
On ross-interseting uniform sub-families ofhereditary familiesPeter BorgDepartment of MathematisUniversity of MaltaMsida MSD 2080, Maltap.borg.02�antab.netSubmitted: Sep 15, 2009; Aepted: Apr 5, 2010; Published: Apr 19, 2010Mathematis Subjet Classi�ation: 05D05AbstratA family H of sets is hereditary if any subset of any set in H is in H. If twofamilies A and B are suh that any set in A intersets any set in B, then we saythat (A,B) is a ross-intersetion pair (ip). We say that a ip (A,B) is simple if atleast one of A and B ontains only one set. For a family F , let µ(F) denote the sizeof a smallest set in F that is not a subset of any other set in F . For any positiveinteger r, let [r] := {1, 2, ..., r}, 2[r] := {A : A ⊆ [r]}, F (r) := {F ∈ F : |F | = r}.We show that if a hereditary family H ⊆ 2[n] is ompressed, µ(H) > r + s with
r 6 s, and (A,B) is a ip with ∅ 6= A ⊂ H(r) and ∅ 6= B ⊂ H(s), then |A| + |B|is a maximum if (A,B) is the simple ip (

{[r]}, {B ∈ H(s) : B ∩ [r] 6= ∅}
); Frankland Tokushige proved this for H = 2[n]. We also show that for any 2 6 r 6 sand m > r + s there exist (non-ompressed) hereditary families H with µ(H) = msuh that no ip (A,B) with a maximum value of |A|+ |B| under the ondition that

∅ 6= A ⊂ H(r) and ∅ 6= B ⊂ H(s) is simple (we prove that this is not the ase for
r = 1), and we suggest two onjetures about the extremal strutures in general.1 IntrodutionWe shall use small letters suh as x to denote elements of a set or positive integers, apitalletters suh as X to denote sets, and alligraphi letters suh as F to denote families (i.e.sets whose members are sets themselves). Unless otherwise stated, it is to be assumedthat sets and families are �nite.

N is the set {1, 2, ...} of positive integers. For m, n ∈ N with m 6 n, the set {i ∈
N : m 6 i 6 n} is denoted by [m, n], and if m = 1 then we also write [n]. The power set
{A : A ⊆ X} of a set X is denoted by 2X , and {A ⊆ X : |A| = r} is denoted by (

X

r

).
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We next develop some notation for ertain sets and families de�ned on a family F ⊆
2X . Let U(F) denote the union of all sets in F . Let F (r) := {F ∈ F : |F | = r}. Fora set Y , let F(Y ) := {F ∈ F : F ∩ Y 6= ∅} and F [Y ] := {F ∈ F : Y ⊆ F}. Fora single-element set {y}, we may abbreviate the notation F({y}) to F(y), and we set
F〈y〉 := {F\{y} : F ∈ F(y)}.For i, j ∈ [n], let ∆i,j : 22[n]

→ 22[n] be the ompression operation (see [4℄) de�ned by
∆i,j(F) := {δi,j(F ) : F ∈ F , δi,j(F ) /∈ F} ∪ {F ∈ F : δi,j(F ) ∈ F},where δi,j : 2[n] → 2[n] is de�ned by

δi,j(F ) :=

{

(F\{j}) ∪ {i} if i /∈ F and j ∈ F ;
F otherwise.A family F is said to be- a hereditary family (or an ideal or a downset) if all subsets of any set in F are in F ;- uniform if the sets in F have the same size;- interseting if any set in F intersets any other set in F ;- entred if the sets in F ontain a ommon element;- ompressed if F ⊆ 2[n] and ∆i,j(F) = F for any i, j ∈ [n] with i < j;- ompressed with respet to x ∈ U(F) if ∆x,y(F) = F for any y ∈ U(F).Two familiesA and B are said to be ross-interseting if any set in A intersets any setin B. We say that (A,B) is a ross-intersetion pair (ip) ifA and B are ross-interseting.We say that a ip (A,B) is simple if at least one of A and B ontains only one set.Hilton and Milner [7℄ proved that if r 6 n/2 and A,B are non-empty ross-intersetingsub-families of (

