Linear Algebraic Equations

Trevor Spiteri trevor.spiteri@um.edu.mt http://staff.um.edu.mt/trevor.spiteri

Department of Communications and Computer Engineering Faculty of Information and Communication Technology University of Malta

12 March, 2008

A (1) > A (2) > A

-

Outline

Systems of Linear Equations

Representing Systems of Linear Equations Solving Systems of Linear Equations

Underdetermined Systems

Examining Undertermined Systems Solving Undertermined Systems

Overdetermined Systems

Representing Systems of Linear Equations Solving Systems of Linear Equations

Outline

Systems of Linear Equations

Representing Systems of Linear Equations Solving Systems of Linear Equations

Underdetermined Systems

Examining Undertermined Systems Solving Undertermined Systems

Overdetermined Systems

→ < Ξ → <</p>

Systems of linear equations

 A system of linear equations is a collection of linear equations involving the same set of variables. For example,

$$3x + 2y - z = 12x - 2y + 4z = -2-x + 0.5y - z = 0$$

- A solution to a linear system is an assignment of numbers to the variables such that all equations are satisfied.
- For the example, a solution is:

$$x = 1$$
$$y = -2$$
$$z = -2$$

A (10) × A (10) × A (10)

General form of system of linear equations

• A general system of *m* linear equations with *n* unknowns can be written as:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

- x_1, x_2, \ldots, x_n are the unknowns.
- $a_{11}, a_{12}, \dots, a_{mn}$ are the coefficients of the system.
- b_1, b_2, \dots, b_m are the constant terms.

A (1) > A (2) > A (2) >

Matrix form of system of linear equations

The general system of euqations can be written as a matrix equation of the form:

$$Ax = b$$

- A is an $m \times n$ matrix.
- **x** is a column vector with *n* entries.
- **b** is a column vector with *m* entries.
- A, x and b can be written as:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Solving a system by left division

A system of linear equations can be written as:

Ax = b

- ► Pre-multiplying both sides by A⁻¹, we get:
 A⁻¹Ax = A⁻¹b
 x = A⁻¹b
- To solve the system, we may type: >> x = inv(A) * b
- The inverse can be numerically inaccurate for large systems.
- ► A better way is to use left division: >> x = A \ b
- Left division is performed using Gaussian elimination.

Right division

Sometimes a system is witten as:

$$\mathbf{x}\mathbf{C} = \mathbf{d}$$

where **x** and **d** are row vectors.

- ► Post-multiplying both sides by C⁻¹, we get xCC⁻¹ = dC⁻¹ x = dC⁻¹
- To solve the system, we may type: >> x = d * inv(C)
- The inverse can be numerically inaccurate for large systems.
- A better way is to use right division: >> x = d / C
- This is equivalent to writing: >> $x = C' \setminus d'$

The determinant

A system

Ax = b

has *m* equations and *n* unknowns.

- A is an $m \times n$ matrix.
- When m = n, **A** is a square matrix.
- ► To check if such a system has a unique solution, we can check the determinant |**A**|.
- ► If |**A**| = 0, the system does not have a unique solution.
- The determinant can be found using: >> d = det(A)

Examining Undertermined Systems Solving Undertermined Systems

Outline

Systems of Linear Equations

Representing Systems of Linear Equations Solving Systems of Linear Equations

Underdetermined Systems

Examining Undertermined Systems Solving Undertermined Systems

Overdetermined Systems

→ < Ξ → <</p>

Undetermined systems

- Sometimes, there are more unknowns than equations.
- ► Consider the system **Ax** = **b** with *m* equations and *n* unknowns.
- A is an $m \times n$ matrix.
- **x** is a column vector with *n* entries.
- **b** is a column vector with *m* entries.
- When m < n, the system is underdetermined.
- ► Sometimes *m* = *n*, but some equations are not independent.
- In this case, $|\mathbf{A}| = 0$ and the sytem is underdetermined as well.

The rank of a matrix

- A subdeterminant is the determinant of a matrix generated by eliminating some rows and columns.
- Consider the matrix

$$\mathbf{A} = \begin{bmatrix} 3 & -4 & 1 \\ 6 & 10 & 2 \\ 9 & -7 & 3 \end{bmatrix}$$

 The subdeterminant obtained by eliminating the second row and the first column is

$$\begin{vmatrix} -4 & 1 \\ -7 & 3 \end{vmatrix} = -5$$

- The rank of a matrix is the size of the largest subdeterminant that is not zero.
- To find the rank of a matrix, type >> r = rank(A)

< ロ > < 同 > < 三 > < 三

Existence and uniqueness of solutions

- The augmented matrix is a matrix built from **A** and **b**.
- The augmented matrix is [A b].
- Solutions to a system exist if and only if rank[A] = rank[A b].
- ► If solutions exist, the solution is unique if rank[**A**] = *n*.
- If solutions exist, but the solution is not unique, there are an infinite number of solutions.
- Let $r = \operatorname{rank}[\mathbf{A}]$.
- ► r unknown variables can be expressed as linear combinations of the other n – r variables.

