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The sum of a sequence

Ï The sum function can add all the elements of a vector.

Ï For example, the sum of
[
1 3 0 10

]
can be obtained as

follows:
>> x = [1 3 0 10];
>> s = sum(x);

Ï This gives us s= 14.

Ï When the parameter to sum is a matrix, each column is treated
independently.
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The cumulative sum of a sequence

Ï The cumsum function returns the cumulative sum of a vector.

Ï For example, the cumulative sum of
[
1 3 0 10

]
can be

obtained as follows:
>> x = [1 3 0 10];
>> cs = cumsum(x);

Ï This gives us cs= [
1 4 4 14

]
.

Ï When the parameter to cumsum is a matrix, each column is
treated independently.
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The difference of a sequence
Ï The diff function finds the difference between numbers next

to each other in a vector.
Ï For example, the difference of

[
1 4 9 16 25

]
can be

obtained as follows:
>> x = [1 4 9 16 25];
>> d = diff(x);

Ï This gives us d= [
3 5 7 9

]
.

Ï Passing the result to d again gives us:
>> d2 = diff(d);

Ï This gives us d2= [
2 2 2

]
.

Ï These two steps can be combined using:
>> d2 = diff(x, 2);

Ï When the first parameter to diff is a matrix, each column is
treated independently.
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The product of a sequence

Ï The prod function can multiply all the elements of a vector.

Ï For example, the product of
[
1 3 0.5 10

]
can be obtained

as follows:
>> x = [1 3 0.5 10];
>> p = prod(x);

Ï This gives us p= 15.

Ï When the parameter to prod is a matrix, each column is
treated independently.
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The cumulative product of a sequence

Ï To cumprod function returns the cumulative product of a
vector.

Ï For example, the cumulative product of
[
1 3 0.5 10

]
can

be obtained as follows:
>> x = [1 3 0.5 10];
>> cp = cumprod(x);

Ï This gives us cp= [
1 3 1.5 15

]
.

Ï When the parameter to cumprod is a matrix, each column is
treated independently.
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Differentiating vectors

Ï Let y = [
1 2 4 8 10

]
.

Ï To differentiate, use the gradient function.

Ï If the x-spacing is 1, we type:
>> dy = gradient(y);

Ï This gives us g = [
1 1.5 3 3 2

]
.

Ï Note that:
g1 = (y2 −y1)/(x2 −x1) = (y2 −y1)/1
g2 = (y3 −y1)/(x3 −x1) = (y3 −y1)/2
g3 = (y4 −y2)/(x4 −x2) = (y4 −y2)/2
g4 = (y5 −y3)/(x5 −x3) = (y5 −y3)/2
g5 = (y5 −y4)/(x5 −x4) = (y5 −y4)/1
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Differentiating vectors with non-unit spacing

Ï Let y = [
1 2 4 8 10

]
.

Ï Suppose that the x-spacing between each value of y is 0.5.

Ï For this non-unit spacing, we type:
>> dy = gradient(y, 0.5);

Ï This gives us g = [
2 3 6 6 4

]
.

Ï Note that:
g1 = (y2 −y1)/(x2 −x1) = (y2 −y1)/0.5
g2 = (y3 −y1)/(x3 −x1) = (y3 −y1)/1
g3 = (y4 −y2)/(x4 −x2) = (y4 −y2)/1
g4 = (y5 −y3)/(x5 −x3) = (y5 −y3)/1
g5 = (y5 −y4)/(x5 −x4) = (y5 −y4)/0.5
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Differentiating polynomials

Ï The polyder function differentiates polynomials.

Ï For example, to differentiate 3x2 −2x+5, type:
>> p = [3 -2 5];
>> pd = polyder(p);

Ï The resulting polynomial is
[
6 −2

]
, that is, 6x−2.

Ï polyder can also differentiate polynomial fractions.

Ï To differentiate
x−2

x2 +2
, type:

>> num = [1 -2]; den = [1 0 2];
>> [numa, dena] = polyder(num, den);

Ï The result is numa= [−1 4 2
]

and dena= [
1 0 4 0 4

]
,

that is,
−x2 +4x+2

x4 +4x2 +4
.
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Trapezoidal integration

Ï
∑

Area of trapezium ≈
∫ b
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The trapz function

Ï The trapz function computes an approximation of the
integral using the trapezoidal method.

Ï trapz operates on data points, not on functions.

Ï If we have two vectors, x and y, we can write:
>> area = trapz(x, y);
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Integration of a function

Ï When we have a function instead of data points, we do not use
trapezoidal integration.

Ï The quad function uses an adaptive Simpson’s rule.

Ï Let us compute the integral∫ π

0
sin(x)dx

Ï This can be done using:
>> a = quad(@sin, 0, pi);

Ï This gives us a = 2.
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Integrating polynomials

Ï The polyint function integrates polynomials.

Ï Unlinke polyder, polyint does not work on polynomial
fractions.

Ï To integrate the polynomial 3x2 −x+1, type:
>> p = [3 -1 1];
>> pint = polyint(p);

Ï The resulting polynomial is
[
1 −0.5 1 0

]
, that is,

x3 −0.5x2 +x.

Ï The constant of integration was assumed to be zero.