[n]
r

), then |A|+ |B| 6
(

n

r

)

−
(

n−r

r

)

+ 1 = |A0|+ |B0|, where A0 is {[r]} and
B0 is {B ∈

(

[n]
r

)

: B ∩ [r] 6= ∅}. A streamlined proof of this result was later obtained bySimpson [10℄ by means of the ompression (also known as shifting) tehnique introduedin the seminal paper [4℄ (see [5℄ for a good survey on the uses of this tehnique in extremalset theory). Frankl and Tokushige [6℄ instead used the Kruskal-Katona Theorem [8, 9℄ toestablish the following extension.Theorem 1.1 (Frankl and Tokushige [6℄) If r 6 s, n > r + s, and (A,B) is a ipwith ∅ 6= A ⊆
(

[n]
r

) and ∅ 6= B ⊆
(

[n]
s

), then |A| + |B| 6
(

n

s

)

−
(

n−r

s

)

+ 1 = |A0| + |B0|,where (A0,B0) is the simple ip (

{[r]}, {B ∈
(

[n]
s

)

: B ∩ [r] 6= ∅}
).In this paper we are interested in ip's (A,B) having a maximum value of |A| + |B|under the ondition that both A and B are non-empty uniform sub-families of a hereditaryfamily H. Note that Theorem 1.1 deals with the speial ase when H is the power set

2[n], whih is the simplest example of a hereditary family. It is easy to see that a family ishereditary if and only if it is a union of power sets. There are many interesting examplesof hereditary families, suh as the family of independent sets of a graph or matroid.Before stating our results, we shall introdue a few more de�nitions.
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We say that a set M is F-maximal if M is not a subset of any set in F\{M}. Wedenote the size of a smallest F -maximal set in F by µ(F).For a family F , we denote the set {(A,B) : (A,B) is a ip with a maximum value of
|A| + |B| under the ondition that ∅ 6= A ⊂ F (r) and ∅ 6= B ⊂ F (s)} by C(F , r, s).Using the ompression tehnique, we generalise Theorem 1.1 as follows.Theorem 1.2 If r 6 s, n > r + s, and H is a ompressed hereditary sub-family of 2[n]with µ(H) > r + s, then the simple ip (

{[r]}, {B ∈ H(s) : B ∩ [r] 6= ∅}
) is in C(H, r, s).Theorem 1.1 is the ase H = 2[n], in whih [n] is the only H-maximal set in H and hene

µ(H) = n. Note that we annot relax the ondition that µ(H) > r+s. Indeed, if H = 2[n]and s 6 µ(H) < r + s, then any set in H(r) =
(

[n]
r

) intersets any set in H(s) =
(

[n]
s

)(sine n = µ(H) < r + s), and hene (

H(r),H(s)
) is the only ip in C(H, r, s). Note thatif H = 2[n] and µ(H) < s, then C(H, r, s) = ∅ (sine n = µ(H) < s and hene H(s) = ∅).Remark 1.3 One of the entral problems in extremal set theory is the famous ChvátalConjeture [2℄, whih laims that at least one of the largest interseting sub-families of anyhereditary family H is entred. Chvátal [3℄ proved his onjeture for the ase when H isompressed. Snevily [11℄ improved Chvátal's result to the ase when H is ompressed withrespet to an element of U(H). In the next setion we show that no similar improvementan be made to Theorem 1.2 for r > 2; more preisely, we show that for any 2 6 r 6 s and