Solving underdetermined systems

- ► Suppose the system **Ax** = **b** is underdetermined.
- ► This implies that *r* < *n*, and that an infinite number of solutions may exist.
- ► Solving using left division will give a solution with *n* − *r* variables set to zero.
- Suppose we have the equation

$$2x_1 + x_2 = 1$$

We can type:

>> A =
$$\begin{bmatrix} 2 & 1 \end{bmatrix}$$
;
>> b = 1;
>> x = A \ b;
This gives us $\mathbf{x} = \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}$.

→ < Ξ → <</p>

The pseudoinverse

- Sometimes **A** is a square matrix and $|\mathbf{A}| = 0$.
- ► In this case, the expression A \ b will give an error warning us that the matrix A is singular.
- In such cases, we can solve using the pseudoinverse method, pinv.
- The pseudoinverse method gives the minimum norm solution.
- The Euclidean norm of a vector **x** is $\sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$.
- We type: >> x = pinv(A) * b
- For the equation $2x_1 + x_2 = 1$ we can type:

This gives us
$$\mathbf{x} = \begin{bmatrix} 0.4 \\ 0.2 \end{bmatrix}$$

< ロ > < 同 > < 回 > < 三 > < 三 >

The reduced row echelon form

- ► Suppose we have a system with rank[**A**] = rank[**A b**] = *r*.
- ▶ Suppose that we have *n* unknowns, and that *r* < *n*.
- ► We want to write equations for *r* unknowns in terms of the other *n* − *r* variables.
- To do this, we use the reduced row echelon form function, rref.
- ► First transform **A**, **x** and **b** such that the required *r* unknowns are the first elements of **x**.
- Then use the rref function with the augmented matrix:

```
>> Ab2 = rref([A b])
```

Example for the reduced row echelon form

Suppose we have the system of equations:

$$x_1 - 2x_2 - x_3 = -100$$

$$2x_1 + 6.5x_2 + 5x_3 = 360$$

• To express x_1 and x_3 in terms of x_2 , rewrite:

$$x_1 - x_3 - 2x_2 = -100$$

$$2x_1 + 5x_3 + 6.5x_2 = 360$$

This is equivalent to:

$$\begin{bmatrix} 1 & -1 & -2 \\ 2 & 5 & 6.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_2 \end{bmatrix} = \begin{bmatrix} -100 \\ 360 \end{bmatrix}$$

>> A = [1 -1 -2; 2 5 6.5];
>> b = [-100; 360];
>> Ab2 = rref([A b]);

Example for the reduced row echelon form continued

 Now, Ab2 is the augmented matrix in reduced row echelon form.

$$\begin{bmatrix} \mathbf{A}_2 & \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -0.5 & -20 \\ 0 & 1 & 1.5 & 80 \end{bmatrix}$$

The system can be written as:

$$x_1 + 0x_3 - 0.5x_2 = -20$$

$$0x_1 + x_3 + 1.5x_2 = 80$$

► This gives us the required equations in terms of *x*₂:

$$x_1 = 0.5x_2 - 20$$

$$x_3 = -1.5x_2 + 80$$

Outline

Systems of Linear Equations

Representing Systems of Linear Equations Solving Systems of Linear Equations

Underdetermined Systems

Examining Undertermined Systems Solving Undertermined Systems

Overdetermined Systems

Overdetermined systems

- An overdetermined system is a system that has more equations than unknowns.
- Some overdetermined systems have exact solutions.
- To check for existence and uniqueness of solutions, use the augmented matrix method described for underdetermined systems.
- ▶ When an exact solution exists, A \ b returns the exact solution.
- Otherwise, A \ b returns a solution that satisfies the system of equations in a least squares sense only.

Example of a system with an exact solution

• Consider the system of equations:

$$\begin{array}{cccc} x_1 + & x_2 = & 3 \\ x_1 + & 2x_2 = & 5 \\ 2x_1 + & 5x_2 = & 12 \end{array} \qquad \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 12 \end{bmatrix}$$

• The rank check can be done as follows:

- ▶ rA=2 and rAb=2. Since rA=rAb, an exact solution exists.
- ▶ rA=2. So a unique solution for x_1 and x_2 exists.
- To find the solution: >> $x = A \setminus b$
- This gives us:

$$x_1 = 1$$
$$x_2 = 2$$

Example of a system without an exact solution

• Consider the system of equations:

$$\begin{array}{cccc} x_1 + & x_2 = & 3 \\ x_1 + & 2x_2 = & 5 \\ 2x_1 + & 5x_2 = & 10 \end{array} \qquad \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 10 \end{bmatrix}$$

The rank check can be done as follows:

- ▶ rA=2 and rAb=3. Since rA≠rAb, no exact solution exists.
- To find the solution in the least squares sense: >> $x = A \setminus b$
- This gives us:

$$\begin{array}{c} x_1 = 1.9091 \\ x_2 = 1.2727 \end{array} \qquad \left[\begin{array}{c} 1 & 1 \\ 1 & 2 \\ 2 & 5 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} 3.1818 \\ 4.4545 \\ 10.1818 \end{array} \right]$$