Ï To use 5 as the constant of integration, type:
>> pint2 = polyint(p, 5);

Ï The new result is
[
1 −0.5 1 5

]
, that is, x3 −0.5x2 +x+5.
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Ordinary differential equations

Ï An ordinary differential equation (ODE) contains functions of
only one independent variable.

Ï An ODE can contain one or more derivatives of the same
variable.

Ï Examples of ODEs:
dy(x)

dx
= y(x)

d2y(x)

dx2 +3
dy(x)

dx
= siny(x)+x

Ï The following equation is not an ODEs, because it has two
independent variables, y and z.

dy(x)

dx
= y(x)+z(x)

Ï Note that
dy(x)

dx
can be written as y′,

d2y(x)

dx2 as y′′, and so on.
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The derivative function

Ï A first order ODE is an ODE containing y′ but no y′′ or higher
order derivatives.

Ï To solve such an ODE in MATLAB, first make the derivative the
subject of the formula.

y′+y = cosx
y′ = cosx−y

Ï Then write a MATLAB function that computes this derivative.
yder.m

1 function yd = yder(x, y)
2 yd = cos(x) - y;

Ï Note that the first parameter is the controlled variable, x.

Ï This must be included even if it is not used to calculate y′.
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Solving the ODE

Ï Once the yder function is ready, we can type:
>> xspan = [0 10];
>> y0 = 1;
>> [xout yout] = ode45(@yder, xspan, y0);

Ï xspan contains the range of the integration.

Ï y0 is the initial value of y.

Ï yout can be plotted agains xout.
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The result
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Different ODE solvers

Ï All the solvers have the same syntax as ode45.

Table : MATLAB ODE solvers

ode45 Nonstiff, medium order. Used most of the time.
ode23 Nonstiff, low order. Used for problems with crude error

tolerances.
ode113 Nonstiff, variable order. Used for stringent error toler-

ances, or for computationally intensive problems.
ode15s Stiff, variable order. Used if ode45 is slow because the

problem is stiff.
ode23s Stiff, low order.
ode23t Moderately stiff, low order.
ode23tb Stiff, low order.
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Changing higher-order ODEs to state-variable form

Ï To solve an ODE of order 2 or higher, the equation must first be
written as a set of first-order equations.

Ï Consider the second-order equation
y′′+3y′+5y = cos(10t)

Ï First, solve it for the highest derivative:
y′′ = cos(10t)−5y−3y′

Ï Next, define the variables x1 = y and x2 = y′. Thus,
x′

1 = x2

x′
2 = cos(10t)−5x1 −3x2

Ï This form is sometimes called the state-variable form.
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The derivative function for the state-variable form

Ï The equations are in state-variable form.
x′

1 = x2

x′
2 = cos(10t)−5x1 −3x2

Ï Next, write a function that computes the derivative.
xder.m

1 function xd = xder(t, x)
2 xd = zeros(2, 1);
3 xd(1) = x(2);
4 xd(2) = cos(10 * t) - 5 * x(1) - 3 * x(2);

Ï The return vector must be a column vector.
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Solving the ODE

Ï Once the xder function is ready, we can type:
>> tspan = [0 10];
>> x0 = [0.5; 1];
>> [tout xout] = ode45(@xder, tspan, x0);

Ï tspan contains the range of the integration.

Ï x0 is a column vector containing the initial values of x.

Ï tout is a column vector containing the time instants of the
result.

Ï xout has two columns.

Ï xout(:, 1) contains values of x1, that is, values of y.

Ï xout(:, 2) contains values of x2, that is, values of y′.
Ï To plot y against t, we can type:

>> plot(tout, xout(:, 1))
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Matrix method for state-variable form

Ï Suppose we have the ODE
50y′′+3y′+7y = f (t)

Ï In state-variable form with x1 = y and x2 = y′, this becomes
x′

1 = x2

x′
2 =− 7

50 x1 − 3
50 x2 + 1

50 f (t)
Ï These equations can be written as:[

x′
1

x′
2

]
=

[
0 1

− 7
50 − 3

50

][
x1

x2

]
+

[
0
1

50

]
f (t)

Ï In compact form that is
x′ = Ax+Bf (t)

where A =
[

0 1
− 7

50 − 3
50

]
, B =

[
0
1

50

]
and x =

[
x1

x2

]
.
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The derivative function for the matrix method

Ï Once the ODE is in matrix form, we write a function that
computes the derivative.

Ï In our example, take f (t) = 10.
xder.m

1 function xd = xder(t, x)
2 A = [0 1; -7/50 -3/50];
3 B = [0; 1/50];
4 f = 10;
5 xd = A * x + B * f;

Ï To solve for y ∈ [0,100] with y0 = 1 and y′0 =−1, type:
>> [t, x] = ode45(@xder, [0 100], [1; -1]);
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The characteristic roots

Ï The plot in the previous slide was decaying and oscillating.

Ï This behaviour depends on the characteristic roots of the
equation.

Ï In state-variable form, the characteristic roots are the
eigenvalues of the matrix A.

Ï These can be obtained using:
>> A = [0 1; -7/50 -3/50];
>> r = eig(A);

Ï In this case, the roots are −0.03±0.3730i.

Ï The real part indicates the rate at which the function reaches
steady-state response, e−0.03t .

Ï The imaginary part indicates the frequency of the oscillations,
cos(0.3730t +φ).
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