m > r+s there are hereditary familiesH with µ(H) = m suh that H is ompressed withrespet to an element of U(H) and no ip in C(H, r, s) is simple. We then suggest twoonjetures about the struture of at least one of the ip's in C(H, r, s) for any hereditaryfamily H with µ(H) > r + s.For r = 1 we do have the desired general result.Theorem 1.4 If H is a hereditary family with µ(H) > 1+s, then C(H, 1, s) has a simpleip (A0,B0) with A0 = {{x}} and B0 = {B ∈ H(s) : x ∈ B} for some x ∈ U(H).Proof. Let (A,B) ∈ C(H, 1, s). Suppose |A| = 1. Then, sine A ⊂ H(1), A = {{x}} forsome x ∈ U(H). Sine B ⊂ H(s) and |A|+ |B| is a maximum (under the ross-intersetionondition), B must onsist of all the sets in H(s) whih ontain x.Now suppose |A| > 1. Let Z := {z ∈ U(H) : {z} ∈ A}; so |Z| = |A| and hene
|Z| > 1. Sine every set in B must interset every (single-element) set in A, we learlyhave B ⊆ H(s)[Z] (= {H ∈ H(s) : Z ⊆ H}). Let B ∈ B. Sine every (single-element) setin A must interset B, we have Z ⊆ B and hene |Z| 6 s. Let x ∈ Z and let M be an
H-maximal set in H suh that B ⊂ M . Then |M | > 1 + s (as |M | > µ(H)), Z ⊂ M(as Z ⊆ B), and (

M

s

)

⊆ H(s) (as H is hereditary). Now let (A0,B0) be the simple ip
(

{{x}},H(s)(x)
). Sine (A,B) ∈ C(H, 1, s), |A0| + |B0| 6 |A| + |B|. Also,
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|A0| + |B0| = 1 +
∣

∣H(s)(x)
∣

∣

> 1 +
∣

∣H(s)[Z]
∣

∣ +

∣

∣

∣

∣

{

A ∈

(

M

s

)

: x ∈ A, |A ∩ Z| = |Z| − 1

}
∣

∣

∣

∣

= 1 +
∣

∣H(s)[Z]
∣

∣ +

(

|Z| − 1

|Z| − 2

)(

|M | − |Z|

s − (|Z| − 1)

)

> |Z| +
∣

∣H(s)[Z]
∣

∣ = |A| +
∣

∣H(s)[Z]
∣

∣ > |A| + |B|.So we atually have |A0| + |B0| = |A| + |B|, and hene (A0,B0) ∈ C(H, 1, s). 2The above result will be used in the proof of Theorem 1.2. It is easy to see from itsproof that if µ(H) > 1 + s, then any (A,B) in C(H, 1, s) is a simple ip as in the result.2 A onstrution and two onjeturesThe following is the proof of the laim in Remark 1.3.Proposition 2.1 Let 2 6 l + 1 6 r 6 s, m > r + s and p >
((

m−l

s

)

−
(

m−r

s

)

+ 1
)

/
(

m−l

r−l

).For eah i ∈ [p], let Mi := [l]∪ [(i−1)(m− l)+ l+1, i(m− l)+ l]. Let E =
⋃p

i=1 2Mi. Then
E is hereditary, E is ompressed with respet to 1, µ(E) = m, and no ip in C(E , r, s) issimple.Proof. It is straightforward that E is hereditary, E is ompressed with respet to 1, and
µ(E) = |M1| = ... = |Mp| = m. Let (A,B) be a simple ip with ∅ 6= A ⊆ E (r) and
∅ 6= B ⊆ E (s). Let L := [l], A1 := {L ∪ C : C ∈

(

Mi\L
r−l

) for some i ∈ [p]}, B1 = E (s)(L)(= {E ∈ E (s) : E ∩ L 6= ∅}). Sine (A1,B1) is a non-simple ip with ∅ 6= A1 ⊆ E (r) and
∅ 6= B1 ⊆ E (s), the result follows if we show that |A| + |B| < |A1| + |B1|.Let R := [r], A0 := {R}, B0 := E (s)(R). We will show that

|A| + |B| 6 |A0| + |B0|. (1)Let us �rst assume this. Note that B0 is the disjoint union of B1 and the family R of setsin E (s) that interset R but not L. Sine R is a subset of M1 but not a subset of any otherset Mi, we learly have R = {A ∈
(

M1\L
s

)

