqslant$ $\left.|\mathcal{A}|+\binom{n}{s}-|\mathcal{A}|\right)=\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|$.

We now consider $n \geqslant r+s+1$ and proceed by induction on n. Let $n^{\prime}:=n-1$.
In view of Lemma 4.1(i) and the assumption that \mathcal{H} is compressed, if $\Delta_{m, n}(\mathcal{A}) \neq \mathcal{A}$ or $\Delta_{m, n}(\mathcal{B}) \neq \mathcal{B}$ for some $m \in[n-1]$, then we can replace \mathcal{A} and \mathcal{B} by $\mathcal{A}^{\prime}:=\Delta_{m, n}(\mathcal{A})$ and $\mathcal{B}^{\prime}:=\Delta_{m, n}(\mathcal{B})$, respectively, and repeat the procedure until we obtain families $\mathcal{A}^{*} \subset \mathcal{H}^{(r)}$ and $\mathcal{B}^{*} \subset \mathcal{H}^{(s)}$ such that $\Delta_{m, n}\left(\mathcal{A}^{*}\right)=\mathcal{A}^{*}$ and $\Delta_{m, n}\left(\mathcal{B}^{*}\right)=\mathcal{B}^{*}$ for all $m \in[n-1]$ (it is well-known and easy to see that such a procedure indeed takes a finite number of steps). We can therefore assume that

$$
\begin{equation*}
\Delta_{m, n}(\mathcal{A})=\mathcal{A} \text { and } \Delta_{m, n}(\mathcal{B})=\mathcal{B} \text { for all } m \in[n-1] \tag{3}
\end{equation*}
$$

Thus, by Lemma 4.1(ii),

$$
\begin{equation*}
(A \cap B) \backslash\{n\} \neq \emptyset \text { for any } A \in \mathcal{A} \text { and } B \in \mathcal{B} \tag{4}
\end{equation*}
$$

Let $\mathcal{I}:=\mathcal{H} \backslash \mathcal{H}(n)=\{H \in \mathcal{H}: n \notin H\}$. Similarly, let $\mathcal{C}:=\mathcal{A} \backslash \mathcal{A}(n), \mathcal{D}:=\mathcal{B} \backslash \mathcal{B}(n)$, $\mathcal{E}:=\mathcal{B}_{0} \backslash \mathcal{B}_{0}(n)$. So $\mathcal{C} \subset \mathcal{I}^{(r)}$ and $\mathcal{D}, \mathcal{E} \subset \mathcal{I}^{(s)}$. Note that $\mathcal{C} \neq \emptyset$ and $\mathcal{D} \neq \emptyset$ by (3). Since \mathcal{H} is hereditary, if $[n] \in \mathcal{H}$ then $\mu(\mathcal{I})=n-1$. Thus, if $[n] \in \mathcal{H}$ then $\mu(\mathcal{I}) \geqslant r+s$, and if $[n] \notin \mathcal{H}$ then, since $\mu(\mathcal{H}) \geqslant r+s$, it follows by Lemma 3.2(iii) that $\mu(\mathcal{I}) \geqslant r+s$. Clearly \mathcal{I} is a compressed hereditary sub-family of $2^{[n-1]}$. Therefore, by the inductive hypothesis,

$$
\begin{equation*}
|\mathcal{C}|+|\mathcal{D}| \leqslant\left|\mathcal{A}_{0}\right|+|\mathcal{E}| \tag{5}
\end{equation*}
$$

Let $\mathcal{J}:=\mathcal{H}\langle n\rangle$. Clearly \mathcal{J} is a compressed hereditary sub-family of $2^{[n-1]}$, and $\mu(\mathcal{J}) \geqslant$ $\mu(\mathcal{H})-1$ by Lemma 3.2(i). Let $r^{\prime}:=r-1$ and $s^{\prime}:=s-1$. So

$$
\begin{equation*}
r^{\prime} \leqslant s^{\prime} \quad \text { and } \quad \mu(\mathcal{J}) \geqslant \mu(\mathcal{H})-1 \geqslant r+s-1>r^{\prime}+s^{\prime} \tag{6}
\end{equation*}
$$

