Numerical Calculus and Differential Equations

Trevor Spiteri trevor.spiteri@um.edu.mt

http://staff.um.edu.mt/trevor.spiteri

Department of Communications and Computer Engineering Faculty of Information and Communication Technology University of Malta

7 April, 2008

Outline

Sequences of Numbers

Numerical Calculus Numerical Differentiation Numerical Integration

Ordinary Differential Equations

First-Order ODEs Higher-Order ODEs

→ < Ξ → <</p>

Sequences of Numbers Numerical Calculus Ordinary Differential Equations

Outline

Sequences of Numbers

Numerical Calculus Numerical Differentiation Numerical Integration

Ordinary Differential Equations First-Order ODEs Higher-Order ODEs

The sum of a sequence

- The sum function can add all the elements of a vector.
- ► For example, the sum of $\begin{bmatrix} 1 & 3 & 0 & 10 \end{bmatrix}$ can be obtained as follows:

>> $x = [1 \ 3 \ 0 \ 10];$

- This gives us s = 14.
- When the parameter to sum is a matrix, each column is treated independently.

A > < = > < =

The cumulative sum of a sequence

- The cumsum function returns the cumulative sum of a vector.
- ► For example, the cumulative sum of [1 3 0 10] can be obtained as follows:
 - >> x = $[1 \ 3 \ 0 \ 10];$
 - >> cs = cumsum(x);
- This gives us $cs = \begin{bmatrix} 1 & 4 & 4 & 14 \end{bmatrix}$.
- When the parameter to cumsum is a matrix, each column is treated independently.

The difference of a sequence

- The diff function finds the difference between numbers next to each other in a vector.
- ► For example, the difference of [1 4 9 16 25] can be obtained as follows:

>> d = diff(x);

- This gives us $d = \begin{bmatrix} 3 & 5 & 7 & 9 \end{bmatrix}$.
- Passing the result to d again gives us: >> d2 = diff(d);
- This gives us $d2 = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$.
- These two steps can be combined using:

>> d2 = diff(x, 2);

When the first parameter to diff is a matrix, each column is treated independently.

The product of a sequence

- The prod function can multiply all the elements of a vector.
- ► For example, the product of [1 3 0.5 10] can be obtained as follows:

>> x = [1 3 0.5 10];

- This gives us p = 15.
- When the parameter to prod is a matrix, each column is treated independently.

A > < = > < =

The cumulative product of a sequence

- To cumprod function returns the cumulative product of a vector.
- ► For example, the cumulative product of [1 3 0.5 10] can be obtained as follows:

>> cp = cumprod(x);

- This gives us $cp = \begin{bmatrix} 1 & 3 & 1.5 & 15 \end{bmatrix}$.
- When the parameter to cumprod is a matrix, each column is treated independently.

□ ► < □ ► < □</p>

Outline

Sequences of Numbers

Numerical Calculus Numerical Differentiation Numerical Integration

Ordinary Differential Equations First-Order ODEs Higher-Order ODEs

A (10) × A (10) × A (10)

Differentiating vectors

- Let $\mathbf{y} = \begin{bmatrix} 1 & 2 & 4 & 8 & 10 \end{bmatrix}$.
- To differentiate, use the gradient function.
- If the x-spacing is 1, we type:
 >> dy = gradient(y);
- This gives us $\mathbf{g} = \begin{bmatrix} 1 & 1.5 & 3 & 3 & 2 \end{bmatrix}$.
- Note that:

$$g_1 = (y_2 - y_1)/(x_2 - x_1) = (y_2 - y_1)/1$$

$$g_2 = (y_3 - y_1)/(x_3 - x_1) = (y_3 - y_1)/2$$

$$g_3 = (y_4 - y_2)/(x_4 - x_2) = (y_4 - y_2)/2$$

$$g_4 = (y_5 - y_3)/(x_5 - x_3) = (y_5 - y_3)/2$$

$$g_5 = (y_5 - y_4)/(x_5 - x_4) = (y_5 - y_4)/1$$

э

Differentiating vectors with non-unit spacing

- Let $\mathbf{y} = \begin{bmatrix} 1 & 2 & 4 & 8 & 10 \end{bmatrix}$.
- Suppose that the *x*-spacing between each value of *y* is 0.5.
- For this non-unit spacing, we type:
 >> dy = gradient(y, 0.5);
- This gives us $\mathbf{g} = \begin{bmatrix} 2 & 3 & 6 & 6 \end{bmatrix}$.
- Note that:

$$g_{1} = (y_{2} - y_{1})/(x_{2} - x_{1}) = (y_{2} - y_{1})/0.5$$

$$g_{2} = (y_{3} - y_{1})/(x_{3} - x_{1}) = (y_{3} - y_{1})/1$$

$$g_{3} = (y_{4} - y_{2})/(x_{4} - x_{2}) = (y_{4} - y_{2})/1$$

$$g_{4} = (y_{5} - y_{3})/(x_{5} - x_{3}) = (y_{5} - y_{3})/1$$

$$g_{5} = (y_{5} - y_{4})/(x_{5} - x_{4}) = (y_{5} - y_{4})/0.5$$

< □ > < 同 > < 回 > < 回 > .