: A ∩ (R\L) 6= ∅}. We have
(|A1| + |B1|) − (|A| + |B|) > (|A1| + |B1|) − (|A0| + |B0|) (by (1))

= (|A1| + |B1|) − (|A0| + |B1| + |R|) = |A1| − |A0| − |R|

= p

(

m − l

r − l

)

−

(

m − l

s

)

+

(

m − r

s

)

− 1

> 0 (by hoie of p)and hene |A| + |B| < |A1| + |B1| as required.
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We now prove (1). Suppose A ontains only one set A. Then B ⊆ E (s)(A). Sine
l < r and Mi ∩ Mj = L for any distint i and j in [p], there is a unique k in [p] suhthat A ⊂ Mk, and it is therefore easy to see that ∣

∣E (s)(A)
∣

∣ 6 |B0|; so (1) holds in thisase. Now suppose |A| > 1. Then, sine (A,B) is a simple ip, B ontains only oneset B and A ⊆ E (r)(B). Let S := [s], C0 := E (r)(S), D0 := {S}. Similarly to theabove, it is easy to see that ∣

∣E (r)(B)
∣

∣ 6 |C0|; so |A| + |B| 6 |C0| + |D0|. If r = s then
|C0| + |D0| = |A0| + |B0| and hene (1) holds again. Suppose r < s. For eah i ∈ [p], let
Fi :=

(

Mi

s

) and Gi :=
(

Mi

r

). Sine R ⊂ M1 and R ∩ Mi = S ∩ Mi = L for eah i ∈ [2, p],we learly have |B0| = |F1(R)|+
∑p

i=2 |Fi(L)| and |C0| = |G1(S)|+
∑p

i=2 |Gi(L)|. We have
|G1(S)| < |F1(R)| sine
|F1(R)| − |G1(S)| =

((

m

s

)

−

(

m − r

s

))

−

((

m

r

)

−

(

m − s

r

))

=

((

m

s

)

−

(

m

r

))

−

((

m − r

s

)

−

(

m − s

r

))

=

(

m

r

) (

r!(m − r)...(m − s + 1)

s!
− 1

)

−

(

m − s

r

) (

r!(m − r)...(m − s + 1)

s!
− 1

)

> 0.By a similar alulation, we obtain that |Gi(L)| < |Fi(L)| for eah i ∈ [2, p]. So we have
|C0| + |D0| = |G1(S)| +

p
∑

i=2

|Gi(L)| + 1 < |F1(R)| +

p
∑

i=2

|Fi(L)| + 1 = |A0| + |B0|and hene, sine |A| + |B| 6 |C0| + |D0|, (1) holds again. 2Something ommon to the ip (A1,B1) in the above proof and the extremal struturesdetermined in Theorems 1.2 and 1.4 is that the �rst family in the pair is entred. Weonjeture that there always exist ip's (A,B) with A entred that are extremal underthe onditions we have been onsidering, where by extremal we mean that |A| + |B| is amaximum.Conjeture 2.2 (Weak Form) If r 6 s and H is a hereditary family with µ(H) > r+s,then for some (A0,B0) ∈ C(H, r, s), A0 is entred.Conjeture 2.3 (Strong Form) If r 6 s and H is a hereditary family with µ(H) > r+
s, then there exists a set H in H with 1 6 |H| 6 r suh that for some (A0,B0) ∈ C(H, r, s),
A0 = {A ∈ H(r) : H ⊆ A} and B0 = {B ∈ H(s) : B ∩ H 6= ∅}.Note that the families A1 and B1 in the proof of Proposition 2.1 have the struture of A0and B0 in the above onjeture.3 Some toolsThis setion provides the main tools we need for the proof of Theorem 1.2. We start witha ruial lemma onerning the levels of a hereditary family (see [1, Corollary 3.2℄).
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Lemma 3.1 (Borg [1℄) If H is a hereditary family and r < s 6 µ(H) − r, then
∣

∣H(r)
∣

∣ 6

(

s

s−r

)

(

µ(H)−r

s−r

)