We have $\mathcal{A}\langle n\rangle \subset \mathcal{J}^{\left(r^{\prime}\right)}$ and $\mathcal{B}\langle n\rangle \subset \mathcal{J}^{\left(s^{\prime}\right)}$. By (4), $\mathcal{A}\langle n\rangle$ and $\mathcal{B}\langle n\rangle$ are cross-intersecting.
Suppose $\mathcal{A}\langle n\rangle \neq \emptyset$ and $\mathcal{B}\langle n\rangle \neq \emptyset$. Let $R^{\prime}:=\left[r^{\prime}\right]=R \backslash\{r\}$. By the inductive hypothesis, $|\mathcal{A}\langle n\rangle|+|\mathcal{B}\langle n\rangle| \leqslant 1+\left|\mathcal{J}^{\left(s^{\prime}\right)}\left(R^{\prime}\right)\right|$. Similarly to $(2), 2^{[\mu(\mathcal{J})]} \subseteq \mathcal{J}$; so $\binom{[\mu(\mathcal{J})]}{s^{\prime}} \subseteq \mathcal{J}^{\left(s^{\prime}\right)}$. Since $\mathcal{B}_{0}\langle n\rangle=\mathcal{J}^{\left(s^{\prime}\right)}(R)$,

$$
\begin{aligned}
\left|\mathcal{B}_{0}\langle n\rangle\right| & =\left|\mathcal{J}^{\left(s^{\prime}\right)}\left(R^{\prime}\right)\right|+\left|\left\{B \in \mathcal{J}^{\left(s^{\prime}\right)}: B \cap R^{\prime}=\emptyset, r \in B\right\}\right| \\
& \geqslant\left|\mathcal{J}^{\left(s^{\prime}\right)}\left(R^{\prime}\right)\right|+\left|\left\{B \in\binom{[\mu(\mathcal{J})] \backslash R^{\prime}}{s^{\prime}}: r \in B\right\}\right|=\left|\mathcal{J}^{\left(s^{\prime}\right)}\left(R^{\prime}\right)\right|+\binom{\mu(\mathcal{J})-r^{\prime}-1}{s^{\prime}-1}
\end{aligned}
$$

and hence, by $(6),\left|\mathcal{B}_{0}\langle n\rangle\right| \geqslant\left|\mathcal{J}^{\left(s^{\prime}\right)}\left(R^{\prime}\right)\right|+1$. So $|\mathcal{A}\langle n\rangle|+|\mathcal{B}\langle n\rangle| \leqslant\left|\mathcal{B}_{0}\langle n\rangle\right|$. Since $|\mathcal{A}|+|\mathcal{B}|=$ $|\mathcal{C}|+|\mathcal{D}|+|\mathcal{A}\langle n\rangle|+|\mathcal{B}\langle n\rangle|,(5)$ and the last inequality give us $|\mathcal{A}|+|\mathcal{B}| \leqslant\left|\mathcal{A}_{0}\right|+|\mathcal{E}|+\left|\mathcal{B}_{0}\langle n\rangle\right|=$ $\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|$.

Next, suppose $\mathcal{A}\langle n\rangle=\emptyset$. Let $A \in \mathcal{C}$ (recall that $\mathcal{C} \neq \emptyset$). By (4), $|\mathcal{B}\langle n\rangle| \leqslant\left|\mathcal{J}^{\left(s^{\prime}\right)}(A)\right|$. It is easy to see that $U\left(\mathcal{J}^{\left(s^{\prime}\right)}\right)=[l]$ for some $l \in\left[n^{\prime}\right]$ (since \mathcal{J} is compressed); so $\left|\mathcal{J}^{\left(s^{\prime}\right)}(A)\right| \leqslant$ $\left|\mathcal{J}^{\left(s^{\prime}\right)}(R)\right|$ by Corollary 3.5. Since $|\mathcal{A}|+|\mathcal{B}|=|\mathcal{C}|+|\mathcal{D}|+|\mathcal{A}\langle n\rangle|+|\mathcal{B}\langle n\rangle|$, where $\mathcal{A}\langle n\rangle=\emptyset$ and $|\mathcal{B}\langle n\rangle| \leqslant\left|\mathcal{J}^{\left(s^{\prime}\right)}(R)\right|=\left|\mathcal{B}_{0}\langle n\rangle\right|$, it follows by (5) that $|\mathcal{A}|+|\mathcal{B}| \leqslant\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|$.