Differentiating polynomials

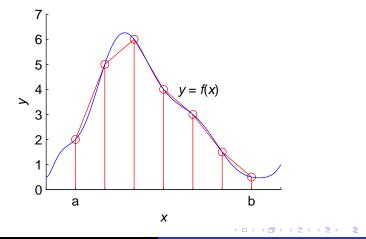
- The polyder function differentiates polynomials.
- For example, to differentiate $3x^2 2x + 5$, type:

- The resulting polynomial is $\begin{bmatrix} 6 & -2 \end{bmatrix}$, that is, 6x 2.
- polyder can also differentiate polynomial fractions.
- ► To differentiate $\frac{x-2}{x^2+2}$, type: >> num = $\begin{bmatrix} 1 & -2 \end{bmatrix}$; den = $\begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$; >> $\begin{bmatrix} numa, dena \end{bmatrix}$ = polyder(num, den);
- ► The result is numa = $\begin{bmatrix} -1 & 4 & 2 \end{bmatrix}$ and dena = $\begin{bmatrix} 1 & 0 & 4 & 0 & 4 \end{bmatrix}$, that is, $\frac{-x^2 + 4x + 2}{x^4 + 4x^2 + 4}$.

< ロ > < 同 > < 三 > < 三 > -

Trapezoidal integration

•
$$\sum$$
 Area of trapezium $\approx \int_{a}^{b} f(x)$



The trapz function

- The trapz function computes an approximation of the integral using the trapezoidal method.
- trapz operates on data points, not on functions.
- ► If we have two vectors, **x** and **y**, we can write:

```
>> area = trapz(x, y);
```

A (10) × A (10) × A (10)

Integration of a function

- When we have a function instead of data points, we do not use trapezoidal integration.
- The quad function uses an adaptive Simpson's rule.
- Let us compute the integral

$$\int_0^\pi \sin(x)\,dx$$

This can be done using:

• This gives us a = 2.

□ ► < □ ► < □</p>

Integrating polynomials

- The polyint function integrates polynomials.
- Unlinke polyder, polyint does not work on polynomial fractions.
- ► To integrate the polynomial $3x^2 x + 1$, type:

- ► The resulting polynomial is $\begin{bmatrix} 1 & -0.5 & 1 & 0 \end{bmatrix}$, that is, $x^3 0.5x^2 + x$.
- The constant of integration was assumed to be zero.
- To use 5 as the constant of integration, type:

>> pint2 = polyint(p, 5);

► The new result is $\begin{bmatrix} 1 & -0.5 & 1 & 5 \end{bmatrix}$, that is, $x^3 - 0.5x^2 + x + 5$.

Outline

Sequences of Numbers

Numerical Calculus Numerical Differentiation Numerical Integration

Ordinary Differential Equations

First-Order ODEs Higher-Order ODEs

A (10) × A (10) × A (10)

Ordinary differential equations

- An ordinary differential equation (ODE) contains functions of only one independent variable.
- An ODE can contain one or more derivatives of the same variable.
- Examples of ODEs:

$$\frac{\frac{dy(x)}{dx} = y(x)}{\frac{d^2y(x)}{dx^2} + 3\frac{\frac{dy(x)}{dx}}{dx} = \sin y(x) + x}$$

► The following equation is not an ODEs, because it has two independent variables, *y* and *z*.

$$\frac{dy(x)}{dx} = y(x) + z(x)$$

► Note that
$$\frac{dy(x)}{dx}$$
 can be written as y' , $\frac{d^2y(x)}{dx^2}$ as y'' , and so on.

The derivative function

- ► A first order ODE is an ODE containing y' but no y'' or higher order derivatives.
- To solve such an ODE in MATLAB, first make the derivative the subject of the formula.

$$y' + y = \cos x$$
$$y' = \cos x - y$$

• Then write a MATLAB function that computes this derivative.

1 function yd = yder(x, y)2 yd = cos(x) - y;

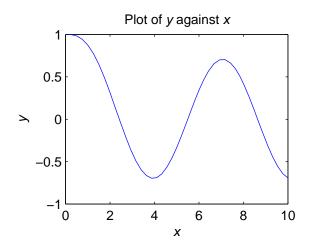
- ▶ Note that the first parameter is the controlled variable, *x*.
- This must be included even if it is not used to calculate y'.

イロト イポト イラト イラト

Solving the ODE

- Once the yder function is ready, we can type:
 - >> xspan = [0 10];
 - >> y0 = 1;
 - >> [xout yout] = ode45(@yder, xspan, y0);
- xspan contains the range of the integration.
- ▶ y0 is the initial value of *y*.
- yout can be plotted agains xout.