∣

∣H(s)
∣

∣ .The following is our seond important lemma, whih purely onerns the parameter
µ(F) of a family F .Lemma 3.2 Let ∅ 6= F ⊆ 2[n] and a ∈ [n]. Let D := F\F(a) and E := F\F(n).(i) If F(a) 6= ∅, then µ(F〈a〉) > µ(F) − 1.(ii) If F is hereditary, then µ(D) > µ(F) − 1.(iii) If F is ompressed and [n] /∈ F , then µ(E) > µ(F).Proof. Suppose F(a) 6= ∅. Let M be an F〈a〉-maximal set in F〈a〉. Then M ′ := M ∪{a}is an F -maximal set in F . So |M | = |M ′| − 1 > µ(F) − 1. Hene (i).Suppose F is hereditary. Then, sine F 6= ∅, ∅ ∈ F . So D 6= ∅. Let M be a D-maximal set in D. Suppose also that |M | < µ(F). So M is not F -maximal, and henethere exists a set M ′ ∈ F(a) suh that M ⊂ M ′ and M ′ is F -maximal. Sine F ishereditary, M ′′ := M ′\{a} ∈ F . Sine M is D-maximal and M ⊆ M ′′ ∈ D, M = M ′′. So
M ′ = M ∪ {a}. Therefore |M | = |M ′| − 1 > µ(F) − 1. Hene (ii).Suppose F is ompressed and [n] /∈ F . Let M be an E-maximal set in E . Suppose
|M | < µ(F). Then there exists a set M ′ ∈ F(n) suh that M ⊂ M ′. Sine [n] /∈ F ,
X := [n]\M ′ 6= ∅. Let x ∈ X and M ′′ := δx,n(M

′) = (M ′\{n}) ∪ {x}. Sine F isompressed, M ′′ ∈ F . But then M ( M ′′ ∈ E , a ontradition (as M is E-maximal). So
|M | > µ(F). Hene (iii). 2We remark that the inequalities above annot be replaed by equalities. An examplefor (iii) is that if n > 3 and F is the ompressed (hereditary) family 2[n−1] ∪ 2[n−3]∪{n},then µ(E) = n − 1 > n − 2 = µ(F).We shall say that a family F ⊆ 2[n] is quasi-ompressed if δi,j(F ) ∈ F for any F ∈
F and any i, j ∈ U(F) with i < j. Therefore a quasi-ompressed family F ⊆ 2[n]is isomorphi to a ompressed sub-family of 2[|U(F)|], and the isomorphism is induedby the bijetion β : U(F) → [|U(F)|] de�ned by β(ui) := i, i = 1, ..., |U(F)|, where
{u1, ..., u|U(F)|} = U(F) and u1 < ... < u|U(F)|.The next lemma is straightforward, so we omit its proof.Lemma 3.3 Let H ⊆ 2[n] and a ∈ [n].(i) If H is hereditary, then H\H(a) and H〈a〉 are hereditary.(ii) If H is quasi-ompressed, then H\H(a) and H〈a〉 are quasi-ompressed.We shall frequently use the following property of quasi-ompressed families.Lemma 3.4 Let F ⊆ 2[n] be a quasi-ompressed family with U(F) 6= ∅. Let Z ⊆ [n] andlet i, j ∈ U(F), i 6 j. Then |F(Z)| 6 |F(δi,j(Z))|.
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Proof. Let Y := δi,j(Z). Suppose Y 6= Z, and let W := Z ∩ Y . Then i < j,
Z = W ∪ {j} 6= W and Y = W ∪ {i} 6= W . Let D := {F ∈ F : i ∈ F, F ∩ W = ∅},
E := {F ∈ F : j ∈ F, F ∩ W = ∅}. Sine F is quasi-ompressed and i, j ∈ U(F),we have ∆i,j(E\E(i)) ⊆ D\D(j); so |D\D(j)| > |∆i,j(E\E(i))| = |E\E(i)|. Note that
D(j) = E(i). Thus, sine |F(Y )| − |F(Z)| = (|F(W )| + |D|) − (|F(W )| + |E|) =
(|D(j)|+ |D\D(j)|)− (|E(i)|+ |E\E(i)|) = |D\D(j)| − |E\E(i)| > 0, the result follows. 2For a set X := {x1, ..., xn} ⊂ N with x1 < ... < xn and r ∈ [n], all {x1, ..., xr} theinitial r-segment of X. For onveniene, we all ∅ the initial 0-segment of X.Corollary 3.5 Let F ⊆ 2[n] be quasi-ompressed. Let ∅ 6= Z ⊆ [n] and let Y ∈