Finally, suppose $\mathcal{B}\langle n\rangle=\emptyset$. If $r^{\prime}=s^{\prime}$ (i.e. $r=s$) then $|\mathcal{A}|+|\mathcal{B}| \leqslant\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|$ follows by an argument similar to the one for the previous case. Suppose $r^{\prime}<s^{\prime}$. Let $\mathcal{K}_{0}:=\mathcal{J} \backslash \mathcal{J}(1):=\{J \in \mathcal{J}: 1 \notin J\}$ and $\mathcal{K}_{1}:=\mathcal{J}\langle 1\rangle$. So $\mathcal{K}_{0}, \mathcal{K}_{1} \subseteq 2^{[2, n-1]}$. By Lemma 3.3, \mathcal{K}_{0} and \mathcal{K}_{1} are hereditary and quasi-compressed. By (i) and (ii) of Lemma 3.2, $\mu\left(\mathcal{K}_{0}\right) \geqslant$ $\mu(\mathcal{J})-1$ and $\mu\left(\mathcal{K}_{1}\right) \geqslant \mu(\mathcal{J})-1$. Thus, by (6), $\mu\left(\mathcal{K}_{0}\right) \geqslant r^{\prime}+s^{\prime}$. Let $R^{*}:=[2, r]$ and $S^{*}:=[2, s]$. It is clear from (2) that $R^{*}, S^{*} \in \mathcal{K}_{0}$. Note that therefore R^{*} and S^{*} are initial segments of $U\left(\mathcal{K}_{0}\right)$. Since $\left(\mathcal{K}_{0}^{\left(r^{\prime}\right)}\left(S^{*}\right),\left\{S^{*}\right\}\right)$ is a cip with the first family contained in $\mathcal{K}_{0}^{\left(r^{\prime}\right)}$ and the second family contained in $\mathcal{K}_{0}^{\left(s^{\prime}\right)}$, the inductive hypothesis gives us $\left|\mathcal{K}_{0}^{\left(r^{\prime}\right)}\left(S^{*}\right)\right|+\left|\left\{S^{*}\right\}\right| \leqslant\left|\left\{R^{*}\right\}\right|+\left|\mathcal{K}_{0}^{\left(s^{\prime}\right)}\left(R^{*}\right)\right|$ and hence

$$
\begin{equation*}
\left|\mathcal{K}_{0}^{\left(r^{\prime}\right)}\left(S^{*}\right)\right| \leqslant\left|\mathcal{K}_{0}^{\left(s^{\prime}\right)}\left(R^{*}\right)\right| . \tag{7}
\end{equation*}
$$

Let $\mathcal{L}_{0}:=\left\{A \in \mathcal{J}^{\left(r^{\prime}\right)}(S): 1 \notin A\right\}$ and $\mathcal{L}_{1}:=\left\{A \backslash\{1\}: 1 \in A \in \mathcal{J}^{\left(r^{\prime}\right)}(S)\right\}$. Let $\mathcal{M}_{0}:=$ $\left\{B \in \mathcal{B}_{0}\langle n\rangle: 1 \notin B\right\}$ and $\mathcal{M}_{1}:=\left\{B \backslash\{1\}: 1 \in B \in \mathcal{B}_{0}\langle n\rangle\right\}$. Note that $\mathcal{L}_{0}=\mathcal{K}_{0}^{\left(r^{\prime}\right)}\left(S^{*}\right)$ and $\mathcal{M}_{0}=\mathcal{K}_{0}^{\left(s^{\prime}\right)}\left(R^{*}\right)$. So $\left|\mathcal{L}_{0}\right| \leqslant\left|\mathcal{M}_{0}\right|$ by (7). Let $r^{\prime \prime}:=r^{\prime}-1$ and $s^{\prime \prime}:=s^{\prime}-1$. Similarly to $(6), \mu\left(\mathcal{K}_{1}\right)>r^{\prime \prime}+s^{\prime \prime}$. By Lemma 3.1, $\left|\mathcal{K}_{1}^{\left(r^{\prime \prime}\right)}\right|<\left|\mathcal{K}_{1}^{\left(s^{\prime \prime}\right)}\right|$. Thus, since $\mathcal{L}_{1}=\mathcal{K}_{1}^{\left(r^{\prime \prime}\right)}$ and $\mathcal{M}_{1}=\mathcal{K}_{1}^{\left(s^{\prime \prime}\right)},\left|\mathcal{L}_{1}\right|<\left|\mathcal{M}_{1}\right|$. We therefore have