The result



イロト イヨト イヨト イヨト

Э

Different ODE solvers

All the solvers have the same syntax as ode45.

Table : MATLAB ODE solvers

- ode45 Nonstiff, medium order. Used most of the time.
- ode23 Nonstiff, low order. Used for problems with crude error tolerances.
- ode113 Nonstiff, variable order. Used for stringent error tolerances, or for computationally intensive problems.
- ode15s Stiff, variable order. Used if ode45 is slow because the problem is stiff.
- ode23s Stiff, low order.
- ode23t Moderately stiff, low order.
- ode23tb Stiff, low order.

Changing higher-order ODEs to state-variable form

- To solve an ODE of order 2 or higher, the equation must first be written as a set of first-order equations.
- Consider the second-order equation $y'' + 3y' + 5y = \cos(10t)$
- First, solve it for the highest derivative:

$$y'' = \cos(10t) - 5y - 3y'$$

- ► Next, define the variables $x_1 = y$ and $x_2 = y'$. Thus, $x'_1 = x_2$ $x'_2 = \cos(10t) - 5x_1 - 3x_2$
- This form is sometimes called the state-variable form.

伺き イヨト イヨ

The derivative function for the state-variable form

► The equations are in state-variable form.

$$x_1 = x_2 x_2' = \cos(10t) - 5x_1 - 3x_2$$

Next, write a function that computes the derivative.

1 function xd = xder(t, x)
2 xd = zeros(2, 1);
3 xd(1) = x(2);
4 xd(2) = cos(10 * t) - 5 * x(1) - 3 * x(2);

The return vector must be a column vector.

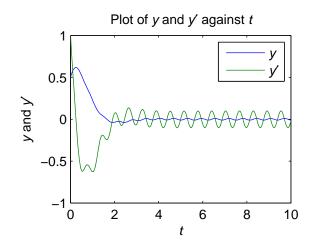
伺き イヨト イヨ

Solving the ODE

• Once the xder function is ready, we can type:

- >> [tout xout] = ode45(@xder, tspan, x0);
- tspan contains the range of the integration.
- ► x0 is a column vector containing the initial values of **x**.
- tout is a column vector containing the time instants of the result.
- xout has two columns.
- xout(:, 1) contains values of x_1 , that is, values of y.
- xout(:, 2) contains values of x_2 , that is, values of y'.
- To plot *y* against *t*, we can type:
 - >> plot(tout, xout(:, 1))

The result



Э

Matrix method for state-variable form

Suppose we have the ODE

$$50y'' + 3y' + 7y = f(t)$$

► In state-variable form with $x_1 = y$ and $x_2 = y'$, this becomes

$$\begin{array}{l} x_1' = x_2 \\ x_2' = -\frac{7}{50} x_1 - \frac{3}{50} x_2 + \frac{1}{50} f(t) \end{array}$$

• These equations can be written as:

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{7}{50} & -\frac{3}{50} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{50} \end{bmatrix} f(t)$$

In compact form that is

$$\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{B}f(t)$$

where $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -\frac{7}{50} & -\frac{3}{50} \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 \\ \frac{1}{50} \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

The derivative function for the matrix method

- Once the ODE is in matrix form, we write a function that computes the derivative.
- In our example, take f(t) = 10.

```
1 function xd = xder(t, x)
2 A = [0 1; -7/50 -3/50];
3 B = [0; 1/50];
4 f = 10;
5 xd = A * x + B * f;
```

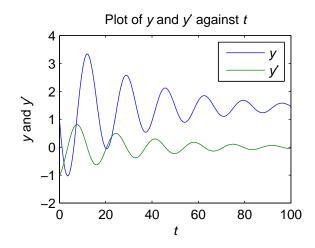
To solve for y ∈ [0,100] with y₀ = 1 and y'₀ = −1, type:
>> [t, x] = ode45(@xder, [0 100], [1; -1]);

< ロ > < 同 > < 回 > < 三 > < 三 >

Sequences of Numbers Numerical Calculus Ordinary Differential Equations

First-Order ODEs Higher-Order ODEs

The result



Э

A (10) × A (10) × A (10)

The characteristic roots

- The plot in the previous slide was decaying and oscillating.
- This behaviour depends on the characteristic roots of the equation.
- ► In state-variable form, the characteristic roots are the eigenvalues of the matrix **A**.
- These can be obtained using:

>> r =
$$eig(A);$$

- In this case, the roots are $-0.03 \pm 0.3730i$.
- The real part indicates the rate at which the function reaches steady-state response, $e^{-0.03t}$.
- The imaginary part indicates the frequency of the oscillations, $\cos(0.3730t + \phi)$.

< ロ > < 同 > < 回 > < 三 > < 三 >