(

[n]
|Z|

) suhthat Y ontains the initial |Z ∩ U(F)|-segment of U(F). Then |F(Z)| 6 |F(Y )|.Proof. Let Z ′ := Z ∩ U(F). If Z ′ = ∅ then |F(Z)| = 0 6 |F(Y )|. Suppose Z ′ 6= ∅.Let Y ′ be the initial |Z ′|-segment of U(F). Sine F is quasi-ompressed and Z ′ ⊆ U(F),we an onstrut a omposition of ompressions δi,j with i, j ∈ U(F), i 6 j, that yields
Y ′ when applied on Z ′. Thus |F(Z ′)| 6 |F(Y ′)| by repeated appliation of Lemma 3.4.Sine Y ′ ⊆ Y and |F(Z)| = |F(Z ′)|, we have |F(Z)| 6 |F(Y ′)| 6 |F(Y )|. 2The following is a well-known fundamental property of ompressions that emerged in[4℄ and that is not di�ult to prove.Lemma 3.6 If A ⊂ 2[n] is interseting and i, j ∈ [n], then ∆i,j(A) is interseting.4 Proof of Theorem 1.2Lemma 4.1 Let r, s, n and H be as in Theorem 1.2, and let (A,B) be a ip with ∅ 6=
A ⊂ H(r) and ∅ 6= A ⊂ H(s). Let 1 6 i < j 6 n. Then:(i) ∆i,j(A) and ∆i,j(B) are ross-interseting;(ii) if either ∆m,n(A) = A for all m ∈ [n − 1] or ∆m,n(B) = B for all m ∈ [n − 1], then
(A ∩ B)\{n} 6= ∅ for any A ∈ A and B ∈ B.Proof. Let A′ := {A ∪ {n + 1} : A ∈ A}, A′′ := {A∗ ∪ {n + 1} : A∗ ∈ ∆i,j(A)},
B′ := {B ∪ {n + 2} : B ∈ B}, B′′ := {B∗ ∪ {n + 2} : B∗ ∈ ∆i,j(B)}. Clearly, the family
C := A′ ∪ B′ is interseting, and hene ∆i,j(C) is interseting by Lemma 3.6. Sine
∆i,j(C) = A′′ ∪ B′′, (i) learly follows.Suppose without loss of generality that ∆m,n(A) = A for all m ∈ [n − 1]. Suppose
A∩B = {n} for some A ∈ A and B ∈ B. Then, sine |(A∪B)\{n}| = r + s− 2 < n− 1,the set X := [n− 1]\(A ∪B) is non-empty. Let x ∈ X. Sine ∆x,n(A) = A, δx,n(A) ∈ A.But δx,n(A) ∩ B = ∅, a ontradition. Hene (ii). 2Proof of Theorem 1.2. Let R := [r] and let (A0,B0) be the simple ip ({R},H(s)(R)).We learly have [µ(H)] ∈ H (sine H is ompressed) and hene

2[µ(H)] ⊆ H (2)
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(sineH is hereditary). So R ∈ H(r). We therefore have ∅ 6= A0 ⊂ H(r) and ∅ 6= B0 ⊂ H(s).It remains to show that |A|+ |B| 6 |A0|+ |B0| for any ip (A,B) with ∅ 6= A ⊂ H(r) and
∅ 6= B ⊂ H(s), and we do this using indution on r.Consider the base ase r = 1. By Theorem 1.4, there exists a (single-element) set
Z ∈ H(1) suh that (