$$
\begin{equation*}
\left|\mathcal{J}^{\left(r^{\prime}\right)}(S)\right|=\left|\mathcal{L}_{0}\right|+\left|\mathcal{L}_{1}\right|<\left|\mathcal{M}_{0}\right|+\left|\mathcal{M}_{1}\right|=\left|\mathcal{B}_{0}\langle n\rangle\right| . \tag{8}
\end{equation*}
$$

Now let $D \in \mathcal{D}$. By (4), $|\mathcal{A}\langle n\rangle| \leqslant\left|\mathcal{J}^{\left(r^{\prime}\right)}(D)\right|$. It is easy to see that $U\left(\mathcal{J}^{\left(r^{\prime}\right)}\right)=[l]$ for some $l \in\left[n^{\prime}\right]$ (since \mathcal{J} is compressed); so $\left|\mathcal{J}^{\left(r^{\prime}\right)}(D)\right| \leqslant\left|\mathcal{J}^{\left(r^{\prime}\right)}(S)\right|$ by Corollary 3.5. Thus, by (8), $|\mathcal{A}\langle n\rangle|<\left|\mathcal{B}_{0}\langle n\rangle\right|$. Together with (5) and $\mathcal{B}\langle n\rangle=\emptyset$, this gives us $|\mathcal{A}|+|\mathcal{B}|<\left|\mathcal{A}_{0}\right|+\left|\mathcal{B}_{0}\right|$.

Acknowledgements: The author is indebted to an anonymous referee for checking the paper carefully and suggesting helpful comments.

References

[1] P. Borg, Extremal t-intersecting sub-families of hereditary families, J. London Math. Soc. 79 (2009) 167-185.
[2] V. Chvátal, Unsolved Problem No. 7, in: C. Berge, D.K. Ray-Chaudhuri (Eds.), Hypergraph Seminar, Lecture Notes in Mathematics, Vol. 411, Springer, Berlin, 1974.
[3] V. Chvátal, Intersecting families of edges in hypergraphs having the hereditary property, in: C. Berge, D.K. Ray-Chaudhuri (Eds.), Hypergraph Seminar, Lecture Notes in Mathematics, Vol. 411, Springer, Berlin, 1974, pp. 61-66.
[4] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961) 313-320.
[5] P. Frankl, The shifting technique in extremal set theory, in: C. Whitehead (Ed.), Combinatorial Surveys, Cambridge Univ. Press, London/New York, 1987, pp. 81110.
[6] P. Frankl and N. Tokushige, Some best possible inequalities concerning crossintersecting families, J. Combin. Theory Ser. A 61 (1992) 87-97.
[7] A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967) 369-384.
[8] G.O.H. Katona, A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, Akadémiai Kiadó (1968) 187-207.
[9] J.B. Kruskal, The number of simplices in a complex, in: Mathematical Optimization Techniques, University of California Press, Berkeley, California, 1963, pp. 251-278.
[10] J.E. Simpson, A bipartite Erdős-Ko-Rado theorem, Discrete Math. 113 (1993) 277280.
[11] H. Snevily, A new result on Chvátal's conjecture, J. Combin. Theory Ser. A 61 (1992) 137-141.