{Z},H(s)(Z)
)

∈ C(H, 1, s) and hene |A| + |B| 6 1 + |H(s)(Z)|. ByCorollary 3.5, |H(s)(Z)| 6 |B0|. So |A| + |B| 6 |A0| + |B0|.Now onsider r > 2. Suppose n = r + s. So µ(H) = n and hene [n] ∈ H. Thus,sine H is hereditary, H(p) =
(

[n]
p

) for eah p ∈ [n]. Having n = r + s means that forevery A ∈
(

[n]
r

) there is only one set B ∈
(

[n]
s

) suh that A ∩ B = ∅, so |A| + |B| 6

|A| +
((

n

s

)

− |A|
)

= |A0| + |B0|.We now onsider n > r + s + 1 and proeed by indution on n. Let n′ := n − 1.In view of Lemma 4.1(i) and the assumption that H is ompressed, if ∆m,n(A) 6= A or
∆m,n(B) 6= B for some m ∈ [n − 1], then we an replae A and B by A′ := ∆m,n(A) and
B′ := ∆m,n(B), respetively, and repeat the proedure until we obtain families A∗ ⊂ H(r)and B∗ ⊂ H(s) suh that ∆m,n(A∗) = A∗ and ∆m,n(B∗) = B∗ for all m ∈ [n − 1] (it iswell-known and easy to see that suh a proedure indeed takes a �nite number of steps).We an therefore assume that

∆m,n(A) = A and ∆m,n(B) = B for all m ∈ [n − 1]. (3)Thus, by Lemma 4.1(ii),
(A ∩ B)\{n} 6= ∅ for any A ∈ A and B ∈ B. (4)Let I := H\H(n) = {H ∈ H : n /∈ H}. Similarly, let C := A\A(n), D := B\B(n),

E := B0\B0(n). So C ⊂ I(r) and D, E ⊂ I(s). Note that C 6= ∅ and D 6= ∅ by (3). Sine
H is hereditary, if [n] ∈ H then µ(I) = n − 1. Thus, if [n] ∈ H then µ(I) > r + s, and if
[n] /∈ H then, sine µ(H) > r + s, it follows by Lemma 3.2(iii) that µ(I) > r + s. Clearly
I is a ompressed hereditary sub-family of 2[n−1]. Therefore, by the indutive hypothesis,

|C| + |D| 6 |A0| + |E|. (5)Let J := H〈n〉. Clearly J is a ompressed hereditary sub-family of 2[n−1], and µ(J ) >

µ(H) − 1 by Lemma 3.2(i). Let r′ := r − 1 and s′ := s − 1. So
r′ 6 s′ and µ(J ) > µ(H) − 1 > r + s − 1 > r′ + s′. (6)We have A〈n〉 ⊂ J (r′) and B〈n〉 ⊂ J (s′). By (4), A〈n〉 and B〈n〉 are ross-interseting.Suppose A〈n〉 6= ∅ and B〈n〉 6= ∅. Let R′ := [r′] = R\{r}. By the indutive hypothesis,

|A〈n〉| + |B〈n〉| 6 1 +
∣

∣J (s′)(R′)
∣

∣. Similarly to (2), 2[µ(J )] ⊆ J ; so (

[µ(J )]
s′

)

⊆ J (s′). Sine
B0〈n〉 = J (s′)(R),
|B0〈n〉| =

∣

∣

∣
J (s′)(R′)

∣

∣

∣
+

∣

∣

∣

{

B ∈ J (s′) : B ∩ R′ = ∅, r ∈ B
}

∣

∣

∣

>

∣

∣

∣
J (s′)(R′)

∣

∣

∣
+

∣

∣

∣

∣

{

B ∈

(

[µ(J )]\R′

s′

)

: r ∈ B

}
∣

∣

∣

∣

=
∣

∣

∣
J (s′)(R′)

∣

∣

∣
+

(

µ(J ) − r′ − 1

s′ − 1

)
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and hene, by (6), |B0〈n〉| >
∣

∣J (s′)(R′)
∣

∣+1. So |A〈n〉|+|B〈n〉| 6 |B0〈n〉|. Sine |A|+|B| =
|C|+|D|+|A〈n〉|+|B〈n〉|, (5) and the last inequality give us |A|+|B| 6 |A0|+|E|+|B0〈n〉| =
|A0| + |B0|.Next, suppose A〈n〉 = ∅. Let A ∈ C (reall that C 6= ∅). By (4), |B〈n〉| 6

∣

∣J (s′)(A)
∣

∣. Itis easy to see that U(J (s′)) = [l] for some l ∈ [n′] (sine J is ompressed); so ∣

∣J (s′)(A)
∣

∣ 6
∣

∣J (s′)(R)
∣

∣ by Corollary 3.5. Sine |A|+ |B| = |C|+ |D|+ |A〈n〉|+ |B〈n〉|, where A〈n〉 = ∅and |B〈n〉| 6
∣

∣J (s′)(R)
∣

∣ = |B0〈n〉|, it follows by (5) that |A| + |B| 6 |A0| + |B0|.Finally, suppose B〈n〉 = ∅. If r′ = s′ (i.e. r = s) then |A| + |B| 6 |A0| + |B0|follows by an argument similar to the one for the previous ase. Suppose r′ < s′. Let
K0 := J \J (1) := {J ∈ J : 1 /∈ J} and K1 := J 〈1〉. So K0,K1 ⊆ 2[2,n−1]. By Lemma 3.3,
K0 and K1 are hereditary and quasi-ompressed. By (i) and (ii) of Lemma 3.2, µ(K0) >

µ(J ) − 1 and µ(K1) > µ(J ) − 1. Thus, by (6), µ(K0) > r′ + s′. Let R∗ := [2, r]and S∗ := [2, s]. It is lear from (2) that R∗, S∗ ∈ K0. Note that therefore R∗ and
S∗ are initial segments of U(K0). Sine (

K
(r′)
0 (S∗), {S∗}

) is a ip with the �rst familyontained in K
(r′)
0 and the seond family ontained in K

(s′)
0 , the indutive hypothesis givesus ∣

∣

∣
K

(r′)
0 (S∗)

∣

∣

∣
+ |{S∗}| 6 |{R∗}| +

∣

∣

∣
K

(s′)
0 (R∗)

∣

∣

∣
and hene

∣

∣

∣
K

(r′)
0 (S∗)

∣

∣

∣
6

∣

∣

∣
K

(s′)
0 (R∗)

∣

∣

∣
. (7)Let L0 := {A ∈ J (r′)(S) : 1 /∈ A} and L1 := {A\{1} : 1 ∈ A ∈ J (r′)(S)}. Let M0 :=

{B ∈ B0〈n〉 : 1 /∈ B} and M1 := {B\{1} : 1 ∈ B ∈ B0〈n〉}. Note that L0 = K
(r′)
0 (S∗) and

M0 = K
(s′)
0 (R∗). So |L0| 6 |M0| by (7). Let r′′ := r′ − 1 and s′′ := s′ − 1. Similarlyto (6), µ(K1) > r′′ + s′′. By Lemma 3.1, |K(r′′)

1 | < |K(s′′)
1 |. Thus, sine L1 = K(r′′)

1 and
M1 = K

(s′′)
1 , |L1| < |M1|. We therefore have

∣

∣

∣
J (r′)(S)

∣

∣

∣
= |L0| + |L1| < |M0| + |M1| = |B0〈n〉|. (8)Now let D ∈ D. By (4), |A〈n〉| 6

∣

∣J (r′)(D)
∣

∣. It is easy to see that U(J (r′)) = [l] for some
l ∈ [n′] (sine J is ompressed); so ∣

∣J (r′)(D)
∣

∣ 6
∣

∣J (r′)(S)
∣

∣ by Corollary 3.5. Thus, by (8),
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